Continuous development of current sheets near and away from magnetic nulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.
2016-04-15
The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scalingmore » than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.« less
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.
2011-01-01
A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.
NASA Astrophysics Data System (ADS)
Takamoto, M.
2018-05-01
In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.
A note on two-dimensional asymptotic magnetotail equilibria
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Moore, Brian D.
1994-01-01
In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Shinohara, I.; Fujimoto, M.
2016-12-01
Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
The magnetosphere of Neptune - Its response to daily rotation
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Ness, Norman F.
1990-01-01
The Neptunian magnetosphere periodically changes every eight hours between a pole-on magnetosphere with only one polar cusp and an earth-type magnetosphere with two polar cusps. In the pole-on configuration, the tail current sheet has an almost circular shape with plasma currents closing entirely within the magnetosphere. Eight hours later the tail current sheet assumes an almost flat shape with plasma currents touching the magnetotail boundary and closing over the tail magnetopause. Magnetic field and tail current sheet configurations have been calculated in a three-dimensional model, but the plasma- and thermodynamic conditions were investigated in a simplified two-dimensional MHD equilibrium magnetosphere. It was found that the free energy in the tail region of the two-dimensional model becomes independent of the dipole tilt angle. It is conjectured that the Neptunian magnetotail might assume quasi-static equilibrium states that make the free energy of the system independent of its daily rotation.
Current-sheet formation in two-dimensional coronal fields
NASA Astrophysics Data System (ADS)
Billinghurst, M. N.; Craig, I. J. D.; Sneyd, A. D.
1993-11-01
The formation of current sheets by shearing motions in line-tied twin-lobed fields is examined. A general analytic argument shows that current sheets form along the fieldline bounding the two lobes in the case of both symmetric and asymmetric footpoint motions. In the case of strictly antisymmetric motions however no current sheets can form. These findings are reinforced by magnetic relaxation experiments involving sheared two-lobed fields represented by Clebsh variables. It is pointed out that, although current singularites cannot be expected to form when the line-tying assumption is relaxed, the two-lobed geometry is still consistent with the formation of highly localised currents - and strong resistive dissipation - along field lines close to the bounding fieldline.
Current sheet in plasma as a system with a controlling parameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridman, Yu. A., E-mail: yulya-fridman@yandex.ru; Chukbar, K. V., E-mail: Chukbar-KV@nrcki.ru
2015-08-15
A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.
NASA Technical Reports Server (NTRS)
Sato, T.; Walker, R. J.; Ashour-Abdalla, M.
1984-01-01
The energy conversion processes occurring in three-dimensional driven reconnection is analyzed. In particular, the energy conversion processes during localized reconnection in a taillike magnetic configuration are studied. It is found that three-dimensional driven reconnection is a powerful energy converter which transforms magnetic energy into plasma bulk flow and thermal energy. Three-dimensional driven reconnection is an even more powerful energy converter than two-dimensional reconnection, because in the three-dimensional case, plasmas were drawn into the reconnection region from the sides as well as from the top and bottom. Field-aligned currents are generated by three-dimensional driven reconnection. The physical mechanism responsible for these currents which flow from the tail toward the ionosphere on the dawnside of the reconnection region and from the ionosphere toward the tail on the duskside is identified. The field-aligned currents form as the neutral sheet current is diverted through the slow shocks which form on the outer edge of the reconnected field lines (outer edge of the plasma sheet).
Development of Turbulent Magnetic Reconnection in a Magnetic Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Can; Lu, Quanming; Wang, Rongsheng
In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with themore » thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.« less
Airborne Tomographic Swath Ice Sounding Processing System
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken
2013-01-01
Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Coroniti, F. V.
1992-01-01
The firehose marginally stable current sheet, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current sheet at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.
NASA Technical Reports Server (NTRS)
Volakis, John L.
1990-01-01
There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).
Experimental realization of two-dimensional boron sheets
NASA Astrophysics Data System (ADS)
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond
Arjmandi-Tash, Hadi; Belyaeva, Liubov A.
2016-01-01
Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds – and because 2D materials are atomically thin – the information provided by the edge might be used to identify different segments – ideally single nucleotides – in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential. PMID:26612268
Zuckermann, Ronald N.; Chu, Tammy K.; Nam, Ki Tae
2015-07-07
The present invention provides for novel peptoid oligomers that are capable of self-assembling into two-dimensional sheet structures. The peptoid oligomers can have alternately hydrophilic or polar side-chains and hydrophobic or apolar side-chains. The peptoid oligomers, and the two-dimensional sheet structures, can be applied to biological applications where the peptoid plays a role as a biological scaffold or building block. Also, the two-dimensional sheet structures of the present invention can be used as two-dimensional nanostructures in device applications.
NASA Technical Reports Server (NTRS)
Brittnacher, M.; Quest, K. B.; Karimabadi, H.
1995-01-01
We have developed the linear theory of collisionless ion tearing in a two-dimensional magnetotail equilibrium for a single resonant species. We have solved the normal mode problem for tearing instability by an algorithm that employs particle-in-cell simulation to calculate the orbit integrals in the Maxwell-Vlasov eigenmode equation. The results of our single-species tearing analysis can be applied to ion tearing where electron effects are not included. We have calculated the tearing growth rate as a function of the magnetic field component B(sub n) normal to the current sheet for thick and thin current sheets, and we show that marginal stability occurs when the normal gyrofrequency Omega(sub n) is comparable to the Harris neutral sheet growth rate. A cross-tail B(sub y) component has little effect on the growth rate for B(sub y) approximately = B(sub n). Even in the limit B(sub y) much greater than B(sub n), the mode is strongly stabilized by B(sub n). We report than random pitch angle scattering can overcome the stabilizing effect of B(sub n) and drive the growth rate up toward the Harris neutral sheet (B(sub n) = 0) value when the pitch angle diffusion rate is comparable to Omega(sub n).
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Speiser, T. W.
1985-01-01
The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.
Non-Evolutionarity of a Reconnecting Current Sheet as a Cause of Its Splitting into MHD Shocks
NASA Astrophysics Data System (ADS)
Markovsky, S. A.; Somov, B. V.
1995-04-01
Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.
Dynamo-driven plasmoid formation from a current-sheet instability
Ebrahimi, F.
2016-12-15
Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less
Numerical study of the current sheet and PSBL in a magnetotail model
NASA Technical Reports Server (NTRS)
Doxas, I.; Horton, W.; Sandusky, K.; Tajima, T.; Steinolfson, R.
1989-01-01
The current sheet and plasma sheet boundary layer (PSBL) in a magnetotail model are discussed. A test particle code is used to study the response of ensembles of particles to a two-dimensional, time-dependent model of the geomagnetic tail, and test the proposition (Coroniti, 1985a, b; Buchner and Zelenyi, 1986; Chen and Palmadesso, 1986; Martin, 1986) that the stochasticity of the particle orbits in these fields is an important part of the physical mechanism for magnetospheric substorms. The realistic results obtained for the fluid moments of the particle distribution with this simple model, and their insensitivity to initial conditions, is consistent with this hypothesis.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2011-01-01
A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
This paper is divided into four parts. First, the level set/vortex sheet method for three-dimensional two-phase interface dynamics is presented. Second, the LSS model for the primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring subgrid modeling are identified. Then, preliminary three-dimensional results of the level set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and an outlook to future work is given.
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Kiehas, S. A.; Ryzhkov, I. I.
2018-02-01
The stability of the Fadeev-like current sheet with respect to transversally propagating kink-like perturbations (flapping mode) is considered in terms of two-dimensional linear magnetohydrodynamic numerical simulations. It is found that the current sheet is stable when the total pressure minimum is located in the sheet center and unstable when the maximum value is reached there. It is shown that an unstable spot of any size enforces the whole sheet to be unstable, though the increment of instability decreases with the reduction of the unstable domain. In unstable sheets, the dispersion curve of instability shows a good match with the double-gradient (DG) model prediction. Here, the typical growth rate (short-wavelength limit) is close to the DG estimate averaged over the unstable region. In stable configurations, the typical frequency matches the maximum DG estimate. The dispersion curve of oscillations demonstrates a local maximum at wavelength ˜0.7 sheet half-width, which is a new feature that is absent in simplified analytical solutions.
Hart, F X
1990-01-01
The current-density distribution produced inside irregularly shaped, homogeneous human and rat models by low-frequency electric fields is obtained by a two-stage finite-difference procedure. In the first stage the model is assumed to be equipotential. Laplace's equation is solved by iteration in the external region to obtain the capacitive-current densities at the model's surface elements. These values then provide the boundary conditions for the second-stage relaxation solution, which yields the internal current-density distribution. Calculations were performed with the Excel spread-sheet program on a Macintosh-II microcomputer. A spread sheet is a two-dimensional array of cells. Each cell of the sheet can represent a square element of space. Equations relating the values of the cells can represent the relationships between the potentials in the corresponding spatial elements. Extension to three dimensions is readily made. Good agreement was obtained with current densities measured on human models with both, one, or no legs grounded and on rat models in four different grounding configurations. The results also compared well with predictions of more sophisticated numerical analyses. Spread sheets can provide an inexpensive and relatively simple means to perform good, approximate dosimetric calculations on irregularly shaped objects.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet
NASA Astrophysics Data System (ADS)
Klimas, Alexander J.; Uritsky, Vadim M.
