Sample records for two-component system regulates

  1. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium.

    PubMed

    Rajeev, Lara; Luning, Eric G; Dehal, Paramvir S; Price, Morgan N; Arkin, Adam P; Mukhopadhyay, Aindrila

    2011-10-12

    Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms.

  2. Inactivation of DNA-Binding Response Regulator Sak189 Abrogates β-Antigen Expression and Affects Virulence of Streptococcus agalactiae

    PubMed Central

    Rozhdestvenskaya, Anastasia S.; Totolian, Artem A.; Dmitriev, Alexander V.

    2010-01-01

    Background Streptococcus agalactiae is able to colonize numerous tissues employing different mechanisms of gene regulation, particularly via two-component regulatory systems. These systems sense the environmental stimuli and regulate expression of the genes including virulence genes. Recently, the novel two-component regulatory system Sak188/Sak189 was identified. In S. agalactiae genome, it was adjacent to the bac gene encoding for β-antigen, an important virulence factor. Methodology/Principal Findings In this study, the sak188 and sak189 genes were inactivated, and the functional role of Sak188/Sak189 two-component system in regulation of the β-antigen expression was investigated. It was demonstrated that both transcription of bac gene and expression of encoded β-antigen were controlled by Sak189 response regulator, but not Sak188 histidine kinase. It was also found that the regulation occurred at transcriptional level. Finally, insertional inactivation of sak189 gene, but not sak188 gene, significantly affected virulent properties of S. agalactiae. Conclusions/Significance Sak189 response regulator is necessary for activation of bac gene transcription. It also controls the virulent properties of S. agalactiae. Given that the primary functional role of Sak188/Sak189 two-component systems is a control of bac gene transcription, this system can be annotated as BgrR/S (bac gene regulatory system). PMID:20419089

  3. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium

    PubMed Central

    2011-01-01

    Background Two component regulatory systems are the primary form of signal transduction in bacteria. Although genomic binding sites have been determined for several eukaryotic and bacterial transcription factors, comprehensive identification of gene targets of two component response regulators remains challenging due to the lack of knowledge of the signals required for their activation. We focused our study on Desulfovibrio vulgaris Hildenborough, a sulfate reducing bacterium that encodes unusually diverse and largely uncharacterized two component signal transduction systems. Results We report the first systematic mapping of the genes regulated by all transcriptionally acting response regulators in a single bacterium. Our results enabled functional predictions for several response regulators and include key processes of carbon, nitrogen and energy metabolism, cell motility and biofilm formation, and responses to stresses such as nitrite, low potassium and phosphate starvation. Our study also led to the prediction of new genes and regulatory networks, which found corroboration in a compendium of transcriptome data available for D. vulgaris. For several regulators we predicted and experimentally verified the binding site motifs, most of which were discovered as part of this study. Conclusions The gene targets identified for the response regulators allowed strong functional predictions to be made for the corresponding two component systems. By tracking the D. vulgaris regulators and their motifs outside the Desulfovibrio spp. we provide testable hypotheses regarding the functions of orthologous regulators in other organisms. The in vitro array based method optimized here is generally applicable for the study of such systems in all organisms. PMID:21992415

  4. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    PubMed

    Sarwar, Zaara; Garza, Anthony G

    2016-02-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. The Ca2+ induced two-component system, CvsSR regulates the Type III secretion system and the extracytoplasmic function sigma-factor AlgU in Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle including pathogenesis. Most TCSs remain uncharacterized with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterize a TCS in the plant-...

  6. Structure of the Francisella response regulator QseB receiver domain, and characterization of QseB inhibition by antibiofilm 2-aminoimidazole-based compounds: Inhibition of response regulator QseB by antibiofilm compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, Morgan E.; Allen, C. Leigh; Feldmann, Erik A.

    With antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two-component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initiallymore » present the structure of the N-terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2-aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.« less

  7. A novel mode of regulation of the Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation.

    PubMed

    Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2014-04-25

    The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. [Regulation of sporulation by two-component system YvcPQ in Bacillus thuringiensis].

    PubMed

    Fan, Qingyun; Zhang, Shumeng; Gong, Yujing; He, Jin

    2017-01-04

    To study the regulation of sporulation controlled by two-component system (TCS) YvcPQ. β-galactosidase experiment was used to verify the regulation of YvcP on kapD expression; bacterial one-hybrid assay, EMSA and RT-qPCR were applied to study the regulation of AbrB on yvcPQ expression; markerless gene deletion coupled with spore count was used to reveal the influence of yvcPQ and kapD expressions on sporulation. transcriptional regulator AbrB up-regulated the expression of yvcPQ; YvcP promoted the expression of kapD to inhibit sporulation. AbrB up-regulated the transcription of yvcPQ operon, then the increased YvcP strengthened the transcriptional acitivation of sporulation inhibitor gene kapD, and subsequently inhibited sporulation.

  9. General Aspects of Two-Component Regulatory Circuits in Bacteria: Domains, Signals and Roles.

    PubMed

    Padilla-Vaca, Felipe; Mondragón-Jaimes, Verónica; Franco, Bernardo

    2017-01-01

    All living organisms are subject to changing environments, which must be sensed in order to respond swiftly and efficiently. Two-component systems (TCS) are signal transduction regulatory circuits based typically on a membrane bound sensor kinase and a cytoplasmic response regulator, that is activated through a histidine to aspartate phosphorelay reactions. Activated response regulator acts usually as a transcription factor. The best known examples were identified in bacteria, but they are also found in fungi, algae and plants. Thus far, they are not found in mammals. Regulatory circuits coupled to two-component systems exhibit a myriad of responses to environmental stimuli such as: redox potential, pH, specific metabolites, pressure, light and more recently to specific antimicrobial peptides that activate a sensor kinase responsible for expressing virulence factors through the active response regulator. In this review we explore general aspects on two-component systems that ultimately can play a role on virulence regulation, also the intriguing domain properties of the sensor kinases that can be a potential target for antimicrobial compounds. Only a handful of sensor kinases are extensively characterized, the vast majority belong to what we call 'the dark matter of bacterial signal transduction' since no known signal, structure and biochemical properties are available. Regulatory circuits from vertebrate pathogenic organisms can explain virulence in terms of either response to environmental factors or specific niche occupancy. Hopefully, knowledge on these signal transduction systems can lead to identify novel molecules that target two-component systems, since the increase of drug resistant microorganisms is worrisome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The Escherichia coli BarA-UvrY Two-Component System Is Needed for Efficient Switching between Glycolytic and Gluconeogenic Carbon Sources

    PubMed Central

    Pernestig, Anna-Karin; Georgellis, Dimitris; Romeo, Tony; Suzuki, Kazushi; Tomenius, Henrik; Normark, Staffan; Melefors, Öjar

    2003-01-01

    The Escherichia coli BarA and UvrY proteins were recently demonstrated to constitute a novel two-component system, although its function has remained largely elusive. Here we show that mutations in the sensor kinase gene, barA, or the response regulator gene, uvrY, in uropathogenic E. coli drastically affect survival in long-term competition cultures. Using media with gluconeogenic carbon sources, the mutants have a clear growth advantage when competing with the wild type, but using media with carbon sources feeding into the glycolysis leads to a clear growth advantage for the wild type. Results from competitions with mutants in the carbon storage regulation system, CsrA/B, known to be a master switch between glycolysis and gluconeogenesis, led us to propose that the BarA-UvrY two-component system controls the Csr system. Taking these results together, we propose the BarA-UvrY two-component system is crucial for efficient adaptation between different metabolic pathways, an essential function for adaptation to a new environment. PMID:12533459

  11. Growth phase-dependent activation of the DccRS regulon of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223-Cj1222) of Campylobacter jejuni is important for the colonization of chickens. Here w...

  12. A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans

    PubMed Central

    Bahn, Yong-Sun; Kojima, Kaihei; Cox, Gary M.

    2006-01-01

    The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal “two-component” system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component–like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen. PMID:16672377

  13. Immediate and heterogeneous response of the LiaFSR two-component system of Bacillus subtilis to the peptide antibiotic bacitracin.

    PubMed

    Kesel, Sara; Mader, Andreas; Höfler, Carolin; Mascher, Thorsten; Leisner, Madeleine

    2013-01-01

    Two-component signal transduction systems are one means of bacteria to respond to external stimuli. The LiaFSR two-component system of Bacillus subtilis consists of a regular two-component system LiaRS comprising the core Histidine Kinase (HK) LiaS and the Response Regulator (RR) LiaR and additionally the accessory protein LiaF, which acts as a negative regulator of LiaRS-dependent signal transduction. The complete LiaFSR system was shown to respond to various peptide antibiotics interfering with cell wall biosynthesis, including bacitracin. Here we study the response of the LiaFSR system to various concentrations of the peptide antibiotic bacitracin. Using quantitative fluorescence microscopy, we performed a whole population study analyzed on the single cell level. We investigated switching from the non-induced 'OFF' state into the bacitracin-induced 'ON' state by monitoring gene expression of a fluorescent reporter from the RR-regulated liaI promoter. We found that switching into the 'ON' state occurred within less than 20 min in a well-defined switching window, independent of the bacitracin concentration. The switching rate and the basal expression rate decreased at low bacitracin concentrations, establishing clear heterogeneity 60 min after bacitracin induction. Finally, we performed time-lapse microscopy of single cells confirming the quantitative response as obtained in the whole population analysis for high bacitracin concentrations. The LiaFSR system exhibits an immediate, heterogeneous and graded response to the inducer bacitracin in the exponential growth phase.

  14. Lactoferricin B Inhibits the Phosphorylation of the Two-Component System Response Regulators BasR and CreB*

    PubMed Central

    Ho, Yu-Hsuan; Sung, Tzu-Cheng; Chen, Chien-Sheng

    2012-01-01

    Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly. PMID:22138548

  15. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB.

    PubMed

    Ho, Yu-Hsuan; Sung, Tzu-Cheng; Chen, Chien-Sheng

    2012-04-01

    Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly.

  16. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

    PubMed Central

    Puthiyaveetil, Sujith; Allen, John F.

    2009-01-01

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems. PMID:19324807

  17. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    PubMed

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  18. Effects of the Global Regulator CsrA on the BarA/UvrY Two-Component Signaling System

    PubMed Central

    Camacho, Martha I.; Alvarez, Adrian F.; Gonzalez Chavez, Ricardo; Romeo, Tony; Merino, Enrique

    2014-01-01

    The hybrid sensor kinase BarA and its cognate response regulator UvrY, members of the two-component signal transduction family, activate transcription of CsrB and CsrC noncoding RNAs. These two small RNAs act by sequestering the RNA binding protein CsrA, which posttranscriptionally regulates translation and/or stability of its target mRNAs. Here, we provide evidence that CsrA positively affects, although indirectly, uvrY expression, at both the transcriptional and translational levels. We also demonstrate that CsrA is required for properly switching BarA from its phosphatase to its kinase activity. Thus, the existence of a feedback loop mechanism that involves the Csr and BarA/UvrY global regulatory systems is exposed. PMID:25535275

  19. Immediate and Heterogeneous Response of the LiaFSR Two-Component System of Bacillus subtilis to the Peptide Antibiotic Bacitracin

    PubMed Central

    Kesel, Sara; Mader, Andreas; Höfler, Carolin; Mascher, Thorsten; Leisner, Madeleine

    2013-01-01

    Background Two-component signal transduction systems are one means of bacteria to respond to external stimuli. The LiaFSR two-component system of Bacillus subtilis consists of a regular two-component system LiaRS comprising the core Histidine Kinase (HK) LiaS and the Response Regulator (RR) LiaR and additionally the accessory protein LiaF, which acts as a negative regulator of LiaRS-dependent signal transduction. The complete LiaFSR system was shown to respond to various peptide antibiotics interfering with cell wall biosynthesis, including bacitracin. Methodology and Principal Findings Here we study the response of the LiaFSR system to various concentrations of the peptide antibiotic bacitracin. Using quantitative fluorescence microscopy, we performed a whole population study analyzed on the single cell level. We investigated switching from the non-induced ‘OFF’ state into the bacitracin-induced ‘ON’ state by monitoring gene expression of a fluorescent reporter from the RR-regulated liaI promoter. We found that switching into the ‘ON’ state occurred within less than 20 min in a well-defined switching window, independent of the bacitracin concentration. The switching rate and the basal expression rate decreased at low bacitracin concentrations, establishing clear heterogeneity 60 min after bacitracin induction. Finally, we performed time-lapse microscopy of single cells confirming the quantitative response as obtained in the whole population analysis for high bacitracin concentrations. Conclusion The LiaFSR system exhibits an immediate, heterogeneous and graded response to the inducer bacitracin in the exponential growth phase. PMID:23326432

  20. The ribonucleoprotein Csr network.

    PubMed

    Seyll, Ethel; Van Melderen, Laurence

    2013-11-08

    Ribonucleoprotein complexes are essential regulatory components in bacteria. In this review, we focus on the carbon storage regulator (Csr) network, which is well conserved in the bacterial world. This regulatory network is composed of the CsrA master regulator, its targets and regulators. CsrA binds to mRNA targets and regulates translation either negatively or positively. Binding to small non-coding RNAs controls activity of this protein. Expression of these regulators is tightly regulated at the level of transcription and stability by various global regulators (RNAses, two-component systems, alarmone). We discuss the implications of these complex regulations in bacterial adaptation.

  1. Regulation of virulence by a two-component system in group B streptococcus.

    PubMed

    Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R

    2005-02-01

    Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.

  2. Dissecting the regulon of the two-component system CvsSR: Identifying new virulence genes in Pseudomonas syringae pv. tomato DC3000

    USDA-ARS?s Scientific Manuscript database

    Recognition of environmental changes and regulation of genes that allow for adaption to those changes is essential for survival of bacteria. Two-component systems (TCSs) allow bacteria to sense and adapt to their environment. We previously identified the TCS CvsSR in the bacterial plant pathogen Pse...

  3. Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system.

    PubMed

    Chen, Jianming; Rood, Julian I; McClane, Bruce A

    2011-01-01

    Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. IMPORTANCE Mechanisms by which Clostridium perfringens type B and D strains regulate production of epsilon-toxin (ETX), a CDC class B select toxin, are poorly understood. Production of several other toxins expressed by C. perfringens is wholly or partially regulated by both the Agr-like quorum-sensing (QS) system and the VirS/VirR two-component regulatory system, so the present study tested whether ETX expression by type D strain CN3718 also requires these regulatory systems. The agr operon was shown to be essential for signaling CN3718 to produce ETX in broth culture or to upregulate ETX production upon close contact with enterocyte-like Caco-2 cells, which may have pathogenic relevance since ETX is produced intestinally. However, ETX production remained at wild-type levels after inactivation of the VirS/VirR system in CN3718. These findings provide the first information regarding regulation of ETX production and suggest Agr-like QS toxin production regulation in C. perfringens does not always require the VirS/VirR system.

  4. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE PAGES

    Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...

    2017-01-17

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  5. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yan; Richardson, Sarah; Yan, Jingwei

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  6. Regulation of the Expression of Bacterial Multidrug Exporters by Two-Component Signal Transduction Systems.

    PubMed

    Nishino, Kunihiko

    2018-01-01

    Bacterial multidrug exporters confer resistance to a wide range of antibiotics, dyes, and biocides. Recent studies have shown that there are many multidrug exporters encoded in bacterial genome. For example, it was experimentally identified that E. coli has at least 20 multidrug exporters. Because many of these multidrug exporters have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbor such large sets of multidrug exporter genes. The key to understanding how bacteria utilize these multiple exporters lies in the regulation of exporter expression. Bacteria have developed signaling systems for eliciting a variety of adaptive responses to their environments. These adaptive responses are often mediated by two-component regulatory systems. In this chapter, the method to identify response regulators that affect expression of multidrug exporters is described.

  7. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    PubMed Central

    2009-01-01

    Background Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006. Results We demonstrate that a mutation in the high affinity phosphate transporter pstSCAB-phoU, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in Serratia 39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in Serratia 39006. In addition, a pstS mutation resulted in upregulation of rap. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from Yersina spp. and is an activator of secondary metabolism in Serratia 39006. We demonstrate that expression of rap, pigA-O (encoding the prodigiosin biosynthetic operon) and smaI are controlled via PhoBR in Serratia 39006. Conclusion Phosphate limitation regulates secondary metabolism in Serratia 39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap. PMID:19476633

  8. A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators.

    PubMed

    Mern, Demissew S; Ha, Seung-Wook; Khodaverdi, Viola; Gliese, Nicole; Görisch, Helmut

    2010-05-01

    In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in Pseudomonas aeruginosa. Two putative sensor kinases, ErcS and ErcS', and a response regulator, ErdR, were found, all of which show significant similarity to the two-component flhSR system that controls methanol and formaldehyde metabolism in Paracoccus denitrificans. All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the luxR family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS' do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene ercS caused an extended lag phase on ethanol. Inactivation of both genes, ercS and ercS', resulted in no growth at all on ethanol, as did inactivation of erdR. Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of P. aeruginosa, remain to be identified.

  9. A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa PAO1.

    PubMed Central

    Sage, A E; Proctor, W D; Phibbs, P V

    1996-01-01

    A 729-bp open reading frame (gltR) was identified in Pseudomonas aeruginosa PAO1 that encodes a product homologous to the two-component response regulator family of proteins. Disruption of gltR caused loss of glucose transport activity. Restoration of gltR resulted in wild-type levels of glucose transport. These findings indicate that gltR is required for expression of the glucose transport system in P. aeruginosa. PMID:8830708

  10. Comparative Analysis of Wolbachia Genomes Reveals Streamlining and Divergence of Minimalist Two-Component Systems

    PubMed Central

    Christensen, Steen; Serbus, Laura Renee

    2015-01-01

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk. PMID:25809075

  11. The VirSR Two-Component Signal Transduction System Regulates NetB Toxin Production in Clostridium perfringens▿

    PubMed Central

    Cheung, Jackie K.; Keyburn, Anthony L.; Carter, Glen P.; Lanckriet, Anouk L.; Van Immerseel, Filip; Moore, Robert J.; Rood, Julian I.

    2010-01-01

    Clostridium perfringens causes several diseases in domestic livestock, including necrotic enteritis in chickens, which is of concern to the poultry industry due to its health implications and associated economic cost. The novel pore-forming toxin NetB is a critical virulence factor in the pathogenesis of this disease. In this study, we have examined the regulation of NetB toxin production. In C. perfringens, the quorum sensing-dependent VirSR two-component signal transduction system regulates genes encoding several toxins and extracellular enzymes. Analysis of the sequence upstream of the netB gene revealed the presence of potential DNA binding sites, or VirR boxes, that are recognized by the VirR response regulator. In vitro binding experiments showed that purified VirR was able to recognize and bind to these netB-associated VirR boxes. Furthermore, using a reporter gene assay, the netB VirR boxes were shown to be functional. Mutation of the virR gene in two avian C. perfringens strains was shown to significantly reduce the production of the NetB toxin; culture supernatants derived from these strains were no longer cytotoxic to Leghorn male hepatoma cells. Complementation with the virRS operon restored the toxin phenotypes to wild type. The results also showed that the VirSR two-component system regulates the expression of netB at the level of transcription. We postulate that in the gastrointestinal tract of infected birds, NetB production is upregulated when the population of C. perfringens cells reaches a threshold level that leads to activation of the VirSR system. PMID:20457789

  12. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling.

    PubMed

    Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M

    2002-10-15

    Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.

  13. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    PubMed Central

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  14. Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria.

    PubMed

    Atack, John M; Srikhanta, Yogitha N; Djoko, Karrera Y; Welch, Jessica P; Hasri, Norain H M; Steichen, Christopher T; Vanden Hoven, Rachel N; Grimmond, Sean M; Othman, Dk Seti Maimonah Pg; Kappler, Ulrike; Apicella, Michael A; Jennings, Michael P; Edwards, Jennifer L; McEwan, Alastair G

    2013-06-01

    NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.

  15. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism.

    PubMed

    Ogawa, Teruo; Bao, Ding Hui; Katoh, Hirokazu; Shibata, Mari; Pakrasi, Himadri B; Bhattacharyya-Pakrasi, Maitrayee

    2002-08-09

    Elemental manganese is essential for the production of molecular oxygen by cyanobacteria, plants, and algae. In the cyanobacterium Synechocystis sp. PCC 6803, transcription of the mntCAB operon, encoding a high affinity Mn transporter, occurs under Mn starvation (nm Mn) conditions but not in Mn-sufficient (microm Mn) growth medium. Using a strain in which the promoter of this operon directs the transcription of the luxAB reporter genes, we determined that inactivation of the slr0640 gene, which encodes a histidine kinase sensor protein component of a two-component signal transduction system, resulted in constitutive high levels of lux luminescence. Systematic targeted inactivation mutagenesis also identified slr1837 as the gene encoding the corresponding response regulator protein. We have named these two genes manS (manganese-sensor) and manR (manganese-regulator), respectively. A polyhistidine-tagged form of the ManS protein was localized in the Synechocystis 6803 cell membrane. Directed replacement of the conserved catalytic His-205 residue of this protein by Leu abolished its activity, although the mutated protein was present in cyanobacterial membrane. This mutant also showed suboptimal rates of Mn uptake under either Mn-starved or Mn-sufficient growth condition. These data suggest that the ManS/ManR two-component system plays a central role in the homeostasis of manganese in Synechocystis 6803 cells.

  16. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems

    PubMed Central

    Makarova, Kira S.; Wolf, Yuri I.

    2017-01-01

    ABSTRACT The two-component signal transduction (TCS) machinery is a key mechanism of sensing environmental changes in the prokaryotic world. TCS systems have been characterized thoroughly in bacteria but to a much lesser extent in archaea. Here, we provide an updated census of more than 2,000 histidine kinases and response regulators encoded in 218 complete archaeal genomes, as well as unfinished genomes available from metagenomic data. We describe the domain architectures of the archaeal TCS components, including several novel output domains, and discuss the evolution of the archaeal TCS machinery. The distribution of TCS systems in archaea is strongly biased, with high levels of abundance in haloarchaea and thaumarchaea but none detected in the sequenced genomes from the phyla Crenarchaeota, Nanoarchaeota, and Korarchaeota. The archaeal sensor histidine kinases are generally similar to their well-studied bacterial counterparts but are often located in the cytoplasm and carry multiple PAS and/or GAF domains. In contrast, archaeal response regulators differ dramatically from the bacterial ones. Most archaeal genomes do not encode any of the major classes of bacterial response regulators, such as the DNA-binding transcriptional regulators of the OmpR/PhoB, NarL/FixJ, NtrC, AgrA/LytR, and ActR/PrrA families and the response regulators with GGDEF and/or EAL output domains. Instead, archaea encode multiple copies of response regulators containing either the stand-alone receiver (REC) domain or combinations of REC with PAS and/or GAF domains. Therefore, the prevailing mechanism of archaeal TCS signaling appears to be via a variety of protein-protein interactions, rather than direct transcriptional regulation. IMPORTANCE Although the Archaea represent a separate domain of life, their signaling systems have been assumed to be closely similar to the bacterial ones. A study of the domain architectures of the archaeal two-component signal transduction (TCS) machinery revealed an overall similarity of archaeal and bacterial sensory modules but substantial differences in the signal output modules. The prevailing mechanism of archaeal TCS signaling appears to involve various protein-protein interactions rather than direct transcription regulation. The complete list of histidine kinases and response regulators encoded in the analyzed archaeal genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/TCSarchaea.html. PMID:29263101

  17. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.

    PubMed

    Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2018-04-01

    The two-component signal transduction (TCS) machinery is a key mechanism of sensing environmental changes in the prokaryotic world. TCS systems have been characterized thoroughly in bacteria but to a much lesser extent in archaea. Here, we provide an updated census of more than 2,000 histidine kinases and response regulators encoded in 218 complete archaeal genomes, as well as unfinished genomes available from metagenomic data. We describe the domain architectures of the archaeal TCS components, including several novel output domains, and discuss the evolution of the archaeal TCS machinery. The distribution of TCS systems in archaea is strongly biased, with high levels of abundance in haloarchaea and thaumarchaea but none detected in the sequenced genomes from the phyla Crenarchaeota , Nanoarchaeota , and Korarchaeota The archaeal sensor histidine kinases are generally similar to their well-studied bacterial counterparts but are often located in the cytoplasm and carry multiple PAS and/or GAF domains. In contrast, archaeal response regulators differ dramatically from the bacterial ones. Most archaeal genomes do not encode any of the major classes of bacterial response regulators, such as the DNA-binding transcriptional regulators of the OmpR/PhoB, NarL/FixJ, NtrC, AgrA/LytR, and ActR/PrrA families and the response regulators with GGDEF and/or EAL output domains. Instead, archaea encode multiple copies of response regulators containing either the stand-alone receiver (REC) domain or combinations of REC with PAS and/or GAF domains. Therefore, the prevailing mechanism of archaeal TCS signaling appears to be via a variety of protein-protein interactions, rather than direct transcriptional regulation. IMPORTANCE Although the Archaea represent a separate domain of life, their signaling systems have been assumed to be closely similar to the bacterial ones. A study of the domain architectures of the archaeal two-component signal transduction (TCS) machinery revealed an overall similarity of archaeal and bacterial sensory modules but substantial differences in the signal output modules. The prevailing mechanism of archaeal TCS signaling appears to involve various protein-protein interactions rather than direct transcription regulation. The complete list of histidine kinases and response regulators encoded in the analyzed archaeal genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/TCSarchaea.html. Copyright © 2018 Galperin et al.

  18. Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB.

    PubMed

    Filippova, Ekaterina V; Zemaitaitis, Bozena; Aung, Theint; Wolfe, Alan J; Anderson, Wayne F

    2018-02-27

    RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379-405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204-209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173-1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6-17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. IMPORTANCE RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae , which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis, antibiotic resistance, biofilm formation, and virulence in pathogens. Knowledge of RcsB structure represents a unique opportunity to explore mechanisms that regulate the Rcs phosphorelay system and its role in the family Enterobacteriaceae . Copyright © 2018 Filippova et al.

  19. Incremental passivity and output regulation for switched nonlinear systems

    NASA Astrophysics Data System (ADS)

    Pang, Hongbo; Zhao, Jun

    2017-10-01

    This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.

  20. The BaeSR Two-Component Regulatory System Mediates Resistance to Condensed Tannins in Escherichia coli▿ †

    PubMed Central

    Zoetendal, Erwin G.; Smith, Alexandra H.; Sundset, Monica A.; Mackie, Roderick I.

    2008-01-01

    The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin sensitive than their wild-type counterparts. PMID:18039828

  1. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana.

    PubMed

    Dortay, Hakan; Mehnert, Nijuscha; Bürkle, Lukas; Schmülling, Thomas; Heyl, Alexander

    2006-10-01

    The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.

  2. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System

    PubMed Central

    Viadas, Cristina; Rodríguez, María C.; Sangari, Felix J.; Gorvel, Jean-Pierre; García-Lobo, Juan M.; López-Goñi, Ignacio

    2010-01-01

    Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche. PMID:20422049

  3. Mycobacterium tuberculosis two-component systems and implications in novel vaccines and drugs.

    PubMed

    Zhou, PeiFu; Long, QuanXin; Zhou, YeXin; Wang, HongHai; Xie, JianPing

    2012-01-01

    Communication is vital for nearly all organisms to survive and thrive. For some particularly successful intracellular pathogens, a robust and precise signal transduction system is imperative for handling the complex, volatile, and harsh niche. The communication network of the etiology of tuberculosis, Mycobacterium tuberculosis (M.tb), namely two-component system (TCS), the eukaryotic-like Ser/Thr protein kinases(STPKs) system, the protein tyrosine kinase(PTK) system and the extracytoplasmic function σ(ECF-σ) system, determine how the pathogen responds to environmental fluctuations. At least 12 pair TCSs and four orphan proteins (three response regulators, Rv2884, Rv0260c, Rv0818, and one putative sensory transduction protein, Rv3143) can be found in the M.tb H37Rv genome. They regulate various aspects of M.tb, including virulence, dormancy, persistence, and drug resistance. This review focuses on the physiological roles of TCSs and the network of M.tb TCSs from a systems biology perspective. The implications of TCSs for better vaccine and new drug targets against tuberculosis are also examined.

  4. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes

    PubMed Central

    Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454

  5. Fungal histidine phosphotransferase plays a crucial role in photomorphogenesis and pathogenesis in Magnaporthe oryzae

    NASA Astrophysics Data System (ADS)

    Mohanan, Varsha C.; Chandarana, Pinal M.; Chattoo, Bharat. B.; Patkar, Rajesh N.; Manjrekar, Johannes

    2017-05-01

    Two-component signal transduction (TCST) pathways play crucial roles in many cellular functions such as stress responses, biofilm formation and sporulation. The histidine phosphotransferase (HPt), which is an intermediate phosphotransfer protein in a two-component system, transfers a phosphate group to a phosphorylatable aspartate residue in the target protein(s), and up-regulates stress-activated MAP kinase cascades. Most fungal genomes carry a single copy of the gene coding for HPt, which are potential antifungal targets. However, unlike the histidine kinases (HK) or the downstream response regulators (RR) in two-component system, the HPts have not been well studied in phytopathogenic fungi. In this study, we investigated the role of HPt in the model rice-blast fungal pathogen Magnaporthe oryzae. We found that in M. oryzae an additional isoform of the HPT gene YPD1 was expressed specifically in response to light. Further, the expression of light-regulated genes such as those encoding envoy and blue-light-harvesting protein, and PAS domain containing HKs was significantly reduced upon down-regulation of YPD1 in M. oryzae. Importantly, down-regulation of YPD1 led to a significant decrease in the ability to penetrate the host cuticle and in light-dependent conidiation in M. oryzae. Thus, our results indicate that Ypd1 plays an important role in asexual development and host invasion, and suggest that YPD1 isoforms likely have distinct roles to play in the rice-blast pathogen M. oryzae.

  6. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis

    2016-02-01

    ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulatormore » (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRR mon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCEBphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these proteins, rather than on signal transduction or the resultant phenotypes. To begin to address this knowledge gap, we solved the crystal structures of two single-domain response regulators encoded by a region immediately downstream of that encoding BphPs. We observed a previously unknown arm-in-arm dimer linkage. Monomerization via deletion of the C-terminal dimerization motif had an inhibitory effect on net response regulator phosphorylation, underlining the importance of these unusual dimers for signal transduction.« less

  7. Transplantation of prokaryotic two-component signaling pathways into mammalian cells.

    PubMed

    Hansen, Jonathan; Mailand, Erik; Swaminathan, Krishna Kumar; Schreiber, Joerg; Angelici, Bartolomeo; Benenson, Yaakov

    2014-11-04

    Signaling pathway engineering is a promising route toward synthetic biological circuits. Histidine-aspartate phosphorelays are thought to have evolved in prokaryotes where they form the basis for two-component signaling. Tyrosine-serine-threonine phosphorelays, exemplified by MAP kinase cascades, are predominant in eukaryotes. Recently, a prokaryotic two-component pathway was implemented in a plant species to sense environmental trinitrotoluene. We reasoned that "transplantation" of two-component pathways into mammalian host could provide an orthogonal and diverse toolkit for a variety of signal processing tasks. Here we report that two-component pathways could be partially reconstituted in mammalian cell culture and used for programmable control of gene expression. To enable this reconstitution, coding sequences of histidine kinase (HK) and response regulator (RR) components were codon-optimized for human cells, whereas the RRs were fused with a transactivation domain. Responsive promoters were furnished by fusing DNA binding sites in front of a minimal promoter. We found that coexpression of HKs and their cognate RRs in cultured mammalian cells is necessary and sufficient to strongly induce gene expression even in the absence of pathways' chemical triggers in the medium. Both loss-of-function and constitutive mutants behaved as expected. We further used the two-component signaling pathways to implement two-input logical AND, NOR, and OR gene regulation. Thus, two-component systems can be applied in different capacities in mammalian cells and their components can be used for large-scale synthetic gene circuits.

  8. Cyclic di-GMP regulation of the bvg-repressed genes and the orphan response regulator RisA in Bordetella pertussis

    USDA-ARS?s Scientific Manuscript database

    Expression of Bordetella pertussis virulence factors is activated by the BvgAS two-component system. Under modulating growth conditions BvgAS indirectly represses another set of genes through the action of BvgR, a bvg-activated protein. BvgR blocks activation of the response regulator RisA which is ...

  9. VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System.

    PubMed

    Krute, Christina N; Rice, Kelly C; Bose, Jeffrey L

    2017-03-01

    In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB , saeR , and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I ( coa ) and class II ( hla ) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureus IMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation. Copyright © 2017 American Society for Microbiology.

  10. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence.

    PubMed

    Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra

    2012-04-01

    This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.

  11. Design and fabrication of miniaturized PEM fuel cell combined microreactor with self-regulated hydrogen mechanism

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.

    2015-12-01

    In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.

  12. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria.

    PubMed Central

    Silver, S; Walderhaug, M

    1992-01-01

    Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+, SbO2-, TeO3(2-), Zn2+, and other toxic ions. To study the regulation of these systems, we need to define both the trans-acting regulatory proteins and the cis-acting target operator DNA regions for the proteins. The regulation of gene expression for K+ and PO4(3-) transport systems involves two-component sensor-effector pairs of proteins. The first protein responds to an extracellular ionic (or related) signal and then transmits the signal to an intracellular DNA-binding protein. Regulation of Fe3+ transport utilizes the single iron-binding and DNA-binding protein Fur. The MerR regulatory protein for mercury resistance both represses and activates transcription. The ArsR regulatory protein functions as a repressor for the arsenic and antimony(III) efflux system. Although the predicted cadR regulatory gene has not been identified, cadmium, lead, bismuth, zinc, and cobalt induce this system in a carefully regulated manner from a single mRNA start site. The cadA Cd2+ resistance determinant encodes an E1(1)-1E2-class efflux ATPase (consisting of two polypeptides, rather than the one earlier identified). Cadmium resistance is also conferred by the czc system (which confers resistances to zinc and cobalt in Alcaligenes species) via a complex efflux pump consisting of four polypeptides. These two cadmium efflux systems are not otherwise related. For chromate resistance, reduced cellular accumulation is again the resistance mechanism, but the regulatory components are not identified. For other toxic heavy metals (with few exceptions), there exist specific plasmid resistances that remain relatively terra incognita for future exploration of bioinorganic molecular genetics and gene regulation. PMID:1579110

  13. The NtrY-NtrX two-component system is involved in controlling nitrate assimilation in Herbaspirillum seropedicae strain SmR1.