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Criticality and turbulence in a resistive magnetohydrodynamic current sheet.
Klimas, Alexander J; Uritsky, Vadim M
2017-02-01
Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.
Graphanes: Sheets and stacking under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiao-Dong; Hand, Louis; Labet, Vanessa
2011-04-26
Eight isomeric two-dimensional graphane sheets are found in a theoretical study. Four of these nets—two built on chair cyclohexanes, two on boat—are more stable thermodynamically than the isomeric benzene, or polyacetylene. Three-dimensional crystals are built up from the two-dimensional sheets, and their hypothetical behavior under pressure (up to 300 GPa) is explored. While the three-dimensional graphanes remain, as expected, insulating or semiconducting in this pressure range, there is a remarkable inversion in stability of the five crystals studied. Two stacking polytypes that are not the most stable at ambient pressure (one based on an unusual chair cyclohexane net, the othermore » on a boat) are significantly stabilized with increasing pressure relative to stackings of simple chair sheets. The explanation may lie in the balance on intra and intersheet contacts in the extended arrays.« less
Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F.; Jain, Rekha
2013-05-15
Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan planemore » in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.« less
Seasonal dependence of large-scale Birkeland currents
NASA Technical Reports Server (NTRS)
Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.
1981-01-01
Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.
Song, Dianmei; Zhu, Jikui; Xuan, Liying; Zhao, Chenglan; Xie, Li; Chen, Lingyun
2018-01-01
Freestanding two dimensional (2D) porous nanostructures have great potential in electrical energy storage. In the present work, we reported the first synthesis of two-dimensional (2D) β-Ni(OH) 2 thin sheets (CQU-Chen-Ni-O-H-1) assembled by 3D nanoflake array as basic building units under acid condition by direct hydrothermal decomposition of the mixed solution of nickel nitrate (Ni(NO 3 ) 2 ) and acetic acid (CH 3 COOH, AA). The unique 3D nanoflake array assembled mesoporous 2D structures endow the thin sheets with a high specific capacitance of 1.78Fcm -2 (1747.5Fg -1 ) at the current density of 1.02mAcm -2 and good rate capability of 67.4% retain from 1.02 to 10.2mAcm -2 . The corresponding assembled asymmetric supercapacitor (ASC) achieves (CQU-Chen-Ni-O-H-1//active carbon (AC)) a high voltage of 1.8V and an energy density of 23.45Whkg -1 with a maximum power density of 9kWkg -1 , as well as cycability with 93.6% capacitance retention after 10,000 cycles. These results show the mesoporous thin sheets have great potential for SCs and other energy storage devices. Copyright © 2017 Elsevier Inc. All rights reserved.
The ion temperature gradient: An intrinsic property of Earth's magnetotail
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.
2017-08-01
Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.
Montenegro-Johnson, Thomas D; Lauga, Eric
2014-06-01
Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.
Yaguchi, A; Nagase, K; Ishikawa, M; Iwasaka, T; Odagaki, M; Hosaka, H
2006-01-01
Computer simulation and myocardial cell models were used to evaluate a low-energy defibrillation technique. A generated spiral wave, considered to be a mechanism of fibrillation, and fibrillation were investigated using two myocardial sheet models: a two-dimensional computer simulation model and a two-dimensional experimental model. A new defibrillation technique that has few side effects, which are induced by the current passing into the patient's body, on cardiac muscle is desired. The purpose of the present study is to conduct a basic investigation into an efficient defibrillation method. In order to evaluate the defibrillation method, the propagation of excitation in the myocardial sheet is measured during the normal state and during fibrillation, respectively. The advantages of the low-energy defibrillation technique are then discussed based on the stimulation timing.
Softly-confined water cluster between freestanding graphene sheets
NASA Astrophysics Data System (ADS)
Agustian, Rifan; Akaishi, Akira; Nakamura, Jun
2018-01-01
Confined water could adopt new forms not seen in the open air, such as a two-dimensional (2D) square ice trapped between two graphene sheets [Algara-Siller et al., Nature 519, 443-445 (2015)]. In this study, in order to investigate how the flexibility of graphene affects the confined structure of water molecules, we employed classical molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential to produce a soft-confining property of graphene. We discovered various solid-like structures of water molecules ranging from two-dimensional to three-dimensional structure encapsulated between two freestanding graphene sheets even at room temperature (300K). A small amount of water encapsulation leads to a layered two-dimensional form with triangular structure. On the other hand, large amounts of water molecules take a three-dimensional flying-saucer-like form with the square ice intra-layer structure. There is also a metastable state where both two-dimensional and three-dimensional structures coexist.
Disintegration of liquid sheets
NASA Technical Reports Server (NTRS)
Mansour, Adel; Chigier, Norman
1990-01-01
The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.
Instability of current sheets with a localized accumulation of magnetic flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchett, P. L.
2015-06-15
The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small “normal” B{sub z} component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing B{sub z} profile and the other with a localizedmore » B{sub z} “hump.” The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no B{sub z} accumulation even in the presence of open boundary conditions.« less
Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.
1993-01-01
Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less
Kinetic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; DeVore, C. R.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the plasma physics community, particularly in the context of magnetic reconnection. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high resolution particle-in-cell (PIC) simulations. The initial potential magnetic field is perturbed by thermal pressure introduced into the particle distribution far from the X line. The relaxation of this added stress leads to the development of a current sheet, which reconnects for imposed stress of sufficient strength. We compare the evolution and final state of our PIC simulations with magnetohydrodynamic simulations assuming both uniform and localized resistivities, and with force-free magnetic-field equilibria in which the amount of reconnect ion across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the terrestrial magnetotail and solar corona.
NASA Astrophysics Data System (ADS)
Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui
2014-02-01
A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model
NASA Technical Reports Server (NTRS)
Kantelis, J. P.; Widnall, S. E.
1986-01-01
A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.
Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes
NASA Technical Reports Server (NTRS)
Otto, A.
1995-01-01
During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.
Spectroscopic Diagnostics of Electric Fields in the Plasma of Current Sheets
NASA Astrophysics Data System (ADS)
Gavrilenko, Valeri; Kyrie, Natalya P.; Frank, Anna G.; Oks, Eugene
2004-11-01
Spectroscopic measurements of electric fields (EFs) in current sheet plasmas were performed in the CS-3D device. The device is intended to study the evolution of current sheets and the magnetic reconnection phenomena. We used the broadening of spectral lines (SLs) of HeII ions for diagnostics of EFs in the current sheet middle plane, and the broadening of SLs of HeI atoms for detection of EFs in the current sheet peripheral regions. For detection of EFs in current sheet plasma, we used SLs of HeII ions at 468.6; 320.3 and 656.0 nm, as well as SLs of HeI atoms at 667.8; 587.6; 492.2 and 447.1 nm. The latter two lines are of a special interest since their profiles include the dipole-forbidden components along with the allowed components. The experimental data have been analyzed by using the numerical calculations based on the Model Microfield Method. The maximum plasma density in the middle of the sheet was in the range (2-8) × 10^16 cm-3, the density in the peripheral regions was (1-2)×10^15 cm-3, and the strength of the quasi-one-dimensional anomalous electric fields in the peripheral regions reached the value of 100 kV/cm. Supported by CRDF, grant RU-P1-2594-MO-04; by the RFBR, grant 03-02-17282; and by the ISTC, project 2098.
Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet.
Zhou, Jian; Sun, Qiang
2014-01-07
A two-dimensional sheet with long range ferromagnetic (FM) order has been hotly pursued currently. The recent success in synthesizing polymerized Fe-phthalocyanine (poly-FePc) porous sheets paves a possible way to achieve this goal. However, the poly-FePc and its analog poly-CrPc structure are intrinsically antiferromagnetic (AFM). Using first principles combined with Monte-Carlo simulations, we study systematically the carrier-induced magnetic coupling transitions in poly-CrPc and poly-FePc sheets. We show that electron doping can induce stable FM states with Curie temperatures of 130-140 K, while hole doping will enhance the stability of the AFM states. Such changes in magnetic couplings depend on the balance of AFM superexchange and FM p-d exchange.
A study of trends and techniques for space base electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.
1979-01-01
The use of dry processing and alternate dielectrics for processing wafers is reported. A two dimensional modeling program was written for the simulation of short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide-silicon interface. In solving current continuity equation, the program does not converge. However, solving the two dimensional Poisson equation for the potential distribution was achieved. The status of other 2D MOSFET simulation programs are summarized.
Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Z.W.; Lee, L.C.; Otto, A.
1995-07-01
The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a largemore » portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.« less
Nonguiding Center Motion and Substorm Effects in the Magnetotail
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Kontodinas, Ioannis D.; Ball, Bryan M.; Larson, Douglas J.
1997-01-01
Thick and thin models of the middle magnetotail were developed using a consistent orbit tracing technique. It was found that currents carried near the equator by groups of ions with anisotropic distribution functions are not well approximated by the guiding center expressions. The guiding center equations fail primarily because the calculated pressure tensor is not magnetic field aligned. The pressure tensor becomes field aligned as one moves away from the equator, but here there is a small region in which the guiding center equations remain inadequate because the two perpendicular components of the pressure tensor are unequal. The significance of nonguiding center motion to substorm processes then was examined. One mechanism that may disrupt a thin cross-tail current sheet involves field changes that cause ions to begin following chaotic orbits. The lowest-altitude chaotic region, characterized by an adiabaticity parameter kappa approx. equal to 0.8, is especially important. The average cross-tail particle drift is slow, and we were unable to generate a thin current sheet using such ions. Therefore, any process that tends to create a thin current sheet in a region with kappa approaching 0.8 may cause the cross-tail current to get so low that it becomes insufficient to support the lobes. A different limit may be important in resonant orbit regions of a thin current sheet because particles reach a maximum cross-tail drift velocity. If the number of ions per unit length decreases as the tail is stretched, this part of the plasma sheet also may become unable to carry the cross-tail current needed to support the lobes. Thin sheets are needed for both resonant and chaotic orbit mechanisms because the distribution function must be highly structured. A description of current continuity is included to show how field aligned currents can evolve during the transition from a two-dimensional (2-D) to a 3-D configuration.
NASA Astrophysics Data System (ADS)
Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia
2013-03-01
Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.
The effects of magnetic B(y) component on geomagnetic tail equilibria
NASA Technical Reports Server (NTRS)
Hilmer, Robert V.; Voigt, Gerd-Hannes
1987-01-01
A two-dimensional linear magnetohydrostatic model of the magnetotail is developed here in order to investigate the effects of a significant B(y) component on the configuration of magnetotail equilibria. It is concluded that the enhanced B(y) values must be an essential part of the quiet magnetotail and do not result from a simple intrusion of the IMF. The B(y) field consists of a constant background component plus a nonuniform field existing only in the plasma sheet, where it is dependent on the plasma paramater beta and the strength of the magnetic B(z) component. B(y) is strongest at the neutral sheet and decreases monotonically in the + or - z direction, reaching a constant tail lobe value at the plasma sheet boundaries. The presence of a significant positive B(y) component produces currents, including field-aligned currents, that flow through the equatorial plane and toward and away from earth in the northern and southern halves of the plasma sheet, respectively.
A mechanism for magnetospheric substorms
NASA Technical Reports Server (NTRS)
Erickson, G. M.; Heinemann, M.
1994-01-01
Energy-principle analysis performed on two-dimensional, self-consistent solutions for magnetospheric convection indicates that the magnetosphere is unstable to isobaric (yet still frozen-in) fluctuations of plasma-sheet flux tubes. Normally, pdV work associated with compression maintains stability of the inward/outward oscillating normal mode. However, if Earth's ionosphere can provide sufficient mass flux, isobaric expansion of flux tubes can occur. The growth of a field-aligned potential drop in the near-Earth, midnight portion of the plasma sheet, associated with upward field-aligned currents responsible for the Harang discontinuity, redistributes plasma along field lines in a manner that destabilizes the normal mode. The growth of this unstable mode results in an out-of-equilibrium situation near the inner edge. When this occurs over a downtail extent comparable to the half-thickness of the plasma sheet, collapse ensues and forces thinning of the plasma sheet whereby conditions favorable to reconnection occur. This scenario for substorm onset is consistent with observed upward fluxes of ions, parallel potential drops, and observations of substorm onset. These observations include near Earth onset, pseudobreakups, the substorm current wedge, and local variations of plasma-sheet thickness.
Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils
NASA Astrophysics Data System (ADS)
Huang, Kai; Lu, Quanming; Gao, Lan; Ji, Hantao; Wang, Xueyi; Fan, Feibin
2018-05-01
In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r ,z ) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction ( Bθ ) is generated in the diffusion region and a strong electron current along the r direction ( Je r ) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r =0 will lead to the asymmetry of Je r and Bθ between the two outflow regions of magnetic reconnection.
NASA Astrophysics Data System (ADS)
Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru
2018-03-01
The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.
Guided magnonic Michelson interferometer
Ahmed, Muhammad H.; Jeske, Jan; Greentree, Andrew D.
2017-01-01
Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks. PMID:28134271
On spontaneous formation of current sheets: Untwisted magnetic fields
NASA Astrophysics Data System (ADS)
Bhattacharyya, R.; Low, B. C.; Smolarkiewicz, P. K.
2010-11-01
This is a study of the spontaneous formation of electric current sheets in an incompressible viscous fluid with perfect electrical conductivity, governed by the magnetohydrodynamic Navier-Stokes equations. Numerical solutions to two initial value problems are presented for a three-dimensional, periodic, untwisted magnetic field evolving, with no change in magnetic topology under the frozen-in condition and at characteristic fluid Reynolds numbers of the order of 500, from a nonequilibrium initial state with the fluid at rest. The evolution converts magnetic free energy into kinetic energy to be all dissipated away by viscosity so that the field settles into a minimum-energy, static equilibrium. The solutions demonstrate that, as a consequence of the frozen-in condition, current sheets must form during the evolution despite the geometric simplicity of the prescribed initial fields. In addition to the current sheets associated with magnetic neutral points and field reversal layers, other sheets not associated with such magnetic features are also in evidence. These current sheets form on magnetic flux surfaces. This property is used to achieve a high degree of the frozen-in condition in the simulations, by describing the magnetic field entirely in terms of the advection of its flux surfaces and integrating the resulting governing equations with a customized version of a general-purpose high-resolution (viz., nonoscillatory) hydrodynamical simulation code EULAG [J. M. Prusa et al., Comput. Fluids 37, 1193 (2008)]. Incompressibility imposes the additional global constraint that the flux surfaces must evolve with no change in the spatial volumes they enclose. In this approach, current sheet formation is demonstrated graphically by the progressive pressing together of suitably selected flux surfaces until their separation has diminished below the minimal resolved distance on a fixed grid. The frozen-in condition then fails in the simulation as the field reconnects through an effecting numerical resistivity. The principal results are related to the Parker theory of current-sheet formation and dissipation in the solar corona.
NASA Astrophysics Data System (ADS)
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.
Harrison, Michael G; Neukirch, Thomas
2009-04-03
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.
Magnetotail dynamics under isobaric constraints
NASA Technical Reports Server (NTRS)
Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael
1994-01-01
Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.
Tuning negative differential resistance in single-atomic layer boron-silicon sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ming-Yue; Liu, Chun-Sheng, E-mail: csliu@njupt.edu.cn, E-mail: yanxh@njupt.edu.cn; Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, Jiangsu
2015-03-21
Using density functional theory and nonequilibrium Green's function formalism for quantum transport calculation, we have quantified the ballistic transport properties along different directions in two-dimensional boron-silicon (B-Si) compounds, as well as the current response to bias voltage. The conductance of the most B-Si devices is higher than the conductance of one-atom-thick boron and silicene. Furthermore, the negative differential resistance phenomenon can be found at certain B-Si stoichiometric composition, and it occurs at various bias voltages. Also, the peak-to-valley ratio is sensitive to the B-Si composition and dependent of the direction considered for B-Si monolayers. The present findings could be helpfulmore » for applications of the single-atomic layer B-Si sheets in the field of semiconductor devices or low-dimensional electronic devices.« less
Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.
Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin
2016-06-01
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments
NASA Astrophysics Data System (ADS)
Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen
2012-02-01
We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.
Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.
1984-01-01
Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.
Multiple-Scale Physics During Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jara-Almonte, Jonathan
Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron kinetic scales such that the plasma is in the Hall-MHD regime. Surprisingly, plasmoids are observed at Lundquist numbers < 100 well below theoretical predictions (> 10,000). The number of plasmoids scales with both Lundquist number and current sheet aspect ratio. The Hall quadrupolar fields are shown to suppress plasmoids. Finally, plasmoids are shown to couple local and global physics by enhancing the reconnection rate. These results are compared with prior studies of tearing and plasmoid instability, and implications for astrophysical plasmas, laboratory experiments, and theoretical studies of reconnection are discussed.« less
Inter-ribbon tunneling in graphene: An atomistic Bardeen approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Put, Maarten L., E-mail: maarten.vandeput@uantwerpen.be; Magnus, Wim; imec, B-3001 Heverlee
A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases inmore » current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states.« less
Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona
NASA Technical Reports Server (NTRS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2010-01-01
Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection
Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations
NASA Technical Reports Server (NTRS)
Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.
2011-01-01
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Cheng, Xin-Lu
2018-02-01
Three two-dimensional (2D) single layer boron nitride sheets have been predicted based on the first-principles calculations. These 2D boron nitride sheets are comprised of equivalent boron atoms and nitride atoms with sp2 and sp bond hybridization. The geometry optimization reflects that they all possess stable planar crystal structures with the space group P 6 bar 2 m (D3h3) symmetry. The charge density distribution manifests that the B-N bonds in these boron nitride sheets are covalent in nature but with ionic characteristics. The tunable band gaps indicate their potential applications in nanoscale electronic and optoelectronic devices by changing the length of sp-bonded Bsbnd N linkages.
Collisionless reconnection in a quasi-neutral sheet near marginal stability
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Coroniti, F. V.; Pellat, R.; Karimabadi, H.