    PubMed

    Bonato, Paloma; Alves, Lysangela R; Osaki, Juliana H; Rigo, Liu U; Pedrosa, Fabio O; Souza, Emanuel M; Zhang, Nan; Schumacher, Jörg; Buck, Martin; Wassem, Roseli; Chubatsu, Leda S

    2016-11-01

    Herbaspirillum seropedicae is a diazotrophic β-Proteobacterium found endophytically associated with gramineae (Poaceae or graminaceous plants) such as rice, sorghum and sugar cane. In this work we show that nitrate-dependent growth in this organism is regulated by the master nitrogen regulatory two-component system NtrB-NtrC, and by NtrY-NtrX, which functions to specifically regulate nitrate metabolism. NtrY is a histidine kinase sensor protein predicted to be associated with the membrane and NtrX is the response regulator partner. The ntrYntrX genes are widely distributed in Proteobacteria. In α-Proteobacteria they are frequently located downstream from ntrBC, whereas in β-Proteobacteria these genes are located downstream from genes encoding an RNA methyltransferase and a proline-rich protein with unknown function. The NtrX protein of α-Proteobacteria has an AAA+ domain, absent in those from β-Proteobacteria. An ntrY mutant of H. seropedicae showed the wild-type nitrogen fixation phenotype, but the nitrate-dependent growth was abolished. Gene fusion assays indicated that NtrY is involved in the expression of genes coding for the assimilatory nitrate reductase as well as the nitrate-responsive two-component system NarX-NarL (narK and narX promoters, respectively). The purified NtrX protein was capable of binding the narK and narX promoters, and the binding site at the narX promoter for the NtrX protein was determined by DNA footprinting. In silico analyses revealed similar sequences in other promoter regions of H. seropedicae that are related to nitrate assimilation, supporting the role of the NtrY-NtrX system in regulating nitrate metabolism in H. seropedicae. © 2016 Federation of European Biochemical Societies.

  14. Phosphate Sink Containing Two-Component Signaling Systems as Tunable Threshold Devices

    PubMed Central

    Amin, Munia; Kothamachu, Varun B.; Feliu, Elisenda; Scharf, Birgit E.; Porter, Steven L.; Soyer, Orkun S.

    2014-01-01

    Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship arising from a specific motif found in two-component signaling. In this motif, a single histidine kinase (HK) phosphotransfers reversibly to two separate output response regulator (RR) proteins. We show that, under the experimentally observed parameters from bacteria and yeast, this motif not only allows rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR), but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We find that the level of sigmoidality in this system can be experimentally controlled by the presence of the sink RR, and also through an auxiliary protein that is shown to bind to the HK (yielding Hill coefficients of above 7). These findings show that the one HK-two RR motif allows bacteria and yeast to implement tunable switch-like signal processing and provides an ideal basis for developing threshold devices for synthetic biology applications. PMID:25357192

  15. Identification of a two-component signal transduction system involved in fimbriation of Porphyromonas gingivalis.

    PubMed

    Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F

    2000-01-01

    Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.

  16. The two-component signal system in rice (Oryza sativa L.): a genome-wide study of cytokinin signal perception and transduction.

    PubMed

    Du, Liming; Jiao, Fangchan; Chu, Jun; Jin, Gulei; Chen, Ming; Wu, Ping

    2007-06-01

    In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.

  17. The Bacterial Cytoskeleton Modulates Motility, Type 3 Secretion, and Colonization in Salmonella

    PubMed Central

    Bulmer, David M.; Kharraz, Lubna; Grant, Andrew J.; Dean, Paul; Morgan, Fiona J. E.; Karavolos, Michail H.; Doble, Anne C.; McGhie, Emma J.; Koronakis, Vassilis; Daniel, Richard A.; Mastroeni, Pietro; Anjam Khan, C. M.

    2012-01-01

    Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC. PMID:22291596

  18. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora.

    PubMed

    Li, Wenting; Ancona, Veronica; Zhao, Youfu

    2014-02-01

    The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.

  19. Overlapping and lineage-specific roles for the type-B response regulators of monocots and dicots.

    PubMed

    Kim, Hyo Jung; Kieber, Joseph J; Schaller, G Eric

    2012-09-01

    Cytokinins are plant hormones with profound roles in growth and development. Cytokinin signaling is mediated through a 'two-component' signaling system composed of histidine kinases, histidine-containing phosphotransfer proteins, and response regulators. Phylogenetic analysis of two-component signaling elements from the monocot rice and the dicot Arabidopsis reveals lineage-specific expansions of the type-B response regulators, transcription factors that act as positive regulators for the cytokinin signal. We recently reported in Plant Physiology on a functional analysis of rice type-B response regulators. A type-B response regulator from a subfamily comprised of both monocot and dicot type-B response regulators complemented an Arabidopsis type-B response regulator mutant, but a type-B response regulator from a monocot-specific subfamily generally did not. Here, we extend this analysis to demonstrate that the promoter of an Arabidopsis cytokinin primary response gene is induced by type-B response regulators from a shared subfamily, but not by one from a lineage-specific subfamily. These results support a model in which the type-B response regulators of monocots and dicots share conserved roles in the cytokinin signaling pathway but have also diverged to take on lineage-specific roles.

  20. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Laub

    2008-12-29

    Our team of investigators from MIT (Michael Laub) and Stanford (Harley McAdams and Lucy Shapiro) conducted a multi-faceted, systematic experimental analysis of the 106 Caulobacter two-component signal transduction system proteins (62 histidine kinases and 44 response regulators) to understand how they coordinate cell cycle progression, metabolism, and response to environmental changes. These two-component signaling proteins were characterized at the genetic, biochemical, and genomic levels. The results generated by our laboratories have provided numerous insights into how Caulobacter cells sense and respond to a myriad of signals. As nearly all bacteria use two-component signaling for cell regulation, the results from thismore » project help to deepen our general understanding of bacterial signal transduction. The tools and approaches developed can be applied to other bacteria. In particular, work from the Laub laboratory now enables the systematic, rational rewiring of two-component signaling proteins, a major advance that stands to impact synthetic biology and the development of biosensors and other designer molecular circuits. Results are summarized from our work. Each section lists publications and publicly-available resources which result from the work described.« less

  1. The Two-Component System PhoPR of Clostridium acetobutylicum Is Involved in Phosphate-Dependent Gene Regulation ▿

    PubMed Central

    Fiedler, Tomas; Mix, Maren; Meyer, Uta; Mikkat, Stefan; Glocker, Michael O.; Bahl, Hubert; Fischer, Ralf-Jörg

    2008-01-01

    The phoPR gene locus of Clostridium acetobutylicum ATCC 824 comprises two genes, phoP and phoR. Deduced proteins are predicted to represent a response regulator and sensor kinase of a phosphate-dependent two-component regulatory system. We analyzed the expression patterns of phoPR in Pi-limited chemostat cultures and in response to Pi pulses. A basic transcription level under high-phosphate conditions was shown, and a significant increase in mRNA transcript levels was found when external Pi concentrations dropped below 0.3 mM. In two-dimensional gel electrophoresis experiments, a 2.5-fold increase in PhoP was observed under Pi-limiting growth conditions compared to growth with an excess of Pi. At least three different transcription start points for phoP were determined by primer extension analyses. Proteins PhoP and an N-terminally truncated *PhoR were individually expressed heterologously in Escherichia coli and purified. Autophosphorylation of *PhoR and phosphorylation of PhoP were shown in vitro. Electromobility shift assays proved that there was a specific binding of PhoP to the promoter region of the phosphate-regulated pst operon of C. acetobutylicum. PMID:18689481

  2. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD.

    PubMed

    Martínez, Luary C; Yakhnin, Helen; Camacho, Martha I; Georgellis, Dimitris; Babitzke, Paul; Puente, José L; Bustamante, Víctor H

    2011-06-01

    Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events. © 2011 Blackwell Publishing Ltd.

  3. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    ERIC Educational Resources Information Center

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  4. Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia.

    PubMed

    Gislason, April S; Choy, Matthew; Bloodworth, Ruhi A M; Qu, Wubin; Stietz, Maria S; Li, Xuan; Zhang, Chenggang; Cardona, Silvia T

    2017-01-01

    Chemogenetic approaches to profile an antibiotic mode of action are based on detecting differential sensitivities of engineered bacterial strains in which the antibacterial target (usually encoded by an essential gene) or an associated process is regulated. We previously developed an essential-gene knockdown mutant library in the multidrug-resistant Burkholderia cenocepacia by transposon delivery of a rhamnose-inducible promoter. In this work, we used Illumina sequencing of multiplex-PCR-amplified transposon junctions to track individual mutants during pooled growth in the presence of antibiotics. We found that competition from nontarget mutants magnified the hypersensitivity of a clone underexpressing gyrB to novobiocin by 8-fold compared with hypersensitivity measured during clonal growth. Additional profiling of various antibiotics against a pilot library representing most categories of essential genes revealed a two-component system with unknown function, which, upon depletion of the response regulator, sensitized B. cenocepacia to novobiocin, ciprofloxacin, tetracycline, chloramphenicol, kanamycin, meropenem, and carbonyl cyanide 3-chlorophenylhydrazone, but not to colistin, hydrogen peroxide, and dimethyl sulfoxide. We named the gene cluster esaSR for enhanced sensitivity to antibiotics sensor and response regulator. Mutational analysis and efflux activity assays revealed that while esaS is not essential and is involved in antibiotic-induced efflux, esaR is an essential gene and regulates efflux independently of antibiotic-mediated induction. Furthermore, microscopic analysis of cells stained with propidium iodide provided evidence that depletion of EsaR has a profound effect on the integrity of cell membranes. In summary, we unraveled a previously uncharacterized two-component system that can be targeted to reduce antibiotic resistance in B. cenocepacia. Copyright © 2016 American Society for Microbiology.

  5. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling

    PubMed Central

    Podgornaia, Anna I.; Casino, Patricia; Marina, Alberto; Laub, Michael T.

    2013-01-01

    Summary Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, E. coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes, along with a systematic mutagenesis study, reveals how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions, protein evolution, and the design of novel protein interfaces. PMID:23954504

  6. Molecular mechanisms of two-component system RhpRS regulating type III secretion system in Pseudomonas syringae

    PubMed Central

    Deng, Xin; Liang, Haihua; Chen, Kai; He, Chuan; Lan, Lefu; Tang, Xiaoyan

    2014-01-01

    Pseudomonas syringae uses the two-component system RhpRS to regulate the expression of type III secretion system (T3SS) genes and bacterial virulence. However, the molecular mechanisms and the regulons of RhpRS have yet to be fully elucidated. Here, we show that RhpS functions as a kinase and a phosphatase on RhpR and as an autokinase upon itself. RhpR is phosphorylated by the small phosphodonor acetyl phosphate. A specific RhpR-binding site containing the inverted repeat (IR) motif GTATC-N6-GATAC, was mapped to its own promoter by a DNase I footprint analysis. Electrophoretic mobility shift assay indicated that P-RhpR has a higher binding affinity to the IR motif than RhpR. To identify additional RhpR targets in P. syringae, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) and detected 167 enriched loci including the hrpR promoter, suggesting the direct regulation of T3SS cascade genes by RhpR. A genome-wide microarray analysis showed that, in addition to the T3SS cascade genes, RhpR differentially regulates a large set of genes with various functions in response to different growth conditions. Together, these results suggested that RhpRS is a global regulator that allows P. syringae to sense and respond to environmental changes by coordinating T3SS expression and many other biological processes. PMID:25249629

  7. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.

    PubMed

    Bouzat, Juan L; Hoostal, Matthew J

    2013-05-01

    Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.

  8. The Xanthomonas oryzae pv. oryzae PhoPQ Two-Component System Is Required for AvrXA21 Activity, hrpG Expression, and Virulence▿ †

    PubMed Central

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-01-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH. PMID:18203830

  9. The CsrR/CsrS two-component system of group A Streptococcus responds to environmental Mg2+.

    PubMed

    Gryllos, Ioannis; Levin, James C; Wessels, Michael R

    2003-04-01

    Group A streptococci control expression of key virulence determinants via the two-component sensorregulator system CsrRCsrS. The membrane-bound sensor CsrS is thought to respond to previously unknown environmental signal(s) by controlling phosphorylation of its cognate regulator component CsrR. Phosphorylation of CsrR increases its affinity for binding to the promoter regions of Csr-regulated genes to repress transcription. Here we show that environmental Mg(2+) concentration is a potent and specific stimulus for CsrRCsrS-mediated regulation. We studied the effect of divalent cations on expression of the Csr-regulated hyaluronic acid capsule genes (hasABC) by measuring chloramphenicol acetyltransferase (CAT) activity in a reporter strain of group A Streptococcus carrying a has operon promoter-cat fusion. Addition of Mg(2+), but not of Ca(2+), Mn(2+), or Zn(2+), repressed capsule gene expression by up to 80% in a dose-dependent fashion. The decrease in capsule gene transcription was associated with a marked reduction in cell-associated capsular polysaccharide. RNA hybridization analysis demonstrated reduced expression of the Csr-regulated hasABC operon, streptokinase (ska), and streptolysin S (sagA) during growth in the presence of 15 mM Mg(2+) for the wild-type strain 003CAT but not for an isogenic csrS mutant. We propose that Mg(2+) binds to CsrS to induce phosphorylation of CsrR and subsequent repression of virulence gene expression. The low concentration of Mg(2+) in extracellular body fluids predicts that the CsrRCsrS system is maintained in the inactive state during infection, thereby allowing maximal expression of critical virulence determinants in the human host.

  10. HemR is an OmpR/PhoB-like response regulator from Leptospira, which simultaneously effects transcriptional activation and repression of key haem metabolism genes.

    PubMed

    Morero, Natalia R; Botti, Horacio; Nitta, Kazuhiro R; Carrión, Federico; Obal, Gonzalo; Picardeau, Mathieu; Buschiazzo, Alejandro

    2014-10-01

    Several Leptospira species cause leptospirosis, the most extended zoonosis worldwide. In bacteria, two-component systems constitute key signalling pathways, some of which are involved in pathogenesis. The physiological roles of two-component systems in Leptospira are largely unknown, despite identifying several dozens within their genomes. Biochemical confirmation of an operative phosphorelaying two-component system has been obtained so far only for the Hklep/Rrlep pair. It is known that hklep/rrlep knockout strains of Leptospira biflexa result in haem auxotrophy, although their de novo biosynthesis machinery remains fully functional. Haem is essential for Leptospira, but information about Hklep/Rrlep effector function(s) and target(s) is still lacking. We are now reporting a thorough molecular characterization of this system, which we rename HemK/HemR. The DNA HemR-binding motif was determined, and found within the genomes of saprophyte and pathogenic Leptospira. In this way, putative HemR-regulated genes were pinpointed, including haem catabolism-related (hmuO - haem oxygenase) and biosynthesis-related (the hemA/C/D/B/L/E/N/G operon). Specific HemR binding to these two promoters was quantified, and a dual function was observed in vivo, inversely repressing the hmuO, while activating the hemA operon transcription. The crystal structure of HemR receiver domain was determined, leading to a mechanistic model for its dual regulatory role. © 2014 John Wiley & Sons Ltd.

  11. Redox control of copper homeostasis in cyanobacteria.

    PubMed

    López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J

    2012-12-01

    Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.

  12. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  13. Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, J.; Le-Khac, M; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes, where they are crucial for environmental adaption through the coupling of extracellular changes to intracellular responses. The typical two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. In the calssic system, extracellular signals such as small molecule ligands and ions are detected by the periplasmic sensor domain of the histidine kinase receptor, which modulates the catalytic activity of the cytoplasmic histidine kinase domain and promotes ATP-dependent autophosphorylation of a conserved histidine residue. G. sulfurreducens genomic DNA wasmore » used.« less

  14. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus.

    PubMed

    Pragman, Alexa A; Yarwood, Jeremy M; Tripp, Timothy J; Schlievert, Patrick M

    2004-04-01

    Workers in our laboratory have previously identified the staphylococcal respiratory response AB (SrrAB), a Staphylococcus aureus two-component system that acts in the global regulation of virulence factors. This system down-regulates production of agr RNAIII, protein A, and toxic shock syndrome toxin 1 (TSST-1), particularly under low-oxygen conditions. In this study we investigated the localization and membrane orientation of SrrA and SrrB, transcription of the srrAB operon, the DNA-binding properties of SrrA, and the effect of SrrAB expression on S. aureus virulence. We found that SrrA is localized to the S. aureus cytoplasm, while SrrB is localized to the membrane and is properly oriented to function as a histidine kinase. srrAB has one transcriptional start site which results in either an srrA transcript or a full-length srrAB transcript; srrB must be cotranscribed with srrA. Gel shift assays of the agr P2, agr P3, protein A (spa), TSST-1 (tst), and srr promoters revealed SrrA binding at each of these promoters. Analysis of SrrAB-overexpressing strains by using the rabbit model of bacterial endocarditis demonstrated that overexpression of SrrAB decreased the virulence of the organisms compared to the virulence of isogenic strains that do not overexpress SrrAB. We concluded that SrrAB is properly localized and oriented to function as a two-component system. Overexpression of SrrAB, which represses agr RNAIII, TSST-1, and protein A in vitro, decreases virulence in the rabbit endocarditis model. Repression of these virulence factors is likely due to a direct interaction between SrrA and the agr, tst, and spa promoters.

  15. Individual differences in automatic emotion regulation affect the asymmetry of the LPP component.

    PubMed

    Zhang, Jing; Zhou, Renlai

    2014-01-01

    The main goal of this study was to investigate how automatic emotion regulation altered the hemispheric asymmetry of ERPs elicited by emotion processing. We examined the effect of individual differences in automatic emotion regulation on the late positive potential (LPP) when participants were viewing blocks of positive high arousal, positive low arousal, negative high arousal and negative low arousal pictures from International affect picture system (IAPS). Two participant groups were categorized by the Emotion Regulation-Implicit Association Test which has been used in previous research to identify two groups of participants with automatic emotion control and with automatic emotion express. The main finding was that automatic emotion express group showed a right dominance of the LPP component at posterior electrodes, especially in high arousal conditions. But no right dominance of the LPP component was observed for automatic emotion control group. We also found the group with automatic emotion control showed no differences in the right posterior LPP amplitude between high- and low-arousal emotion conditions, while the participants with automatic emotion express showed larger LPP amplitude in the right posterior in high-arousal conditions compared to low-arousal conditions. This result suggested that AER (Automatic emotion regulation) modulated the hemispheric asymmetry of LPP on posterior electrodes and supported the right hemisphere hypothesis.

  16. The Evolution of Two-Component Signal Transduction Systems

    PubMed Central

    Capra, Emily J.; Laub, Michael T.

    2014-01-01

    To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333

  17. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.

    PubMed

    Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E

    2015-01-01

    Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The YvqE two-component system controls biofilm formation and acid production in Streptococcus pyogenes.

    PubMed

    Isaka, Masanori; Tatsuno, Ichiro; Maeyama, Jun-Ichi; Matsui, Hideyuki; Zhang, Yan; Hasegawa, Tadao

    2016-07-01

    In Streptococcus pyogenes, proteins involved in determining virulence are controlled by stand-alone response regulators and by two-component regulatory systems. Previous studies reported that, compared to the parental strain, the yvqE sensor knockout strain showed significantly reduced growth and lower virulence. To determine the function of YvqE, we performed biofilm analysis and pH assays on yvqE mutants, and site-directed mutagenesis of YvqE. The yvqE deletion mutant showed a slower acid production rate, indicating that YvqE regulates acid production from sugar fermentation. The mutant strain, in which the Asp(26) residue in YvqE was replaced with Asn, affected biofilm formation, suggesting that this amino acid senses hydrogen ions produced by fermentative sugar metabolism. Signals received by YvqE were directly or indirectly responsible for inducing pilus expression. This study shows that at low environmental pH, biofilm formation in S. pyogenes is mediated by YvqE and suggests that regulation of pilus expression by environmental acidification could be directly under the control of YvqE. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  19. The yeasts phosphorelay systems: a comparative view.

    PubMed

    Salas-Delgado, Griselda; Ongay-Larios, Laura; Kawasaki-Watanabe, Laura; López-Villaseñor, Imelda; Coria, Roberto

    2017-06-01

    Cells contain signal transduction pathways that mediate communication between the extracellular environment and the cell interior. These pathways control transcriptional programs and posttranscriptional processes that modify cell metabolism in order to maintain homeostasis. One type of these signal transduction systems are the so-called Two Component Systems (TCS), which conduct the transfer of phosphate groups between specific and conserved histidine and aspartate residues present in at least two proteins; the first protein is a sensor kinase which autophosphorylates a histidine residue in response to a stimulus, this phosphate is then transferred to an aspartic residue located in a response regulator protein. There are classical and hybrid TCS, whose difference consists in the number of proteins and functional domains involved in the phosphorelay. The TCS are widespread in bacteria where the sensor and its response regulator are mostly specific for a given stimulus. In eukaryotic organisms such as fungi, slime molds, and plants, TCS are present as hybrid multistep phosphorelays, with a variety of arrangements (Stock et al. in Annu Rev Biochem 69:183-215, 2000; Wuichet et al. in Curr Opin Microbiol 292:1039-1050, 2010). In these multistep phosphorelay systems, several phosphotransfer events take place between different histidine and aspartate residues localized in specific domains present in more than two proteins (Thomason and Kay, in J Cell Sci 113:3141-3150, 2000; Robinson et al. in Nat Struct Biol 7:626-633, 2000). This review presents a brief and succinct description of the Two-component systems of model yeasts, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Cryptococcus neoformans and Kluyveromyces lactis. We have focused on the comparison of domain organization and functions of each component present in these phosphorelay systems.

  20. Dynamic modeling and simulation of an integral bipropellant propulsion double-valve combined test system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng

    2017-04-01

    For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.

  1. Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity

    PubMed Central

    Argueso, Cristiana T.; Ferreira, Fernando J.; Epple, Petra; To, Jennifer P. C.; Hutchison, Claire E.; Schaller, G. Eric; Dangl, Jeffery L.; Kieber, Joseph J.

    2012-01-01

    Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens. PMID:22291601

  2. A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection

    PubMed Central

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J.

    2015-01-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad-dependent manner. Acid-dependent activation of OmpR stimulated type III secretion; blocking acidification resulted in a neutralized cytoplasm that was defective for SPI-2 secretion. Based upon these findings, we propose that Salmonella infection involves an acid-dependent secretion process in which the translocon SseB moves away from the bacterial cell surface as it associates with the vacuolar membrane, driving the secretion of SPI-2 effectors such as SseJ. New steps in the SPI-2 secretion process are proposed. PMID:25875623

  3. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  4. CRY1 circadian gene variant interacts with carbohydrate intake for insulin resistance in two independent populations: Mediterranean and North American

    USDA-ARS?s Scientific Manuscript database

    Dysregulation in the circadian system induced by variants of clock genes has been associated with type 2 diabetes. Evidence for the role of cryptochromes, core components of the system, in regulating glucose homeostasis is not supported by CRY1 candidate gene association studies for diabetes and ins...

  5. The CopRS Two-Component System Is Responsible for Resistance to Copper in the Cyanobacterium Synechocystis sp. PCC 68031[C][W][OA

    PubMed Central

    Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C.; Florencio, Francisco J.

    2012-01-01

    Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the PI-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. PMID:22715108

  6. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C; Florencio, Francisco J

    2012-08-01

    Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the P(I)-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.

  7. GamR, the LysR-Type Galactose Metabolism Regulator, Regulates hrp Gene Expression via Transcriptional Activation of Two Key hrp Regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae.

    PubMed

    Rashid, M Mamunur; Ikawa, Yumi; Tsuge, Seiji

    2016-07-01

    Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight of rice. For the virulence of the bacterium, the hrp genes, encoding components of the type III secretion system, are indispensable. The expression of hrp genes is regulated by two key hrp regulators, HrpG and HrpX: HrpG regulates hrpX, and HrpX regulates other hrp genes. Several other regulators have been shown to be involved in the regulation of hrp genes. Here, we found that a LysR-type transcriptional regulator that we named GamR, encoded by XOO_2767 of X. oryzae pv. oryzae strain MAFF311018, positively regulated the transcription of both hrpG and hrpX, which are adjacent to each other but have opposite orientations, with an intergenic upstream region in common. In a gel electrophoresis mobility shift assay, GamR bound directly to the middle of the upstream region common to hrpG and hrpX The loss of either GamR or its binding sites decreased hrpG and hrpX expression. Also, GamR bound to the upstream region of either a galactose metabolism-related gene (XOO_2768) or a galactose metabolism-related operon (XOO_2768 to XOO_2771) located next to gamR itself and positively regulated the genes. The deletion of the regulator gene resulted in less bacterial growth in a synthetic medium with galactose as a sole sugar source. Interestingly, induction of the galactose metabolism-related gene was dependent on galactose, while that of the hrp regulator genes was galactose independent. Our results indicate that the LysR-type transcriptional regulator that regulates the galactose metabolism-related gene(s) also acts in positive regulation of two key hrp regulators and the following hrp genes in X. oryzae pv. oryzae. The expression of hrp genes encoding components of the type III secretion system is essential for the virulence of many plant-pathogenic bacteria, including Xanthomonas oryzae pv. oryzae. It is specifically induced during infection. Research has revealed that in this bacterium, hrp gene expression is controlled by two key hrp regulators, HrpG and HrpX, along with several other regulators in the complex regulatory network, but the details remain unclear. Here, we found that a novel LysR-type transcriptional activator, named GamR, functions as an hrp regulator by directly activating the transcription of both hrpG and hrpX Interestingly, GamR also regulates a galactose metabolism-related gene (or operon) in a galactose-dependent manner, while the regulation of hrpG and hrpX is independent of the sugar. Our finding of a novel hrp regulator that directly and simultaneously regulates two key hrp regulators provides new insights into an important and complex regulation system of X. oryzae pv. oryzae hrp genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Bordetella pertussis risA, but Not risS, Is Required for Maximal Expression of Bvg-Repressed Genes

    PubMed Central

    Stenson, Trevor H.; Allen, Andrew G.; al-Meer, Jehan A.; Maskell, Duncan; Peppler, Mark S.

    2005-01-01

    Expression of virulence determinants by Bordetella pertussis, the primary etiological agent of whooping cough, is regulated by the BvgAS two-component regulatory system. The role of a second two-component regulatory system, encoded by risAS, in this process is not defined. Here, we show that mutation of B. pertussis risA does not affect Bvg-activated genes or proteins. However, mutation of risA resulted in greatly diminished expression of Bvg-repressed antigens and decreased transcription of Bvg-repressed genes. In contrast, mutation of risS had no effect on the expression of Bvg-regulated molecules. Mutation of risA also resulted in decreased bacterial invasion in a HeLa cell model. However, decreased invasion could not be attributed to the decreased expression of Bvg-repressed products, suggesting that mutation of risA may affect the expression of a variety of genes. Unlike the risAS operons in B. parapertussis and B. bronchiseptica, B. pertussis risS is a pseudogene that encodes a truncated RisS sensor. Deletion of the intact part of the B. pertussis risS gene does not affect the expression of risA-dependent, Bvg-repressed genes. These observations suggest that RisA activation occurs through cross-regulation by a heterologous system. PMID:16113320

  9. Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics.

    PubMed

    Qian, Wei; Han, Zhong-Ji; He, Chaozu

    2008-02-01

    The two-component signal transduction systems (TCSTSs), consisting of a histidine kinase sensor (HK) and a response regulator (RR), are the dominant molecular mechanisms by which prokaryotes sense and respond to environmental stimuli. Genomes of Xanthomonas generally contain a large repertoire of TCSTS genes (approximately 92 to 121 for each genome), which encode diverse structural groups of HKs and RRs. Among them, although a core set of 70 TCSTS genes (about two-thirds in total) which accumulates point mutations with a slow rate are shared by these genomes, the other genes, especially hybrid HKs, experienced extensive genetic recombination, including genomic rearrangement, gene duplication, addition or deletion, and fusion or fission. The recombinations potentially promote the efficiency and complexity of TCSTSs in regulating gene expression. In addition, our analysis suggests that a co-evolutionary model, rather than a selfish operon model, is the major mechanism for the maintenance and microevolution of TCSTS genes in the genomes of Xanthomonas. Genomic annotation, secondary protein structure prediction, and comparative genomic analyses of TCSTS genes reviewed here provide insights into our understanding of signal networks in these important phytopathogenic bacteria.

  10. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction.

    PubMed

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2009-10-16

    The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.

  11. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics

    USGS Publications Warehouse

    Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.

    2005-01-01

    A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

  12. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  13. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  14. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment.

    PubMed

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy

    2008-07-08

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.

  15. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

    PubMed Central

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy

    2008-01-01

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 PR promoter. An arabinose-regulated c2 gene is present in the chromosome. χ8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of PR, driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic α-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with χ8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable. PMID:18607005

  16. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system.

    PubMed

    Agrahari, Garima; Liang, Zhong; Mayfield, Jeffrey A; Balsara, Rashna D; Ploplis, Victoria A; Castellino, Francis J

    2013-09-20

    Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.

    Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness atmore » low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less

  18. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression

    PubMed Central

    Zheng, Dehong; Yao, Xiaoyan; Duan, Meng; Luo, Yufeng; Liu, Biao; Qi, Pengyuan; Sun, Ming; Ruan, Lifang

    2016-01-01

    Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment. PMID:26957113

  19. The RpfCG two-component system negatively regulates the colonization of sugar cane stalks by Xanthomonas albilineans.

    PubMed

    Rott, Philippe; Fleites, Laura A; Mensi, Imène; Sheppard, Lauren; Daugrois, Jean-Heinrich; Dow, J Maxwell; Gabriel, Dean W

    2013-06-01

    The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.

  20. A three-component signalling system fine-tunes expression kinetics of HPPK responsible for folate synthesis by positive feedback loop during stress response of Xanthomonas campestris.

    PubMed

    Wang, Fang-Fang; Deng, Chao-Ying; Cai, Zhen; Wang, Ting; Wang, Li; Wang, Xiao-Zheng; Chen, Xiao-Ying; Fang, Rong-Xiang; Qian, Wei

    2014-07-01

    During adaptation to environments, bacteria employ two-component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatio-temporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism fine-tuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS, is involved in the SreK-SreR phosphotransfer process to control salt stress response in the bacterium Xanthomonas campestris. The N-terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK. This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters (P2) at the 5' end of the sreK-sreR-sreS-hppK operon, and then modulates a transcriptional surge of the stress-responsive gene hppK, which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a 'three-component' signalling system fine-tunes expression kinetics of downstream genes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Global regulation by the seven-component Pi signaling system.

    PubMed

    Hsieh, Yi-Ju; Wanner, Barry L

    2010-04-01

    This review concerns how Escherichia coli detects environmental inorganic orthophosphate (P(i)) to regulate genes of the phosphate (Pho) regulon by the PhoR/PhoB two-component system (TCS). P(i) control by the PhoR/PhoB TCS is a paradigm of a bacterial signal transduction pathway in which occupancy of a cell surface receptor(s) controls gene expression in the cytoplasm. The P(i) signaling pathway requires seven proteins, all of which probably interact in a membrane-associated signaling complex. Our latest studies show that P(i) signaling involves three distinct processes, which appear to correspond to different states of the sensory histidine kinase PhoR: an inhibition state, an activation state, and a deactivation state. We describe a revised model for P(i) signal transduction of the E. coli Pho regulon. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. 41 CFR 109-46.000-50 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL... airframe structural components (except FSC Class 1560, Airframe structural components) 20Ship and marine...

  3. 41 CFR 109-46.000-50 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL... airframe structural components (except FSC Class 1560, Airframe structural components) 20Ship and marine...

  4. 41 CFR 109-46.000-50 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL... airframe structural components (except FSC Class 1560, Airframe structural components) 20Ship and marine...

  5. 41 CFR 109-46.000-50 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL... airframe structural components (except FSC Class 1560, Airframe structural components) 20Ship and marine...

  6. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets.

    PubMed

    Bott, Michael; Brocker, Melanie

    2012-06-01

    In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.

  7. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium

    DOE PAGES

    Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.; ...

    2015-08-17

    Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness atmore » low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less

  8. Attenuating Staphylococcus aureus Virulence Gene Regulation: A Medicinal Chemistry Perspective

    PubMed Central

    2013-01-01

    Virulence gene expression in Staphylococcus aureus is tightly regulated by intricate networks of transcriptional regulators and two-component signal transduction systems. There is now an emerging body of evidence to suggest that the blockade of S. aureus virulence gene expression significantly attenuates infection in experimental models. In this Perspective, we will provide insights into medicinal chemistry strategies for the development of chemical reagents that have the capacity to inhibit staphylococcal virulence expression. These reagents can be broadly grouped into four categories: (1) competitive inhibitors of the accessory gene regulator (agr) quorum sensing system, (2) inhibitors of AgrA–DNA interactions, (3) RNAIII transcription inhibitors, and (4) inhibitors of the SarA family of transcriptional regulators. We discuss the potential of specific examples of antivirulence agents for the management and treatment of staphylococcal infections. PMID:23294220

  9. LOV Histidine Kinase Modulates the General Stress Response System and Affects the virB Operon Expression in Brucella abortus

    PubMed Central

    Sycz, Gabriela; Carrica, Mariela Carmen; Tseng, Tong-Seung; Bogomolni, Roberto A.; Briggs, Winslow R.; Goldbaum, Fernando A.; Paris, Gastón

    2015-01-01

    Brucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach. From results of bacterial two-hybrid assays and phosphotransfer experiments we demonstrate that LOVHK functionally interacts with two response regulators: PhyR and LovR, constituting a functional two-component signal-transduction system. LOVHK contributes to the activation of the General Stress Response (GSR) system in Brucella via PhyR, while LovR is proposed to be a phosphate-sink for LOVHK, decreasing its phosphorylation state. We also show that in the absence of LOVHK the expression of the virB operon is down-regulated. In conclusion, our results suggest that LOVHK positively regulates the GSR system in vivo, and has an effect on the expression of the virB operon. The proposed regulatory network suggests a similar role for LOVHK in other microorganisms. PMID:25993430

  10. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

    PubMed Central

    Terabe, Masaki; Berzofsky, Jay A.