1989-01-01
Particle simulations are used to investigate the process of collisionless reconnection in a magnetotail configuration which includes a pressure gradient along the tail axis and tail flaring. In the absence of electron stabilization effects, the tearing mode is stabilized when the ion gyrofrequency in the normal field exceeds the growth rate in the corresponding one-dimensional current sheet. The presence of a low-frequency electromagnetic perturbation in the lobes can serve to destabilize a marginally stable current sheet by producing an extended neutral-sheet region which can then undergo reconnection. These results help to explain how X-type neutral lines, such as those associated with the onset of magnetospheric substorms, can be formed in the near-earth plasma sheet.
Three-Dimensional Modeling of Quasi-Homologous Solar Jets
NASA Technical Reports Server (NTRS)
Pariat, E.; Antiochos, S. K.; DeVore, C. R.
2010-01-01
Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.
NASA Astrophysics Data System (ADS)
Lu, Li; Liu, Zhen-Xing; Cao, Jin-Bin
2002-02-01
Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere.
Electrostatic ``bounce'' instability in a magnetotail configuration
NASA Astrophysics Data System (ADS)
Fruit, G.; Louarn, P.; Tur, A.
2013-02-01
To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped particles that bounce within the sheet. This work follows the initial investigation by Tur et al. [Phys. Plasmas 17, 102905 (2010)] that is revised and extended. Using a quasi-parabolic equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that strongly unstable electrostatic modes may develop provided that the current sheet is moderately stretched and, more important, that the proportion of passing particle remains small (less than typically 10%). This strong but finely tuned instability may offer opportunities to explain features of magnetospheric substorms.
Explosive Magnetic Reconnection in Double-current Sheet Systems: Ideal versus Resistive Tearing Mode
NASA Astrophysics Data System (ADS)
Baty, Hubert
2017-03-01
Magnetic reconnection associated with the tearing instability occurring in double-current sheet systems is investigated within the framework of resistive magnetohydrodynamics (MHD) in a two-dimensional Cartesian geometry. A special emphasis on the existence of fast and explosive phases is taken. First, we extend the recent theory on the ideal tearing mode of a single-current sheet to a double-current layer configuration. A linear stability analysis shows that, in long and thin systems with (length to shear layer thickness) aspect ratios scaling as {S}L9/29 (S L being the Lundquist number based on the length scale L), tearing modes can develop on a fast Alfvénic timescale in the asymptotic limit {S}L\\to ∞ . The linear results are confirmed by means of compressible resistive MHD simulations at relatively high S L values (up to 3× {10}6) for different current sheet separations. Moreover, the nonlinear evolution of the ideal double tearing mode (IDTM) exhibits a richer dynamical behavior than its single-tearing counterpart, as a nonlinear explosive growth violently ends up with a disruption when the two current layers interact trough the merging of plasmoids. The final outcome of the system is a relaxation toward a new state, free of magnetic field reversal. The IDTM dynamics is also compared to the resistive double tearing mode dynamics, which develops in similar systems with smaller aspect ratios, ≳ 2π , and exhibits an explosive secondary reconnection, following an initial slow resistive growth phase. Finally, our results are used to discuss the flaring activity in astrophysical magnetically dominated plasmas, with a particular emphasis on pulsar systems.
Cnidarian Nerve Nets and Neuromuscular Efficiency.
Satterlie, Richard A
2015-12-01
Cnidarians are considered "nerve net animals" even though their nervous systems include various forms of condensation and centralization. Yet, their broad, two-dimensional muscle sheets are innervated by diffuse nerve nets. Do the motor nerve nets represent a primitive organization of multicellular nervous systems, do they represent a consequence of radial symmetry, or do they offer an efficient way to innervate a broad, two-dimensional muscle sheet, in which excitation of the muscle sheet can come from multiple sites of initiation? Regarding the primitive nature of cnidarian nervous systems, distinct neuronal systems exhibit some adaptations that are well known in higher animals, such as the use of oversized neurons with increased speed of conduction, and condensation of neurites into nerve-like tracts. A comparison of neural control of two-dimensional muscle sheets in a mollusc and jellyfish suggests that a possible primitive feature of cnidarian neurons may be a lack of regional specialization into conducting and transmitting regions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Magnetic Configurations of the Tilted Current Sheets and Dynamics of Their Flapping in Magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2009-04-01
Based on multiple spacecraft measurements, the geometrical structures of tilted current sheet and tail flapping waves have been analyzed and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the magnetic equatorial plane, while the tilted current sheet may lean severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, its half thickness is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail thick current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1RE, while the neutral sheet may be very thin, with its half thickness being several tenths ofRE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
NASA Astrophysics Data System (ADS)
Korovinskiy, Daniil B.; Kubyshkina, Darya I.; Semenov, Vladimir S.; Kubyshkina, Marina V.; Erkaev, Nikolai V.; Kiehas, Stefan A.
2018-04-01
A specific class of solutions of the Vlasov-Maxwell equations, developed by means of generalization of the well-known Harris-Fadeev-Kan-Manankova family of exact two-dimensional equilibria, is studied. The examined model reproduces the current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The generalized model allows magnetic configurations with equatorial magnetic fields decreasing in a tailward direction as slow as 1/x, contrary to the original Kan model (1/x3); magnetic configurations with a single X point are also available. The analytical solution is compared with the empirical T96 model in terms of the magnetic flux tube volume. It is found that parameters of the analytical model may be adjusted to fit a wide range of averaged magnetotail configurations. The best agreement between analytical and empirical models is obtained for the midtail at distances beyond 10-15 RE at high levels of magnetospheric activity. The essential model parameters (current sheet scale, current density) are compared to Cluster data of magnetotail crossings. The best match of parameters is found for single-peaked current sheets with medium values of number density, proton temperature and drift velocity.
A new solution chemical method to make low dimensional thermoelectric materials
NASA Astrophysics Data System (ADS)
Ding, Zhongfen
2001-11-01
Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.
A two-fluid study of oblique tearing modes in a force-free current sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.
2016-01-15
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less
A two-fluid study of oblique tearing modes in a force-free current sheet
Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...
2016-01-01
Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less
Localized tearing modes in the magnetotail driven by curvature effects
NASA Technical Reports Server (NTRS)
Sundaram, A. K.; Fairfield, D. H.
1995-01-01
The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed.
NASA Astrophysics Data System (ADS)
Winglee, R. M.
1994-09-01
While magnetohydrodynamics (MHD) can provide a reasonable description of the overall magnetic reconnection that is believed to drive flares, additional, and often separate processes have to be envoked to in order to explain the electron acceleration that is responsible for many of the observed flare emissions. A new model that incorporates the dynamic coronal current sheets, the reconnection site, and possible electron acceleration processes is developed through the use of two-dimensional particle and modified two-fluid simulations. The specific example of an eruptive flare driven by the coalescence of flux tubes supported by prescribed photospheric current elements is evaluated. It is shown that the electrons and ions have differential trajectories through the coronal current sheet which leads to the development of additonal plasma currents that flow around the surface of the current sheet. These surface currents are explicitly neglected in MHD but they are vital to the flare dynamics because they divert current from the coronal current sheet into the chromosphere, producing an effective resistivity that aids the development of fast reconnection. Because the surface currents are in the plane of the magnetic field, electrons in them experience strong acceleration and can account for the observed hard X-ray emissions. Model predictions are compared with observed time profiles of hard X-ray emissions and Doppler shifts seen in soft X-ray line emissions and are able to account for such features as (1) the asymmetry in the rise and decay time of the hard X-rays, (2) the apparent delay between the largest Doppler shifts and the hard X-ray peak, and (3) the relatively low intensity of the blue-shifted component. The use of particle and fluid simulations is important because it provides different, but complementary treatments of the electron acceleration, the global magnetic morphology, and the flare current system.
Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, J.; Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543; Hudson, S. R.
2015-09-15
We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at themore » resonant surface.« less
NASA Astrophysics Data System (ADS)
Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.
2005-01-01
A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.
Electrical Oscillations in Two-Dimensional Microtubular Structures
Cantero, María del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.
2016-01-01
Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton. PMID:27256791
NASA Astrophysics Data System (ADS)
Krishna, Rahul; Titus, Elby
2017-12-01
Here, we demonstrate for the first time the structural evolution of 1D graphene nanotubes (GNTs) by the cutting of two dimensional (2D) graphene oxide (GO) sheet in reducing environment at ambient conditions in presence of Ni metal in acidic environment. We observed that in-situ generated radical hydrogen (Hrad) responsible for cutting of graphene sheets and re-structuring of 2D sheet structure to one 1D nanotubes. Structural evolution of GNTs was confirmed by using of transmission electron microscopy (TEM) technique. The current vs. voltage (I-V) characteristics of GNTs displayed room temperature (RT) negative differential resistance (NDR) effect which is typical in nanowires, suggested the applicability of nanomaterial for various kind of electronics applications such as memory devices and transistors fabrication.
Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima
2017-10-01
We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team
2017-10-01
We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
Current Sheet Thinning Associated with Dayside Reconnection
NASA Astrophysics Data System (ADS)
Hsieh, M.; Otto, A.; Ma, X.
2011-12-01
The thinning of the near-Earth current sheet during the growth phase is of critical importance to understand geomagnetic substorms and the conditions that lead to the onset of the expansion phase. We have proposed that convection from the midnight tail region to the dayside as the cause for this current sheet thinning. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. The process is examined by three-dimensional MHD simulations. The properties of the current sheet thinning are determined as a function of the magnitude of convection toward the dayside and the lobe boundary conditions. It is shown that the model yields a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase.
Observations of nonadiabatic acceleration of ions in Earth's magnetotail
NASA Technical Reports Server (NTRS)
Frank, L. A.; Paterson, W. R.; Kivelson, M. G.
1994-01-01
We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity distributions are the result of fractional or few gyromotions before ejection out of the current sheet, but this speculation must be further investigated with appropriate kinetic simulation of trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mészárosová, Hana; Karlický, Marian; Jelínek, Petr
Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less
Solution Conformations of Graphene Oxide Sheets, and Two-Dimensional Nanofluidics
NASA Astrophysics Data System (ADS)
Koltonow, Andrew R.
This work reports studies on the physical properties of collections of nanosheets. First, the configurations of graphene oxide sheets in solution are studied. Polarized optical microscopy reveals quickly and decisively that sheets remain flat and form lyotropic liquid crystals over a wide range of solvent conditions. When solvent conditions are inhospitable enough, sheets agglomerate into stacks rather crumpling upon themselves. Theory and simulation suggest that the crumpled state, which can be formed by compressing sheets, is metastable. This work might correct a persistent misunderstanding about the solution physics of graphene oxide. The other major area of study concerns the hydration layers in between lamellar stacks of exfoliated, restacked nanosheets. These layers comprise massive arrays of parallel two-dimensional nanofluidic channels, which exhibit enhanced unipolar ionic conductivity with counterions as the majority charge carriers. Based on the previously discovered graphene oxide nanofluidic platform, exfoliated vermiculite nanofluidic channels are constructed, which shuttle protons through the hydration channels by a Grotthuss mechanism, and which show superior thermal stability to graphene oxide. The 2D nanofluidics platform is also used to demonstrate "kirigami nanofluidics", where ion transport can be manipulated by cutting the film into specific shapes. This can give rise to ionic current rectification. The rectification effect is attributed to the size and shape mismatch of the concentration polarization zones developed at the inlets and outlets of the nanofluidic channels. The kirigami nanofluidic platform can be used to fabricate ionic diodes and other simple devices. This material platform is expected to be a useful tool for nanofluidics researchers, because it offers a way to carry out nanofluidic experiments quickly with minimal equipment and little expense.
Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less
Magnetic configurations of the tilted current sheets in magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2008-11-01
In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak magnetospheric activity.
Design of a High-Energy, Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Thio, Y. C. F.; Cassibry, J. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Design details of a proposed high-energy (approx. 50 kJ/pulse), two-stage pulsed plasma thruster are presented. The long-term goal of this project is to develop a high-power (approx. 500 kW), high specific impulse (approx. 7500 s), highly efficient (approx. 50%),and mechanically simple thruster for use as primary propulsion in a high-power nuclear electric propulsion system. The proposed thruster (PRC-PPT1) utilizes a valveless, liquid lithium-fed thermal plasma injector (first stage) followed by a high-energy pulsed electromagnetic accelerator (second stage). A numerical circuit model coupled with one-dimensional current sheet dynamics, as well as a numerical MHD simulation, are used to qualitatively predict the thermal plasma injection and current sheet dynamics, as well as to estimate the projected performance of the thruster. A set of further modelling efforts, and the experimental testing of a prototype thruster, is suggested to determine the feasibility of demonstrating a full scale high-power thruster.
A novel concept of dielectrophoretic engine oil filter
NASA Astrophysics Data System (ADS)
Khusid, Boris; Shen, Yueyang; Elele, Ezinwa
2011-11-01
A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60 Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained provide critical design guidelines for the development of a filter based on the retention capability of challenge particles. The work was supported in part by ONR and NSF.
Patchy reconnection in the solar corona
NASA Astrophysics Data System (ADS)
Guidoni, Silvina Esther
2011-05-01
Magnetic reconnection in plasmas, a process characterized by a change in connectivity of field lines that are broken and connected to other ones with different topology, owes its usefulness to its ability to unify a wide range of phenomena within a single universal principle. There are newly observed phenomena in the solar corona that cannot be reconciled with two-dimensional or steady-state standard models of magnetic reconnection. Supra-arcade downflows (SADs) and supra-arcade downflowing loops (SADLs) descending from reconnection regions toward solar post-flare arcades seem to be two different observational signatures of retracting, isolated reconnected flux tubes with irreducible three-dimensional geometries. This dissertation describes work in refining and improving a novel model of patchy reconnection, where only a small bundle of field lines is reconnected across a current sheet (magnetic discontinuity) and forms a reconnected thin flux tube. Traditional models have not been able to explain why some of the observed SADs appear to be hot and relatively devoid of plasma. The present work shows that plasma depletion naturally occurs in flux tubes that are reconnected across nonuniform current sheets and slide trough regions of decreasing magnetic field magnitude. Moreover, through a detailed theoretical analysis of generalized thin flux tube equations, we show that the addition to the model of pressure-driven parallel dynamics, as well as temperature-dependent, anisotropic viscosity and thermal conductivity is essential for self-consistently producing gas-dynamic shocks inside reconnected tubes that heat and compress plasma to observed temperatures and densities. The shock thickness can be as long as the entire tube and heat can be conducted along tube's legs, possibly driving chromospheric evaporation. We developed a computer program that solves numerically the thin flux tube equations that govern the retraction of reconnected tubes. Simulations carried out with this program corroborate our theoretical predictions. A comparison of these simulations with fully three-dimensional magnetohydrodynamic simulations is presented to assess the validity of the thin flux tube model. We also present an observational method based on total emission measure and mean temperature to determine where in the current sheet a tube was reconnected.
NASA Astrophysics Data System (ADS)
Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.
2018-04-01
Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.
Stability of Thin Liquid Sheet Flows
NASA Technical Reports Server (NTRS)
McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.
1997-01-01
A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.
Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil
NASA Astrophysics Data System (ADS)
Xia, X.; Mohseni, K.
2017-11-01
Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modeling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad-hoc implementation, the unsteady Kutta condition, the conservation of circulation, as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength, and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for airfoils in steady and unsteady background flows.
Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor
NASA Astrophysics Data System (ADS)
Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.
2012-05-01
Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.
Wang, Bin; Li, Xianglong; Luo, Bin; Jia, Yuying; Zhi, Linjie
2013-02-21
A unique silicon-based anode for lithium ion batteries is developed via the facile hybridization of one-dimensional silicon nanowires and two-dimensional graphene sheets. The resulting paper-like film holds advantages highly desirable for not only accommodating the volume change of silicon, but also facilitating the fast transport of electron and lithium ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheng-Hsien; Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan; Low, Ying Min, E-mail: ceelowym@nus.edu.sg
2016-05-15
Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial,more » and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.« less
Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line
NASA Astrophysics Data System (ADS)
Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.
2004-11-01
Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.
NASA Astrophysics Data System (ADS)
Muñoz, P. R.; Chian, A. C.
2013-12-01
We implement a method to detect coherent magnetic structures using the Haar discrete wavelet transform (Salem et al., ApJ 702, 537, 2009), and apply it to an event detected by Cluster at the turbulent boundary layer of an interplanetary magnetic flux rope. The wavelet method is able to detect magnetic coherent structures and extract main features of solar wind intermittent turbulence, such as the power spectral density and the scaling exponent of structure functions. Chian and Muñoz (ApJL 733, L34, 2011) investigated the relation between current sheets, turbulence, and magnetic reconnections at the leading edge of an interplanetary coronal mass ejection measured by Cluster upstream of the Earth's bow shock on 2005 January 21. We found observational evidence of two magnetically reconnected current sheets in the vicinity of a front magnetic cloud boundary layer, where the scaling exponent of structure functions of magnetic fluctuations exhibits multifractal behavior. Using the wavelet technique, we show that the current sheets associated to magnetic reconnection are part of the set of magnetic coherent structures responsible for multifractality. By removing them using a filtering criteria, it is possible to recover a self-similar scaling exponent predicted for homogeneous turbulence. Finally, we discuss an extension of the wavelet technique to study coherent structures in two-dimensional solar magnetograms.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
Atomically thin two-dimensional organic-inorganic hybrid perovskites
NASA Astrophysics Data System (ADS)
Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong
2015-09-01
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.
Generation of light-sheet at the end of multimode fibre (Conference Presentation)
NASA Astrophysics Data System (ADS)
Plöschner, Martin; Kollárová, Véra; Dostál, Zbyněk.; Nylk, Jonathan; Barton-Owen, Thomas; Ferrier, David E. K.; Chmelik, Radim; Dholakia, Kishan; Cizmár, TomáÅ.¡
2017-02-01
Light-sheet fluorescence microscopy is quickly becoming one of the cornerstone imaging techniques in biology as it provides rapid, three-dimensional sectioning of specimens at minimal levels of phototoxicity. It is very appealing to bring this unique combination of imaging properties into an endoscopic setting and be able to perform optical sectioning deep in tissues. Current endoscopic approaches for delivery of light-sheet illumination are based on single-mode optical fibre terminated by cylindrical gradient index lens. Such configuration generates a light-sheet plane that is axially fixed and a mechanical movement of either the sample or the endoscope is required to acquire three-dimensional information about the sample. Furthermore, the axial resolution of this technique is limited to 5um. The delivery of the light-sheet through the multimode fibre provides better axial resolution limited only by its numerical aperture, the light-sheet is scanned holographically without any mechanical movement, and multiple advanced light-sheet imaging modalities, such as Bessel and structured illumination Bessel beam, are intrinsically supported by the system due to the cylindrical symmetry of the fibre. We discuss the holographic techniques for generation of multiple light-sheet types and demonstrate the imaging on a sample of fluorescent beads fixed in agarose gel, as well as on a biological sample of Spirobranchus Lamarcki.