    2014-01-01

    NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834

  11. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978.

    PubMed

    Adams, Felise G; Stroeher, Uwe H; Hassan, Karl A; Marri, Shashikanth; Brown, Melissa H

    2018-01-01

    In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.

  12. ChpA Controls Twitching Motility and Broadly Affects Gene Expression in the Biological Control Agent Lysobacter enzymogenes.

    PubMed

    Zhou, Mimi; Shen, Danyu; Xu, Gaoge; Liu, Fengquan; Qian, Guoliang

    2017-05-01

    Lysobacter enzymogenes (L. enzymogenes) is an agriculturally important Gram-negative bacterium that employs T4P (type IV pili)-driven twitching motility to exhibit its antifungal function. Yet, it is still unclear how this bacterium regulates its twitching motility. Here, by using strain OH11 as the working model organism, we showed that a hybrid two-component system ChpA acts as a positive regulator in controlling twitching motility in L. enzymogenes. ChpA is a hybrid TCS (two-component transduction system) contains 7 domains including those for auto-phosphorylation and phosphate group transfer, as well as a phosphate receiver (REC) domain. Mutation of chpA completely abolished the wild-type twitching motility, as evidenced by the absence of mobile cells at the margin of the mutant colonies. Further studies of domain-deletion and phenotypic characterization reveal that domains responsible for phosphorylation and phosphotransfer, but not the REC domain, were indispensable for ChpA in regulating twitching motility. Transcriptome analyses of the chpA knockout strain indicated that ChpA was extensively involved in controlling expression of a wide variety of genes (totaling 243). The products of these differentially expressed genes were involved in multiple physiological and biological functions in L. enzymogenes. Thus, we have not only identified a new regulator controlling twitching motility in L. enzymogenes, but also provided the first report demonstrating the broad impact of the conserved ChpA in gene regulation in Gram-negative bacteria.

  13. Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

    PubMed Central

    Krueger, Beate; Friedrich, Torben; Förster, Frank; Bernhardt, Jörg; Gross, Roy; Dandekar, Thomas

    2012-01-01

    Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases. PMID:22586357

  14. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    PubMed

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.

  15. The mechanism of signal transduction by two-component systems.

    PubMed

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  17. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators

    PubMed Central

    Yan, Dalai; Cho, Ho S.; Hastings, Curtis A.; Igo, Michele M.; Lee, Seok-Yong; Pelton, Jeffrey G.; Stewart, Valley; Wemmer, David E.; Kustu, Sydney

    1999-01-01

    Two-component systems, sensor kinase-response regulator pairs, dominate bacterial signal transduction. Regulation is exerted by phosphorylation of an Asp in receiver domains of response regulators. Lability of the acyl phosphate linkage has limited structure determination for the active, phosphorylated forms of receiver domains. As assessed by both functional and structural criteria, beryllofluoride yields an excellent analogue of aspartyl phosphate in response regulator NtrC, a bacterial enhancer-binding protein. Beryllofluoride also appears to activate the chemotaxis, sporulation, osmosensing, and nitrate/nitrite response regulators CheY, Spo0F, OmpR, and NarL, respectively. NMR spectroscopic studies indicate that beryllofluoride will facilitate both biochemical and structural characterization of the active forms of receiver domains. PMID:10611291

  18. A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in Streptococcus thermophilus and Streptococcus salivarius▿ †

    PubMed Central

    Fontaine, Laetitia; Boutry, Céline; de Frahan, Marie Henry; Delplace, Brigitte; Fremaux, Christophe; Horvath, Philippe; Boyaval, Patrick; Hols, Pascal

    2010-01-01

    In streptococcal species, the key step of competence development is the transcriptional induction of comX, which encodes the alternative sigma factor σX, which positively regulates genes necessary for DNA transformation. In Streptococcus species belonging to the mitis and mutans groups, induction of comX relies on the activation of a three-component system consisting of a secreted pheromone, a histidine kinase, and a response regulator. In Streptococcus thermophilus, a species belonging to the salivarius group, the oligopeptide transporter Ami is essential for comX expression under competence-inducing conditions. This suggests a different regulation pathway of competence based on the production and reimportation of a signal peptide. The objective of our work was to identify the main actors involved in the early steps of comX induction in S. thermophilus LMD-9. Using a transcriptomic approach, four highly induced early competence operons were identified. Among them, we found a Rgg-like regulator (Ster_0316) associated with a nonannotated gene encoding a 24-amino-acid hydrophobic peptide (Shp0316). Through genetic deletions, we showed that these two genes are essential for comX induction. Moreover, addition to the medium of synthetic peptides derived from the C-terminal part of Shp0316 restored comX induction and transformation of a Shp0316-deficient strain. These peptides also induced competence in S. thermophilus and Streptococcus salivarius strains that are poorly transformable or not transformable. Altogether, our results show that Ster_0316 and Shp0316, renamed ComRS, are the two members of a novel quorum-sensing system responsible for comX induction in species from the salivarius group, which differs from the classical phosphorelay three-component system identified previously in streptococci. PMID:20023010

  19. Bacterial hybrid histidine kinases in plant-bacteria interactions.

    PubMed

    Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2016-10-01

    Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.

  20. The Staphylococcus aureus ArlRS Two-Component System Is a Novel Regulator of Agglutination and Pathogenesis

    PubMed Central

    Walker, Jennifer N.; Crosby, Heidi A.; Spaulding, Adam R.; Salgado-Pabón, Wilmara; Malone, Cheryl L.; Rosenthal, Carolyn B.; Schlievert, Patrick M.; Boyd, Jeffrey M.; Horswill, Alexander R.

    2013-01-01

    Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. PMID:24367264

  1. The CpxRA two-component system contributes to Legionella pneumophila virulence.

    PubMed

    Tanner, Jennifer R; Li, Laam; Faucher, Sébastien P; Brassinga, Ann Karen C

    2016-06-01

    The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation. © 2016 John Wiley & Sons Ltd.

  2. Search for an Appropriate Behavior within the Emotional Regulation in Virtual Creatures Using a Learning Classifier System

    PubMed Central

    Rosales, Jonathan-Hernando; Cervantes, José-Antonio

    2017-01-01

    Emotion regulation is a process by which human beings control emotional behaviors. From neuroscientific evidence, this mechanism is the product of conscious or unconscious processes. In particular, the mechanism generated by a conscious process needs a priori components to be computed. The behaviors generated by previous experiences are among these components. These behaviors need to be adapted to fulfill the objectives in a specific situation. The problem we address is how to endow virtual creatures with emotion regulation in order to compute an appropriate behavior in a specific emotional situation. This problem is clearly important and we have not identified ways to solve this problem in the current literature. In our proposal, we show a way to generate the appropriate behavior in an emotional situation using a learning classifier system (LCS). We illustrate the function of our proposal in unknown and known situations by means of two case studies. Our results demonstrate that it is possible to converge to the appropriate behavior even in the first case; that is, when the system does not have previous experiences and in situations where some previous information is available our proposal proves to be a very powerful tool. PMID:29209362

  3. An organic self-regulating microfluidic system.

    PubMed

    Eddington, D T; Liu, R H; Moore, J S; Beebe, D J

    2001-12-01

    In this paper we present an organic feedback scheme that merges microfluidics and responsive materials to address several limitations of current microfluidic systems. By using in situ fabrication and by taking advantage of microscale phenomena (e.g., laminar flow, short diffusion times), we have demonstrated feedback control of the output pH in a completely organic system. The system autonomously regulates an output stream at pH 7 under a range of input flow conditions. A single responsive hydrogel component performs the functionality of traditional feedback system components. Vertically stacked laminar flow is used to improve the time response of the hydrogel actuator. A star shaped orifice is utilized to improve the flow characteristics of the membrane/orifice valve. By changing the chemistry of the hydrogel component, the system can be altered to regulate flow based on hydrogels sensitive to temperature, light, biological/molecular, and others.

  4. The ArcB Leucine Zipper Domain Is Required for Proper ArcB Signaling

    PubMed Central

    Nuñez Oreza, Luis Alberto; Alvarez, Adrián F.; Arias-Olguín, Imilla I.; Torres Larios, Alfredo; Georgellis, Dimitris

    2012-01-01

    The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70–121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling. PMID:22666479

  5. Regulation of Nitrate Transport in Citrus Rootstocks Depending on Nitrogen Availability

    PubMed Central

    Cerezo, Miguel; Camañes, Gemma; Flors, Víctor; Primo-Millo, Eduardo

    2007-01-01

    Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO3−. The Vmax for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks. Additionally, we studied the regulation of root NO3− uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO3− and down-regulated by the N status and by NO3− itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status. The use of various metabolic uncouplers or inhibitors indicated that NO3− net uptake mediated by iHATS and LATS was an active transport system in both rootstocks. PMID:19516998

  6. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae.

    PubMed

    Valente, Rita S; Xavier, Karina B

    2016-01-15

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the mechanisms involved in regulating virulence can lead to the identification of environmental factors that can influence the outcome of infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae

    PubMed Central

    Valente, Rita S.

    2015-01-01

    ABSTRACT Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. IMPORTANCE Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the mechanisms involved in regulating virulence can lead to the identification of environmental factors that can influence the outcome of infection. PMID:26483524

  8. 48 CFR 211.274-6 - Contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Contract clauses. 211.274-6 Section 211.274-6 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... subassemblies, components, or parts embedded within deliverable items. (4) Use the clause with its Alternate I...

  9. 48 CFR 211.274-6 - Contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Contract clauses. 211.274-6 Section 211.274-6 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... subassemblies, components, or parts embedded within deliverable items. (4) Use the clause with its Alternate I...

  10. 48 CFR 211.274-3 - Policy for valuation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Policy for valuation. 211.274-3 Section 211.274-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM...) The Government's unit acquisition cost of subassemblies, components, and parts embedded in delivered...

  11. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    PubMed

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  12. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response.

    PubMed

    Pang, Xiuhua; Samten, Buka; Cao, Guangxiang; Wang, Xisheng; Tvinnereim, Amy R; Chen, Xiu-Lan; Howard, Susan T

    2013-01-01

    The ESX-1 secretion system exports the immunomodulatory protein ESAT-6 and other proteins important in the pathogenesis of Mycobacterium tuberculosis. Components and substrates of ESX-1 are encoded at several loci, but the regulation of the encoding genes is only partially understood. In this study, we investigated the role of the MprAB two-component system in the regulation of ESX-1 activity. We determined that MprAB directly regulates the espA gene cluster, a locus necessary for ESX-1 function. Transcript mapping determined that the five genes in the cluster form an operon with two transcriptional start points, and several MprA binding sites were detected in the espA promoter. Expression analyses and promoter constructs indicated that MprAB represses the espA operon. However, the MprAB mutant Rv-D981 secreted lower levels of EspA, ESAT-6, and the ESX-1 substrate EspB than control strains. Secretion of CFP10, which is normally cosecreted with ESAT-6, was similar in Rv-D981 and control strains, further demonstrating aberrant ESX-1 activity in the mutant. ESAT-6 induces proinflammatory cytokines, and macrophages infected with Rv-D981 elicited lower levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), consistent with the reduced levels of ESAT-6. These findings indicate that MprAB modulates ESX-1 function and reveal a new role for MprAB in host-pathogen interactions.

  13. The Myxococcus xanthus two-component system CorSR regulates expression of a gene cluster involved in maintaining copper tolerance during growth and development.

    PubMed

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ-Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.

  14. The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    PubMed Central

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J.; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains. PMID:23874560

  15. BarA-UvrY two-component system regulates virulence of uropathogenic E. coli CFT073.

    PubMed

    Palaniyandi, Senthilkumar; Mitra, Arindam; Herren, Christopher D; Lockatell, C Virginia; Johnson, David E; Zhu, Xiaoping; Mukhopadhyay, Suman

    2012-01-01

    Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.

  16. Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System.

    PubMed

    Tanner, Jennifer R; Patel, Palak G; Hellinga, Jacqueline R; Donald, Lynda J; Jimenez, Celine; LeBlanc, Jason J; Brassinga, Ann Karen C

    2017-03-01

    Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyR Lp ) is an ortholog of Escherichia coli OxyR; however, OxyR Lp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyR Lp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyR Lp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyR Lp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyR Lp directly bound to these promoter regions, suggesting that OxyR Lp is a direct repressor. Interestingly, a strain overexpressing OxyR Lp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyR Lp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein. IMPORTANCE Legionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyR Lp ) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyR Lp expression is regulated remain elusive, this study shows that OxyR Lp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa. Copyright © 2017 American Society for Microbiology.

  17. Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans

    PubMed Central

    Shanker, Erin; Federle, Michael J.

    2017-01-01

    The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci. PMID:28067778

  18. 75 FR 32638 - Defense Federal Acquisition Regulation Supplement; Contract Authority for Advanced Component...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Prototype Units (DFARS Case 2009-D034) AGENCY: Defense Acquisition Regulations System, Department of Defense... Component Development or Prototype Units.'' Section 819 is intended to prevent a contract for new technology... development of advanced components or the procurement of prototype units. To do so, section 819 places...

  19. Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes.

    PubMed

    Tatsuno, Ichiro; Isaka, Masanori; Okada, Ryo; Zhang, Yan; Hasegawa, Tadao

    2014-03-28

    The production of virulence proteins depends on environmental factors, and two-component regulatory systems are involved in sensing these factors. We previously established knockout strains in all suspected two-component regulatory sensor proteins of the emm1 clinical strain of S. pyogenes and examined their relevance to acid stimuli in a natural atmosphere. In the present study, their relevance to acid stimuli was re-examined in an atmosphere containing 5% CO2. The spy1236 (which is identical to ciaHpy) sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1236 (CiaHpy) two-component sensor protein is involved in acid response of S. pyogenes. CiaH is also conserved in Streptococcus pneumoniae, and it has been reported that deletion of the gene for its cognate response regulator (ciaRpn) made the pneumococcal strains more sensitive to oxidative stress. In this report, we show that the spy1236 knockout mutant of S. pyogenes is more sensitive to oxidative stress than the parental strain. These results suggest that the two-component sensor protein CiaH is involved in stress responses in S. pyogenes.

  20. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella

    PubMed Central

    2012-01-01

    Background Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Results Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. Conclusions We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system. PMID:23031642

  1. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella.

    PubMed

    Kato, Akinori; Hayashi, Hironori; Nomura, Wataru; Emori, Haruka; Hagihara, Kei; Utsumi, Ryutaro

    2012-10-02

    Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system.

  2. 24 CFR 200.926 - Minimum property standards for one and two family dwellings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... units in a structure where the units are located side-by-side in town house fashion. Section 200.926d(c... the subarea for seismic design (see § 200.926a(c)(5)), or if it fails to regulate subareas in more..., structural loads and seismic design, foundation systems, materials standards, construction components, glass...

  3. 24 CFR 200.926 - Minimum property standards for one and two family dwellings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... units in a structure where the units are located side-by-side in town house fashion. Section 200.926d(c... the subarea for seismic design (see § 200.926a(c)(5)), or if it fails to regulate subareas in more..., structural loads and seismic design, foundation systems, materials standards, construction components, glass...

  4. A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora.

    PubMed

    Flego, D; Marits, R; Eriksson, A R; Kõiv, V; Karlsson, M B; Heikinheimo, R; Palva, E T

    2000-04-01

    Genes coding for the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the plant cell wall-degrading enzymes, are under the coordinate control of global regulator systems including both positive and negative factors. In addition to this global control, some virulence determinants are subject to specific regulation. We have previously shown that mutations in the pehR locus result in reduced virulence and impaired production of one of these enzymes, an endopolygalacturonase (PehA). In contrast, these pehR strains produce essentially wild-type levels of other extracellular enzymes including pectate lyases and cellulases. In this work, we characterized the pehR locus and showed that the DNA sequence is composed of two genes, designated pehR and pehS, present in an operon. Mutations in either pehR or pehS caused a Peh-negative phenotype and resulted in reduced virulence on tobacco seedlings. Complementation experiments indicated that both genes are required for transcriptional activation of the endopolygalacturonase gene, pehA, as well as restoration of virulence. Structural characterization of the pehR-pehS operon demonstrated that the corresponding polypeptides are highly similar to the two-component transcriptional regulators PhoP-PhoQ of both Escherichia coli and Salmonella typhimurium. Functional similarity of PehR-PehS with PhoP-PhoQ of E. coli and S. typhimurium was demonstrated by genetic complementation.

  5. 48 CFR 211.274-3 - Policy for valuation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Policy for valuation. 211.274-3 Section 211.274-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... unit acquisition cost of subassemblies, components, and parts embedded in delivered items need not be...

  6. 48 CFR 211.274-6 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Contract clauses. 211.274-6 Section 211.274-6 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... with 211.274-2(a)(4) for DoD serially managed subassemblies, components, or parts embedded within...

  7. 48 CFR 211.274-3 - Policy for valuation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Policy for valuation. 211.274-3 Section 211.274-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... unit acquisition cost of subassemblies, components, and parts embedded in delivered items need not be...

  8. 48 CFR 211.274-3 - Policy for valuation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Policy for valuation. 211.274-3 Section 211.274-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... unit acquisition cost of subassemblies, components, and parts embedded in delivered items need not be...

  9. 48 CFR 211.274-3 - Policy for valuation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Policy for valuation. 211.274-3 Section 211.274-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... unit acquisition cost of subassemblies, components, and parts embedded in delivered items need not be...

  10. 48 CFR 211.274-6 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Contract clauses. 211.274-6 Section 211.274-6 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM... with 211.274-2(a)(4) for DoD serially managed subassemblies, components, or parts embedded within...

  11. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira.

    PubMed

    Adhikarla, Haritha; Wunder, Elsio A; Mechaly, Ariel E; Mehta, Sameet; Wang, Zheng; Santos, Luciane; Bisht, Vimla; Diggle, Peter; Murray, Gerald; Adler, Ben; Lopez, Francesc; Townsend, Jeffrey P; Groisman, Eduardo; Picardeau, Mathieu; Buschiazzo, Alejandro; Ko, Albert I

    2018-01-01

    Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira . In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator ) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one ( lvrB ) or both genes ( lvrA/B ) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium.

  12. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira

    PubMed Central

    Adhikarla, Haritha; Wunder, Elsio A.; Mechaly, Ariel E.; Mehta, Sameet; Wang, Zheng; Santos, Luciane; Bisht, Vimla; Diggle, Peter; Murray, Gerald; Adler, Ben; Lopez, Francesc; Townsend, Jeffrey P.; Groisman, Eduardo; Picardeau, Mathieu; Buschiazzo, Alejandro; Ko, Albert I.

    2018-01-01

    Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium. PMID:29600195

  13. The BatR/BatS Two-Component Regulatory System Controls the Adaptive Response of Bartonella henselae during Human Endothelial Cell Infection ▿ † ‡

    PubMed Central

    Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph

    2010-01-01

    Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395

  14. Four-Component Catalytic Machinery: Reversible Three-State Control of Organocatalysis by Walking Back and Forth on a Track.

    PubMed

    Mittal, Nikita; Özer, Merve S; Schmittel, Michael

    2018-04-02

    A three-component supramolecular walker system is presented where a two-footed ligand (biped) walks back and forth on a tetrahedral 3D track upon the addition and removal of copper(I) ions, respectively. The addition of N-methylpyrrolidine as a catalyst to the walker system generates a four-component catalytic machinery, which acts as a three-state switchable catalytic ensemble in the presence of substrates for a conjugate addition. The copper(I)-ion-initiated walking process of the biped ligand on the track regulates the catalytic activity in three steps: ON versus int ON (intermediate ON) versus OFF. To establish the operation of the four-component catalytic machinery in a mixture of all constituents, forward and backward cycles were performed in situ illustrating that both the walking process and catalytic action are fully reversible and reproducible.

  15. 48 CFR 9.305 - Risk.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR... materials or components, or commencement of production, is normally at the sole risk of the contractor. To... acquisition of materials and components, and for production after receipt of first article approval. When...

  16. 48 CFR 9.305 - Risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR... materials or components, or commencement of production, is normally at the sole risk of the contractor. To... acquisition of materials and components, and for production after receipt of first article approval. When...

  17. 48 CFR 9.305 - Risk.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR... materials or components, or commencement of production, is normally at the sole risk of the contractor. To... acquisition of materials and components, and for production after receipt of first article approval. When...

  18. 48 CFR 9.305 - Risk.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION ACQUISITION PLANNING CONTRACTOR... materials or components, or commencement of production, is normally at the sole risk of the contractor. To... acquisition of materials and components, and for production after receipt of first article approval. When...

  19. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less

  20. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely distributed in Gram-positive bacteria, suggesting similar roles for FA kinase in these organisms. Copyright © 2017 Ericson et al.

  1. Method and apparatus for fine tuning an orifice pulse tube refrigerator

    DOEpatents

    Swift, Gregory W.; Wollan, John J.

    2003-12-23

    An orifice pulse tube refrigerator uses flow resistance, compliance, and inertance components connected to a pulse tube for establishing a phase relationship between oscillating pressure and oscillating velocity in the pulse tube. A temperature regulating system heats or cools a working gas in at least one of the flow resistance and inertance components. A temperature control system is connected to the temperature regulating system for controlling the temperature of the working gas in the at least one of the flow resistance and inertance components and maintains a control temperature that is indicative of a desired temporal phase relationship.

  2. Phosphotransfer reactions of the CbbRRS three-protein two- component system from Rhodopseudomonas palustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase.

    PubMed

    Romagnoli, Simona; Tabita, F Robert

    2007-01-01

    The CbbRRS system is an atypical three-protein two-component system that modulates the expression of the cbb(I) CO(2) fixation operon of Rhodopseudomonas palustris, possibly in response to a redox signal. It consists of a membrane-bound hybrid sensor kinase, CbbSR, with a transmitter and receiver domain, and two response regulator proteins, CbbRR1 and CbbRR2. No detectable helix-turn-helix DNA binding domain is associated with either response regulator, but an HPt domain and a second receiver domain are predicted at the C-terminal region of CbbRR1 and CbbRR2, respectively. The abundance of conserved residues predicted to participate in a His-Asp phosphorelay raised the question of their de facto involvement. In this study, the role of the multiple receiver domains was elucidated in vitro by generating site-directed mutants of the putative conserved residues. Distinct phosphorylation patterns were obtained with two truncated versions of the hybrid sensor kinase, CbbSR(T189) and CbbSR(R96) (CbbSR beginning at residues T189 and R96, respectively). These constructs also exhibited substantially different affinities for ATP and phosphorylation stability, which was found to be dependent on a conserved Asp residue (Asp-696) within the kinase receiver domain. Asp-696 also played an important role in defining the specificity of phosphorylation for response regulators CbbRR1 or CbbRR2, and this residue appeared to act in conjunction with residues within the region from Arg-96 to Thr-189 at the N terminus of the sensor kinase. The net effect of concerted interactions at these distinct regions of CbbSR created an internal molecular switch that appears to coordinate a unique branched phosphorelay system.

  3. Neuronal and molecular mechanisms of sleep homeostasis.

    PubMed

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Revisions to labeling requirements for blood and blood components, including source plasma. Final rule.

    PubMed

    2012-01-03

    The Food and Drug Administration (FDA) is revising the labeling requirements for blood and blood components intended for use in transfusion or for further manufacture by combining, simplifying, and updating specific regulations applicable to labeling and circulars of information. These requirements will facilitate the use of a labeling system using machine-readable information that would be acceptable as a replacement for the ``ABC Codabar'' system for the labeling of blood and blood components. FDA is taking this action as a part of its efforts to comprehensively review and, as necessary, revise its regulations, policies, guidances, and procedures related to the regulation of blood and blood components. This final rule is intended to help ensure the continued safety of the blood supply and facilitate consistency in labeling.

  5. A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas aeruginosa▿

    PubMed Central

    Caille, Olivier; Rossier, Claude; Perron, Karl

    2007-01-01

    The effects of copper (Cu) on trace metal and antibiotic resistance of Pseudomonas aeruginosa have been investigated. Cu treatments induced resistance not only to this metal but also, surprisingly, to zinc (Zn). Quantitative reverse transcription-PCR (qRT-PCR) revealed that after Cu treatment the transcription of the czcRS two-component system (TCS) operon was enhanced as well as that of the czcCBA operon encoding an efflux pump specific for zinc, cadmium, and cobalt. Cu treatments at the same time caused a decrease in the production of OprD porin, resulting in resistance to the carbapenem antibiotic imipenem. The CzcR regulator was known to repress oprD. However, Cu was still able to decrease the production of OprD and induce imipenem resistance in a czcRS knockout mutant. This strongly suggested that another Cu-dependent regulatory system was acting negatively on oprD expression. TCS regulator genes copR-copS have been shown to be involved in Cu tolerance in P. aeruginosa. qRT-PCR showed that overproduction of the CopR or of the CzcR regulator resulted in increased transcription of the czcC gene as well as in a decrease in oprD gene transcription, either in the wild-type strain or in the czcRS knockout mutant. Overproduction experiments suggest that a metal-dependent mechanism operates at the posttranscriptional level to control the production of the CzcCBA efflux pump. This study shows that CopR is a new negative regulator of OprD porin and that it links Zn, Cu, and imipenem resistances by interacting with the CzcRS TCS. PMID:17449606

  6. Grid-Level Application of Electrical Energy Storage: Example Use Cases in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia

    Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.

  7. System Biology Approach: Gene Network Analysis for Muscular Dystrophy.

    PubMed

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro

    2018-01-01

    Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.

  8. Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola.

    PubMed

    Marconi, Richard T

    2017-10-13

    The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.

  9. Mechanism of the pH-Induced Conformational Change in the Sensor Domain of the DraK Histidine Kinase via the E83, E105, and E107 Residues

    PubMed Central

    Jee, Jun-Goo; Lee, Jae Kyoung; Kim, Hyo Jeong; Park, Jin-Wan; Kim, Eun-Hee; Hwang, Eunha; Kim, Sang-Yoon; Lee, Eun-Gyeong; Kwon, Ohsuk; Cheong, Hae-Kap

    2014-01-01

    The DraR/DraK two-component system was found to be involved in the differential regulation of antibiotic biosynthesis in a medium-dependent manner; however, its function and signaling and sensing mechanisms remain unclear. Here, we describe the solution structure of the extracellular sensor domain of DraK and suggest a mechanism for the pH-dependent conformational change of the protein. The structure contains a mixed alpha-beta fold, adopting a fold similar to the ubiquitous sensor domain of histidine kinase. A biophysical study demonstrates that the E83, E105, and E107 residues have abnormally high pKa values and that they drive the pH-dependent conformational change for the extracellular sensor domain of DraK. We found that a triple mutant (E83L/E105L/E107A) is pH independent and mimics the low pH structure. An in vivo study showed that DraK is essential for the recovery of the pH of Streptomyces coelicolor growth medium after acid shock. Our findings suggest that the DraR/DraK two-component system plays an important role in the pH regulation of S. coelicolor growth medium. This study provides a foundation for the regulation and the production of secondary metabolites in Streptomyces. PMID:25203403

  10. Mechanism of the pH-induced conformational change in the sensor domain of the DraK Histidine kinase via the E83, E105, and E107 residues.

    PubMed

    Yeo, Kwon Joo; Hong, Young-Soo; Jee, Jun-Goo; Lee, Jae Kyoung; Kim, Hyo Jeong; Park, Jin-Wan; Kim, Eun-Hee; Hwang, Eunha; Kim, Sang-Yoon; Lee, Eun-Gyeong; Kwon, Ohsuk; Cheong, Hae-Kap

    2014-01-01

    The DraR/DraK two-component system was found to be involved in the differential regulation of antibiotic biosynthesis in a medium-dependent manner; however, its function and signaling and sensing mechanisms remain unclear. Here, we describe the solution structure of the extracellular sensor domain of DraK and suggest a mechanism for the pH-dependent conformational change of the protein. The structure contains a mixed alpha-beta fold, adopting a fold similar to the ubiquitous sensor domain of histidine kinase. A biophysical study demonstrates that the E83, E105, and E107 residues have abnormally high pKa values and that they drive the pH-dependent conformational change for the extracellular sensor domain of DraK. We found that a triple mutant (E83L/E105L/E107A) is pH independent and mimics the low pH structure. An in vivo study showed that DraK is essential for the recovery of the pH of Streptomyces coelicolor growth medium after acid shock. Our findings suggest that the DraR/DraK two-component system plays an important role in the pH regulation of S. coelicolor growth medium. This study provides a foundation for the regulation and the production of secondary metabolites in Streptomyces.

  11. Advanced Turbo-Charging Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-02-27

    The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger'more » because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.« less

  12. Design for pressure regulating components

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    The design development for Pressure Regulating Components included a regulator component trade-off study with analog computer performance verification to arrive at a final optimized regulator configuration for the Space Storable Propulsion Module, under development for a Jupiter Orbiter mission. This application requires the pressure regulator to be capable of long-term fluorine exposure. In addition, individual but basically identical (for purposes of commonality) units are required for separate oxidizer and fuel pressurization. The need for dual units requires improvement in the regulation accuracy over present designs. An advanced regulator concept was prepared featuring redundant bellows, all metallic/ceramic construction, friction-free guidance of moving parts, gas damping, and the elimination of coil springs normally used for reference forces. The activities included testing of actual size seat/poppet components to determine actual discharge coefficients and flow forces. The resulting data was inserted into the computer model of the regulator. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of propellant residual requirements imposed by regulator performance uncertainties.

  13. Symbiotic implications of type III protein secretion machinery in Rhizobium.

    PubMed

    Viprey, V; Del Greco, A; Golinowski, W; Broughton, W J; Perret, X

    1998-06-01

    The symbiotic plasmid of Rhizobium sp. NGR234 carries a cluster of genes that encodes components of a bacterial type III secretion system (TTSS). In both animal and plant pathogens, the TTSS is an essential component of pathogenicity. Here, we show that secretion of at least two proteins (y4xL and NolX) is controlled by the TTSS of NGR234 and occurs after the induction with flavonoids. Polar mutations in two TTSS genes, rhcN and the nod-box controlled regulator of transcription y4xl, block the secretion of both proteins and strongly affect the ability of NGR234 to nodulate a variety of tropical legumes including Pachyrhizus tuberosus and Tephrosia vogelii.

  14. Evolution of JAK-STAT Pathway Components: Mechanisms and Role in Immune System Development

    PubMed Central

    Liongue, Clifford; O'Sullivan, Lynda A.; Trengove, Monique C.; Ward, Alister C.

    2012-01-01

    Background Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. Results Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. Conclusion Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity. PMID:22412924

  15. Intra- and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression*

    PubMed Central

    Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.

    2012-01-01

    Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709

  16. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    PubMed Central

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  17. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus

    PubMed Central

    Ericson, Megan E.; Subramanian, Chitra; Frank, Matthew W.

    2017-01-01

    ABSTRACT The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus, but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. PMID:28765222

  18. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling.

    PubMed

    Kangasjärvi, Saijaliisa; Tikkanen, Mikko; Durian, Guido; Aro, Eva-Mari

    2014-08-01

    Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Bacterial differentiation via gradual activation of global regulators.

    PubMed

    Kovács, Ákos T

    2016-02-01

    Bacteria have evolved to adapt to various conditions and respond to certain stress conditions. The ability to sense and efficiently reply to these environmental effects involve versatile array of sensors and global or specific regulators. Interestingly, modulation of the levels of active global regulators enables bacteria to respond to diverse signals via a single central transcriptional regulator and to activate or repress certain differentiation pathways at a spatio-temporal manner. The Gram-positive Bacillus subtilis is an ideal bacterium to study how membrane bound and cytoplasmic sensor kinases affect the level of phosphorylated global regulator, Spo0A which in response activates genes related to sliding, biofilm formation, and sporulation. In addition, other global regulators, including the two-component system DegS-DegU, modulate overlapping and complementary genes in B. subtilis related to surface colonization and biofilm formation. The intertwinement of global regulatory systems also allows the accurate modulation of differentiation pathways. Studies in the last decade enable us to get a deeper insight into the role of global regulators on the smooth transition of developmental processes in B. subtilis.

  20. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis

    PubMed Central

    Bordi, Christophe; Lamy, Marie-Cécile; Ventre, Isabelle; Termine, Elise; Hachani, Abderrahman; Fillet, Sandy; Roche, Béatrice; Bleves, Sophie; Méjean, Vincent; Lazdunski, Andrée; Filloux, Alain

    2010-01-01

    Bacterial pathogenesis often depends on regulatory networks, two-component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show that the HptB signalling pathway controls biofilm and T3SS, and fine-tunes P. aeruginosa pathogenesis. We demonstrate that RetS and HptB intersect at the GacA response regulator, which directly controls sRNAs production. Importantly, RetS controls both sRNAs, whereas HptB exclusively regulates rsmY expression. We reveal that HptB signalling is a complex regulatory cascade. This cascade involves a response regulator, with an output domain belonging to the phosphatase 2C family, and likely an anti-anti-σ factor. This reveals that the initial input in the Gac system comes from several signalling pathways, and the final output is adjusted by a differential control on rsmY and rsmZ. This is exemplified by the RetS-dependent but HptB-independent control on T6SS. We also demonstrate a redundant action of the two sRNAs on T3SS gene expression, while the impact on pel gene expression is additive. These features underpin a novel mechanism in the fine-tuned regulation of gene expression. PMID:20398205

  1. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  2. Networking Omic Data to Envisage Systems Biological Regulation.

    PubMed

    Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae

    To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.

  3. Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki).

    PubMed

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily regulated within a limited microenvironment formed by the tunnels or chambers.

  4. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Weingart, Helge

    2014-07-11

    The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora.

  5. Characterization and regulation of the Resistance-Nodulation-Cell Division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora

    PubMed Central

    2014-01-01

    Background The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. Results To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. Conclusions The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in resistance to plant antimicrobials, maybe including flavonoids, which were identified as substrates of both pumps. Furthermore, we found that the mdtABC operon belongs to the regulon of the two-component regulator BaeR suggesting a role of this RND transporter in the cell envelope stress response of E. amylovora. PMID:25012600

  6. Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

    PubMed Central

    Faralla, Cristina; Metruccio, Matteo M.; De Chiara, Matteo; Mu, Rong; Patras, Kathryn A.; Muzzi, Alessandro; Grandi, Guido; Margarit, Immaculada; Doran, Kelly S.

    2014-01-01

    ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. PMID:24846378

  7. Identification of the Operon for the Sorbitol (Glucitol) Phosphoenolpyruvate:Sugar Phosphotransferase System in Streptococcus mutans

    PubMed Central

    Boyd, David A.; Thevenot, Tracy; Gumbmann, Markus; Honeyman, Allen L.; Hamilton, Ian R.

    2000-01-01

    Transposon mutagenesis and marker rescue were used to isolate and identify an 8.5-kb contiguous region containing six open reading frames constituting the operon for the sorbitol P-enolpyruvate phosphotransferase transport system (PTS) of Streptococcus mutans LT11. The first gene, srlD, codes for sorbitol-6-phosphate dehydrogenase, followed downstream by srlR, coding for a transcriptional regulator; srlM, coding for a putative activator; and the srlA, srlE, and srlB genes, coding for the EIIC, EIIBC, and EIIA components of the sorbitol PTS, respectively. Among all sorbitol PTS operons characterized to date, the srlD gene is found after the genes coding for the EII components; thus, the location of the gene in S. mutans is unique. The SrlR protein is similar to several transcriptional regulators found in Bacillus spp. that contain PTS regulator domains (J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-Verstraete, Mol. Microbiol. 28:865–874, 1998), and its gene overlaps the srlM gene by 1 bp. The arrangement of these two regulatory genes is unique, having not been reported for other bacteria. PMID:10639465

  8. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  9. 48 CFR 3042.1502 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Performance Information 3042.1502 Policy. (a) Components shall use the Contractor Performance System (CPS) for... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Policy. 3042.1502 Section 3042.1502 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND SECURITY...

  10. 75 FR 71562 - Defense Federal Acquisition Regulation Supplement; Contract Authority for Advanced Component...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Development or Prototype Units (DFARS Case 2009-D034) AGENCY: Defense Acquisition Regulations System... the procurement of prototype units. The DFARS implementation places specific limits, in accordance... components or the procurement of prototype units. IV. Paperwork Reduction Act The Paperwork Reduction Act...

  11. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  12. Herpes simplex virus mutant generation and dual-detection methods for gaining insight into latent/lytic cycles in vivo.

    PubMed

    Sawtell, Nancy M; Thompson, Richard L

    2014-01-01

    Two important components to a useful strategy to examine viral gene regulation in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo and (2) an efficient system to detect and quantify viral promoter activity in rare cells in vivo. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.

  13. The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis

    PubMed Central

    Benjak, Andrej; Uplekar, Swapna; Rougemont, Jacques; Guilhot, Christophe; Malaga, Wladimir; Martín, Carlos; Cole, Stewart T.

    2014-01-01

    The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in vivo. Using antibodies against the native protein in ChIP-seq experiments (chromatin immunoprecipitation followed by high-throughput sequencing) we demonstrated that PhoP binds to at least 35 loci on the M. tuberculosis genome. The PhoP regulon comprises several transcriptional regulators as well as genes for polyketide synthases and PE/PPE proteins. Integration of ChIP-seq results with high-resolution transcriptomic analysis (RNA-seq) revealed that PhoP controls 30 genes directly, whilst regulatory cascades are responsible for signal amplification and downstream effects through proteins like EspR, which controls Esx1 function, via regulation of the espACD operon. The most prominent site of PhoP regulation was located in the intergenic region between rv2395 and PE_PGRS41, where the mcr7 gene codes for a small non-coding RNA (ncRNA). Northern blot experiments confirmed the absence of Mcr7 in an M. tuberculosis phoP mutant as well as low-level expression of the ncRNA in M. tuberculosis complex members other than M. tuberculosis. By means of genetic and proteomic analyses we demonstrated that Mcr7 modulates translation of the tatC mRNA thereby impacting the activity of the Twin Arginine Translocation (Tat) protein secretion apparatus. As a result, secretion of the immunodominant Ag85 complex and the beta-lactamase BlaC is affected, among others. Mcr7, the first ncRNA of M. tuberculosis whose function has been established, therefore represents a missing link between the PhoPR two-component system and the downstream functions necessary for successful infection of the host. PMID:24874799

  14. [Changes of concentration of renin-angiotensin system components during vibration and their correction in experiment].

    PubMed

    Kapanadze, N A

    2007-04-01

    The aim of the research was investigation of the state of rennin-angiotensin system during the vibration in rats. 40 (180-200gr) pubertal male rats were studied. One hour vibro seance was conducted every day during two months. The 60 animals were divided into 3 groups (20 rats in each group); the third was control group. On 20th , 40th and 60th days of the experiment the decapitation of the animals was done under general narcosis. the Concentrations of rennin, angiotensin II and angiotensin converted ensyme in the blood plasma was determined using the method of radio immunoassay, The significant changes in concentrations of rennin-angiotensin system components have been manifested. The research showed the destruction in regulation of rennin-angiotensin system. It is concluded, that the vibration provokes the destruction of reciprocal feed-back of rennin-angiotensin system in the rats.

  15. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  16. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.

    PubMed

    Zhou, Xuan; Zhang, Nan; Xia, Liming; Li, Qing; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-15

    Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555-565, 2015, https://doi.org/10.1111/1462-2920.12527; L. S. Cairns, L. Hobley, and N. R. Stanley-Wall, Mol Microbiol 93:587-598, 2014, https://doi.org/10.1111/mmi.12697; H. Vlamakis, C. Aguilar, R. Losick, and R. Kolter, Genes Dev 22:945-953, 2008, https://doi.org/10.1101/gad.1645008; S. S. Branda, A. Vik, L. Friedman, and R. Kolter, Trends Microbiol 13:20-26, 2005, https://doi.org/10.1016/j.tim.2004.11.006; C. Aguilar, H. Vlamakis, R. Losick, and R. Kolter, Curr Opin Microbiol 10:638-643, 2007, https://doi.org/10.1016/j.mib.2007.09.006; S. S. Branda, J. E. González-Pastor, S. Ben-Yehuda, R. Losick, and R. Kolter, Proc Natl Acad Sci U S A 98:11621-11626, 2001, https://doi.org/10.1073/pnas.191384198). However, the identification and sensing of environmental signals triggering Bacillus biofilm formation need further research. Here, we report that the oxygen deficiency signal inducing Bacillus biofilm formation is sensed by the ResDE two-component regulatory system. Our results not only revealed the novel regulatory function of the ResDE two-component regulatory system but also identified the sensing system of a biofilm-triggering signal. This knowledge can help to enhance the biofilm formation and root colonization of plant-beneficial Bacillus strains and also provide new insights of bacterial biofilm formation regulation. Copyright © 2018 American Society for Microbiology.

  17. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa.

    PubMed Central

    Linden, H; Macino, G

    1997-01-01

    A saturating genetic dissection of 'blind' mutants in Neurospora crassa has identified a total of two non-redundant loci (wc-1 and wc-2) each of which is required for blue-light perception/signal transduction. Previously, we demonstrated that WC1 is a putative zinc finger transcription factor able to bind specifically to a light-regulated promoter. Here, we present the cloning and characterization of the wc-2 gene. We demonstrate using mutation analysis and in vitro DNA-binding assays that WC2, the second partner of this light signal transduction system, encodes a functional zinc finger DNA-binding protein with putative PAS dimerization and transcription activation domains. This molecular genetic dissection of the second of two components of this light signal transduction system has enabled us to devise a model whereby WC1 and WC2 are proposed to interact via homologous PAS domains, bind to promoters of light-regulated genes and activate transcription. As such, this study provides the first insight into two co-operating partners in blue-light signal transduction in any organism and describes the molecular tools with which to dissect this enigmatic process. PMID:9009271

  18. Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus

    PubMed Central

    Leonardy, Simone; Freymark, Gerald; Hebener, Sabrina; Ellehauge, Eva; Søgaard-Andersen, Lotte

    2007-01-01

    Myxococcus xanthus cells harbor two motility machineries, type IV pili (Tfp) and the A-engine. During reversals, the two machineries switch polarity synchronously. We present a mechanism that synchronizes this polarity switching. We identify the required for motility response regulator (RomR) as essential for A-motility. RomR localizes in a bipolar, asymmetric pattern with a large cluster at the lagging cell pole. The large RomR cluster relocates to the new lagging pole in parallel with cell reversals. Dynamic RomR localization is essential for cell reversals, suggesting that RomR relocalization induces the polarity switching of the A-engine. The analysis of RomR mutants shows that the output domain targets RomR to the poles and the receiver domain is essential for dynamic localization. The small GTPase MglA establishes correct RomR polarity, and the Frz two-component system regulates dynamic RomR localization. FrzS localizes with Tfp at the leading pole and relocates in an Frz-dependent manner to the opposite pole during reversals; FrzS and RomR localize and oscillate independently. The Frz system synchronizes these oscillations and thus the synchronous polarity switching of the motility machineries. PMID:17932488

  19. Control of HIV Through a Cell Surface Protein, HLA-C, and Its Complicated Regulation | Center for Cancer Research

    Cancer.gov

    Biological systems are complex. In many cases, the actions of various components are intertwined, and the effects of manipulating one component may actually be driven by that molecule’s relationship with a different component. Deciphering this kind of regulation is important for identifying the best therapeutic targets. An example of such complexity can be seen in the control

  20. Control of HIV Through a Cell Surface Protein, HLA-C, and Its Complicated Regulation | Center for Cancer Research

    Cancer.gov

    Biological systems are complex. In many cases, the actions of various components are intertwined, and the effects of manipulating one component may actually be driven by that molecule’s relationship with a different component. Deciphering this kind of regulation is important for identifying the best therapeutic targets. An example of such complexity can be seen in the control of HIV/AIDS.

  1. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level

    PubMed Central

    Conrads, Georg; de Soet, Johannes J.; Song, Lifu; Henne, Karsten; Sztajer, Helena; Wagner-Döbler, Irene; Zeng, An-Ping

    2014-01-01

    Background Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries. PMID:25475081

  2. 30 CFR 260.130 - What criteria does MMS use for selecting bidding systems and bidding system components?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system or tract, or may present a conflict that we will have to resolve in the process of bidding system... bidding systems and bidding system components? 260.130 Section 260.130 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OUTER CONTINENTAL...

  3. The Relation between Self-Regulated Learning and Academic Achievement across Childhood and Adolescence: A Meta-Analysis

    ERIC Educational Resources Information Center

    Dent, Amy L.; Koenka, Alison C.

    2016-01-01

    This research synthesis explores how academic achievement relates to two main components of self-regulated learning for students in elementary and secondary school. Two meta-analyses integrated previous findings on (1) the defining metacognitive processes of self-regulated learning and (2) students' use of cognitive strategies. Overall…

  4. The SaeRS Two-Component System Controls Survival of Staphylococcus aureus in Human Blood through Regulation of Coagulase

    PubMed Central

    Guo, Haiyong; Hall, Jeffrey W.; Yang, Junshu; Ji, Yinduo

    2017-01-01

    The SaeRS two-component system plays important roles in regulation of key virulence factors and pathogenicity. In this study, however, we found that the deletion mutation of saeRS enhanced bacterial survival in human blood, whereas complementation of the mutant with SaeRS returned survival to wild-type levels. Moreover, these phenomena were observed in different MRSA genetic background isolates, including HA-MRSA WCUH29, CA-MRSA 923, and MW2. To elucidate which gene(s) regulated by SaeRS contribute to the effect, we conducted a series of complementation studies with selected known SaeRS target genes in trans. We found coagulase complementation abolished the enhanced survival of the SaeRS mutant in human blood. The coa and saeRS deletion mutants exhibited a similar survival phenotype in blood. Intriguingly, heterologous expression of coagulase decreased survival of S. epidermidis in human blood. Further, the addition of recombinant coagulase to blood significantly decreased the survival of S. aureus. Further, analysis revealed staphylococcal resistance to killing by hydrogen peroxide was partially dependent on the presence or absence of coagulase. Furthermore, complementation with coagulase, but not SaeRS, returned saeRS/coa double mutant survival in blood to wild-type levels. These data indicate SaeRS modulates bacterial survival in blood in coagulase-dependent manner. Our results provide new insights into the role of staphylococcal SaeRS and coagulase on bacterial survival in human blood. PMID:28611950

  5. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Mitobe, Jiro; Ishikawa, Takahiko; Wai, Sun Nyunt; Ohnishi, Makoto; Watanabe, Haruo; Izumiya, Hidemasa

    2014-01-01

    In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR. © 2013 John Wiley & Sons Ltd.

  6. A Second Quorum-Sensing System Regulates Cell Surface Properties but Not Phenazine Antibiotic Production in Pseudomonas aureofaciens

    PubMed Central

    Zhang, Zhongge; Pierson, Leland S.

    2001-01-01

    The root-associated biological control bacterium Pseudomonas aureofaciens 30-84 produces a range of exoproducts, including protease and phenazines. Phenazine antibiotic biosynthesis by phzXYFABCD is regulated in part by the PhzR-PhzI quorum-sensing system. Mutants defective in phzR or phzI produce very low levels of phenazines but wild-type levels of exoprotease. In the present study, a second genomic region of strain 30-84 was identified that, when present in trans, increased β-galactosidase activity in a genomic phzB::lacZ reporter and partially restored phenazine production to a phzR mutant. Sequence analysis identified two adjacent genes, csaR and csaI, that encode members of the LuxR-LuxI family of regulatory proteins. No putative promoter region is present upstream of the csaI start codon and no lux box-like element was found in either the csaR promoter or the 30-bp intergenic region between csaR and csaI. Both the PhzR-PhzI and CsaR-CsaI systems are regulated by the GacS-GacA two-component regulatory system. In contrast to the multicopy effects of csaR and csaI in trans, a genomic csaR mutant (30-84R2) and a csaI mutant (30-84I2) did not exhibit altered phenazine production in vitro or in situ, indicating that the CsaR-CsaI system is not involved in phenazine regulation in strain 30-84. Both mutants also produced wild-type levels of protease. However, disruption of both csaI and phzI or both csaR and phzR eliminated both phenazine and protease production completely. Thus, the two quorum-sensing systems do not interact for phenazine regulation but do interact for protease regulation. Additionally, the CsaI N-acylhomoserine lactone (AHL) signal was not recognized by the phenazine AHL reporter 30-84I/Z but was recognized by the AHL reporters Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136(pCF240). Inactivation of csaR resulted in a smooth mucoid colony phenotype and formation of cell aggregates in broth, suggesting that CsaR is involved in regulating biosynthesis of cell surface components. Strain 30-84I/I2 exhibited mucoid colony and clumping phenotypes similar to those of 30-84R2. Both phenotypes were reversed by complementation with csaR-csaI or by the addition of the CsaI AHL signal. Both quorum-sensing systems play a role in colonization by strain 30-84. Whereas loss of PhzR resulted in a 6.6-fold decrease in colonization by strain 30-84 on wheat roots in natural soil, a phzR csaR double mutant resulted in a 47-fold decrease. These data suggest that gene(s) regulated by the CsaR-CsaI system also plays a role in the rhizosphere competence of P. aureofaciens 30-84. PMID:11526037

  7. The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You

    Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less

  8. Prokaryotic 2-component systems and the OmpR/PhoB superfamily.

    PubMed

    Nguyen, Minh-Phuong; Yoon, Joo-Mi; Cho, Man-Ho; Lee, Sang-Won

    2015-11-01

    In bacteria, 2-component regulatory systems (TCSs) are the critical information-processing pathways that link stimuli to specific adaptive responses. Signals perceived by membrane sensors, which are generally histidine kinases, are transmitted by response regulators (RRs) to allow cells to cope rapidly and effectively with environmental challenges. Over the past few decades, genes encoding components of TCSs and their responsive proteins have been identified, crystal structures have been described, and signaling mechanisms have been elucidated. Here, we review recent findings and interesting breakthroughs in bacterial TCS research. Furthermore, we discuss structural features, mechanisms of activation and regulation, and cross-regulation of RRs, with a focus on the largest RR family, OmpR/PhoB, to provide a comprehensive overview of these critically important signaling molecules.

  9. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  10. The Staphylococcus aureus Two-Component System AgrAC Displays Four Distinct Genomic Arrangements That Delineate Genomic Virulence Factor Signatures

    PubMed Central

    Choudhary, Kumari S.; Mih, Nathan; Monk, Jonathan; Kavvas, Erol; Yurkovich, James T.; Sakoulas, George; Palsson, Bernhard O.

    2018-01-01

    Two-component systems (TCSs) consist of a histidine kinase and a response regulator. Here, we evaluated the conservation of the AgrAC TCS among 149 completely sequenced Staphylococcus aureus strains. It is composed of four genes: agrBDCA. We found that: (i) AgrAC system (agr) was found in all but one of the 149 strains, (ii) the agr positive strains were further classified into four agr types based on AgrD protein sequences, (iii) the four agr types not only specified the chromosomal arrangement of the agr genes but also the sequence divergence of AgrC histidine kinase protein, which confers signal specificity, (iv) the sequence divergence was reflected in distinct structural properties especially in the transmembrane region and second extracellular binding domain, and (v) there was a strong correlation between the agr type and the virulence genomic profile of the organism. Taken together, these results demonstrate that bioinformatic analysis of the agr locus leads to a classification system that correlates with the presence of virulence factors and protein structural properties. PMID:29887846

  11. Quorum-sensing regulators in Gram-positive bacteria: 'cherchez le peptide'.

    PubMed

    Monnet, V; Gardan, R

    2015-07-01

    Gram-positive bacteria can regulate gene expression at the population level via a mechanism known as quorum sensing. Oligopeptides serve as the signaling molecules; they are secreted and then are either detected at the bacterial surface by two-component systems or reinternalized via an oligopeptide transport system. In the latter case, imported peptides interact with cognate regulators (phosphatases or transcriptional regulators) that modulate the expression of target genes. These regulators help control crucial functions such as virulence, persistence, conjugation and competence and have been reported in bacilli, enterococci and streptococci. They form the rapidly growing RRNPP group. In this issue of Molecular Microbiology, Hoover et al. (2015) highlight the group's importance: they have identified a new family of regulators, Tprs (Transcription factor regulated by a Phr peptide), which work with internalized Phr-like peptides. The mechanisms underlying the expression of the genes that encode these internalized peptides are poorly documented. However, Hoover et al. (2015) have provided a new insight: an environmental molecule, glucose, can inhibit expression of the Phr-like peptide gene via catabolic repression. This previously undescribed regulatory pathway, controlling the production of a bacteriocin, might influence Streptococcus pneumonia's fitness in the nasopharynx, where galactose is present. © 2015 John Wiley & Sons Ltd.

  12. Trail Communication Regulated by Two Trail Pheromone Components in the Fungus-Growing Termite Odontotermes formosanus (Shiraki)

    PubMed Central

    Wen, Ping; Ji, Bao-Zhong; Sillam-Dussès, David

    2014-01-01

    The eusocial termites are well accomplished in chemical communication, but how they achieve the communication using trace amount of no more than two pheromone components is mostly unknown. In this study, the foraging process and trail pheromones of the fungus-growing termite Odontotermes formosanus (Shiraki) were systematically studied and monitored in real-time using a combination of techniques, including video analysis, solid-phase microextraction, gas chromatography coupled with either mass spectrometry or an electroantennographic detector, and bioassays. The trail pheromone components in foraging workers were (3Z)-dodec-3-en-1-ol and (3Z,6Z)-dodeca-3,6-dien-1-ol secreted by their sternal glands. Interestingly, ratio of the two components changed according to the behaviors that the termites were displaying. This situation only occurs in termites whereas ratios of pheromone components are fixed and species-specific for other insect cuticular glands. Moreover, in bioassays, the active thresholds of the two components ranged from 1 fg/cm to 10 pg/cm according to the behavioral contexts or the pheromonal exposure of tested workers. The two components did not act in synergy. (3Z)-Dodec-3-en-1-ol induced orientation behavior of termites that explore their environment, whereas (3Z,6Z)-dodeca-3,6-dien-1-ol had both an orientation effect and a recruitment effect when food was discovered. The trail pheromone of O. formosanus was regulated both quantitatively by the increasing number of workers involved in the early phases of foraging process, and qualitatively by the change in ratio of the two pheromone components on sternal glandular cuticle in the food-collecting workers. In bioassays, the responses of workers to the pheromone were also affected by the variation in pheromone concentration and component ratio in the microenvironment. Thus, this termite could exchange more information with nestmates using the traces of the two trail pheromone components that can be easily regulated within a limited microenvironment formed by the tunnels or chambers. PMID:24670407

  13. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  14. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure

    PubMed Central

    Xu, Quanbin; Jensen, Dane D.; Peng, Hua; Feng, Yumei

    2016-01-01

    The systemic renin–angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP. Binding of the PRR to its ligand, prorenin or renin, increases BP and promotes progression of cardiovascular diseases in an angiotensin II-dependent and -independent manner, establishing the PRR a promising antihypertensive drug target. We also review the existing PRR blockers, including handle region peptide and PRO20, and propose a rationale for blocking prorenin/PRR activation as a therapeutic approach that does not affect the actions of the PRR in vacuolar H+-ATPase and development. Finally, we summarize categories of currently available antihypertensive drugs and consider future perspectives. PMID:27113409

  15. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  16. Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS). Phase 1: Users handbook

    NASA Technical Reports Server (NTRS)

    Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.

    1986-01-01

    The EASY5 macro component models developed for the spacecraft power system simulation are described. A brief explanation about how to use the macro components with the EASY5 Standard Components to build a specific system is given through an example. The macro components are ordered according to the following functional group: converter power stage models, compensator models, current-feedback models, constant frequency control models, load models, solar array models, and shunt regulator models. Major equations, a circuit model, and a program listing are provided for each macro component.

  17. Critical thinking as a self-regulatory process component in teaching and learning.

    PubMed

    Phan, Huy P

    2010-05-01

    This article presents a theoretically grounded model of critical thinking and self-regulation in the context of teaching and learning. Critical thinking, deriving from an educational psychology perspective is a complex process of reflection that helps individuals become more analytical in their thinking and professional development. My conceptualisation in this discussion paper argues that both theoretical orientations (critical thinking and self-regulation) operate in a dynamic interactive system of teaching and learning. My argument, based on existing research evidence, suggests two important points: (i) critical thinking acts as another cognitive strategy of self-regulation that learners use in their learning, and (ii) critical thinking may be a product of various antecedents such as different self-regulatory strategies.

  18. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence

    PubMed Central

    Burnside, Kellie; Rajagopal, Lakshmi

    2011-01-01

    Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections. PMID:21797690

  19. An indirect component in the evoked compound action potential of the vagal nerve.

    PubMed

    Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H

    2010-12-01

    The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.

  20. Characterization of AcrD, a resistance-nodulation-cell division-type multidrug efflux pump from the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Weingart, Helge

    2014-01-21

    Multidrug efflux pumps are membrane translocases that have the ability to extrude a variety of structurally unrelated compounds from the cell. AcrD, a resistance-nodulation-cell division (RND) transporter, was shown to be involved in efflux of highly hydrophilic aminoglycosides and a limited number of amphiphilic compounds in E. coli. Here, a homologue of AcrD in the plant pathogen and causal agent of fire blight disease Erwinia amylovora was identified. The substrate specificity of AcrD was studied by overexpression of the corresponding gene from a high-copy plasmid in E. amylovora Ea1189-3, which is hypersensitive to many drugs due to a deficiency of the major multidrug pump AcrB. AcrD mediated resistance to several amphiphilic compounds including clotrimazole and luteolin, two compounds hitherto not described as substrates of AcrD in enterobacteria. However, AcrD was not able to expel aminoglycosides. An acrD mutant exhibited full virulence on apple rootstock and immature pear fruits. RT-PCR analysis revealed an induction of acrD expression in infected apple tissue but not on pear fruits. Moreover, a direct binding of BaeR, the response regulator of the two-component regulatory system BaeSR, to the acrD promoter was observed as has already been shown in other enterobacteria. AcrD from E. amylovora is involved in resistance to a limited number of amphiphilic compounds, but in contrast to AcrD of E. coli, it is not involved in resistance to aminoglycosides. The expression of acrD was up-regulated by addition of the substrates deoxycholate, naringenin, tetracycline and zinc. AcrD appears to be regulated by the BaeSR two-component system, an envelope stress signal transduction pathway.

  1. Characterization of AcrD, a Resistance-Nodulation-Cell Division-type multidrug efflux pump from the fire blight pathogen Erwinia amylovora

    PubMed Central

    2014-01-01

    Background Multidrug efflux pumps are membrane translocases that have the ability to extrude a variety of structurally unrelated compounds from the cell. AcrD, a resistance-nodulation-cell division (RND) transporter, was shown to be involved in efflux of highly hydrophilic aminoglycosides and a limited number of amphiphilic compounds in E. coli. Here, a homologue of AcrD in the plant pathogen and causal agent of fire blight disease Erwinia amylovora was identified. Results The substrate specificity of AcrD was studied by overexpression of the corresponding gene from a high-copy plasmid in E. amylovora Ea1189-3, which is hypersensitive to many drugs due to a deficiency of the major multidrug pump AcrB. AcrD mediated resistance to several amphiphilic compounds including clotrimazole and luteolin, two compounds hitherto not described as substrates of AcrD in enterobacteria. However, AcrD was not able to expel aminoglycosides. An acrD mutant exhibited full virulence on apple rootstock and immature pear fruits. RT-PCR analysis revealed an induction of acrD expression in infected apple tissue but not on pear fruits. Moreover, a direct binding of BaeR, the response regulator of the two-component regulatory system BaeSR, to the acrD promoter was observed as has already been shown in other enterobacteria. Conclusions AcrD from E. amylovora is involved in resistance to a limited number of amphiphilic compounds, but in contrast to AcrD of E. coli, it is not involved in resistance to aminoglycosides. The expression of acrD was up-regulated by addition of the substrates deoxycholate, naringenin, tetracycline and zinc. AcrD appears to be regulated by the BaeSR two-component system, an envelope stress signal transduction pathway. PMID:24443882

  2. MAP Propulsion System Thermal Design

    NASA Technical Reports Server (NTRS)

    Mosier, Carol L.

    2003-01-01

    The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.

  3. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora

    PubMed Central

    Ancona, Veronica; Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA. PMID:27845410

  4. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora.

    PubMed

    Ancona, Veronica; Lee, Jae Hoon; Zhao, Youfu

    2016-11-15

    The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.

  5. H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1

    PubMed Central

    Salomon, Dor; Klimko, John A.

    2014-01-01

    The marine bacterium Vibrio parahaemolyticus, a major cause of food-borne gastroenteritis, employs a type VI secretion system 1 (T6SS1), a recently discovered protein secretion system, to combat competing bacteria. Environmental signals such as temperature, salinity, cell density and surface sensing, as well as the quorum-sensing master regulator OpaR, were previously reported to regulate T6SS1 activity and expression. In this work, we set out to identify additional transcription regulators that control the tightly regulated T6SS1 activity. To this end, we determined the effect of deletions in several known virulence regulators and in two regulators encoded within the T6SS1 gene cluster on expression and secretion of the core T6SS component Hcp1 and on T6SS1-mediated anti-bacterial activity. We report that VP1391 and VP1407, transcriptional regulators encoded within the T6SS1 gene cluster, are essential for T6SS1 activity. Moreover, we found that H-NS, a bacterial histone-like nucleoid structuring protein, which mediates transcription silencing of horizontally acquired genes, serves as a repressor of T6SS1. We also show that activation of surface sensing and high salt conditions alleviate the H-NS-mediated repression. Our results shed light on the complex network of environmental signals and transcription regulators that govern the tight regulation over T6SS1 activity. PMID:24987102

  6. 48 CFR 3027.205 - Adjustment of royalties.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Adjustment of royalties. 3027.205 Section 3027.205 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY... Patents 3027.205 Adjustment of royalties. (a) Reports shall be made to Component legal counsel...

  7. The precision segmented reflectors: Moderate mission figure control subsystem

    NASA Technical Reports Server (NTRS)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  8. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  9. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    PubMed

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Thermal Vacuum Testing of a Proto-flight Miniature Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    2011-01-01

    This paper describes thermal vacuum testing of a proto-flight miniature loop heat pipe (MLHP) with two evaporators and two condensers designed for future small systems applications requiring low mass, low power and compactness. Each evaporator contains a wick with an outer diameter of 6.35 mm, and each has its own integral compensation chamber (CC). Miniaturization of the loop components reduces the volume and mass of the thermal system. Multiple evaporators provide flexibility for placement of instruments that need to be maintained at the same temperature, and facilitate heat load sharing among instruments, reducing the auxiliary heater power requirement. A flow regulator is used to regulate heat dissipations between the two condensers, allowing flexible placement of radiators on the spacecraft. A thermoelectric converter (TEC) is attached to each CC for control of the operating temperature and enhancement of start-up success. Tests performed include start-up, power cycle, sink temperature cycle, high power and low power operation, heat load sharing, and operating temperature control. The proto-flight MLHP demonstrated excellent performance in the thermal vacuum test. The loop started successfully and operated stably under various evaporator heat loads and condenser sink temperatures. The TECs were able to maintain the loop operating temperature within b1K of the desired set point temperature at all power levels and all sink temperatures. The un-powered evaporator would automatically share heat from the other powered evaporator. The flow regulator was able to regulate the heat dissipation among the radiators and prevent vapor from flowing into the liquid line.

  11. A Retentive Memory of Tetrachloroethene Respiration in Sulfurospirillum halorespirans - involved Proteins and a possible link to Acetylation of a Two-Component Regulatory System.

    PubMed

    Türkowsky, Dominique; Esken, Jens; Goris, Tobias; Schubert, Torsten; Diekert, Gabriele; Jehmlich, Nico; von Bergen, Martin

    2018-06-15

    Organohalide respiration (OHR), comprising the reductive dehalogenation of halogenated organic compounds, is subject to a unique memory effect and long-term transcriptional downregulation of the involved genes in Sulfurospirillum multivorans. Gene expression ceases slowly over approximately 100 generations in the absence of tetrachloroethene (PCE). However, the molecular mechanisms of this regulation process are not understood. We show here that Sulfurospirillum halorespirans undergoes the same type of regulation when cultivated without chlorinated ethenes for a long period of time. In addition, we compared the proteomes of S. halorespirans cells cultivated in the presence of PCE with those of cells long- and short-term cultivated with nitrate as the sole electron acceptor. Important OHR-related proteins previously unidentified in S. multivorans include a histidine kinase, a putative quinol dehydrogenase membrane protein, and a PCE-induced porin. Since for some regulatory proteins a posttranslational regulation of activity by lysine acetylations is known, we also analyzed the acetylome of S. halorespirans, revealing that 32% of the proteome was acetylated in at least one condition. The data indicate that the response regulator and the histidine kinase of a two-component system most probably involved in induction of PCE respiration are highly acetylated during short-term cultivation with nitrate in the absence of PCE. The so far unique long-term downregulation of organohalide respiration is now identified in a second species suggesting a broader distribution of this regulatory phenomenon. An improved protein extraction method allowed the identification of proteins most probably involved in transcriptional regulation of OHR in Sulfurospirillum spp. Our data indicate that acetylations of regulatory proteins are involved in this extreme, sustained standby-mode of metabolic enzymes in the absence of a substrate. This first published acetylome of Epsilonproteobacteria might help to study other ecologically or medically important species of this clade. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM.

    PubMed

    Heroven, Ann Kathrin; Böhme, Katja; Rohde, Manfred; Dersch, Petra

    2008-06-01

    The MarR-type regulator RovA controls expression of virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic strategy to discover components that influence rovA expression, we identified new regulatory factors with homology to components of the carbon storage regulator system (Csr). We showed that overexpression of a CsrB- or a CsrC-type RNA activates rovA, whereas a CsrA-like protein represses RovA synthesis. We further demonstrate that influence of the Csr system on rovA is indirect and occurs through control of the LysR regulator RovM, which inhibits rovA transcription. The CsrA protein had also a major influence on the motility of Yersinia, which was independent of RovM. The CsrB and CsrC RNAs are differentially expressed in Yersinia. CsrC is highly induced in complex but not in minimal media, indicating that medium-dependent rovM expression is mediated through CsrC. CsrB synthesis is generally very low. However, overexpression of the response regulator UvrY was found to activate CsrB production, which in turn represses CsrC synthesis independent of the growth medium. In summary, the post-transcriptional Csr-type components were shown to be key regulators in the co-ordinated environmental control of physiological processes and virulence factors, which are crucial for the initiation of Yersinia infections.

  13. Bacillus subtilis as a Platform for Molecular Characterisation of Regulatory Mechanisms of Enterococcus faecalis Resistance against Cell Wall Antibiotics

    PubMed Central

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators. PMID:24676422

  14. Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

    PubMed

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

  15. Obesity: Current and potential pharmacotherapeutics and targets.

    PubMed

    Narayanaswami, Vidya; Dwoskin, Linda P

    2017-02-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Obesity: Current and Potential Pharmacotherapeutics and Targets

    PubMed Central

    Narayanaswami, Vidya; Dwoskin, Linda P.