An integrated single- and two-photon non-diffracting light-sheet microscope
NASA Astrophysics Data System (ADS)
Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang
2018-04-01
We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.
Complex structures from patterned cell sheets
Misra, M.; Audoly, B.; Shvartsman, S. Y.
2017-01-01
The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348251
On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence
NASA Technical Reports Server (NTRS)
Thess, A.; Zikanov, Oleg
2004-01-01
We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.
Two-dimensional electron gas in tricolor oxide interfaces
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Middey, Srimanta; Meyers, Derek; Tchakhalian, Jak
2014-03-01
Understanding and manipulating spin of electrons in nanometer scale is the main challenge of current spintronics, recent emergent two-dimensional electron gas in oxide interface provides a good platform to investigate the spin behavior by covering an insulating magnetic oxide layer. In this work, take titanates as an example, ultra-thin tricolor (tri-compound) titanate superlattices ([LaTiO3/SrTiO3/YTiO3]) were grown in a layer-by-layer way by pulsed laser deposition. High sample quality and their electronic structures were characterized by the combination of in-situ photoelectron and ex-situ structure and surface morphology probes. Temperature-dependent sheet resistance indicates the presence of metallic interfaces in both [LaTiO3 /SrTiO3 ] and all the tricolor structures, whereas a [YTiO3 /SrTiO3] bi-layer shows insulating behavior. The tricolor titanate superlattices provide an opportunity to induce tunable spin-polarization into the two-dimensional electron gas (2DEG) with Mott carriers.
CURRENT SHEET THINNING AND ENTROPY CONSTRAINTS DURING THE SUBSTORM GROWTH PHASE
NASA Astrophysics Data System (ADS)
Otto, A.; Hall, F., IV
2009-12-01
A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 R_E. We propose that the cause for the current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux which is eroded at the dayside as a result of dayside reconnection. Adiabatic convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of the magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is documented by three-dimensional MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution during the substorm growth phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkaev, N. V.; Siberian Federal University, Krasnoyarsk; Semenov, V. S.
A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B{sub {tau}}) and normal (B{sub n}) magnetic field components along the normal ({nabla}{sub n}B{sub {tau}}) and tangential ({nabla}{sub {tau}}B{sub n}) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted asmore » so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.« less
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Atomically thin two-dimensional organic-inorganic hybrid perovskites.
Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong
2015-09-25
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.
2015-01-01
Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039
Inhomogeneous kinetic effects related to intermittent magnetic discontinuities
NASA Astrophysics Data System (ADS)
Greco, A.; Valentini, F.; Servidio, S.; Matthaeus, W. H.
2012-12-01
A connection between kinetic processes and two-dimensional intermittent plasma turbulence is observed using direct numerical simulations of a hybrid Vlasov-Maxwell model, in which the Vlasov equation is solved for protons, while the electrons are described as a massless fluid. During the development of turbulence, the proton distribution functions depart from the typical configuration of local thermodynamic equilibrium, displaying statistically significant non-Maxwellian features. In particular, temperature anisotropy and distortions are concentrated near coherent structures, generated as the result of the turbulent cascade, such as current sheets, which are nonuniformly distributed in space. Here, the partial variance of increments (PVI) method has been employed to identify high magnetic stress regions within a two-dimensional turbulent pattern. A quantitative association between non-Maxwellian features and coherent structures is established.
Vertex Models of Epithelial Morphogenesis
Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.
2014-01-01
The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108
Theory of magnetic reconnection in solar and astrophysical plasmas.
Pontin, David I
2012-07-13
Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.
Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions
NASA Astrophysics Data System (ADS)
Henn, Philipp; Liewald, Mathias; Sindel, Manfred
2017-10-01
This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.
Convection Constraints and Current Sheet Thinning During the Substorm Growth Phase
NASA Astrophysics Data System (ADS)
Otto, A.; Hsieh, M.
2012-12-01
A typical property during the growth phase of geomagnetic substorms is the thinning of the near-Earth current sheet, most pronounced in the region between 6 and 15 RE. We propose that the cause for this current sheet thinning is convection from the midnight tail region to the dayside to replenish magnetospheric magnetic flux that is eroded at the dayside as a result of dayside reconnection. Slow (adiabatic) convection from the near-Earth tail region toward the dayside must conserve the entropy on magnetic field lines. This constraint prohibits a source of magnetic flux from a region further out in the magnetotail. Thus the near-Earth tail region is increasingly depleted of magnetic flux (the Erickson and Wolf [1980] problem) with entropy matching that of flux tubes that are eroded on the dayside. It is proposed that the magnetic flux depletion in the near-Earth tail forces the formation of thin current layers. The process is illustrated and examined by three-dimensional meso-scale MHD simulations. It is shown that the simulations yield a time scale, location, and other general characteristics of the current sheet evolution consistent with observations during the substorm growth phase. The developing thin current sheet is easily destabilized and can undergo localized reconnection events. We present properties of the thinning current sheet, the associated entropy evolution, examples of localized reconnection onset and we discuss the dependence of this process on external parameters such the global reconnection rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franci, Luca; INFN-Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto F.no; Hellinger, Petr, E-mail: petr.hellinger@asu.cas.cz
2016-03-25
Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the othermore » hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.« less
Non-linear tearing of 3D null point current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk
2014-08-15
The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet createsmore » a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.« less
Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesse, Michael; Kuznetsova, Masha; Schindler, Karl
2005-10-01
A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.
Rigidity of transmembrane proteins determines their cluster shape
NASA Astrophysics Data System (ADS)
Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas
2016-01-01
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
Anomalous Li Storage Capability in Atomically Thin Two-Dimensional Sheets of Nonlayered MoO2.
Xia, Chuan; Zhou, Yungang; Velusamy, Dhinesh Babu; Farah, Abdiaziz A; Li, Peng; Jiang, Qiu; Odeh, Ihab N; Wang, Zhiguo; Zhang, Xixiang; Alshareef, Husam N
2018-02-14
Since the first exfoliation and identification of graphene in 2004, research on layered ultrathin two-dimensional (2D) nanomaterials has achieved remarkable progress. Realizing the special importance of 2D geometry, we demonstrate that the controlled synthesis of nonlayered nanomaterials in 2D geometry can yield some unique properties that otherwise cannot be achieved in these nonlayered systems. Herein, we report a systematic study involving theoretical and experimental approaches to evaluate the Li-ion storage capability in 2D atomic sheets of nonlayered molybdenum dioxide (MoO 2 ). We develop a novel monomer-assisted reduction process to produce high quality 2D sheets of nonlayered MoO 2 . When used as lithium-ion battery (LIB) anodes, these ultrathin 2D-MoO 2 electrodes demonstrate extraordinary reversible capacity, as high as 1516 mAh g -1 after 100 cycles at the current rate of 100 mA g -1 and 489 mAh g -1 after 1050 cycles at 1000 mA g -1 . It is evident that these ultrathin 2D sheets did not follow the normal intercalation-cum-conversion mechanism when used as LIB anodes, which was observed for their bulk analogue. Our ex situ XPS and XRD studies reveal a Li-storage mechanism in these 2D-MoO 2 sheets consisting of an intercalation reaction and the formation of metallic Li phase. In addition, the 2D-MoO 2 based microsupercapacitors exhibit high areal capacitance (63.1 mF cm -2 at 0.1 mA cm -2 ), good rate performance (81% retention from 0.1 to 2 mA cm -2 ), and superior cycle stability (86% retention after 10,000 cycles). We believe that our work identifies a new pathway to make 2D nanostructures from nonlayered compounds, which results in an extremely enhanced energy storage capability.
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
Four-dimensional characterization of a sheet-forming web
Sari-Sarraf, Hamed; Goddard, James S.
2003-04-22
A method and apparatus are provided by which a sheet-forming web may be characterized in four dimensions. Light images of the web are recorded at a point adjacent the initial stage of the web, for example, near the headbox in a paperforming operation. The images are digitized, and the resulting data is processed by novel algorithms to provide a four-dimensional measurement of the web. The measurements include two-dimensional spatial information, the intensity profile of the web, and the depth profile of the web. These measurements can be used to characterize the web, predict its properties and monitor production events, and to analyze and quantify headbox flow dynamics.
Initial rigid response and softening transition of highly stretchable kirigami sheet materials.