    2016-01-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed. PMID:27773782

  17. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  18. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems.

    PubMed

    Foster, Clay A; West, Ann H

    2017-01-01

    Two-component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus-dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well-characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation-induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155-176. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  19. The Predator becomes the Prey: Regulating the Ubiquitin System by Ubiquitylation and Degradation

    PubMed Central

    Weissman, Allan M.; Shabek, Nitzan; Ciechanover, Aaron

    2012-01-01

    Ubiquitylation (also known as ubiquitination) regulates essentially all intracellular processes in eukaryotes through highly specific, and often tightly spatially and temporally regulated, modification of numerous cellular proteins. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology. PMID:21860393

  20. Self-regulating control of parasitic loads in a fuel cell power system

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor)

    2011-01-01

    A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.

  1. The CasKR Two-Component System Is Required for the Growth of Mesophilic and Psychrotolerant Bacillus cereus Strains at Low Temperatures

    PubMed Central

    Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique

    2014-01-01

    The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924

  2. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System.

    PubMed

    Gao, Rong; Godfrey, Katherine A; Sufian, Mahir A; Stock, Ann M

    2017-09-15

    Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the "memory" to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that "memory" of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity. In this study, we examined the molecular "memory" that is generated by previous exposure to stimulus. Under our experimental conditions, activating effects of autoregulated two-component signaling and inhibitory effects of the stress response counterbalanced the transcriptional output to approach response homeostasis whether or not cells had been preexposed to stimulus. Modeling allows prediction of response behavior in different scenarios and demonstrates both the robustness of the system output and its sensitivity to historical parameters such as timing and levels of exposure to stimuli. Copyright © 2017 American Society for Microbiology.

  3. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System

    PubMed Central

    Gao, Rong; Godfrey, Katherine A.; Sufian, Mahir A.

    2017-01-01

    ABSTRACT Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the “memory” to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that “memory” of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity. In this study, we examined the molecular “memory” that is generated by previous exposure to stimulus. Under our experimental conditions, activating effects of autoregulated two-component signaling and inhibitory effects of the stress response counterbalanced the transcriptional output to approach response homeostasis whether or not cells had been preexposed to stimulus. Modeling allows prediction of response behavior in different scenarios and demonstrates both the robustness of the system output and its sensitivity to historical parameters such as timing and levels of exposure to stimuli. PMID:28674072

  4. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  5. Causality, randomness, intelligibility, and the epistemology of the cell.

    PubMed

    Dougherty, Edward R; Bittner, Michael L

    2010-06-01

    Because the basic unit of biology is the cell, biological knowledge is rooted in the epistemology of the cell, and because life is the salient characteristic of the cell, its epistemology must be centered on its livingness, not its constituent components. The organization and regulation of these components in the pursuit of life constitute the fundamental nature of the cell. Thus, regulation sits at the heart of biological knowledge of the cell and the extraordinary complexity of this regulation conditions the kind of knowledge that can be obtained, in particular, the representation and intelligibility of that knowledge. This paper is essentially split into two parts. The first part discusses the inadequacy of everyday intelligibility and intuition in science and the consequent need for scientific theories to be expressed mathematically without appeal to commonsense categories of understanding, such as causality. Having set the backdrop, the second part addresses biological knowledge. It briefly reviews modern scientific epistemology from a general perspective and then turns to the epistemology of the cell. In analogy with a multi-faceted factory, the cell utilizes a highly parallel distributed control system to maintain its organization and regulate its dynamical operation in the face of both internal and external changes. Hence, scientific knowledge is constituted by the mathematics of stochastic dynamical systems, which model the overall relational structure of the cell and how these structures evolve over time, stochasticity being a consequence of the need to ignore a large number of factors while modeling relatively few in an extremely complex environment.

  6. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...

  7. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...

  8. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...

  9. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  10. Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method

    PubMed Central

    Burger, Lukas; van Nimwegen, Erik

    2008-01-01

    Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381

  11. 48 CFR 201.201-1 - The two councils.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false The two councils. 201.201-1 Section 201.201-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Administration 201.201-1 The two...

  12. 48 CFR 201.201-1 - The two councils.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false The two councils. 201.201-1 Section 201.201-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Administration 201.201-1 The two...

  13. 48 CFR 201.201-1 - The two councils.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false The two councils. 201.201-1 Section 201.201-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Administration 201.201-1 The two...

  14. 48 CFR 201.201-1 - The two councils.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false The two councils. 201.201-1 Section 201.201-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Administration 201.201-1 The two...

  15. 48 CFR 201.201-1 - The two councils.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false The two councils. 201.201-1 Section 201.201-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Administration 201.201-1 The two...

  16. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; de Lamotte-Guery, F.; Buchanan, B. B.

    1990-01-01

    The components of the ferredoxin-thioredoxin (FT) system of Chlamydomonas reinhardtii have been purified and characterized. The system resembled that of higher plants in consisting of a ferredoxin-thioredoxin reductase (FTR) and two types of thioredoxin, a single f and two m species, m1 and m2. The Chlamydomonas m and f thioredoxins were antigenically similar to their higher-plant counterparts, but not to one another. The m thioredoxins were recognized by antibodies to both higher plant m and bacterial thioredoxins, whereas the thioredoxin f was not. Chlamydomonas thioredoxin f reacted, although weakly, with the antibody to spinach thioredoxin f. The algal thioredoxin f differed from thioredoxins studied previously in behaving as a basic protein on ion-exchange columns. Purification revealed that the algal thioredoxins had molecular masses (Mrs) typical of thioredoxins from other sources, m1 and m2 being 10700 and f 11500. Chlamydomonas FTR had two dissimilar subunits, a feature common to all FTRs studied thus far. One, the 13-kDa ("similar") subunit, resembled its counterpart from other sources in both size and antigenicity. The other, 10-kDa ("variable") subunit was not recognized by antibodies to any FTR tested. When combined with spinach, (Spinacia oleracea L.) thylakoid membranes, the components of the FT system functioned in the light activation of the standard target enzymes from chloroplasts, corn (Zea mays L.) NADP-malate dehydrogenase (EC 1.1.1.82) and spinach fructose 1,6-bisphosphatase (EC 3.1.3.11) as well as the chloroplast-type fructose 1,6-bisphosphatase from Chlamydomonas. Activity was greatest if ferredoxin and other components of the FT system were from Chlamydomonas. The capacity of the Chlamydomonas FT system to activate autologous FBPase indicates that light regulates the photosynthetic carbon metabolism of green algae as in other oxygenic photosynthetic organisms.

  17. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity.

    PubMed

    Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O

    2017-10-01

    Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicK Sm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Novel Two-Component System of Streptococcus sanguinis Affecting Functions Associated with Viability in Saliva and Biofilm Formation.

    PubMed

    Camargo, Tarsila M; Stipp, Rafael N; Alves, Lívia A; Harth-Chu, Erika N; Höfling, José F; Mattos-Graner, Renata O

    2018-04-01

    Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptR Ss (SKsptR) and sptS Ss (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptR Ss and sptS Ss mutants showed increased biofilm formation associated with higher levels of production of H 2 O 2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H 2 O 2 production (2.5- to 15-fold upregulation of spxB , spxR , vicR , tpk , and ackA in sptR Ss and sptS Ss mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA , pcsB , cwdP , iga , and nt5e ). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR , spxR , comE , comX , and mecA in the sptR Ss and sptS Ss mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H 2 O 2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity. Copyright © 2018 American Society for Microbiology.

  19. Crystal Structure of PhnF, a GntR-Family Transcriptional Regulator of Phosphate Transport in Mycobacterium smegmatis

    PubMed Central

    Busby, Jason N.; Fritz, Georg; Moreland, Nicole J.; Cook, Gregory M.; Lott, J. Shaun; Baker, Edward N.

    2014-01-01

    Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains. PMID:25049090

  20. Developing open source, self-contained disease surveillance software applications for use in resource-limited settings

    PubMed Central

    2012-01-01

    Background Emerging public health threats often originate in resource-limited countries. In recognition of this fact, the World Health Organization issued revised International Health Regulations in 2005, which call for significantly increased reporting and response capabilities for all signatory nations. Electronic biosurveillance systems can improve the timeliness of public health data collection, aid in the early detection of and response to disease outbreaks, and enhance situational awareness. Methods As components of its Suite for Automated Global bioSurveillance (SAGES) program, The Johns Hopkins University Applied Physics Laboratory developed two open-source, electronic biosurveillance systems for use in resource-limited settings. OpenESSENCE provides web-based data entry, analysis, and reporting. ESSENCE Desktop Edition provides similar capabilities for settings without internet access. Both systems may be configured to collect data using locally available cell phone technologies. Results ESSENCE Desktop Edition has been deployed for two years in the Republic of the Philippines. Local health clinics have rapidly adopted the new technology to provide daily reporting, thus eliminating the two-to-three week data lag of the previous paper-based system. Conclusions OpenESSENCE and ESSENCE Desktop Edition are two open-source software products with the capability of significantly improving disease surveillance in a wide range of resource-limited settings. These products, and other emerging surveillance technologies, can assist resource-limited countries compliance with the revised International Health Regulations. PMID:22950686

  1. The dynamics and optimal control of spinning spacecraft and movable telescoping appendages, part A. [two axis control with single offset boom

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1977-01-01

    The problem of optimal control with a minimum time criterion as applied to a single boom system for achieving two axis control is discussed. The special case where the initial conditions are such that the system can be driven to the equilibrium state with only a single switching maneuver in the bang-bang optimal sequence is analyzed. The system responses are presented. Application of the linear regulator problem for the optimal control of the telescoping system is extended to consider the effects of measurement and plant noises. The noise uncertainties are included with an application of the estimator - Kalman filter problem. Different schemes for measuring the components of the angular velocity are considered. Analytical results are obtained for special cases, and numerical results are presented for the general case.

  2. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  3. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [The genetic determination and function of RR-proteins--the regulators of photoperiodic reaction and circadian rhythms in plants].

    PubMed

    Tots'kyĭ, V M; D'iachenko, L F; Muterko, O F; Balashova, I A; Toptikov, V A

    2012-01-01

    The present review devoted to the analysis of recent literature on genetic determination and the domain organization of the newly discovered two-component signaling systems in pro- and eukaryotes. These structures are involved in the regulation of numerous morphological and physiological processes in plants. RR-proteins, it the key elements of signaling systems, they launch a cascade of phosphotransferase reactions and directly or indirectly regulate the transcription and activity other proteins, including enzymes, in response to hormones or environmental factors. Modern views on the molecular and genetic mechanisms of photoperiodic response, circadian rhythms and anti-stress responses in plants are set out in these positions. The relationship between gene expression and photoreceptor sensitivity of plants to photoperiod traced. We present our own data obtained on the isogenic lines of wheat, where been showed dependence expression of structural genes of enzymes on the allelic composition of individual PRR-loci and the duration action of low temperature.

  5. FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in Arabidopsis[W

    PubMed Central

    Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J.; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko

    2014-01-01

    Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202

  6. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  7. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    PubMed Central

    2014-01-01

    Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus. PMID:24961398

  8. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae.

    PubMed

    Liu, Lifang; Feizi, Amir; Österlund, Tobias; Hjort, Carsten; Nielsen, Jens

    2014-06-24

    The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.

  9. The Portuguese electric system and the role of the Portuguese regulatory entity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, J.

    1998-07-01

    According to the organization model of the Portuguese Electric System, there is the coexistence of two subsystems with different characteristics: the Public Electric System, which has public service obligations and the Independent Electric System which does not have such obligations, and part of it obeys a market logic. Nowadays, the Public Electric System is the main component of the electric sector, however there are reasons to believe that the Independent System can increase its participation. The 1995 Portuguese legislation established the existence of an independent structure to regulate the electric sector: the Electric Sector Regulatory Entity. In this paper, themore » organization of this entity is described, as well as its objectives and main powers.« less

  10. Mechanism synthesis and 2-D control designs of an active three cable crane

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn; Mikulas, Martin M., Jr.

    1992-01-01

    A Lunar Crane with a suspension system based on a three cable mechanism is investigated to provide a stable end-effector for hoisting, positioning, and assembling large components during construction and servicing of a Lunar Base. The three cable suspension mechanism consists of a structural framework of three cables pointing to a common point that closely coincides with the suspended payload's center of gravity. The vibrational characteristics of this three cable suspension system are investigated by comparing a simple 2-D symmetric suspension model and a swinging pendulum in terms of their analytical natural frequency equations. A study is also made of actively controlling the dynamics of the crane using two different actuator concepts. Also, Lyapunov-based control algorithms are developed to determine two regulator-type control laws performing the system vibrational suppression for both system dynamics. Simulations including initial-valued dynamic responses as well as control performances for two different system dynamics are also presented.

  11. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions.

    PubMed

    Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J

    2013-01-01

    Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.

  12. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system.

    PubMed

    Pérez-Morales, Deyanira; Bustamante, Víctor H

    2016-02-01

    A novel connection between two regulatory systems controlling crucial biological processes in bacteria, the carbon storage regulator (Csr) system and the glucose-specific phosphotransferase system (PTS), is reported by Leng et al. in this issue. This involves the interaction of unphosphorylated EIIA(Glc), a component of the glucose-specific PTS, with the CsrD protein, which accelerates the decay of the CsrB and CsrC small RNAs via RNase E in Escherichia coli. As unphosphorylated EIIA(G) (lc) is generated in the presence of glucose, the PTS thus acts as a sensor of glucose for the Csr system. Interestingly, another pathway can operate for communication between the Csr system and the glucose-specific PTS. The absence of glucose generates phosphorylated EIIA(Glc) , which activates the enzyme adenylate cyclase to produce cyclic adenosine monophosphate (cAMP) that, in turn, binds to the regulator cAMP receptor protein (CRP). Leng et al. show that the complex cAMP-CRP modestly reduces CsrB decay independently of CsrD. On the other hand, a previous study indicates that the complex cAMP-CRP positively regulates the transcription of CsrB and CsrC in Salmonella enterica. Therefore, EIIA(G) (lc) could work as a molecular switch that regulates the activity of the Csr system, in response to its phosphorylation state determined by the presence or absence of glucose, in order to control gene expression. © 2015 John Wiley & Sons Ltd.

  13. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components.

    PubMed

    Condino-Neto, A; Whitney, C; Newburger, P E

    1998-11-01

    We investigated the effects of dexamethasone or indomethacin on the NADPH oxidase activity, cytochrome b558 content, and expression of genes encoding the components gp91-phox and p47-phox of the NADPH oxidase system in the human monocytic THP-1 cell line, differentiated with IFN-gamma and TNF-alpha, alone or in combination, for up to 7 days. IFN-gamma and TNF-alpha, alone or in combination, caused a significant up-regulation of the NADPH oxidase system as reflected by an enhancement of the PMA-stimulated superoxide release, cytochrome b558 content, and expression of gp91-phox and p47-phox genes on both days 2 and 7 of cell culture. Noteworthy was the tremendous synergism between IFN-gamma and TNF-alpha for all studied parameters. Dexamethasone down-regulated the NADPH oxidase system of cytokine-differentiated THP-1 cells as assessed by an inhibition on the PMA-stimulated superoxide release, cytochrome b558 content, and expression of the gp91-phox and p47-phox genes. The nuclear run-on assays indicated that dexamethasone down-regulated the NADPH oxidase system at least in part by inhibiting the transcription of gp91-phox and p47-phox genes. Indomethacin inhibited only the PMA-stimulated superoxide release of THP-1 cells differentiated with IFN-gamma and TNF-alpha during 7 days. None of the other parameters was affected by indomethacin. We conclude that dexamethasone down-regulates the NADPH oxidase system at least in part by inhibiting the expression of genes encoding the gp91-phox and p47-phox components of the NADPH oxidase system.

  14. Two-component gravitating systems and the red giant-like structure

    NASA Technical Reports Server (NTRS)

    Fujimoto, Masayuki Y.; Tomisaka, Kohji

    1992-01-01

    The present study investigates the equilibria and evolution of gravitating systems composed of two components by approximating their equations of states to polytropes. The structures are explored in hydrostatic equilibrium systematically under the condition that two components interact with each other only through gravity. The systems are found to be characterized by four parameters, the ratio of central densities and the ratio of central thermal energies per unit mass, and the polytropic indices of two components. If the central density is much higher, the structure is little affected by the presence of the other component. If the difference in the central thermal energies is smaller than specified by beta-cri, the system adopts an equilibrium configuration for any mass ratio. Two-component systems necessarily evolve to have the red giantlike structure if one component suffers cooling faster than the other. It is concluded that the red giant structure is a general characteristic of gravitating systems for which there is an appropriate mechanism to decouple the constituent into the hotter and cooler components.

  15. A Link between Dimerization and Autophosphorylation of the Response Regulator PhoB*

    PubMed Central

    Creager-Allen, Rachel L.; Silversmith, Ruth E.; Bourret, Robert B.

    2013-01-01

    Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3−. Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ∼10-fold higher than for the monomer. In a test of the model, disruption of the known PhoBN dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation. PMID:23760278

  16. Insulation and wiring specificity of BceR-like response regulators and their target promoters in Bacillus subtilis.

    PubMed

    Fang, Chong; Nagy-Staroń, Anna; Grafe, Martin; Heermann, Ralf; Jung, Kirsten; Gebhard, Susanne; Mascher, Thorsten

    2017-04-01

    BceRS and PsdRS are paralogous two-component systems in Bacillus subtilis controlling the response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, respectively, the two response regulators (RRs) bind their target promoters, P bceA or P psdA , resulting in a strong up-regulation of target gene expression and ultimately antibiotic resistance. Despite high sequence similarity between the RRs BceR and PsdR and their known binding sites, no cross-regulation has been observed between them. We therefore investigated the specificity determinants of P bceA and P psdA that ensure the insulation of these two paralogous pathways at the RR-promoter interface. In vivo and in vitro analyses demonstrate that the regulatory regions within these two promoters contain three important elements: in addition to the known (main) binding site, we identified a linker region and a secondary binding site that are crucial for functionality. Initial binding to the high-affinity, low-specificity main binding site is a prerequisite for the subsequent highly specific binding of a second RR dimer to the low-affinity secondary binding site. In addition to this hierarchical cooperative binding, discrimination requires a competition of the two RRs for their respective binding site mediated by only slight differences in binding affinities. © 2016 John Wiley & Sons Ltd.

  17. Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic Competence

    PubMed Central

    van der Ploeg, Jan R.

    2005-01-01

    In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci. PMID:15937160

  18. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    PubMed

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  19. Heat pipe solar receiver with thermal energy storage

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  20. Thermal Components Boost Performance of HVAC Systems

    NASA Technical Reports Server (NTRS)

    2012-01-01

    As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine.with temperatures reaching 250 F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time. There are two main control systems on the ISS that make it possible for humans to survive in space: the Thermal Control System (TCS) and the Environmental Control and Life Support system. These intricate assemblies work together to supply water and oxygen, regulate temperature and pressure, maintain air quality, and manage waste. Through artificial means, these systems create a habitable environment for the space station s crew. The TCS constantly works to regulate the temperature not only for astronauts, but for the critical instruments and machines inside the spacecraft as well. To do its job, the TCS encompasses several components and systems both inside and outside of the ISS. Inside the spacecraft, a liquid heat-exchange process mechanically pumps fluids in closed-loop circuits to collect, transport, and reject heat. Outside the ISS, an external system circulates anhydrous ammonia to transport heat and cool equipment, and radiators release the heat into space. Over the years, NASA has worked with a variety of partners.public and private, national and international. to develop and refine the most complex thermal control systems ever built for spacecraft, including the one on the ISS.

  1. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens

    NASA Astrophysics Data System (ADS)

    Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto

    2016-05-01

    Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.

  2. Gene ercA, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas aeruginosa.

    PubMed

    Hempel, Niels; Görisch, Helmut; Mern, Demissew S

    2013-09-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.

  3. Gene ercA, Encoding a Putative Iron-Containing Alcohol Dehydrogenase, Is Involved in Regulation of Ethanol Utilization in Pseudomonas aeruginosa

    PubMed Central

    Hempel, Niels; Görisch, Helmut

    2013-01-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported. PMID:23813731

  4. 48 CFR 1.201-1 - The two councils.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false The two councils. 1.201-1 Section 1.201-1 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL FEDERAL ACQUISITION REGULATIONS SYSTEM Administration 1.201-1 The two councils. (a) Subject to the authorities...

  5. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development.

    PubMed

    Mishra, Murli; Jiang, Hong; Wu, Lisha; Chawsheen, Hedy A; Wei, Qiou

    2015-10-01

    Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The architecture and dynamics of developing mind: experiential structuralism as a frame for unifying cognitive developmental theories.

    PubMed

    Demetriou, A; Efklides, A; Platsidou, M

    1993-01-01

    This Monograph presents a theory of cognitive development. The theory argues that the mind develops across three fronts. The first refers to a general processing system that defines the general potentials of mind to develop cognitive strategies and skills. The second refers to a hypercognitive system that governs self-understanding and self-regulation. The third involves a set of specialized structural systems (SSSs) that are responsible for the representation and processing of different reality domains. There are specific forces that are responsible for this organization of mind. These are expressed in the Monograph in terms of a set of five organizational principles. The developmental course of the major systems is outlined. Developmental change is ascribed by the theory to the interaction between the various systems. Different types of development require different change mechanisms. Five studies are presented that provide empirical support for these postulates. Study 1 demonstrated the organizational power of principles and SSSs. Study 2 showed that the SSSs constrain the effect of learning. Study 3 established that the hypercognitive system does function as the interface between tasks and SSS-specific processes or between SSSs and general cognitive functions such as attention and memory. Study 4 investigated the relations between one of the components of the processing system, storage, and two different SSSs expressed via two different symbolic systems, namely, the numeric and the imaginal. Finally, Study 5 examined the interaction between the components of the processing system and the relations between each of these components and one SSS, namely, the quantitative-relational SSS. The theoretical implications of these studies with regard to general issues, such as the nature of representation, the causation of cognitive change, and individual differences in cognitive development, are discussed in the concluding chapter.

  7. Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production.

    PubMed

    Rodic, Andjela; Blagojevic, Bojana; Djordjevic, Magdalena; Severinov, Konstantin; Djordjevic, Marko

    2017-01-01

    Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M) systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli , is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA). In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M) system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like) transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic applications, the setup proposed here should allow highly efficient expression of small RNAs in a narrow time interval, with a specified time-delay with respect to the signal onset.

  8. Face it or hide it: parental socialization of reappraisal and response suppression

    PubMed Central

    Gunzenhauser, Catherine; Fäsche, Anika; Friedlmeier, Wolfgang; von Suchodoletz, Antje

    2013-01-01

    Mastery of cognitive emotion regulation strategies is an important developmental task. This paper focuses on two strategies that occur from preschool age onwards (Stegge and Meerum Terwogt, 2007): reappraisal and response suppression. Parental socialization of these strategies was investigated in a sample of N = 219 parents and their children. Informed by the tripartite model of family impact on children's emotion regulation, direct relations of emotion socialization components (modeling and reactions to the child's negative emotions) and indirect relations of parental emotion-related beliefs (such as parental emotion regulation self-efficacy) were examined. Data on emotion socialization components and parental beliefs on emotion regulation were collected via self-report. Data on children's emotion regulation strategies were collected via parent report. Findings showed direct effects of parental modeling and parenting practices on children's emotion regulation strategies, with distinct socialization paths for reappraisal and response suppression. An indirect effect of parental emotion regulation self-efficacy on children's reappraisal was found. These associations were not moderated by parent sex. Findings highlight the importance of both socialization components and parental emotion-related beliefs for the socialization of cognitive emotion regulation strategies and suggest a domain-specific approach to the socialization of emotion regulation strategies. PMID:24427150

  9. The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus.

    PubMed

    Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2011-02-15

    Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.

  10. The Streptococcus mutans Serine/Threonine Kinase, PknB, Regulates Competence Development, Bacteriocin Production, and Cell Wall Metabolism ▿

    PubMed Central

    Banu, Liliana Danusia; Conrads, Georg; Rehrauer, Hubert; Hussain, Haitham; Allan, Elaine; van der Ploeg, Jan R.

    2010-01-01

    Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL double mutant were characterized. All mutants exhibited a reduction in genetic transformability and biofilm formation, showed abnormal cell shapes, grew slower than the wild-type strain in several complex media, and exhibited reduced acid tolerance. The mutants had reduced cariogenic capacity but no significant defects in colonization in a rat caries model. Whole-genome transcriptome analysis revealed that a pknB mutant showed reduced expression of genes involved in bacteriocin production and genetic competence. Among the genes that were differentially regulated in the pknB mutant, several were likely to be involved in cell wall metabolism. One such gene, SMU.2146c, and two genes encoding bacteriocins were shown to also be downregulated in a vicK mutant, which encodes a sensor kinase involved in the response to oxidative stress. Collectively, the results lead us to speculate that PknB may modulate the activity of the two-component signal transduction systems VicKR and ComDE. Real-time reverse transcriptase PCR (RT-PCR) showed that genes downregulated in the pknB mutant were upregulated in the pppL mutant, indicating that PppL serves to counteract PknB. PMID:20231406

  11. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism.

    PubMed

    Banu, Liliana Danusia; Conrads, Georg; Rehrauer, Hubert; Hussain, Haitham; Allan, Elaine; van der Ploeg, Jan R

    2010-05-01

    Bacteria can detect, transmit, and react to signals from the outside world by using two-component systems (TCS) and serine-threonine kinases and phosphatases. Streptococcus mutans contains one serine-threonine kinase, encoded by pknB. A gene encoding a serine-threonine phosphatase, pppL, is located upstream of pknB. In this study, the phenotypes of pknB and pppL single mutants and a pknB pppL double mutant were characterized. All mutants exhibited a reduction in genetic transformability and biofilm formation, showed abnormal cell shapes, grew slower than the wild-type strain in several complex media, and exhibited reduced acid tolerance. The mutants had reduced cariogenic capacity but no significant defects in colonization in a rat caries model. Whole-genome transcriptome analysis revealed that a pknB mutant showed reduced expression of genes involved in bacteriocin production and genetic competence. Among the genes that were differentially regulated in the pknB mutant, several were likely to be involved in cell wall metabolism. One such gene, SMU.2146c, and two genes encoding bacteriocins were shown to also be downregulated in a vicK mutant, which encodes a sensor kinase involved in the response to oxidative stress. Collectively, the results lead us to speculate that PknB may modulate the activity of the two-component signal transduction systems VicKR and ComDE. Real-time reverse transcriptase PCR (RT-PCR) showed that genes downregulated in the pknB mutant were upregulated in the pppL mutant, indicating that PppL serves to counteract PknB.

  12. Escape from Lethal Bacterial Competition through Coupled Activation of Antibiotic Resistance and a Mobilized Subpopulation

    PubMed Central

    Stubbendieck, Reed M.; Straight, Paul D.

    2015-01-01

    Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria. PMID:26647299

  13. Lax representations for matrix short pulse equations

    NASA Astrophysics Data System (ADS)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  14. Causality, Randomness, Intelligibility, and the Epistemology of the Cell

    PubMed Central

    Dougherty, Edward R; Bittner, Michael L

    2010-01-01

    Because the basic unit of biology is the cell, biological knowledge is rooted in the epistemology of the cell, and because life is the salient characteristic of the cell, its epistemology must be centered on its livingness, not its constituent components. The organization and regulation of these components in the pursuit of life constitute the fundamental nature of the cell. Thus, regulation sits at the heart of biological knowledge of the cell and the extraordinary complexity of this regulation conditions the kind of knowledge that can be obtained, in particular, the representation and intelligibility of that knowledge. This paper is essentially split into two parts. The first part discusses the inadequacy of everyday intelligibility and intuition in science and the consequent need for scientific theories to be expressed mathematically without appeal to commonsense categories of understanding, such as causality. Having set the backdrop, the second part addresses biological knowledge. It briefly reviews modern scientific epistemology from a general perspective and then turns to the epistemology of the cell. In analogy with a multi-faceted factory, the cell utilizes a highly parallel distributed control system to maintain its organization and regulate its dynamical operation in the face of both internal and external changes. Hence, scientific knowledge is constituted by the mathematics of stochastic dynamical systems, which model the overall relational structure of the cell and how these structures evolve over time, stochasticity being a consequence of the need to ignore a large number of factors while modeling relatively few in an extremely complex environment. PMID:21119887

  15. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ

    PubMed Central

    Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele

    2012-01-01

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125

  16. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    PubMed

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  17. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy

    PubMed Central

    Gonçalves, Leonor; Friend, Lauren V.; Dickenson, Anthony H.

    2015-01-01

    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerable side effects. The right central nucleus of the amygdala (CeA) is critical for the lateral spinal ascending pain pathway, regulates descending pain pathways and is key in the emotional-affective components of pain. Few studies have investigated the pharmacology of limbic brain areas in pain models. Here we determined the actions of systemic tapentadol on right CeA neurones of animals with neuropathy and which component of tapentadol contributes to its effect. Neuronal responses to multimodal peripheral stimulation of animals with spinal nerve ligation or sham surgery were recorded before and after two doses of tapentadol. After the higher dose of tapentadol either naloxone or yohimbine were administered. Systemic tapentadol resulted in dose-dependent decrease in right CeA neuronal activity only in neuropathy. Both naloxone and yohimbine reversed this effect to an extent that was modality selective. The interactions of the components of tapentadol are not limited to the synergy between the MOR and α2-adrenoceptors seen at spinal levels, but are seen at this supraspinal site where suppression of responses may relate to the ability of the drug to alter affective components of pain. PMID:25576174

  18. Minireview: Hey U(PS): Metabolic and Proteolytic Homeostasis Linked via AMPK and the Ubiquitin Proteasome System

    PubMed Central

    Ronnebaum, Sarah M.; Patterson, Cam

    2014-01-01

    One of the master regulators of both glucose and lipid cellular metabolism is 5′-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell. PMID:25099013

  19. Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms.

    PubMed

    Moraes, Julianna J; Stipp, Rafael N; Harth-Chu, Erika N; Camargo, Tarsila M; Höfling, José F; Mattos-Graner, Renata O

    2014-12-01

    Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Two-Component System VicRK Regulates Functions Associated with Establishment of Streptococcus sanguinis in Biofilms

    PubMed Central

    Moraes, Julianna J.; Stipp, Rafael N.; Harth-Chu, Erika N.; Camargo, Tarsila M.; Höfling, José F.

    2014-01-01

    Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions. PMID:25183732

  1. Multiple two-component systems modulate alkali generation in Streptococcus gordonii in response to environmental stresses.

    PubMed

    Liu, Yaling; Burne, Robert A

    2009-12-01

    The oral commensal Streptococcus gordonii must adapt to constantly fluctuating and often hostile environmental conditions to persist in the oral cavity. The arginine deiminase system (ADS) of S. gordonii enables cells to produce, ornithine, ammonia, CO(2), and ATP from arginine hydrolysis, augmenting the acid tolerance of the organism. The ADS genes are substrate inducible and sensitive to catabolite repression, mediated through ArcR and CcpA, respectively, but the system also requires low pH and anaerobic conditions for optimal activation. Here, we demonstrate that the CiaRH and ComDE two-component systems (TCS) are required for low-pH-dependent expression of ADS genes in S. gordonii. Further, the VicRK TCS is required for optimal ADS gene expression under anaerobic conditions and enhances the sensitivity of the operon to repression by oxygen. The known anaerobic activator of the ADS, Fnr-like protein (Flp), appeared to act independently of the Vic TCS. Mutants of S. gordonii lacking components of the CiaRH, ComDE, or VicRK grew more slowly in acidified media and were more sensitive to killing at lethal pH values and to agents that induce oxidative stress. This study provides the first evidence that TCS can regulate the ADS of bacteria in response to specific environmental signals and reveals some notable differences in the contribution of CiaRH, ComDE, and VicRK to viability and stress tolerance between the oral commensal S. gordonii and the oral pathogen Streptococcus mutans.

  2. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    PubMed Central

    Zhang, Jiwei; Presley, Gerald N.; Ryu, Jae-San; Menke, Jon R.; Figueroa, Melania; Orr, Galya; Schilling, Jonathan S.

    2016-01-01

    Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization. PMID:27621450

  3. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    PubMed Central

    Abdou, Elias; Jiménez de Bagüés, María P.; Martínez-Abadía, Ignacio; Ouahrani-Bettache, Safia; Pantesco, Véronique; Occhialini, Alessandra; Al Dahouk, Sascha; Köhler, Stephan; Jubier-Maurin, Véronique

    2017-01-01

    For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen. PMID:28573107

  5. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procacci, Piero

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of onlymore » two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.« less

  6. A two-component regulatory system controls autoregulated serpin expression in Bifidobacterium breve UCC2003.

    PubMed

    Alvarez-Martin, Pablo; O'Connell Motherway, Mary; Turroni, Francesca; Foroni, Elena; Ventura, Marco; van Sinderen, Douwe

    2012-10-01

    This work reports on the identification and molecular characterization of a two-component regulatory system (2CRS), encoded by serRK, which is believed to control the expression of the ser(2003) locus in Bifidobacterium breve UCC2003. The ser(2003) locus consists of two genes, Bbr_1319 (sagA) and Bbr_1320 (serU), which are predicted to encode a hypothetical membrane-associated protein and a serpin-like protein, respectively. The response regulator SerR was shown to bind to the promoter region of ser(2003), and the probable recognition sequence of SerR was determined by a combinatorial approach of in vitro site-directed mutagenesis coupled to transcriptional fusion and electrophoretic mobility shift assays (EMSAs). The importance of the serRK 2CRS in the response of B. breve to protease-mediated induction was confirmed by generating a B. breve serR insertion mutant, which was shown to exhibit altered ser(2003) transcriptional induction patterns compared to the parent strain, UCC2003. Interestingly, the analysis of a B. breve serU mutant revealed that the SerRK signaling pathway appears to include a SerU-dependent autoregulatory loop.

  7. A Two-Component Regulatory System Controls Autoregulated Serpin Expression in Bifidobacterium breve UCC2003

    PubMed Central

    Alvarez-Martin, Pablo; O'Connell Motherway, Mary; Turroni, Francesca; Foroni, Elena; Ventura, Marco

    2012-01-01

    This work reports on the identification and molecular characterization of a two-component regulatory system (2CRS), encoded by serRK, which is believed to control the expression of the ser2003 locus in Bifidobacterium breve UCC2003. The ser2003 locus consists of two genes, Bbr_1319 (sagA) and Bbr_1320 (serU), which are predicted to encode a hypothetical membrane-associated protein and a serpin-like protein, respectively. The response regulator SerR was shown to bind to the promoter region of ser2003, and the probable recognition sequence of SerR was determined by a combinatorial approach of in vitro site-directed mutagenesis coupled to transcriptional fusion and electrophoretic mobility shift assays (EMSAs). The importance of the serRK 2CRS in the response of B. breve to protease-mediated induction was confirmed by generating a B. breve serR insertion mutant, which was shown to exhibit altered ser2003 transcriptional induction patterns compared to the parent strain, UCC2003. Interestingly, the analysis of a B. breve serU mutant revealed that the SerRK signaling pathway appears to include a SerU-dependent autoregulatory loop. PMID:22843530

  8. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    PubMed

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene.

  9. 454 Transcriptome Sequencing Suggests a Role for Two-Component Signalling in Cellularization and Differentiation of Barley Endosperm Transfer Cells

    PubMed Central

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Background Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. Principal Findings 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Significance Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene. PMID:22848641

  10. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes☆

    PubMed Central

    Liu, Lu-Ning

    2016-01-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26619924

  11. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.

    PubMed

    Liu, Lu-Ning

    2016-03-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  12. Privacy-Related Context Information for Ubiquitous Health

    PubMed Central

    Nykänen, Pirkko; Ruotsalainen, Pekka

    2014-01-01

    Background Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Objective Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Methods Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Results Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how data can be processed or how components are regulated or in what kind of environment data can be processed. Conclusions This study added to the vision of ubiquitous health by analyzing information processing from the viewpoint of an individual’s privacy. We learned that health and wellness-related activities may happen in several environments and situations with multiple stakeholders, services, and systems. We have provided new knowledge regarding privacy-related context information and corresponding components by analyzing typical activities in ubiquitous health. With the identified components and their properties, individuals can define their personal preferences on information processing based on situational information, and privacy services can capture privacy-related context of the information-processing situation. PMID:25100084

  13. Privacy-related context information for ubiquitous health.

    PubMed

    Seppälä, Antto; Nykänen, Pirkko; Ruotsalainen, Pekka

    2014-03-11

    Ubiquitous health has been defined as a dynamic network of interconnected systems. A system is composed of one or more information systems, their stakeholders, and the environment. These systems offer health services to individuals and thus implement ubiquitous computing. Privacy is the key challenge for ubiquitous health because of autonomous processing, rich contextual metadata, lack of predefined trust among participants, and the business objectives. Additionally, regulations and policies of stakeholders may be unknown to the individual. Context-sensitive privacy policies are needed to regulate information processing. Our goal was to analyze privacy-related context information and to define the corresponding components and their properties that support privacy management in ubiquitous health. These properties should describe the privacy issues of information processing. With components and their properties, individuals can define context-aware privacy policies and set their privacy preferences that can change in different information-processing situations. Scenarios and user stories are used to analyze typical activities in ubiquitous health to identify main actors, goals, tasks, and stakeholders. Context arises from an activity and, therefore, we can determine different situations, services, and systems to identify properties for privacy-related context information in information-processing situations. Privacy-related context information components are situation, environment, individual, information technology system, service, and stakeholder. Combining our analyses and previously identified characteristics of ubiquitous health, more detailed properties for the components are defined. Properties define explicitly what context information for different components is needed to create context-aware privacy policies that can control, limit, and constrain information processing. With properties, we can define, for example, how data can be processed or how components are regulated or in what kind of environment data can be processed. This study added to the vision of ubiquitous health by analyzing information processing from the viewpoint of an individual's privacy. We learned that health and wellness-related activities may happen in several environments and situations with multiple stakeholders, services, and systems. We have provided new knowledge regarding privacy-related context information and corresponding components by analyzing typical activities in ubiquitous health. With the identified components and their properties, individuals can define their personal preferences on information processing based on situational information, and privacy services can capture privacy-related context of the information-processing situation.

  14. 30 CFR 27.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.1 Purpose. The regulations in this part set forth the requirements for methane-monitoring systems or components thereof to procure certification for...

  15. 30 CFR 27.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.1 Purpose. The regulations in this part set forth the requirements for methane-monitoring systems or components thereof to procure certification for...

  16. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides.

    PubMed

    Gomelsky, Larissa; Moskvin, Oleg V; Stenzel, Rachel A; Jones, Denise F; Donohue, Timothy J; Gomelsky, Mark

    2008-12-01

    In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.

  17. A Systematic Evaluation of the Two-Component Systems Network Reveals That ArlRS Is a Key Regulator of Catheter Colonization by Staphylococcus aureus

    PubMed Central

    Burgui, Saioa; Gil, Carmen; Solano, Cristina; Lasa, Iñigo; Valle, Jaione

    2018-01-01

    Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization. PMID:29563900

  18. Ubiquinone and Menaquinone Electron Carriers Represent the Yin and Yang in the Redox Regulation of the ArcB Sensor Kinase

    PubMed Central

    Alvarez, Adrián F.; Rodriguez, Claudia

    2013-01-01

    The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to respiratory growth conditions. Under aerobic growth conditions, the ubiquinone electron carriers were proposed to silence the kinase activity of ArcB by oxidizing two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we confirm the role of the ubiquinone electron carriers as the silencing signal of ArcB in vivo, we show that the redox potential of ArcB is about −41 mV, and we demonstrate that the menaquinols are required for proper ArcB activation upon a shift from aerobic to anaerobic growth conditions. Thus, an essential link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated. PMID:23645604

  19. Integrable multi-component generalization of a modified short pulse equation

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2016-11-01

    We propose a multi-component generalization of the modified short pulse (SP) equation which was derived recently as a reduction of Feng's two-component SP equation. Above all, we address the two-component system in depth. We obtain the Lax pair, an infinite number of conservation laws and multisoliton solutions for the system, demonstrating its integrability. Subsequently, we show that the two-component system exhibits cusp solitons and breathers for which the detailed analysis is performed. Specifically, we explore the interaction process of two cusp solitons and derive the formula for the phase shift. While cusp solitons are singular solutions, smooth breather solutions are shown to exist, provided that the parameters characterizing the solutions satisfy certain conditions. Last, we discuss the relation between the proposed system and existing two-component SP equations.

  20. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    ERIC Educational Resources Information Center

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  1. Sensory deprivation in Staphylococcus aureus.

    PubMed

    Villanueva, Maite; García, Begoña; Valle, Jaione; Rapún, Beatriz; Ruiz de Los Mozos, Igor; Solano, Cristina; Martí, Miguel; Penadés, José R; Toledo-Arana, Alejandro; Lasa, Iñigo

    2018-02-06

    Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its complete sensorial TCS network and still survive under growth arrest conditions similarly to wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly dispensable for living under constant environmental conditions. Characterization of S. aureus derivatives containing individual TCSs reveals that each TCS appears to be autonomous and self-sufficient to sense and respond to specific environmental cues, although some level of cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This organization, if confirmed in other bacterial species, may provide a general evolutionarily mechanism for flexible bacterial adaptation to life in new niches.

  2. Strengthening global health security by embedding the International Health Regulations requirements into national health systems

    PubMed Central

    Kluge, Hans; Martín-Moreno, Jose Maria; Emiroglu, Nedret; Rodier, Guenael; Kelley, Edward; Vujnovic, Melitta; Permanand, Govin

    2018-01-01

    The International Health Regulations (IHR) 2005, as the overarching instrument for global health security, are designed to prevent and cope with major international public health threats. But poor implementation in countries hampers their effectiveness. In the wake of a number of major international health crises, such as the 2014 Ebola and 2016 Zika outbreaks, and the findings of a number of high-level assessments of the global response to these crises, it has become clear that there is a need for more joined-up thinking between health system strengthening activities and health security efforts for prevention, alert and response. WHO is working directly with its Member States to promote this approach, more specifically around how to better embed the IHR (2005) core capacities into the main health system functions. This paper looks at how and where the intersections between the IHR and the health system can be best leveraged towards developing greater health system resilience. This merging of approaches is a key component in pursuit of Universal Health Coverage and strengthened global health security as two mutually reinforcing agendas. PMID:29379650

  3. Strengthening global health security by embedding the International Health Regulations requirements into national health systems.

    PubMed

    Kluge, Hans; Martín-Moreno, Jose Maria; Emiroglu, Nedret; Rodier, Guenael; Kelley, Edward; Vujnovic, Melitta; Permanand, Govin

    2018-01-01

    The International Health Regulations (IHR) 2005, as the overarching instrument for global health security, are designed to prevent and cope with major international public health threats. But poor implementation in countries hampers their effectiveness. In the wake of a number of major international health crises, such as the 2014 Ebola and 2016 Zika outbreaks, and the findings of a number of high-level assessments of the global response to these crises, it has become clear that there is a need for more joined-up thinking between health system strengthening activities and health security efforts for prevention, alert and response. WHO is working directly with its Member States to promote this approach, more specifically around how to better embed the IHR (2005) core capacities into the main health system functions. This paper looks at how and where the intersections between the IHR and the health system can be best leveraged towards developing greater health system resilience. This merging of approaches is a key component in pursuit of Universal Health Coverage and strengthened global health security as two mutually reinforcing agendas.

  4. An adaptable multiple power source for mass spectrometry and other scientific instruments.

    PubMed

    Lin, T-Y; Anderson, G A; Norheim, R V; Prost, S A; LaMarche, B L; Leach, F E; Auberry, K J; Smith, R D; Koppenaal, D W; Robinson, E W; Paša-Tolić, L

    2015-09-01

    An Adaptable Multiple Power Source (AMPS) system has been designed and constructed. The AMPS system can provide up to 16 direct current (DC) (±400 V; 5 mA), 4 radio frequency (RF) (two 500 VPP sinusoidal signals each, 0.5-5 MHz) channels, 2 high voltage sources (±6 kV), and one ∼40 W, 250 °C temperature-regulated heater. The system is controlled by a microcontroller, capable of communicating with its front panel or a computer. It can assign not only pre-saved fixed DC and RF signals but also profiled DC voltages. The AMPS system is capable of driving many mass spectrometry components and ancillary devices and can be adapted to other instrumentation/engineering projects.

  5. Regulation of bacterial virulence by Csr (Rsm) systems.

    PubMed

    Vakulskas, Christopher A; Potts, Anastasia H; Babitzke, Paul; Ahmer, Brian M M; Romeo, Tony

    2015-06-01

    Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Regulation of Bacterial Virulence by Csr (Rsm) Systems

    PubMed Central

    Vakulskas, Christopher A.; Potts, Anastasia H.; Babitzke, Paul; Ahmer, Brian M. M.

    2015-01-01

    SUMMARY Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5′ untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens. PMID:25833324

  7. Roles of plant hormones in the regulation of host-virus interactions.

    PubMed

    Alazem, Mazen; Lin, Na-Sheng

    2015-06-01

    Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones. © 2014 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY JOHN WILEY & SONS LTD AND BSPP.

  8. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  9. Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus

    DOE PAGES

    Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; ...

    2016-03-18

    Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less

  10. Transcriptional Control of the Lateral-Flagellar Genes of Bradyrhizobium diazoefficiens.

    PubMed

    Mongiardini, Elías J; Quelas, J Ignacio; Dardis, Carolina; Althabegoiti, M Julia; Lodeiro, Aníbal R

    2017-08-01

    Bradyrhizobium diazoefficiens , a soybean N 2 -fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2 , whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR ( la teral- f lagellar r egulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbT L , a class III regulator. We observed different requirements for FlbT L in the synthesis of each flagellin subunit. Although the accumulation of lafA1 , but not lafA2 , transcripts required FlbT L , the production of both flagellin polypeptides required FlbT L Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species. IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens , an N 2 -fixing symbiont of soybean plants, possesses dual flagellar systems, including the lateral system that contributes to swimming in wet soil and competition for nodulation and is expressed under high energy availability, as well as under requirement for high torque by the flagella. The structural organization and transcriptional regulation of the 41 genes that comprise this secondary flagellar system seem adapted to adjust bacterial energy expenditures for motility to the soil's environmental dynamics. Copyright © 2017 American Society for Microbiology.

  11. Supersonic gas-liquid cleaning system

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-01-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  12. Supersonic gas-liquid cleaning system

    NASA Astrophysics Data System (ADS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-02-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  13. Steady state statistical correlations predict bistability in reaction motifs.

    PubMed

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  14. Regulation of Toxin Production in Clostridium perfringens

    PubMed Central

    Ohtani, Kaori; Shimizu, Tohru

    2016-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here. PMID:27399773

  15. Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations.

    PubMed

    Alexander, Elizabeth L; Gardete, Susana; Bar, Haim Y; Wells, Martin T; Tomasz, Alexander; Rhee, Kyu Y

    2014-01-01

    Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype.

  16. 30 CFR 250.440 - What are the general requirements for BOP systems and system components?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements...

  17. An Extracytoplasmic Function Sigma Factor-Mediated Cell Surface Signaling System in Pseudomonas syringae pv. tomato DC3000 Regulates Gene Expression in Response to Heterologous Siderophores ▿ †

    PubMed Central

    Markel, Eric; Maciak, Charlene; Butcher, Bronwyn G.; Myers, Christopher R.; Stodghill, Paul; Bao, Zhongmeng; Cartinhour, Sam; Swingle, Bryan

    2011-01-01

    The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we used chromatin immunoprecipitation paired with high-throughput sequencing (ChIP-Seq) to screen the genome for locations associated with binding of the P. syringae IS sigma factor PSPTO_1203. We used multiple methods to demonstrate differential regulation of two genes identified in the ChIP-Seq screen and characterize the promoter elements that facilitate PSPTO_1203-dependent regulation. The genes regulated by PSPTO_1203 encode a TonB-dependent transducer (PSPTO_1206) and a cytoplasmic membrane protein (PSPTO_2145), which is located in the P. syringae pyoverdine cluster. Additionally, we identified siderophores that induce the activity of PSPTO_1203 and used this information to investigate the functional components of the signal transduction cascade. PMID:21840980

  18. Transcriptional analysis reveals the critical role of RNA polymerase-binding transcription factor, DksA, in regulating multi-drug resistance of Escherichia coli.

    PubMed

    Wang, Jiawei; Cao, Li; Yang, Xiaowen; Wu, Qingmin; Lu, Lin; Wang, Zhen

    2018-05-07

    The objective of this study was to comprehensively identify the target genes regulated by the RNA polymerase-binding transcription factor DksA in Escherichia coli, and to clarify the role of DksA in multi-drug resistance. A clinical E. coli strain, E8, was selected to construct the dksA gene deletion mutant by using the Red recombination system. The minimum inhibitory concentrations (MICs) of 12 antibiotics in the E8ΔdksA (mutant) were markedly lower than those in the wild-type strain, E8. Genes differentially expressed in the wild-type and dksA mutant were detected using RNA-Seq and were validated by performing quantitative real-time PCR (qRT-PCR). In total, 168 differentially expressed genes were identified in E8ΔdksA, including 81 up-regulated and 87 down-regulated genes. Many of the genes identified are involved in metabolism, two-component systems, transcriptional regulators, and transport/membrane proteins. Interestingly, genes encoding the transcriptional regulator, MarR, which is known to repress the multiple drug resistance operon, marRAB; MdfA, a transport protein that exhibits multidrug efflux activities; oligopeptide transport system proteins OppA and OppD were among those differentially expressed, and could potentially contribute to the increased drug susceptibility of E8ΔdksA. In conclusion, DksA plays an important role in the multi-drug resistance of this E. coli strain, and directly or indirectly regulates the expression of several genes related to antibiotic resistance. Copyright © 2018. Published by Elsevier B.V.

  19. Provisions in the Proposed Regulations Governing the State VR Program Describing the Interplay with the Workforce Investment System.

    ERIC Educational Resources Information Center

    Silverstein, Robert

    2000-01-01

    This policy brief identifies and describes the provisions of the proposed regulation describing the responsibilities of a state vocational rehabilitation (VR) agency to design and operate the state VR program as an integral component of the statewide workforce investment system, as envisioned by the Workforce Investment Act of 1998 (WIA). The…

  20. Dynamic Responses in Brain Networks to Social Feedback: A Dual EEG Acquisition Study in Adolescent Couples

    PubMed Central

    Kuo, Ching-Chang; Ha, Thao; Ebbert, Ashley M.; Tucker, Don M.; Dishion, Thomas J.

    2017-01-01

    Adolescence is a sensitive period for the development of romantic relationships. During this period the maturation of frontolimbic networks is particularly important for the capacity to regulate emotional experiences. In previous research, both functional magnetic resonance imaging (fMRI) and dense array electroencephalography (dEEG) measures have suggested that responses in limbic regions are enhanced in adolescents experiencing social rejection. In the present research, we examined social acceptance and rejection from romantic partners as they engaged in a Chatroom Interact Task. Dual 128-channel dEEG systems were used to record neural responses to acceptance and rejection from both adolescent romantic partners and unfamiliar peers (N = 75). We employed a two-step temporal principal component analysis (PCA) and spatial independent component analysis (ICA) approach to statistically identify the neural components related to social feedback. Results revealed that the early (288 ms) discrimination between acceptance and rejection reflected by the P3a component was significant for the romantic partner but not the unfamiliar peer. In contrast, the later (364 ms) P3b component discriminated between acceptance and rejection for both partners and peers. The two-step approach (PCA then ICA) was better able than either PCA or ICA alone in separating these components of the brain's electrical activity that reflected both temporal and spatial phases of the brain's processing of social feedback. PMID:28620292

  1. Interactions of Metacognition with Motivation and Affect in Self-Regulated Learning: The MASRL Model

    ERIC Educational Resources Information Center

    Efklides, Anastasia

    2011-01-01

    Metacognition, motivation, and affect are components of self-regulated learning (SRL) that interact. The "metacognitive and affective model of self-regulated learning" (the MASRL model) distinguishes two levels of functioning in SRL, namely, the Person level and the Task x Person level. At the Person level interactions between trait-like…

  2. Adult Antisocial Behavior and Affect Regulation among Primary Crack/Cocaine-Using Women

    ERIC Educational Resources Information Center

    Litt, Lisa Caren; Hien, Denise A.; Levin, Deborah

    2003-01-01

    The relationship between deficits in affect regulation and Adult Antisocial Behavior (ASB) in primary crack/cocaine-using women was explored in a sample of 80 inner-city women. Narrative early memories were coded for two components of affect regulation, Affect Tolerance and Affect Expression, using the Epigenetic Assessment Rating Scale (EARS;…

  3. Staphylococcus aureus Develops an Alternative, ica-Independent Biofilm in the Absence of the arlRS Two-Component System†

    PubMed Central

    Toledo-Arana, Alejandro; Merino, Nekane; Vergara-Irigaray, Marta; Débarbouillé, Michel; Penadés, José R.; Lasa, Iñigo

    2005-01-01

    The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation. PMID:16030226

  4. Restoring trust in the pharmaceutical sector on the basis of the SSRI case.

    PubMed

    Hernandez, Juan Francisco; van Thiel, Ghislaine J M W; Mantel-Teeuwisse, Aukje K; Raaijmakers, Jan A M; Pieters, Toine

    2014-05-01

    The lack of public trust in the pharmaceutical sector (i.e. industry, authorities and doctors) could compromise the future of drug development and the regulatory system. Public trust integrates two important components, namely the vulnerability of the truster and the competence of the trustee. Because trust appears to have eroded as a result of drug safety controversies, this paper analyzes the role of public trust during the selective serotonin reuptake inhibitor (SSRI) and suicidality controversy focusing on the aforementioned trust components. Because the competence component of trust is argued to be paramount in determining and maintaining public trust, the SSRI case shows that this component is a part of public trust where these institutions can build on, and might therefore be better used to substantiate and reinforce, public trust. Efforts to build trust should rely on the ethical, professional (competence) and societal commitment of institutions and individuals to protect the vulnerability of the public during controversies. Because shared values can create trust or increase its levels within a specific environment, industry, authorities and physicians ought to develop novel and cooperative strategies to highlight their shared values and motivations. Rules, regulations and settlements are indispensable tools but undue regulation is costly and can backfire on the rather sensitive trust relationships in the pharmaceutical sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  6. The performance of select universities of medical sciences based on the components affecting medical education

    PubMed Central

    Tayebi Arasteh, Mehdi; Pouragha, Behrooz; Bagheri Kahkesh, Masume

    2018-01-01

    Background: Every educational institution requires an evaluation system in order to find out about the quality and desirability of its activities, especially if it is a complex and dynamic environment. The present study was conducted to evaluate the educational performance of schools affiliated to Alborz University of Medical Sciences to help improve their performance. Methods: This descriptive analytical study was conducted in six schools affiliated to Alborz University of Medical Sciences in April 2016-October 2016 and October 2016-April 2017. The evaluation was carried out in two stages: self-assessment by service executives across schools, and external assessment in person by the university’s expert staff. The study tools included the components, criteria and desirable standards of educational performance in ten categories. Data were analyzed in SPSS. Results: The results obtained showed that, in April-October 2016, the highest performance evaluation scores pertained to the "secure testing" and "rules and regulations" components and the lowest to the "packages for reform and innovation in education" and "the school action plan" components. In October 2016-April 2017, the highest scores pertained to "workforce empowerment" and "secure testing" and the lowest to "faculty affairs" and "electronic education management system". Conclusions: Offering a balanced portrayal of the actual performance of schools using the right performance indicators in two consecutive periods can help further motivate the superior schools and encourage the weaker schools to strive harder. Competition among schools to get a higher score in the components affecting medical education helps mobilize them to move toward reform and improvement. PMID:29770211

  7. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes.

    PubMed

    Voyich, Jovanka M; Sturdevant, Daniel E; Braughton, Kevin R; Kobayashi, Scott D; Lei, Benfang; Virtaneva, Kimmo; Dorward, David W; Musser, James M; DeLeo, Frank R

    2003-02-18

    Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host-cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.

  8. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOEpatents

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  9. Interactive effects of global change factors on soil respiration and its components: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong; Nie, Yuanyuan; He, Yanghui; Jiang, Liling; Wu, Zhuoting; Hosseini Bai, Shahla

    2016-09-01

    As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the ecological and climate systems. © 2016 John Wiley & Sons Ltd.

  10. Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.

    PubMed

    Scott, Daniel C; Rhee, David Y; Duda, David M; Kelsall, Ian R; Olszewski, Jennifer L; Paulo, Joao A; de Jong, Annemieke; Ovaa, Huib; Alpi, Arno F; Harper, J Wade; Schulman, Brenda A

    2016-08-25

    Hundreds of human cullin-RING E3 ligases (CRLs) modify thousands of proteins with ubiquitin (UB) to achieve vast regulation. Current dogma posits that CRLs first catalyze UB transfer from an E2 to their client substrates and subsequent polyubiquitylation from various linkage-specific E2s. We report an alternative E3-E3 tagging cascade: many cellular NEDD8-modified CRLs associate with a mechanistically distinct thioester-forming RBR-type E3, ARIH1, and rely on ARIH1 to directly add the first UB and, in some cases, multiple additional individual monoubiquitin modifications onto CRL client substrates. Our data define ARIH1 as a component of the human CRL system, demonstrate that ARIH1 can efficiently and specifically mediate monoubiquitylation of several CRL substrates, and establish principles for how two distinctive E3s can reciprocally control each other for simultaneous and joint regulation of substrate ubiquitylation. These studies have broad implications for CRL-dependent proteostasis and mechanisms of E3-mediated UB ligation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Coiled-Coil Antagonism Regulates Activity of Venus Flytrap-Domain-Containing Sensor Kinases of the BvgS Family

    PubMed Central

    Lesne, Elodie; Dupré, Elian; Lensink, Marc F.; Locht, Camille

    2018-01-01

    ABSTRACT Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical “X” linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family. PMID:29487240

  12. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner.

    PubMed

    Benson, Meredith A; Lilo, Sarit; Wasserman, Gregory A; Thoendel, Matthew; Smith, Amanda; Horswill, Alexander R; Fraser, John; Novick, Richard P; Shopsin, Bo; Torres, Victor J

    2011-08-01

    Staphylococcus aureus overproduces a subset of immunomodulatory proteins known as the staphylococcal superantigen-like proteins (Ssls) under conditions of pore-mediated membrane stress. In this study we demonstrate that overproduction of Ssls during membrane stress is due to the impaired activation of the two-component module of the quorum-sensing accessory gene regulator (Agr) system. Agr-dependent repression of ssl expression is indirect and mediated by the transcription factor repressor of toxins (Rot). Surprisingly, we observed that Rot directly interacts with and activates the ssl promoters. The role of Agr and Rot as regulators of ssl expression was observed across several clinically relevant strains, suggesting that overproduction of immunomodulatory proteins benefits agr-defective strains. In support of this notion, we demonstrate that Ssls contribute to the residual virulence of S. aureus lacking agr in a murine model of systemic infection. Altogether, these results suggest that S. aureus compensates for the inactivation of Agr by producing immunomodulatory exoproteins that could protect the bacterium from host-mediated clearance. © 2011 Blackwell Publishing Ltd.

  13. 46 CFR 50.05-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Application § 50.05-1 General. (a) The regulations in this subchapter shall apply to the marine engineering details of... regulations. (e) Industrial systems and components on mobile offshore drilling units must meet subpart 58.60...

  14. 46 CFR 50.05-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Application § 50.05-1 General. (a) The regulations in this subchapter shall apply to the marine engineering details of... regulations. (e) Industrial systems and components on mobile offshore drilling units must meet subpart 58.60...

  15. 46 CFR 50.05-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Application § 50.05-1 General. (a) The regulations in this subchapter shall apply to the marine engineering details of... regulations. (e) Industrial systems and components on mobile offshore drilling units must meet subpart 58.60...

  16. 46 CFR 50.05-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Application § 50.05-1 General. (a) The regulations in this subchapter shall apply to the marine engineering details of... regulations. (e) Industrial systems and components on mobile offshore drilling units must meet subpart 58.60...

  17. 46 CFR 50.05-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING GENERAL PROVISIONS Application § 50.05-1 General. (a) The regulations in this subchapter shall apply to the marine engineering details of... regulations. (e) Industrial systems and components on mobile offshore drilling units must meet subpart 58.60...

  18. Continuous reduction of cyclic adsorbed and desorbed NO(x) in diesel emission using nonthermal plasma.

    PubMed

    Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki

    2016-05-05

    Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. Copyright © 2016. Published by Elsevier B.V.

  19. Pricing end-of-life components

    NASA Astrophysics Data System (ADS)

    Vadde, Srikanth; Kamarthi, Sagar V.; Gupta, Surendra M.

    2005-11-01

    The main objective of a product recovery facility (PRF) is to disassemble end-of-life (EOL) products and sell the reclaimed components for reuse and recovered materials in second-hand markets. Variability in the inflow of EOL products and fluctuation in demand for reusable components contribute to the volatility in inventory levels. To stay profitable the PRFs ought to manage their inventory by regulating the price appropriately to minimize holding costs. This work presents two deterministic pricing models for a PRF bounded by environmental regulations. In the first model, the demand is price dependent and in the second, the demand is both price and time dependent. The models are valid for single component with no inventory replenishment sale during the selling horizon . Numerical examples are presented to illustrate the models.

  20. Convergence of PASTA kinase and two-component signaling in response to cell wall stress in Enterococcus faecalis.

    PubMed

    Kellogg, Stephanie L; Kristich, Christopher J

    2018-04-09

    Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing convergence of IreK and the sensor kinase CroS to enhance signaling through CroS/R and increase antimicrobial resistance in E. faecalis This newly described example of eSTK/TCS convergence adds to our understanding of the signaling networks mediating antimicrobial resistance in E. faecalis . Copyright © 2018 American Society for Microbiology.

  1. Fixation of virgin lunar surface soil

    NASA Technical Reports Server (NTRS)

    Conley, J. M.; Frazer, R.; Cannon, W. A.

    1972-01-01

    Two systems are shown to be suitable for fixing loose particulate soils with a polymer film, without visually detectable disturbance of the soil particle spatial relationships. A two-component system is described, which uses a gas monomer condensible at the soil temperature and a gas phase catalyst acting to polymerize the monomer. A one-component system using a monomer which polymerizes spontaneously on and within the top few millimeters of the soil is also considered. The two-component system employs a simpler apparatus, but it operates over a narrower temperature range (approximately -40 to -10 C). Other two-component systems were identified which may operate at soil temperatures as high as +100 C, at relatively narrow temperature ranges of approximately 30 C. The one-component system was demonstrated to operate successfully with initial soil temperatures from -70 C or lower to +150 C.

  2. The hemostatic effect study of Cirsium setosum on regulating α1-ARs via mediating norepinephrine synthesis by enzyme catalysis.

    PubMed

    Chang, Nianwei; Li, Yanmei; Zhou, Mengge; Gao, Jie; Hou, Yuanyuan; Jiang, Min; Bai, Gang

    2017-03-01

    Cirsium setosum (CS) is the aboveground part of Cephalanoplos segetum Kitam. Although it has been used as a hemostatic treatment for thousands of years and is still in use today, the mechanism of CS on regulating ARs is still not clear. In this study, we aimed to clarify the mechanism of CS on regulating ARs. We developed a simple method based on UPLC/Q-TOF MS combined adrenergic receptor dual-luciferase reporter assay systems for the rapid determination of active constituents in CS. The mechanism of tyramine, the main active component for regulating ARs, was further investigated by an in vitro norepinephrine biotransformation test and in vivo vaso activity tests. Two phenethylamine ARs regulators (tyramine and N-methyltyramine) in CS were characterized, and it was found that tyramine could induce vasoconstriction via regulation of α1-ARs by mediating norepinephrine synthesis. The hemostatic effect of CS is associated with tyramine and N-methyltyramine, via regulation of α1-ARs, and the mechanism of tyramine is related to mediating norepinephrine synthesis by enzyme catalysis. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenousmore » nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.« less

  4. Islet organogenesis, angiogenesis and innervation.

    PubMed

    Cerf, Marlon E

    2011-11-01

    The pancreas is characterized by a major component, an exocrine and ductal system involved in digestion, and a minor component, the endocrine islets represented by islet micro-organs that tightly regulate glucose homoeostasis. Pancreatic organogenesis is strictly co-ordinated by transcription factors that are expressed sequentially to yield functional islets capable of maintaining glucose homoeostasis. Angiogenesis and innervation complete islet development, equipping islets to respond to metabolic demands. Proper regulation of this triad of processes during development is critical for establishing functional islets.

  5. Complex two-component signaling regulates the general stress response in Alphaproteobacteria.

    PubMed

    Kaczmarczyk, Andreas; Hochstrasser, Ramon; Vorholt, Julia A; Francez-Charlot, Anne

    2014-12-02

    The general stress response (GSR) in Alphaproteobacteria was recently shown to be controlled by a partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. Activation of PhyR ultimately results in release of the alternative extracytoplasmic function sigma factor σ(EcfG), which redirects transcription toward the GSR. Little is known about the signal transduction pathway(s) controlling PhyR phosphorylation. Here, we identified the single-domain response regulator (SDRR) SdrG and seven histidine kinases, PakA to PakG, belonging to the HWE/HisKA2 family as positive modulators of the GSR in Sphingomonas melonis Fr1. Phenotypic analyses, epistasis experiments, and in vitro phosphorylation assays indicate that Paks directly phosphorylate PhyR and SdrG, and that SdrG acts upstream of or in concert with PhyR, modulating its activity in a nonlinear pathway. Furthermore, we found that additional SDRRs negatively affect the GSR in a way that strictly requires PhyR and SdrG. Finally, analysis of GSR activation by thermal, osmotic, and oxidative stress indicates that Paks display different degrees of redundancy and that a specific kinase can sense multiple stresses, suggesting that the GSR senses a particular condition as a combination of, rather than individual, molecular cues. This study thus establishes the alphaproteobacterial GSR as a complex and interlinked network of two-component systems, in which multiple histidine kinases converge to PhyR, the phosphorylation of which is, in addition, subject to regulation by several SDRRs. Our finding that most HWE/HisKA2 kinases contribute to the GSR in S. melonis Fr1 opens the possibility that this notion might also be true for other Alphaproteobacteria.

  6. Tutorial on Quantification of Differences between Single- and Two-Component Two-Phase Flow and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    2003-01-01

    Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.

  7. In-phase oscillation of global regulons is orchestrated by a pole-specific organizer

    PubMed Central

    Janakiraman, Balaganesh; Mignolet, Johann; Narayanan, Sharath; Viollier, Patrick H.

    2016-01-01

    Cell fate determination in the asymmetric bacterium Caulobacter crescentus (Caulobacter) is triggered by the localization of the developmental regulator SpmX to the old (stalked) cell pole during the G1→S transition. Although SpmX is required to localize and activate the cell fate-determining kinase DivJ at the stalked pole in Caulobacter, in cousins such as Asticcacaulis, SpmX directs organelle (stalk) positioning and possibly other functions. We define the conserved σ54-dependent transcriptional activator TacA as a global regulator in Caulobacter whose activation by phosphorylation is indirectly down-regulated by SpmX. Using a combination of forward genetics and cytological screening, we uncover a previously uncharacterized and polarized component (SpmY) of the TacA phosphorylation control system, and we show that SpmY function and localization are conserved. Thus, SpmX organizes a site-specific, ancestral, and multifunctional regulatory hub integrating the in-phase oscillation of two global transcriptional regulators, CtrA (the master cell cycle transcriptional regulator A) and TacA, that perform important cell cycle functions. PMID:27791133

  8. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Treviño-Quintanilla, Luis G; Valtierra-Gutiérrez, Ilse A; Gutiérrez-Ríos, Rosa María; Alonso-Pavón, José A

    2012-10-31

    Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Reciprocal regulation of platelet responses to P2Y and thromboxane receptor activation.

    PubMed

    Barton, J F; Hardy, A R; Poole, A W; Mundell, S J

    2008-03-01

    Thromboxane A(2) and ADP are two major platelet agonists that stimulate two sets of G protein-coupled receptors to activate platelets. Although aggregation responses to ADP and thromboxane desensitize, there are no reports currently addressing whether activation by one agonist may heterologously desensitize responses to the other. To demonstrate whether responses to ADP or U46619 may be modulated by prior treatment of platelets with the alternate agonist, revealing a level of cross-desensitization between receptor systems. Here we show that pretreatment of platelets with either agonist substantially desensitizes aggregation responses to the other agonist. Calcium responses to thromboxane receptor activation are desensitized by preactivation of P2Y(1) but not P2Y(12) receptors. This heterologous desensitization is mediated by a protein kinase C (PKC)-independent mechanism. Reciprocally, calcium responses to ADP are desensitized by pretreatment of platelets with the thromboxane analogue, U46619, and P2Y(12)-mediated inhibition of adenylate cyclase is also desensitized by pretreatment with U46619. In this direction, desensitization is comprised of two components, a true heterologous component that is PKC-independent, and a homologous component that is mediated through stimulated release of dense granule ADP. This study reveals cross-desensitization between ADP and thromboxane receptor signaling in human platelets. Cross-desensitization is mediated by protein kinases, involving PKC-dependent and independent pathways, and indicates that alterations in the activation state of one receptor may have effects upon the sensitivity of the other receptor system.

  10. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.

    2010-04-05

    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulatormore » and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.« less

  11. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  12. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    PubMed

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  13. Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis.

    PubMed

    Kellogg, Stephanie L; Kristich, Christopher J

    2016-04-01

    Bacteria use two-component signal transduction systems (TCSs) to sense and respond to environmental changes via a conserved phosphorelay between a sensor histidine kinase and its cognate response regulator. The opportunistic pathogen Enterococcus faecalis utilizes a TCS comprised of the histidine kinase CroS and the response regulator CroR to mediate resistance to cell wall stresses such as cephalosporin antibiotics, but the molecular details by which CroRS promotes cephalosporin resistance have not been elucidated. Here, we analyzed mutants of E. faecalis carrying substitutions in CroR and CroS to demonstrate that phosphorylated CroR drives resistance to cephalosporins, and that CroS exhibits kinase and phosphatase activities to control the level of CroR phosphorylation in vivo. Deletion of croS in various lineages of E. faecalis revealed a CroS-independent mechanism for CroR phosphorylation and led to the identification of a noncognate histidine kinase capable of influencing CroR (encoded by OG1RF_12162; here called cisS). Further analysis of this TCS network revealed that both systems respond to cell wall stress. TCSs allow bacteria to sense and respond to many different environmental conditions. The opportunistic pathogen Enterococcus faecalis utilizes the CroRS TCS to mediate resistance to cell wall stresses, including clinically relevant antibiotics such as cephalosporins and glycopeptides. In this study, we use genetic and biochemical means to investigate the relationship between CroRS signaling and cephalosporin resistance in E. faecalis cells. Through this, we uncovered a signaling network formed between the CroRS TCS and a previously uncharacterized TCS that also responds to cell wall stress. This study provides mechanistic insights into CroRS signaling and cephalosporin resistance in E. faecalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    PubMed Central

    Porwollik, Steffen; Mottaz-Brewer, Heather; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; McClelland, Michael; Heffron, Fred; Smith, Richard D.

    2009-01-01

    Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella. PMID:19277208

  15. The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road.

    PubMed

    Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C

    2017-07-15

    The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Stochastic modular analysis for gene circuits: interplay among retroactivity, nonlinearity, and stochasticity.

    PubMed

    Kim, Kyung Hyuk; Sauro, Herbert M

    2015-01-01

    This chapter introduces a computational analysis method for analyzing gene circuit dynamics in terms of modules while taking into account stochasticity, system nonlinearity, and retroactivity. (1) ANALOG ELECTRICAL CIRCUIT REPRESENTATION FOR GENE CIRCUITS: A connection between two gene circuit components is often mediated by a transcription factor (TF) and the connection signal is described by the TF concentration. The TF is sequestered to its specific binding site (promoter region) and regulates downstream transcription. This sequestration has been known to affect the dynamics of the TF by increasing its response time. The downstream effect-retroactivity-has been shown to be explicitly described in an electrical circuit representation, as an input capacitance increase. We provide a brief review on this topic. (2) MODULAR DESCRIPTION OF NOISE PROPAGATION: Gene circuit signals are noisy due to the random nature of biological reactions. The noisy fluctuations in TF concentrations affect downstream regulation. Thus, noise can propagate throughout the connected system components. This can cause different circuit components to behave in a statistically dependent manner, hampering a modular analysis. Here, we show that the modular analysis is still possible at the linear noise approximation level. (3) NOISE EFFECT ON MODULE INPUT-OUTPUT RESPONSE: We investigate how to deal with a module input-output response and its noise dependency. Noise-induced phenotypes are described as an interplay between system nonlinearity and signal noise. Lastly, we provide the comprehensive approach incorporating the above three analysis methods, which we call "stochastic modular analysis." This method can provide an analysis framework for gene circuit dynamics when the nontrivial effects of retroactivity, stochasticity, and nonlinearity need to be taken into account.

  17. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  18. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria.

    PubMed

    Hirose, Yuu; Misawa, Naomi; Yonekawa, Chinatsu; Nagao, Nobuyoshi; Watanabe, Mai; Ikeuchi, Masahiko; Eki, Toshihiko

    2017-08-01

    Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.

  20. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies. PMID:27227331

  1. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering.

    PubMed

    Jules, Matthieu

    2017-12-11

    Synthetic Biology (SB) aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (over)producing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM) to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5): e00976-17), which identified and characterized a pyruvate transport system in the Gram-positive (G +ve ) bacterium Bacillus subtilis , a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS) responsible for its induction is retro-inhibited by the level of pyruvate influx. Following up on the open question which is whether this retro-inhibition is a generic mechanism for TCSs, we will discuss the implications in metabolic engineering.

  2. 75 FR 18041 - Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... defense weapon systems, subsystems, components, and other items. The proposed rule prohibits the delivery... initial regulatory flexibility analysis. DoD invites comments from small business concerns and other... and their related parts, subsystems, and components that already contain hexavalent chromium. However...

  3. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus.

    PubMed

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu; He, Chuan

    2012-04-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.

  4. Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus

    PubMed Central

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu

    2012-01-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl3 repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus. PMID:22267518

  5. 41 CFR 101-29.213 - Commercial product.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Commercial product. 101... Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 29-FEDERAL PRODUCT DESCRIPTIONS 29.2-Definitions § 101-29.213 Commercial product. A commercial product is any item, component, or...

  6. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1.

    PubMed

    Lassak, Jürgen; Henche, Anna-Lena; Binnenkade, Lucas; Thormann, Kai M

    2010-05-01

    The availability of oxygen is a major environmental factor for many microbes, in particular for bacteria such as Shewanella species, which thrive in redox-stratified environments. One of the best-studied systems involved in mediating the response to changes in environmental oxygen levels is the Arc two-component system of Escherichia coli, consisting of the sensor kinase ArcB and the cognate response regulator ArcA. An ArcA ortholog was previously identified in Shewanella, and as in Escherichia coli, Shewanella ArcA is involved in regulating the response to shifts in oxygen levels. Here, we identified the hybrid sensor kinase SO_0577, now designated ArcS, as the previously elusive cognate sensor kinase of the Arc system in Shewanella oneidensis MR-1. Phenotypic mutant characterization, transcriptomic analysis, protein-protein interaction, and phosphotransfer studies revealed that the Shewanella Arc system consists of the sensor kinase ArcS, the single phosphotransfer domain protein HptA, and the response regulator ArcA. Phylogenetic analyses suggest that HptA might be a relict of ArcB. Conversely, ArcS is substantially different with respect to overall sequence homologies and domain organizations. Thus, we speculate that ArcS might have adopted the role of ArcB after a loss of the original sensor kinase, perhaps as a consequence of regulatory adaptation to a redox-stratified environment.

  7. Quantifying the Relative Contributions of Divisive and Subtractive Feedback to Rhythm Generation

    PubMed Central

    Tabak, Joël; Rinzel, John; Bertram, Richard

    2011-01-01

    Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent (low activity) phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms. PMID:21533065

  8. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    PubMed

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  9. Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets.

    PubMed

    Ho, Hsiang; Milenković, Tijana; Memisević, Vesna; Aruri, Jayavani; Przulj, Natasa; Ganesan, Anand K

    2010-06-15

    RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.

  10. Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets

    PubMed Central

    2010-01-01

    Background RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. Results In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. Conclusions We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches. PMID:20550706

  11. 41 CFR 109-1.5303 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a larger assembly, a complex operating system, or an older facility. The review of this property will be completed, prior to disposition, when replacing components or when operating systems and... Section 109-1.5303 Public Contracts and Property Management Federal Property Management Regulations System...

  12. 41 CFR 109-1.5303 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a larger assembly, a complex operating system, or an older facility. The review of this property will be completed, prior to disposition, when replacing components or when operating systems and... Section 109-1.5303 Public Contracts and Property Management Federal Property Management Regulations System...

  13. 41 CFR 109-1.5303 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a larger assembly, a complex operating system, or an older facility. The review of this property will be completed, prior to disposition, when replacing components or when operating systems and... Section 109-1.5303 Public Contracts and Property Management Federal Property Management Regulations System...

  14. 41 CFR 109-1.5303 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a larger assembly, a complex operating system, or an older facility. The review of this property will be completed, prior to disposition, when replacing components or when operating systems and... Section 109-1.5303 Public Contracts and Property Management Federal Property Management Regulations System...

  15. 41 CFR 109-1.5303 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a larger assembly, a complex operating system, or an older facility. The review of this property will be completed, prior to disposition, when replacing components or when operating systems and... Section 109-1.5303 Public Contracts and Property Management Federal Property Management Regulations System...

  16. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.

    PubMed

    Hampp, Gabriele; Ripperger, Jürgen A; Houben, Thijs; Schmutz, Isabelle; Blex, Christian; Perreau-Lenz, Stéphanie; Brunk, Irene; Spanagel, Rainer; Ahnert-Hilger, Gudrun; Meijer, Johanna H; Albrecht, Urs

    2008-05-06

    The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.

  17. A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003.

    PubMed

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F; MacSharry, John; Zomer, Aldert; van Sinderen, Douwe

    2012-08-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.

  18. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003

    PubMed Central

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F.; MacSharry, John; Zomer, Aldert

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (Pi) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted Pi transporter system, as well as that of phoU, which encodes a putative Pi-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of Pi limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to Pi starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003. PMID:22635988

  19. A review of unmanned aircraft system ground risk models

    NASA Astrophysics Data System (ADS)

    Washington, Achim; Clothier, Reece A.; Silva, Jose

    2017-11-01

    There is much effort being directed towards the development of safety regulations for unmanned aircraft systems (UAS). National airworthiness authorities have advocated the adoption of a risk-based approach, whereby regulations are driven by the outcomes of a systematic process to assess and manage identified safety risks. Subsequently, models characterising the primary hazards associated with UAS operations have now become critical to the development of regulations and in turn, to the future of the industry. Key to the development of airworthiness regulations for UAS is a comprehensive understanding of the risks UAS operations pose to people and property on the ground. A comprehensive review of the literature identified 33 different models (and component sub models) used to estimate ground risk posed by UAS. These models comprise failure, impact location, recovery, stress, exposure, incident stress and harm sub-models. The underlying assumptions and treatment of uncertainties in each of these sub-models differ significantly between models, which can have a significant impact on the development of regulations. This paper reviews the state-of-the-art in research into UAS ground risk modelling, discusses how the various sub-models relate to the different components of the regulation, and explores how model-uncertainties potentially impact the development of regulations for UAS.

  20. PecS is an important player in the regulatory network governing the coordinated expression of virulence genes during the interaction between Dickeya dadantii 3937 and plants.

    PubMed

    Mhedbi-Hajri, Nadia; Malfatti, Pierrette; Pédron, Jacques; Gaubert, Stéphane; Reverchon, Sylvie; Van Gijsegem, Frédérique

    2011-11-01

    Successful infection of a pathogen relies on the coordinated expression of numerous virulence factor-encoding genes. In plant-bacteria interactions, this control is very often achieved through the integration of several regulatory circuits controlling cell-cell communication or sensing environmental conditions. Dickeya dadantii (formerly Erwinia chrysanthemi), the causal agent of soft rot on many crops and ornamentals, provokes maceration of infected plants mainly by producing and secreting a battery of plant cell wall-degrading enzymes. However, several other virulence factors have also been characterized. During Arabidopsis infection, most D. dadantii virulence gene transcripts accumulated in a coordinated manner during infection. This activation requires a functional GacA-GacS two-component regulatory system but the Gac system is not involved in the growth phase dependence of virulence gene expression. Here we show that, contrary to Pectobacterium, the AHL-mediated ExpIR quorum-sensing system does not play a major role in the growth phase-dependent control of D. dadantii virulence genes. On the other hand, the global regulator PecS participates in this coordinated expression since, in a pecS mutant, an early activation of virulence genes is observed both in vitro and in planta. This correlated with the known hypervirulence phenotype of the pecS mutant. Analysis of the relationship between the regulatory circuits governed by the PecS and GacA global regulators indicates that these two regulators act independently. PecS prevents a premature expression of virulence genes in the first stages of colonization whereas GacA, presumably in conjunction with other regulators, is required for the activation of virulence genes at the onset of symptom occurrence. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    PubMed Central

    Pitman, Stephanie; Cho, Kyu Hong

    2015-01-01

    The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described. PMID:26694351

  2. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups

    DOE PAGES

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana; ...

    2015-11-19

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from thosemore » coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. Here, we conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.« less

  3. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, Margaret E.; Olsen, Gary J.; Chakravartty, Vandana

    The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from thosemore » coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. Here, we conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.« less

  4. Descriptive Modeling of the Dynamical Systems and Determination of Feedback Homeostasis at Different Levels of Life Organization.

    PubMed

    Zholtkevych, G N; Nosov, K V; Bespalov, Yu G; Rak, L I; Abhishek, M; Vysotskaya, E V

    2018-05-24

    The state-of-art research in the field of life's organization confronts the need to investigate a number of interacting components, their properties and conditions of sustainable behaviour within a natural system. In biology, ecology and life sciences, the performance of such stable system is usually related to homeostasis, a property of the system to actively regulate its state within a certain allowable limits. In our previous work, we proposed a deterministic model for systems' homeostasis. The model was based on dynamical system's theory and pairwise relationships of competition, amensalism and antagonism taken from theoretical biology and ecology. However, the present paper proposes a different dimension to our previous results based on the same model. In this paper, we introduce the influence of inter-component relationships in a system, wherein the impact is characterized by direction (neutral, positive, or negative) as well as its (absolute) value, or strength. This makes the model stochastic which, in our opinion, is more consistent with real-world elements affected by various random factors. The case study includes two examples from areas of hydrobiology and medicine. The models acquired for these cases enabled us to propose a convincing explanation for corresponding phenomena identified by different types of natural systems.

  5. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation.

    PubMed

    Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas

    2012-06-15

    Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. 32 CFR 34.11 - Standards for financial management systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...

  7. 32 CFR 34.11 - Standards for financial management systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...

  8. 32 CFR 34.11 - Standards for financial management systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...

  9. 32 CFR 34.11 - Standards for financial management systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND AGREEMENT REGULATIONS ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH FOR-PROFIT... systems established for doing business in the commercial marketplace, to the extent that the systems... of money borrowed by the recipient, the DoD Component, at its discretion, may require adequate...

  10. A Streptococcus uberis transposon mutant screen reveals a negative role for LiaR homologue in biofilm formation.

    PubMed

    Salomäki, T; Karonen, T; Siljamäki, P; Savijoki, K; Nyman, T A; Varmanen, P; Iivanainen, A

    2015-01-01

    The environmental pathogen Streptococcus uberis causes intramammary infections in dairy cows. Because biofilm growth might contribute to Strep. uberis mastitis, we conducted a biological screen to identify genes potentially involved in the regulation of biofilm growth. By screening a transposon mutant library of Strep. uberis, we determined that the disruption of 13 genes (including hasA, coaC, clpP, miaA, nox and uidA) led to increased biofilm formation. One of the genes (SUB1382) encoded a homologue of the LiaR response regulator (RR) of the Bacillus subtilis two-component signalling system (TCS). Electrophoretic mobility shift assays revealed that DNA binding by LiaR was greatly enhanced by phosphorylation. Two-dimensional differential in-gel electrophoresis analyses of the liaR mutant and the parental Strep. uberis strain revealed five differentially produced proteins with at least a 1·5-fold change in relative abundance (P < 0·05). The DNA-binding protein LiaR is a potential regulator of biofilm formation by Strep. uberis. Several molecular primary and downstream targets involved in biofilm formation by Strep. uberis were identified. This provides a solid foundation for further studies on the regulation of biofilm formation in this important pathogen. © 2014 The Society for Applied Microbiology.

  11. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks

    PubMed Central

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark

    2010-01-01

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753

  12. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.

    PubMed

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark

    2010-05-18

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.

  13. G Protein-regulated inducer of neurite outgrowth (GRIN) modulates Sprouty protein repression of mitogen-activated protein kinase (MAPK) activation by growth factor stimulation.

    PubMed

    Hwangpo, Tracy Anh; Jordan, J Dedrick; Premsrirut, Prem K; Jayamaran, Gomathi; Licht, Jonathan D; Iyengar, Ravi; Neves, Susana R

    2012-04-20

    Gα(o/i) interacts directly with GRIN (G protein-regulated inducer of neurite outgrowth). Using the yeast two-hybrid system, we identified Sprouty2 as an interacting partner of GRIN. Gα(o) and Sprouty2 bind to overlapping regions of GRIN, thus competing for GRIN binding. Imaging experiments demonstrated that Gα(o) expression promoted GRIN translocation to the plasma membrane, whereas Sprouty2 expression failed to do so. Given the role of Sprouty2 in the regulation of growth factor-mediated MAPK activation, we examined the contribution of the GRIN-Sprouty2 interaction to CB1 cannabinoid receptor regulation of FGF receptor signaling. In Neuro-2A cells, a system that expresses all of the components endogenously, modulation of GRIN levels led to regulation of MAPK activation. Overexpression of GRIN potentiated FGF activation of MAPK and decreased tyrosine phosphorylation of Sprouty2. Pretreatment with G(o/i)-coupled CB1 receptor agonist attenuated subsequent FGF activation of MAPK. Decreased expression of GRIN both diminished FGF activation of MAPK and blocked CB1R attenuation of MAPK activation. These observations indicate that Gα(o) interacts with GRIN and outcompetes GRIN from bound Sprouty. Free Sprouty then in turn inhibits growth factor signaling. Thus, here we present a novel mechanism of how G(o/i)-coupled receptors can inhibit growth factor signaling to MAPK.

  14. A tyrosine-phosphorylated 55-kilodalton motility-associated bovine sperm protein is regulated by cyclic adenosine 3',5'-monophosphates and calcium.

    PubMed

    Vijayaraghavan, S; Trautman, K D; Goueli, S A; Carr, D W

    1997-06-01

    Sperm motility is regulated by protein phosphorylation. We have recently shown that a serine/threonine phosphatase system is involved in motility regulation. Two of the components of the phosphatase system, GSK-3 and PP1gamma2, are regulated by tyrosine phosphorylation. During our investigation of sperm tyrosine-phosphorylated proteins we discovered a 55-kDa protein whose tyrosine phosphorylation correlates closely to the motility state of sperm. This protein is tyrosine phosphorylated to a much higher degree in motile caudal than in immotile caput epididymal sperm. Motility inhibition of caudal epididymal sperm by protein kinase A (PKA) anchoring inhibition or by ionomycin-induced calcium overload led to the virtual disappearance of tyrosine phosphorylation of the 55-kDa protein. Conversely, treatment of sperm with motility activators, isobutylmethylxanthine or 8-bromo-cAMP, resulted in increased tyrosine phosphorylation of the protein. The protein was present in the soluble 100 000 x g supernatants of sperm extracts and was heat labile. Chromatography through diethylaminoethyl-cellulose and Western blot analysis showed that this 55-kDa protein is not a regulatory subunit of PKA or alpha-tubulin. Our results represent the identification of a soluble protein whose tyrosine phosphorylation varies directly with motility and suggest that motility regulation may involve cross talk between PKA, calcium, and tyrosine kinase pathways.

  15. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes.

    PubMed

    Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

  16. Arabidopsis response regulator 22 inhibits cytokinin-regulated gene transcription in vivo.

    PubMed

    Wallmeroth, Niklas; Anastasia, Anna Katharina; Harter, Klaus; Berendzen, Kenneth Wayne; Mira-Rodado, Virtudes

    2017-01-01

    Cytokinin signaling in Arabidopsis is carried out by a two-component system (TCS) multi-step phosphorelay mechanism that involves three different protein families: histidine kinases (AHKs), phosphotransfer proteins (AHPs), and response regulators (ARRs) that are in turn, subdivided into A-, B- and C-type ARRs depending on their function and structure. Upon cytokinin perception, AHK proteins autophosphorylate; this phosphate is then transferred from the AHKs to the AHPs to finally reach the ARRs. When B-type ARRs are activated by phosphorylation, they function as transcription factors that regulate the expression of cytokinin-dependent genes such as the A-type ARRs, among many others. In cytokinin signaling, while A- and B-type ARR function is well understood, it is still unclear if C-type ARRs (ARR22 and ARR24) play a role in this mechanism. Here, we describe a novel method suitable to study TCS activity natively as an in vivo system. We also show that ARR22 inhibits gene transcription of an A-type ARR upon cytokinin treatment in vivo. Consequently, we propose that ARR22, by acting as a phosphatase on specific AHPs, disrupts the TCS phosphorelay and prevents B-type ARR phosphorylation, and thus their activation as transcription factors, explaining the observed deactivation of cytokinin-responsive genes.

  17. A Synthetical Two-Component Model with Peakon Solutions: One More Bi-Hamiltonian Case

    NASA Astrophysics Data System (ADS)

    Mengxia, Zhang; Xiaomin, Yang

    2018-05-01

    Compatible pairs of Hamiltonian operators for the synthetical two-component model of Xia, Qiao, and Zhou are derived systematically by means of the spectral gradient method. A new two-component system, which is bi-Hamiltonian, is presented. For this new system, the construction of its peakon solutions is considered.

  18. The default network and self-generated thought: component processes, dynamic control, and clinical relevance

    PubMed Central

    Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan

    2014-01-01

    Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540

  19. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  20. Divide and conquer: The Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits

    PubMed Central

    Petrova, Olga E.; Gupta, Kajal; Liao, Julie; Goodwine, James S.; Sauer, Karin

    2017-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms antimicrobial resistant biofilms through sequential steps requiring several two-component regulatory systems. The sensor-regulator hybrid SagS plays a central role in biofilm development by enabling the switch from the planktonic to the biofilm mode of growth, and by facilitating the transition of biofilm cells to a highly tolerant state. However, the mechanism by which SagS accomplishes both functions is unknown. SagS harbors a periplasmic sensory HmsP, and phosphorelay HisKA and Rec domains. We used SagS domain constructs and site-directed mutagenesis to elucidate how SagS performs its dual functions. We demonstrate that HisKA-Rec and the phospho-signaling between SagS and BfiS contribute to the switch to the biofilm mode of growth, but not to the tolerant state. Instead, expression of SagS domain constructs harboring HmsP rendered ΔsagS biofilm cells as recalcitrant to antimicrobial agents as wild-type biofilms, likely by restoring BrlR production and cellular c-di-GMP levels to wild-type levels. Restoration of biofilm tolerance by HmsP was independent of biofilm biomass accumulation, RsmA, RsmYZ, HptB, and BfiSR-downstream targets. Our findings thus suggest that SagS likely makes use of a “divide-and-conquer” mechanism to regulate its dual switch function, by activating two distinct regulatory networks via its individual domains. PMID:28263038

  1. High throughput and miniaturised systems for biodegradability assessments.

    PubMed

    Cregut, Mickael; Jouanneau, Sulivan; Brillet, François; Durand, Marie-José; Sweetlove, Cyril; Chenèble, Jean-Charles; L'Haridon, Jacques; Thouand, Gérald

    2014-01-01

    The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.

  2. Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection

    PubMed Central

    McDonough, EmilyKate; Lazinski, David W.; Camilli, Andrew

    2014-01-01

    Summary Vibrio cholerae, the causative agent of cholera, remains a threat to public health in areas with inadequate sanitation. As a waterborne pathogen, V. cholerae moves between two dissimilar environments, aquatic reservoirs and the intestinal tract of humans. Accordingly, this pathogen undergoes adaptive shifts in gene expression throughout the different stages of its lifecycle. One particular gene, xds, encodes a secreted exonuclease that was previously identified as being induced during infection. Here we sought to identify regulators responsible for the in vivo-specific induction of xds. A transcriptional fusion of xds to two consecutive antibiotic resistance genes was used to select transposon mutants that had inserted within or adjacent to regulatory genes and thereby caused increased expression of the xds fusion under non-inducing conditions. Large pools of selected insertion sites were sequenced in a high throughput manner using Tn-seq to identify potential mechanisms of xds regulation. Our selection identified the two-component system PhoB/R as the dominant activator of xds expression. In vitro validation confirmed that PhoB, a protein which is only active during phosphate limitation, was responsible for xds activation. Using xds expression as a biosensor of the extracellular phosphate level, we observed that the mouse small intestine is a phosphate-limited environment. PMID:24673931

  3. Multiple-component covalent organic frameworks

    PubMed Central

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-01-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor–acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts. PMID:27460607

  4. Multiple-component covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Zhai, Lipeng; Coupry, Damien E.; Addicoat, Matthew A.; Okushita, Keiko; Nishimura, Katsuyuki; Heine, Thomas; Jiang, Donglin

    2016-07-01

    Covalent organic frameworks are a class of crystalline porous polymers that integrate molecular building blocks into periodic structures and are usually synthesized using two-component [1+1] condensation systems comprised of one knot and one linker. Here we report a general strategy based on multiple-component [1+2] and [1+3] condensation systems that enable the use of one knot and two or three linker units for the synthesis of hexagonal and tetragonal multiple-component covalent organic frameworks. Unlike two-component systems, multiple-component covalent organic frameworks feature asymmetric tiling of organic units into anisotropic skeletons and unusually shaped pores. This strategy not only expands the structural complexity of skeletons and pores but also greatly enhances their structural diversity. This synthetic platform is also widely applicable to multiple-component electron donor-acceptor systems, which lead to electronic properties that are not simply linear summations of those of the conventional [1+1] counterparts.

  5. The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses

    PubMed Central

    Chang, Peixi; Li, Weitian; Shi, Guolin; Li, Huan; Yang, Xiaoqing; Xia, Zechen; Ren, Yuan; Li, Zhiwei; Chen, Huanchun; Bei, Weicheng

    2018-01-01

    ABSTRACT Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity. PMID:29471718

  6. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  7. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  8. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  9. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  10. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  11. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  12. CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.

    PubMed

    Herbert Tran, Erin E; Andersen, Aaron W; Goodrich-Blair, Heidi

    2009-06-01

    The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host consists of two stages: initiation, where a small number of bacterial cells establish themselves in the colonization site, and outgrowth, where these cells grow to fill the space. In this study, we show that the Cpx system is necessary for both of these stages. X. nematophila DeltacpxR1 colonized fewer nematodes than its wild-type parent and did not achieve as high a density as did the wild type within a portion of the colonized nematodes. To test whether the DeltacpxR1 host interaction phenotypes are due to its overexpression of mrxA, encoding the type I pilin subunit protein, we assessed the colonization phenotype of a DeltacpxR1 DeltamrxA1 double mutant. This mutant displayed the same colonization defect as DeltacpxR1, indicating that CpxR negative regulation of mrxA does not play a detectable role in X. nematophila-host interactions. CpxR positively regulates expression of nilA, nilB, and nilC genes necessary for nematode colonization. Here we show that the nematode colonization defect of the DeltacpxR1 mutant is rescued by elevating nil gene expression through mutation of nilR, a negative regulator of nilA, nilB, and nilC. These data suggest that the nematode colonization defect previously observed in DeltacpxR1 is caused, at least in part, by altered regulation of nilA, nilB, and nilC.

  13. Two-component Gaussian core model: Strong-coupling limit, Bjerrum pairs, and gas-liquid phase transition.

    PubMed

    Frydel, Derek; Levin, Yan

    2018-01-14

    In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.

  14. Two-component Gaussian core model: Strong-coupling limit, Bjerrum pairs, and gas-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Levin, Yan

    2018-01-01

    In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.

  15. Multibody model reduction by component mode synthesis and component cost analysis

    NASA Technical Reports Server (NTRS)

    Spanos, J. T.; Mingori, D. L.

    1990-01-01

    The classical assumed-modes method is widely used in modeling the dynamics of flexible multibody systems. According to the method, the elastic deformation of each component in the system is expanded in a series of spatial and temporal functions known as modes and modal coordinates, respectively. This paper focuses on the selection of component modes used in the assumed-modes expansion. A two-stage component modal reduction method is proposed combining Component Mode Synthesis (CMS) with Component Cost Analysis (CCA). First, each component model is truncated such that the contribution of the high frequency subsystem to the static response is preserved. Second, a new CMS procedure is employed to assemble the system model and CCA is used to further truncate component modes in accordance with their contribution to a quadratic cost function of the system output. The proposed method is demonstrated with a simple example of a flexible two-body system.

  16. A Systematic Classification for HVAC Systems and Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Han; Chen, Yan; Zhang, Jian

    Depending on the application, the complexity of an HVAC system can range from a small fan coil unit to a large centralized air conditioning system with primary and secondary distribution loops, and central plant components. Currently, the taxonomy of HVAC systems and the components has various aspects, which can get quite complex because of the various components and system configurations. For example, based on cooling and heating medium delivered to terminal units, systems can be classified as either air systems, water systems or air-water systems. In addition, some of the system names might be commonly used in a confusing manner,more » such as “unitary system” vs. “packaged system.” Without a systematic classification, these components and system terminology can be confusing to understand or differentiate from each other, and it creates ambiguity in communication, interpretation, and documentation. It is valuable to organize and classify HVAC systems and components so that they can be easily understood and used in a consistent manner. This paper aims to develop a systematic classification of HVAC systems and components. First, we summarize the HVAC component information and definitions based on published literature, such as ASHRAE handbooks, regulations, and rating standards. Then, we identify common HVAC system types and map them to the collected components in a meaningful way. Classification charts are generated and described based on the component information. Six main categories are identified for the HVAC components and equipment, i.e., heating and cooling production, heat extraction and rejection, air handling process, distribution system, terminal use, and stand-alone system. Components for each main category are further analyzed and classified in detail. More than fifty system names are identified and grouped based on their characteristics. The result from this paper will be helpful for education, communication, and systems and component documentation.« less

  17. Utilization of Pb-free solders in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  18. Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function.

    PubMed

    Thorsell, Annika; Nätt, Daniel

    2016-08-01

    It has been shown that maternal stress and malnutrition, or experience of other adverse events, during the perinatal period may alter susceptibility in the adult offspring in a time-of-exposure dependent manner. The mechanism underlying this may be epigenetic in nature. Here, we summarize some recent findings on the effects on gene-regulation following maternal malnutrition, focusing on epigenetic regulation of peptidergic activity. Numerous neuropeptides within the central nervous system are crucial components in regulation of homeostatic energy-balance, as well as affective health (i.e. health events related to affective disorders, psychiatric disorders also referred to as mood disorders). It is becoming evident that expression, and function, of these neuropeptides can be regulated via epigenetic mechanisms during fetal development, thereby contributing to the development of the adult phenotype and, possibly, modulating disease susceptibility. Here, we focus on two such neuropeptides, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH), both involved in regulation of endocrine function, energy homeostasis, as well as affective health. While a number of published studies indicate the involvement of epigenetic mechanisms in CRH-dependent regulation of the offspring adult phenotype, NPY has been much less studied in this context and needs further work.

  19. T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.

    PubMed

    Reuben, Alexandre; Godin-Ethier, Jessica; Santos, Manuela M; Lapointe, Réjean

    2015-06-01

    The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance. Copyright © 2015. Published by Elsevier Ltd.

  20. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome.

    PubMed

    Yang, Yi; Qin, Meiling; Bao, Puhua; Xu, Wangchao; Xu, Jin

    2017-01-01

    Autophagy-lysosomal pathway is a cellular protective system to remove aggregated proteins and damaged organelles. Meanwhile, exosome secretion has emerged as a mode to selectively clear the neurotoxic proteins, such as α-synuclein. Mounting evidence suggests that these two cellular processes are coordinated to facilitate the clearance of toxic cellular waste; however the regulators for the transition between these two processes are unclear. Here we show that SCAMP5, a secretory carrier membrane protein significantly induced in the brains of Huntington's disease patients, is quickly and transiently induced by protein stress and autophagic stimulation, and is regulated by the master autophagy transcriptional regulator TFEB. Ironically, SCAMP5 inhibits autophagy flux by blocking the fusion of autophagosomes and lysosomes. Although autophagy is blocked, SCAMP5 does not cause significant protein aggregation in cells. Instead, it promotes the Golgi fragmentation and stimulates the unconventional secretion of the co-localizing α-synuclein via exosome as an exosome component. Therefore, we have identified SCAMP5 as a novel coordinator of autophagy and exosome secretion, which is induced upon protein stress to channel the efficient clearance of toxic proteins via the exosomes rather than autophagy-lysosomal pathway.

  1. Rethinking iron regulation and assessment in iron deficiency, the anemia of chronic disease, and obesity: introducing Hepcidin

    USDA-ARS?s Scientific Manuscript database

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins; a vital player in cellular metabolism, and essential to cell growth and differentiation. Tight regulation of iron at the systemic and cytosolic level is necessary bec...

  2. 46 CFR 160.151-15 - Design and performance of inflatable liferafts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-15 Section 160.151-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT... structural components. (b) Seams (Regulation III/30.2.1). Each seam must be at least as strong as the weakest... is greater. (k) Painter system (Regulation III/38.6.1). The painter protruding from the liferaft...

  3. A Technology-Enhanced Intervention for Self-Regulated Learning in Science

    ERIC Educational Resources Information Center

    Berglas-Shapiro, Tali; Eylon, Bat-Sheva; Scherz, Zahava

    2017-01-01

    This article describes the development of a technology-enhanced self-regulated learning (Te- SRL) environment designed to foster students' SRL of complex science topics. The environment consists of three components, one of which is a specially designed computerized system that offers students a choice between different types of scaffolding and…

  4. Climate regulation services by urban lakes in Bucharest city

    NASA Astrophysics Data System (ADS)

    Ioja, Cristian; Cheval, Sorin; Vanau, Gabriel; Sandric, Ionut; Onose, Diana; Carstea, Elfrida

    2017-04-01

    Urban ecosystems services assessment is an important challenge for practitioners, due to the high complexity of relations between urban systems components, high vulnerability to climate change, and consequences in social-economical systems. Urban lakes represent a significant component in more European cities (average 5% of total surface). Adequate urban management supports diverse benefits of urban lakes: clean water availability, mediation of waste, toxics and other nuisance, air quality and climate regulation, support for physical, intelectual or spiritual interactions. Due to underestimation of climate change and misfit urban planning decision, these benefits may be lost or chaged into diservices. The aim of the paper is to assess the changes in terms of the urban lakes contribution role to regulate urban climate, using the Bucharest as case study. Using sensors and Modis, Sentinel and Landsat images, the paper experiments the evolution of climate regulation services of urban lakes under the pressure of urbanisation and climate change between 2008 and 2015. Urban lakes management has to include specific measures in order to help the cities to become more sustainable, resilient, liveable and healthly.

  5. RTDS-Based Design and Simulation of Distributed P-Q Power Resources in Smart Grid

    NASA Astrophysics Data System (ADS)

    Taylor, Zachariah David

    In this Thesis, we propose to utilize a battery system together with its power electronics interfaces and bidirectional charger as a distributed P-Q resource in power distribution networks. First, we present an optimization-based approach to operate such distributed P-Q resources based on the characteristics of the battery and charger system as well as the features and needs of the power distribution network. Then, we use the RTDS Simulator, which is an industry-standard simulation tool of power systems, to develop two RTDS-based design approaches. The first design is based on an ideal four-quadrant distributed P-Q power resource. The second design is based on a detailed four-quadrant distributed P-Q power resource that is developed using power electronics components. The hardware and power electronics circuitry as well as the control units are explained for the second design. After that, given the two-RTDS designs, we conducted extensive RTDS simulations to assess the performance of the designed distributed P-Q Power Resource in an IEEE 13 bus test system. We observed that the proposed design can noticeably improve the operational performance of the power distribution grid in at least four key aspects: reducing power loss, active power peak load shaving at substation, reactive power peak load shaving at substation, and voltage regulation. We examine these performance measures across three design cases: Case 1: There is no P-Q Power Resource available on the power distribution network. Case 2: The installed P-Q Power Resource only supports active power, i.e., it only utilizes its battery component. Case 3: The installed P-Q Power Resource supports both active and reactive power, i.e., it utilizes both its battery component and its power electronics charger component. In the end, we present insightful interpretations on the simulation results and suggest some future works.

  6. Bidirectional Pressure-Regulator System

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth; Miller, John R.

    2008-01-01

    A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.

  7. Digital logic circuit based on two component molecular systems of BSA and salen

    NASA Astrophysics Data System (ADS)

    Hai-Bin, Lin; Feng, Chen; Hong-Xu, Guo

    2018-02-01

    A new fluorescent molecular probe 1 was designed and constructed by combining bovine serum albumin (BSA) and N,N‧-bis(salicylidene)ethylenediamine (salen). Stimulated by Zn2 +, tris, or EDTAH2Na2, the distance between BSA and salen was regulated, which was accompanied by an obvious change in the fluorescence intensity at 350 or 445 nm based on Förster resonance energy transfer. Moreover, based on the encoding binary digits in these inputs and outputs applying positive logic conventions, a monomolecular circuit integrating one OR, three NOT, and three YES gates, was successfully achieved.

  8. A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates.

    PubMed

    Morse, David; Daoust, Philip; Benribague, Siham

    2016-12-01

    Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Expression of the autoantigen TRIM33/TIF1γ in skin and muscle of patients with dermatomyositis is upregulated, together with markers of cellular stress.

    PubMed

    Scholtissek, B; Ferring-Schmitt, S; Maier, J; Wenzel, J

    2017-08-01

    Dermatomyositis (DM) is an autoimmune disorder associated with a dysregulation of immune homeostasis of both the innate and adaptive immune system. Earlier data suggested that these two arms of the immune system interconnect in DM. In the current study, we analysed the association of autoantigen expression [adaptive system components: Mi2, transcriptional intermediary factor (TIF)1γ, small ubiquitin-like modifier 1 activating enzyme subunit (SAE)1, melanoma differentiation-associated protein (MDA)5] with markers of cellular stress (innate system components: MxA, p53) in skin and muscle (immunohistology and gene expression data, respectively). We found that distinctive self-antigens of DM were elevated in both skin and muscle tissue. In particular, TIF1γ expression was seen in autoimmune diseases including DM, but not in other inflammatory skin disorders. This upregulation was closely associated with p53 expression and type I interferon-regulated inflammation, suggesting that upregulation of autoantigens in the skin and muscle of patients with DM might be driven by cellular stress. Better understanding of these mechanisms could pave the way for new therapeutic concepts focusing on stress reduction. © 2017 British Association of Dermatologists.

  10. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Use of two-phase design-build selection procedures. 36.301 Section 36.301 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301...

  11. Flexible network wireless transceiver and flexible network telemetry transceiver

    DOEpatents

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  12. Photometric study of two eclipsing binary stars: Light curve analysis and system parameters for GU CMa and SWASP J011732.10+525204.9

    NASA Astrophysics Data System (ADS)

    Shokry, A.; Saad, S. M.; Hamdy, M. A.; Beheary, M. M.; Abolazm, M. S.; Gadallah, K. A.; El-Depsey, M. H.; Al-Gazzar, M. S.

    2018-02-01

    A new photometric study of two eclipsing binary systems (GU CMa and SWASP J011732.10+525204.9) is presented. The accepted solutions of analyzing the light curves revealed that GU CMa is a semi-detached system consisting of two early spectral type components, (B2 and B2.5) while SWASP J011732.10+525204.9 is a contact binary with two late type components (K2 and M1). The primary component of each system is the massive one. The geometric configuration indicates that SWASP J011732.10+525204.9 passes through a very critical phase in which each component exactly fills its limited lobe with zero fill out ratio. New times of minimum and the absolute physical parameters for each system are determined. The evolution status for each system has been investigated.

  13. Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads.

    PubMed

    Dow, Max

    2008-05-27

    The virulence of plant pathogenic bacteria belonging to the genera Xanthomonas and Xylella depends upon cell-to-cell signaling mediated by the diffusible signal molecule DSF (Diffusible Signaling Factor). Synthesis and perception of the DSF signal require products of the rpf gene cluster. The synthesis of DSF depends on RpfF, whereas the RpfC/RpfG two-component system is implicated in DSF perception and signal transduction. The sensor RpfC acts to negatively regulate synthesis of DSF. In Xanthomonas campestris, mutation of rpfF or rpfC leads to a coordinate down-regulation in synthesis of virulence factors and a reduction in virulence. In contrast, in Xylella fastidiosa, the causal agent of Pierce's disease of grape, mutation of rpfF and rpfC have opposite effects on virulence, with rpfF mutants exhibiting a hypervirulent phenotype. The findings suggest that different xanthomonads have adapted the perception and function of similar types of signaling molecule to fit the specific needs for colonization of different hosts.

  14. Whey proteins in the regulation of food intake and satiety.

    PubMed

    Luhovyy, Bohdan L; Akhavan, Tina; Anderson, G Harvey

    2007-12-01

    Whey protein has potential as a functional food component to contribute to the regulation of body weight by providing satiety signals that affect both short-term and long-term food intake regulation. Because whey is an inexpensive source of high nutritional quality protein, the utilization of whey as a physiologically functional food ingredient for weight management is of current interest. At present, the role of individual whey proteins and peptides in contributing to food intake regulation has not been fully defined. However, Whey protein reduces short-term food intake relative to placebo, carbohydrate and other proteins. Whey protein affects satiation and satiety by the actions of: (1) whey protein fractions per se; (2) bioactive peptides; (3) amino-acids released after digestion; (4) combined action of whey protein and/or peptides and/or amino acids with other milk constituents. Whey ingestion activates many components of the food intake regulatory system. Whey protein is insulinotropic, and whey-born peptides affect the renin-angiotensin system. Therefore whey protein has potential as physiologically functional food component for persons with obesity and its co-morbidities (hypertension, type II diabetes, hyper- and dislipidemia). It remains unclear, however, if the favourable effects of whey on food intake, subjective satiety and intake regulatory mechanisms in humans are obtained from usual serving sizes of dairy products. The effects described have been observed in short-term experiments and when whey is consumed in much higher amounts.

  15. Systematic profiling of Caenorhabditis elegans locomotive behaviors reveals additional components in G-protein Gαq signaling.

    PubMed

    Yu, Hui; Aleman-Meza, Boanerges; Gharib, Shahla; Labocha, Marta K; Cronin, Christopher J; Sternberg, Paul W; Zhong, Weiwei

    2013-07-16

    Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.

  16. Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity.

    PubMed

    Sailem, Heba; Bousgouni, Vicky; Cooper, Sam; Bakal, Chris

    2014-01-22

    One goal of cell biology is to understand how cells adopt different shapes in response to varying environmental and cellular conditions. Achieving a comprehensive understanding of the relationship between cell shape and environment requires a systems-level understanding of the signalling networks that respond to external cues and regulate the cytoskeleton. Classical biochemical and genetic approaches have identified thousands of individual components that contribute to cell shape, but it remains difficult to predict how cell shape is generated by the activity of these components using bottom-up approaches because of the complex nature of their interactions in space and time. Here, we describe the regulation of cellular shape by signalling systems using a top-down approach. We first exploit the shape diversity generated by systematic RNAi screening and comprehensively define the shape space a migratory cell explores. We suggest a simple Boolean model involving the activation of Rac and Rho GTPases in two compartments to explain the basis for all cell shapes in the dataset. Critically, we also generate a probabilistic graphical model to show how cells explore this space in a deterministic, rather than a stochastic, fashion. We validate the predictions made by our model using live-cell imaging. Our work explains how cross-talk between Rho and Rac can generate different cell shapes, and thus morphological heterogeneity, in genetically identical populations.

  17. RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization

    PubMed Central

    Han, Lanlan; Morrissey, Julie A.; Clarke, Thomas B.; Yesilkaya, Hasan; Silvaggi, Nicholas R.

    2018-01-01

    To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a “helical unravelling” of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus. PMID:29750817

  18. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-06-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  19. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both ofmore » the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.« less

  20. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both ofmore » the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.« less

  1. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction and demonstrate the pairwise nature of collisions and unravel the fascinating state restoration property.

  2. Feedback Regulation and Its Efficiency in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Yokota, Ryo; Aihara, Kazuyuki

    2016-03-01

    Intracellular biochemical networks fluctuate dynamically due to various internal and external sources of fluctuation. Dissecting the fluctuation into biologically relevant components is important for understanding how a cell controls and harnesses noise and how information is transferred over apparently noisy intracellular networks. While substantial theoretical and experimental advancement on the decomposition of fluctuation was achieved for feedforward networks without any loop, we still lack a theoretical basis that can consistently extend such advancement to feedback networks. The main obstacle that hampers is the circulative propagation of fluctuation by feedback loops. In order to define the relevant quantity for the impact of feedback loops for fluctuation, disentanglement of the causally interlocked influences between the components is required. In addition, we also lack an approach that enables us to infer non-perturbatively the influence of the feedback to fluctuation in the same way as the dual reporter system does in the feedforward networks. In this work, we address these problems by extending the work on the fluctuation decomposition and the dual reporter system. For a single-loop feedback network with two components, we define feedback loop gain as the feedback efficiency that is consistent with the fluctuation decomposition for feedforward networks. Then, we clarify the relation of the feedback efficiency with the fluctuation propagation in an open-looped FF network. Finally, by extending the dual reporter system, we propose a conjugate feedback and feedforward system for estimating the feedback efficiency non-perturbatively only from the statistics of the system.

  3. How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria†

    PubMed Central

    Deutscher, Josef; Francke, Christof; Postma, Pieter W.

    2006-01-01

    The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens. PMID:17158705

  4. Identification of a new Mpl-interacting protein, Atp5d.

    PubMed

    Liu, Hongyan; Zhao, Zhenhu; Zhong, Yuxu; Shan, Yajun; Sun, Xiaohong; Mao, Bingzhi; Cong, Yuwen

    2014-06-01

    Thrombopoietin (TPO) can regulate hematopoiesis and megakaryopoiesis via activation of its receptor, c-Mpl, and multiple downstream signal transduction pathways. Using the cytoplasmic domain of Mpl as bait, we performed yeast two-hybrid screening, and found that the protein Atp5d might associate with Mpl. Atp5d is known as the δ subunit of mitochondrial ATP synthase, but little is known about the function of dissociative Atp5d. The interaction between Mpl and Atp5d was confirmed by the yeast two-hybrid system, mammalian two-hybrid assay, pull-down experiment, and co-immunoprecipitation study in vivo and in vitro. An additional immunofluorescence assay showed that the two proteins can colocalize along the plasma membrane in the cytoplasm. Using the yeast two-hybrid system, we tested a series of cytoplasmic truncated mutations for their ability to bind Atp5d and found an association between Atp5d and the Aa98-113 domain of Mpl. The dissociation of Atp5d from Mpl after TPO stimulation suggests that Atp5d may be a new component of TPO signaling.

  5. The Vocational Education Component of the Rhode Island Educational Management Information System.

    ERIC Educational Resources Information Center

    Galamaga, Donald P.; Bartolomeo, Paul A.

    The document describes the implementation (Phase Two) of the Vocational Educational module--one component of an educational management information system. Phase Two entails the technical effort of final system design, final output specifications, edit specifications, system software selection, computer programing, systems documentation and the…

  6. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  7. Identification of two bvg-repressed surface proteins of Bordetella pertussis.

    PubMed Central

    Stenson, T H; Peppler, M S

    1995-01-01

    Bordetella pertussis, the etiological agent of whooping cough, has the ability to modulate its phenotype in response to environmental conditions by using the BvgAS sensory transduction system which is encoded by the vir locus (now known as bvg). The BvgAS system is part of a large family of two-component sensory transduction systems which are common to a number of pathogenic bacteria. Although much is known about the proteins which exist in the B. pertussis virulent (X-mode or phase I) phenotype, relatively little is known about the proteins produced in the avirulent (C-mode or phase III) phenotype. We used sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing techniques to demonstrate the existence of at least 22 vir-repressed molecules which are increased in the avirulent phenotype. In addition, a series of monoclonal antibodies which are specific for the surface of avirulent B. pertussis were developed. Using immunological and protein techniques, we characterized two of these antigens as surface-exposed proteins. One of these antigens is expressed only in B. pertussis but not in the related species B. parapertussis and B. bronchiseptica. The other antigen is also present in B. parapertussis and B. bronchiseptica but is expressed at lower levels which are not regulated by bvg. The identification and characterization of vir-repressed proteins (and the genes which encode and regulate them) may help elucidate a physiological role for modulation of this obligate human pathogen. PMID:7558280

  8. Photovoltaic Impact Assessment of Smart Inverter Volt-VAR Control on Distribution System Conservation Voltage Reduction and Power Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Nagarajan, Adarsh; Chakraborty, Sudipta

    This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology tomore » implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each scenario.« less

  9. Catecholaminergic Regulation of Learning Rate in a Dynamic Environment.

    PubMed

    Jepma, Marieke; Murphy, Peter R; Nassar, Matthew R; Rangel-Gomez, Mauricio; Meeter, Martijn; Nieuwenhuis, Sander

    2016-10-01

    Adaptive behavior in a changing world requires flexibly adapting one's rate of learning to the rate of environmental change. Recent studies have examined the computational mechanisms by which various environmental factors determine the impact of new outcomes on existing beliefs (i.e., the 'learning rate'). However, the brain mechanisms, and in particular the neuromodulators, involved in this process are still largely unknown. The brain-wide neurophysiological effects of the catecholamines norepinephrine and dopamine on stimulus-evoked cortical responses suggest that the catecholamine systems are well positioned to regulate learning about environmental change, but more direct evidence for a role of this system is scant. Here, we report evidence from a study employing pharmacology, scalp electrophysiology and computational modeling (N = 32) that suggests an important role for catecholamines in learning rate regulation. We found that the P3 component of the EEG-an electrophysiological index of outcome-evoked phasic catecholamine release in the cortex-predicted learning rate, and formally mediated the effect of prediction-error magnitude on learning rate. P3 amplitude also mediated the effects of two computational variables-capturing the unexpectedness of an outcome and the uncertainty of a preexisting belief-on learning rate. Furthermore, a pharmacological manipulation of catecholamine activity affected learning rate following unanticipated task changes, in a way that depended on participants' baseline learning rate. Our findings provide converging evidence for a causal role of the human catecholamine systems in learning-rate regulation as a function of environmental change.

  10. Catecholaminergic Regulation of Learning Rate in a Dynamic Environment

    PubMed Central

    Jepma, Marieke; Nassar, Matthew R.; Rangel-Gomez, Mauricio; Meeter, Martijn; Nieuwenhuis, Sander

    2016-01-01

    Adaptive behavior in a changing world requires flexibly adapting one’s rate of learning to the rate of environmental change. Recent studies have examined the computational mechanisms by which various environmental factors determine the impact of new outcomes on existing beliefs (i.e., the ‘learning rate’). However, the brain mechanisms, and in particular the neuromodulators, involved in this process are still largely unknown. The brain-wide neurophysiological effects of the catecholamines norepinephrine and dopamine on stimulus-evoked cortical responses suggest that the catecholamine systems are well positioned to regulate learning about environmental change, but more direct evidence for a role of this system is scant. Here, we report evidence from a study employing pharmacology, scalp electrophysiology and computational modeling (N = 32) that suggests an important role for catecholamines in learning rate regulation. We found that the P3 component of the EEG—an electrophysiological index of outcome-evoked phasic catecholamine release in the cortex—predicted learning rate, and formally mediated the effect of prediction-error magnitude on learning rate. P3 amplitude also mediated the effects of two computational variables—capturing the unexpectedness of an outcome and the uncertainty of a preexisting belief—on learning rate. Furthermore, a pharmacological manipulation of catecholamine activity affected learning rate following unanticipated task changes, in a way that depended on participants’ baseline learning rate. Our findings provide converging evidence for a causal role of the human catecholamine systems in learning-rate regulation as a function of environmental change. PMID:27792728

  11. Responses of Pseudomonas putida to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS.

    PubMed

    Mumm, Karl; Ainsaar, Kadi; Kasvandik, Sergo; Tenson, Tanel; Hõrak, Rita

    2016-12-02

    Zinc is an important micronutrient for bacteria, but its excess is toxic. Recently, the ColRS two-component system was shown to detect and respond to zinc excess and to contribute to zinc tolerance of Pseudomonas putida. Here, we applied a label-free whole-cell proteome analysis to compare the zinc-induced responses of P. putida and colR knockout. We identified dozens of proteins that responded to zinc in a ColR-independent manner, among others, known metal efflux systems CzcCBA1, CzcCBA2, CadA2 and CzcD. Nine proteins were affected in a ColR-dependent manner, and besides known ColR targets, four new candidates for ColR regulon were identified. Despite the relatively modest ColR-dependent changes of wild-type, colR deficiency resulted in drastic proteome alterations, with 122 proteins up- and 62 down-regulated by zinc. This zinc-promoted response had remarkable overlap with the alternative sigma factor AlgU-controlled regulon in P. aeruginosa. The most prominent hallmark was a high induction of alginate biosynthesis proteins and regulators. This response likely alleviates the zinc stress, as the AlgU-regulated alginate regulator AmrZ was shown to contribute to zinc tolerance of colR knockout. Thus, the ColRS system is important for zinc homeostasis, and in its absence, alternative stress response pathways are activated to support the zinc tolerance.

  12. 15 CFR 970.203 - Exploration plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.203...; (iii) Designing and testing system components onshore and at sea; (iv) Designing and testing mining...

  13. 15 CFR 970.203 - Exploration plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.203...; (iii) Designing and testing system components onshore and at sea; (iv) Designing and testing mining...

  14. 15 CFR 970.203 - Exploration plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.203...; (iii) Designing and testing system components onshore and at sea; (iv) Designing and testing mining...

  15. 15 CFR 970.203 - Exploration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.203...; (iii) Designing and testing system components onshore and at sea; (iv) Designing and testing mining...

  16. 15 CFR 970.203 - Exploration plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.203...; (iii) Designing and testing system components onshore and at sea; (iv) Designing and testing mining...

  17. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci.

    PubMed

    Hughes, C S; Longo, E; Phillips-Jones, M K; Hussain, R

    2017-08-01

    A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanR A S A two-component system, comprising the histidine sensor kinase VanS A and the partner response regulator VanR A . The nature of the activating ligand for VanS A has not been identified, therefore this work sought to identify and characterise ligand(s) for VanS A . In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanS A protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanS A with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanS A , proposing them as activators of type A vancomycin resistance in the enterococci. Copyright © 2017 Diamond Light Source Ltd. Published by Elsevier B.V. All rights reserved.

  18. Updates on the sporulation process in Clostridium species.

    PubMed

    Talukdar, Prabhat K; Olguín-Araneda, Valeria; Alnoman, Maryam; Paredes-Sabja, Daniel; Sarker, Mahfuzur R

    2015-05-01

    Sporulation is an important strategy for certain bacterial species within the phylum Firmicutes to survive longer periods of time in adverse conditions. All spore-forming bacteria have two phases in their life; the vegetative form, where they can maintain all metabolic activities and replicate to increase numbers, and the spore form, where no metabolic activities exist. Although many essential components of sporulation are conserved among the spore-forming bacteria, there are differences in the regulation and the pathways among different genera, even at the species level. While we have gained much information from the most studied spore-forming bacterial genus, Bacillus, we still lack an in-depth understanding of spore formation in the genus Clostridium. Clostridium and Bacillus share the master regulator of sporulation, Spo0A, and its downstream pathways, but there are differences in the activation of the Spo0A pathway. While Bacillus species use a multi-component phosphorylation pathway for phosphorylation of Spo0A, termed phosphorelay, such a phosphorelay system is absent in Clostridium. On the other hand, a number of genes regulated by the different sporulation-specific transcription factors are conserved between different Clostridium and Bacillus species. In this review, we discuss the recent findings on Clostridium sporulation and compare the sporulation mechanism in Clostridium and Bacillus. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  20. Random Signal Fluctuations Can Reduce Random Fluctuations in Regulated Components of Chemical Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan; Ehrenberg, Måns

    2000-06-01

    Many intracellular components are present in low copy numbers per cell and subject to feedback control. We use chemical master equations to analyze a negative feedback system where species X and S regulate each other's synthesis with standard intracellular kinetics. For a given number of X-molecules, S-variation can be significant. We show that this signal noise does not necessarily increase X-variation as previously thought but, surprisingly, can be necessary to reduce it below a Poissonian limit. The principle resembles Stochastic Resonance in that signal noise improves signal detection.

  1. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  2. An Iron-Regulated Autolysin Remodels the Cell Wall To Facilitate Heme Acquisition in Staphylococcus lugdunensis

    PubMed Central

    Farrand, Allison J.; Haley, Kathryn P.; Lareau, Nichole M.; Heilbronner, Simon; McLean, John A.; Foster, Timothy

    2015-01-01

    Bacteria alter their cell surface in response to changing environments, including those encountered upon invasion of a host during infection. One alteration that occurs in several Gram-positive pathogens is the presentation of cell wall-anchored components of the iron-regulated surface determinant (Isd) system, which extracts heme from host hemoglobin to fulfill the bacterial requirement for iron. Staphylococcus lugdunensis, an opportunistic pathogen that causes infective endocarditis, encodes an Isd system. Unique among the known Isd systems, S. lugdunensis contains a gene encoding a putative autolysin located adjacent to the Isd operon. To elucidate the function of this putative autolysin, here named IsdP, we investigated its contribution to Isd protein localization and hemoglobin-dependent iron acquisition. S. lugdunensis IsdP was found to be iron regulated and cotranscribed with the Isd operon. IsdP is a specialized peptidoglycan hydrolase that cleaves the stem peptide and pentaglycine crossbridge of the cell wall and alters processing and anchoring of a major Isd system component, IsdC. Perturbation of IsdC localization due to isdP inactivation results in a hemoglobin utilization growth defect. These studies establish IsdP as an autolysin that functions in heme acquisition and describe a role for IsdP in cell wall reorganization to accommodate nutrient uptake systems during infection. PMID:26123800

  3. Financial Management Regulation. Volume 1. General Financial Management Information, Systems, and Requirements

    DTIC Science & Technology

    1993-05-01

    20301-1100 DoD Components will be provided copies of this Volume of the Regulation through normal publication channels. Other Federal Agencies and the... public may obtain copies of this Volume from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, (703) 487- 4650...SECTION 1 PARAGRAPH 1 SUtHI’ARAGRAIlTS ii DoD Financial Management Regulation Volume 1, Introductionp PUBLICATIONS SUPERSEDED This Volume of the

  4. Direct Involvement of the Master Nitrogen Metabolism Regulator GlnR in Antibiotic Biosynthesis in Streptomyces.

    PubMed

    He, Juan-Mei; Zhu, Hong; Zheng, Guo-Song; Liu, Pan-Pan; Wang, Jin; Zhao, Guo-Ping; Zhu, Guo-Qiang; Jiang, Wei-Hong; Lu, Yin-Hua

    2016-12-16

    GlnR, an OmpR-like orphan two-component system response regulator, is a master regulator of nitrogen metabolism in the genus Streptomyces In this work, evidence that GlnR is also directly involved in the regulation of antibiotic biosynthesis is provided. In the model strain Streptomyces coelicolor M145, an in-frame deletion of glnR resulted in markedly increased actinorhodin (ACT) production but reduced undecylprodigiosin (RED) biosynthesis when exposed to R2YE culture medium. Transcriptional analysis coupled with DNA binding studies revealed that GlnR represses ACT but activates RED production directly via the pathway-specific activator genes actII-ORF4 and redZ, respectively. The precise GlnR-binding sites upstream of these two target genes were defined. In addition, the direct involvement of GlnR in antibiotic biosynthesis was further identified in Streptomyces avermitilis, which produces the important anthelmintic agent avermectin. We found that S. avermitilis GlnR (GlnRsav) could stimulate avermectin but repress oligomycin production directly through the respective pathway-specific activator genes, aveR and olmRI/RII To the best of our knowledge, this report describes the first experimental evidence demonstrating that GlnR regulates antibiotic biosynthesis directly through pathway-specific regulators in Streptomyces Our results suggest that GlnR-mediated regulation of antibiotic biosynthesis is likely to be universal in streptomycetes. These findings also indicate that GlnR is not only a master nitrogen regulator but also an important controller of secondary metabolism, which may help to balance nitrogen metabolism and antibiotic biosynthesis in streptomycetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The emerging role of lysosomes in copper homeostasis.

    PubMed

    Polishchuk, Elena V; Polishchuk, Roman S

    2016-09-01

    The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.

  6. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process,more » we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.« less

  7. Paraspeckles: Where Long Noncoding RNA Meets Phase Separation.

    PubMed

    Fox, Archa H; Nakagawa, Shinichi; Hirose, Tetsuro; Bond, Charles S

    2018-02-01

    Long noncoding RNA (lncRNA) molecules are some of the newest and least understood players in gene regulation. Hence, we need good model systems with well-defined RNA and protein components. One such system is paraspeckles - protein-rich nuclear organelles built around a specific lncRNA scaffold. New discoveries show how paraspeckles are formed through multiple RNA-protein and protein-protein interactions, some of which involve extensive polymerization, and others with multivalent interactions driving phase separation. Once formed, paraspeckles influence gene regulation through sequestration of component proteins and RNAs, with subsequent depletion in other compartments. Here we focus on the dual aspects of paraspeckle structure and function, revealing an emerging role for these dynamic bodies in a multitude of cellular settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Method for improving voltage regulation of batteries, particularly Li/FeS.sub.2 thermal batteries

    DOEpatents

    Godshall, Ned A.

    1988-01-01

    Batteries are improved, especially with respect to voltage regulation properties, by employing as anode and cathode compositions, those which fall in a thermodynamically invariant region of the metallurgical phase diagram of the combination of the constituent components. The invention is especially useful in the Li/FeS.sub.2 system.

  9. Method for improving voltage regulation of batteries, particularly Li/FeS/sub 2/ thermal batteries

    DOEpatents

    Godshall, N.A.

    1986-06-10

    Batteries are improved, especially with respect to voltage regulation properties, by employing as anode and cathode compositions, those which fall in a thermodynamically invariant region of the metallurgical phase diagram of the combination of the constituent components. The invention is especially useful in the Li/FeS/sub 2/ system.

  10. The Ndc80 complex bridges two Dam1 complex rings

    PubMed Central

    Kim, Jae ook; Zelter, Alex; Umbreit, Neil T; Bollozos, Athena; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Asbury, Charles L; Davis, Trisha N

    2017-01-01

    Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital. DOI: http://dx.doi.org/10.7554/eLife.21069.001 PMID:28191870

  11. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  12. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    PubMed Central

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  13. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations ( healthy young UK men and Scandinavian diabetic patients ) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold ( P  < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P  < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.

  14. Future orientation in the self-system: possible selves, self-regulation, and behavior.

    PubMed

    Hoyle, Rick H; Sherrill, Michelle R

    2006-12-01

    Possible selves are representations of the self in the future. Early theoretical accounts of the construct suggested that possible selves directly influence motivation and behavior. We propose an alternative view of possible selves as a component in self-regulatory processes through which motivation and behavior are influenced. We demonstrate the advantages of this conceptualization in two studies that test predictions generated from theoretical models of self-regulation in which the possible selves construct could be embedded. In one study, we show how viewing possible selves as a source of behavioral standards in a control-process model of self-regulation yields support for a set of predictions about the influence of possible selves on current behavior. In the other study, we examine possible selves in the context of an interpersonal model of self-regulation, showing strong evidence of concern for relational value in freely generated hoped-for and feared selves. These findings suggest that the role of possible selves in motivation and behavior can be profitably studied in models that fully specify the process of self-regulation and that those models can be enriched by a consideration of future-oriented self-representations. We offer additional recommendations for strengthening research on possible selves and self-regulation.

  15. Naturalistic Driving Study Investigating Self-Regulation Behavior in Early Alzheimer's Disease: A Pilot Study.

    PubMed

    Paire-Ficout, Laurence; Lafont, Sylviane; Conte, Fanny; Coquillat, Amandine; Fabrigoule, Colette; Ankri, Joël; Blanc, Frédéric; Gabel, Cécilia; Novella, Jean-Luc; Morrone, Isabella; Mahmoudi, Rachid

    2018-05-16

    Because cognitive processes decline in the earliest stages of Alzheimer's disease (AD), the driving abilities are often affected. The naturalistic driving approach is relevant to study the driving habits and behaviors in normal or critical situations in a familiar environment of participants. This pilot study analyzed in-car video recordings of naturalistic driving in patients with early-stage AD and in healthy controls, with a special focus on tactical self-regulation behavior. Twenty patients with early-stage AD (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition [DSM-IV] criteria), and 21 healthy older adults were included in the study. Data collection equipment was installed in their personal vehicles. Two expert psychologists assessed driving performance using a specially designed Naturalistic Driving Assessment Scale (NaDAS), paying particular attention to tactical self-regulation behavior, and they recorded all critical safety events. Poorer driving performance was observed among AD drivers: their tactical self-regulation behavior was of lower quality. AD patients had also twice as many critical events as healthy drivers and three times more "unaware" critical events. This pilot study using a naturalistic approach to accurately show that AD drivers have poorer tactical self-regulation behavior than healthy older drivers. Future deployment of assistance systems in vehicles should specifically target tactical self-regulation components.

  16. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.

  17. Fluid handling equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Devices and techniques used in fluid-handling and vacuum systems are described. Section 1 presents several articles on fluid lines and tubing. Section 2 describes a number of components such as valves, filters, and regulators. The last section contains descriptions of a number of innovative fluid-handling systems.

  18. Three-particle correlation functions of quasi-two-dimensional one-component and binary colloid suspensions.

    PubMed

    Ho, Hau My; Lin, Binhua; Rice, Stuart A

    2006-11-14

    We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.

  19. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens.

    PubMed

    Gimenez-Ibanez, Selena; Solano, Roberto

    2013-01-01

    An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.

  20. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens

    PubMed Central

    Gimenez-Ibanez, Selena; Solano, Roberto

    2013-01-01

    An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease. PMID:23577014

Top