Isobe, Midori; Okumura, Ko
2016-04-27
We study, experimentally and theoretically, the mechanical response of sheet materials on which line cracks or cuts are arranged in a simple pattern. Such sheet materials, often called kirigami (the Japanese words, kiri and gami, stand for cut and paper, respectively), demonstrate a unique mechanical response promising for various engineering applications such as stretchable batteries: kirigami sheets possess a mechanical regime in which sheets are highly stretchable and very soft compared with the original sheets without line cracks, by virtue of out-of-plane deformation. However, this regime starts after a transition from an initial stiff regime governed by in-plane deformation. In other words, the softness of the kirigami structure emerges as a result of a transition from the two-dimensional to three-dimensional deformation, i.e., from stretching to bending. We clarify the physical origins of the transition and mechanical regimes, which are revealed to be governed by simple scaling laws. The results could be useful for controlling and designing the mechanical response of sheet materials including cell sheets for medical regeneration and relevant to the development of materials with tunable stiffness and mechanical force sensors.
Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C
2014-09-15
We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
A vector scanning processing technique for pulsed laser velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Edwards, Robert V.
1989-01-01
Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.
Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012
NASA Astrophysics Data System (ADS)
Wang, Y.-M.; Young, P. R.; Muglach, K.
2014-01-01
During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.
Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Young, P. R.; Muglach, K.
2013-01-01
During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180 deg; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.
Analysis of thermal stresses and metal movement during welding
NASA Technical Reports Server (NTRS)
Muraki, T.; Masubuchi, K.
1973-01-01
The research is reported concerning the development of a system of mathematical solutions and computer programs for one- and two-dimensional analyses for thermal stresses. Reports presented include: the investigation of thermal stress and buckling of tantalum and columbium sheet; and analysis of two dimensional thermal strains and metal movement during welding.
NASA Astrophysics Data System (ADS)
Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; T, Ii; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z.
2012-12-01
Recently, the TS-3 and TS-4 tokamak merging experiments revealed significant plasma heating during magnetic reconnection. A key question is how and where ions and electrons are heated during magnetic reconnection. Two-dimensional measurements of ion and electron temperatures and plasma flow made clear that electrons are heated inside the current sheet mainly by the Ohmic heating and ions are heated in the downstream areas mainly by the reconnection outflows. The outflow kinetic energy is thermalized by the fast shock formation and viscous damping. The magnetic reconnection converts the reconnecting magnetic field energy mostly to the ion thermal energy in the outflow region whose size is much larger than the current sheet size for electron heating. The ion heating energy is proportional to the square of the reconnection magnetic field component B_p^2 . This scaling of reconnection heating indicates the significant ion heating effect of magnetic reconnection, which leads to a new high-field reconnection heating experiment for fusion plasmas.
Zhang, Na; Wang, Taisheng; Wu, Xing; Jiang, Chen; Zhang, Taiming; Jin, Bangkun; Ji, Hengxing; Bai, Wei; Bai, Ruke
2017-07-25
Recently, investigation on two-dimensional (2D) organic polymers has made great progress, and conjugated 2D polymers already play a dynamic role in both academic and practical applications. However, a convenient, noninterfacial approach to obtain single-layer 2D polymers in solution, especially in aqueous media, remains challenging. Herein, we present a facile, highly efficient, and versatile "1D to 2D" strategy for preparation of free-standing single-monomer-thick conjugated 2D polymers in water without any aid. The 2D structure was achieved by taking advantage of the side-by-side self-assembly of a rigid amphiphilic 1D polymer and following topochemical photopolymerization in water. The spontaneous formation of single-layer polymer sheets was driven by synergetic association of the hydrophobic interactions, π-π stacking interactions, and electrostatic repulsion. Both the supramolecular sheets and the covalent sheets were confirmed by spectroscopic analyses and electron microscope techniques. Moreover, in comparison of the supramolecular 2D polymer, the covalent 2D polymer sheets exhibited not only higher mechanical strength but also higher conductivity, which can be ascribed to the conjugated network within the covalent 2D polymer sheets.
Johnson, Carole D.; Dawson, C.B.; Belaval, Marcel; Lane, John W.
2002-01-01
A surface-geophysical investigation to characterize the hydrogeology and contaminant distribution of the former landfill area at the University of Connecticut in Storrs, Connecticut, was conducted in 2000 to supplement the preliminary hydrogeologic assessment of the contamination of soil, surface water, and ground water at the site. A geophysical-toolbox approach was used to characterize the hydrogeology and contaminant distribution of the former landfill. Two-dimensional direct-current resistivity, inductive terrain-conductivity, and seismic-refraction surface-geophysical data were collected and interpreted in an iterative manner with exploratory drilling, borehole geophysics, and hydraulic testing. In this investigation, a geophysical-toolbox approach was used to 1) further define previously identified conductive anomalies and leachate plumes; 2) identify additional leachate plumes, possible fracture zones, and (or) conductive lithologic layers in the bedrock; and 3) delineate bedrock-surface topography in the drainage valleys north and south of the landfill. Resistivity and terrain-conductivity surveys were used to further delineate previously identified geophysical anomalies to the north and southwest of the landfill. A conductive anomaly identified in the terrain-conductivity survey to the north of the landfill in 2000 had a similar location and magnitude as an anomaly identified in terrain-conductivity surveys conducted in 1998 and 1999. Collectively, these surveys indicated that the magnitude of the conductive anomaly decreased with depth and with distance from the landfill. These anomalies indicated landfill leachate in the overburden and shallow bedrock. Results of previous surface-geophysical investigations southwest of the landfill indicated a shallow conductive anomaly in the overburden that extended into the fractured-bedrock aquifer. This conductive anomaly had a sheet-like geometry that had a north-south strike, dipped to the west, and terminated abruptly about 450 feet southwest of the landfill. The sheet-like conductive anomaly was interpreted as a fractured, conductive lithologic feature filled with conductive fluids. To further delineate this anomaly, two two-dimensional resistivity profiles were collected west of the sheet-like conductive anomaly to assess the possibility that the sheet-like conductive anomaly continued to the west in its down-dip direction. Each of the north-south oriented resistivity profiles showed bullet-shaped rather than linear-shaped anomalies, with a relatively smaller magnitude of conductivity than the sheet-like conductive anomaly to the east. If these bullet-like features are spatially connected, they may represent a linear, or pipe-like, conductive anomaly in the bedrock with a trend of N290?E and a plunge of 12?. Additional surveys were conducted to assess the apparent southern termination of the sheet-like conductive feature. Terrain-conductivity surveys indicated the sheet-like feature was not continuous to the south. A two-dimensional resistivity line and a coincident terrain-conductivity profile indicated the presence of a steep, eastward dipping, low magnitude, electrically conductive anomaly on the eastern end of the profile. Although the sheet-like conductive anomaly apparently did not continue to the south, the survey conducted in 2000 identified an isolated, weak conductive anomaly south of the previously identified anomaly. Inductive terrain-conductivity surveys performed north of the sheet-like conductive anomaly and west of the landfill indicated the anomaly did not extend to the north into the area of the former chemical-waste disposal pits. No conductive plumes or conductive features were observed in the subsurface bedrock west of the landfill. A conductive anomaly was identified in the southern section of the new terrain-conductivity grid. The magnitude and distribution of the apparent conductivity of this anomaly was identified as a nearly vertica
Quantum stream instability in coupled two-dimensional plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2014-08-01
In this paper the quantum counter-streaming instability problem is studied in planar two-dimensional (2D) quantum plasmas using the coupled quantum hydrodynamic (CQHD) model which incorporates the most important quantum features such as the statistical Fermi-Dirac electron pressure, the electron-exchange potential and the quantum diffraction effect. The instability is investigated for different 2D quantum electron systems using the dynamics of Coulomb-coupled carriers on each plasma sheet when these plasmas are both monolayer doped graphene or metalfilm (corresponding to 2D Dirac or Fermi electron fluids). It is revealed that there are fundamental differences between these two cases regarding the effects of Bohm's quantum potential and the electron-exchange on the instability criteria. These differences mark yet another interesting feature of the effect of the energy band dispersion of Dirac electrons in graphene. Moreover, the effects of plasma number-density and coupling parameter on the instability criteria are shown to be significant. This study is most relevant to low dimensional graphene-based field-effect-transistor (FET) devices. The current study helps in understanding the collective interactions of the low-dimensional coupled ballistic conductors and the nanofabrication of future graphene-based integrated circuits.
NASA Astrophysics Data System (ADS)
Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.
2015-05-01
A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.
Spontaneous bending of pre-stretched bilayers.
DeSimone, Antonio
2018-01-01
We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.
Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate
NASA Astrophysics Data System (ADS)
Annett, James; Cross, Graham L. W.
2016-07-01
Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing the thermal activation of considerable out-of-plane motion. So far thermal activity has been shown to produce local wrinkles in a free graphene sheet that help in theoretically understanding its stability, for example, and give rise to unexpected long-range bending stiffness. Here we show that thermal activation can have a more marked effect on the behaviour of two-dimensional solids, leading to spontaneous and self-driven sliding, tearing and peeling from a substrate on scales approaching the macroscopic. We demonstrate that scalable nanoimprint-style contact techniques can nucleate and direct the parallel self-assembly of graphene ribbons of controlled shape in ambient conditions. We interpret our observations through a simple fracture-mechanics model that shows how thermodynamic forces drive the formation of the graphene-graphene interface in lieu of substrate contact with sufficient strength to peel and tear multilayer graphene sheets. Our results show how weak physical surface forces can be harnessed and focused by simple folded configurations of graphene to tear the strongest covalent bond. This effect may hold promise for the patterning and mechanical actuating of devices based on two-dimensional materials.
Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy
NASA Astrophysics Data System (ADS)
Baek, Jongho; Lou, Jieqiong; Coelho, Simao; Lim, Yean Jin; Seidlitz, Silvia; Nicovich, Philip R.; Wunder, Christian; Johannes, Ludger; Gaus, Katharina
2017-04-01
Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki
2018-02-01
Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.
NASA Astrophysics Data System (ADS)
Shen, C.; Li, X.; Dunlop, M.; Liu, Z. X.; Balogh, A.; Baker, D. N.; Hapgood, M.; Wang, X.
2003-05-01
The geometrical structure of the magnetic field is a critical character in the magnetospheric dynamics. Using the magnetic field data measured by the Cluster constellation satellites, the geometrical structure including the curvature radius, directions of curvature, and normal of the osculating planes of the magnetic field lines within the current sheet/neutral sheet have been investigated. The results are (1) Inside of the tail neutral sheet (NS), the curvature of magnetic field lines points towards Earth, the normal of the osculating plane points duskward, and the characteristic half width (or the minimum curvature radius) of the neutral sheet is generally less than 2 RE, for many cases less than 1600 km. (2) Outside of the neutral sheet, the curvature of magnetic field lines pointed northward (southward) at the north (south) side of NS, the normal of the osculating plane points dawnward, and the curvature radius is about 5 RE ˜ 10 RE. (3) Thin NS, where the magnetic field lines have the minimum of the curvature radius less than 0.25 RE, may appear at all the local time between LT 20 hours and 4 hours, but thin NS occurs more frequently near to midnight than that at the dawnside and duskside. (4) The size of the NS is dependent on substorm phases. Generally, the NS is thin during the growth and expansion phases and grows thick during the recovery phase. (5) For the one-dimensional NS, the half thickness and flapping velocity of the NS could be quantitatively determined. Therefore the differential geometry analyses based on Cluster 4-point magnetic measurements open a window for visioning the three-dimensional static and dynamic magnetic field structure of geomagnetosphere.
Electron acceleration via magnetic island coalescence
NASA Astrophysics Data System (ADS)
Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.
2009-06-01
Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.
A comparison of coronal and interplanetary current sheet inclinations
NASA Technical Reports Server (NTRS)
Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.
1983-01-01
The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.
Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.
2016-03-21
We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
MULTIPLE CURRENT SHEET SYSTEMS IN THE OUTER HELIOSPHERE: ENERGY RELEASE AND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, D.; Gingell, P. W.; Matteini, L.
2016-05-01
In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence may generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long timescales, in order to capture the evolution from linear growthmore » of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of newborn interstellar pickup protons does not strongly affect these results. Finally, we conclude that reconnection between multiple current sheets can act as an important source of turbulence in the outer heliosphere, with implications for energetic particle acceleration and propagation.« less
Transformers: Shape-Changing Space Systems Built with Robotic Textiles
NASA Technical Reports Server (NTRS)
Stoica, Adrian
2013-01-01
Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.
Cluster Observations of Currents In The Plasma Sheet During Substorm Expansions
NASA Astrophysics Data System (ADS)
McPherron, R. L.; Kivelson, M. G.; Khurana, K.; Balogh, A.; Conners, M.; Creutzberg, F.; Moldwin, M.; Rostoker, G.; Russell, C. T.
From 00 to 12 UT on August 15, 2001 the Cluster spacecraft passed through the plasma sheet at 0100 lt and distance 18 Re. During this passage three substorms with multiple onsets were observed in the magnetic field and plasma. The North American ground sector was well located to provide the context and timing of these substorms. We find that each substorm was initially associated with strong Earthward directed field-aligned current. The first substorm occurred when the Cluster array was at the boundary of the plasma sheet. The effects of the substorm appear at Cluster in associ- ation with an intensification of the expansion into the morning sector and are initiated by a wave of plasma sheet thickening followed by vertical oscillations of the plasma sheet boundary. The third substorm occurred with Cluster at the neutral sheet. It began with a transient pulse of southward Bz followed by a burst of tailward flow. Subse- quently a sequence of bursts of Earthward flow cause stepwise dipolarization of the local magnetic field. Our goal is to present a coherent three-dimensional representa- tion of the Cluster observations for each of these various substorms.
Few layer epitaxial germanene: a novel two-dimensional Dirac material
NASA Astrophysics Data System (ADS)
Dávila, María Eugenia; Le Lay, Guy
2016-02-01
Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.
Few layer epitaxial germanene: a novel two-dimensional Dirac material.
Dávila, María Eugenia; Le Lay, Guy
2016-02-10
Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.
Few layer epitaxial germanene: a novel two-dimensional Dirac material
Dávila, María Eugenia; Le Lay, Guy
2016-01-01
Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing. PMID:26860590
Phonon-driven electron scattering and magnetothermoelectric effect in two-dimensional tin selenide
NASA Astrophysics Data System (ADS)
Yang, Kaike; Ren, Ji-Chang; Qiu, Hongfei; Wang, Jian-Sheng
2018-02-01
The bulk tin selenide (SnSe) is the best thermoelectric material currently with the highest figure-of-merit due to strong phonon-phonon interactions. We investigate the effect of electron-phonon coupling (EPC) on the transport properties of a two-dimensional (2D) SnSe sheet. We demonstrate that EPC plays a key role in the scattering rate when the constant relaxation time approximation is deficient. The EPC strength is especially large in contrast to that of pristine graphene. The scattering rate depends sensitively on the system temperatures and the carrier densities when the Fermi energy approaches the band edge. We also investigate the magnetothermoelectric effect of the 2D SnSe. It is found that at low temperatures there is enormous magnetoelectrical resistivity and magnetothermal resistivity above 200%, suggesting possible potential applications in device design. Our results agree qualitatively well with the experimental data.
NASA Astrophysics Data System (ADS)
Li, ZhaoYu; Chen, Tao; Yan, GuangQing
2016-10-01
A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.
Electron beam transport analysis of W-band sheet beam klystron
NASA Astrophysics Data System (ADS)
Wang, Jian-Xun; Barnett, Larry R.; Luhmann, Neville C.; Shin, Young-Min; Humphries, Stanley
2010-04-01
The formation and transport of high-current density electron beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the electron gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band sheet beam klystron circuit, which exhibited poor beam transmission (≤55%), have been carefully investigated through theoretical and numerical analyses taking advantage of three-dimensional particle tracking solvers. The re-designed transport system is predicted to exhibit 99.76% (cold) and 97.38% (thermal) beam transmission, respectively, under space-charge-limited emission simulations. The optimized design produces the required high aspect ratio (10:1) sheet beam with 3.2 A emission current with highly stable propagation. In the completely redesigned model containing all the circuit elements, more than 99% beam transmission is experimentally observed at the collector located about 160 mm distant from the cathode surface. Results are in agreement of the predictions of two ray-tracing simulators, CST PARTICLE STUDIO and OMNITRAK which also predict the observed poor transmission in the original design. The quantitative analysis presents practical factors in the modeling process to design a magnetic lens structure to stably transport the elliptical beam along the long drift tube.
Phthalo-carbonitride: an ab initio prediction of a stable two-dimensional material
NASA Astrophysics Data System (ADS)
Tsetseris, Leonidas
2016-06-01
Using density-functional theory calculations, we identify a stable two-dimensional carbonitride polymorph which resembles the core of phthalocyanine molecules. This so-called phthalo-carbonitride is found to be the lowest-energy polymer made of tetracyanoethylene molecules. It is a two-dimensional metal in its pristine form. Functionalization of the phthalo-cores with copper or iron atoms retains the metallic character of the material, but also adds magnetization to the system. Based on these properties and the established use of phthalocyanine molecules in various applications, the growth of phthalo-carbonitride sheets can add another multi-functional building block to the research and technology of two-dimensional materials.
NASA Astrophysics Data System (ADS)
Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin
2013-11-01
Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.
Toyama, Shigeru; Tanaka, Yasuhiro; Shirogane, Satoshi; Nakamura, Takashi; Umino, Tokio; Uehara, Ryo; Okamoto, Takuma; Igarashi, Hiroshi
2017-07-31
A sheet-type shear force sensor and a measurement system for the sensor were developed. The sensor has an original structure where a liquid electrolyte is filled in a space composed of two electrode-patterned polymer films and an elastic rubber ring. When a shear force is applied on the surface of the sensor, the two electrode-patterned films mutually move so that the distance between the internal electrodes of the sensor changes, resulting in current increase or decrease between the electrodes. Therefore, the shear force can be calculated by monitoring the current between the electrodes. Moreover, it is possible to measure two-dimensional shear force given that the sensor has multiple electrodes. The diameter and thickness of the sensor head were 10 mm and 0.7 mm, respectively. Additionally, we also developed a measurement system that drives the sensor, corrects the baseline of the raw sensor output, displays data, and stores data as a computer file. Though the raw sensor output was considerably affected by the surrounding temperature, the influence of temperature was drastically decreased by introducing a simple arithmetical calculation. Moreover, the influence of pressure simultaneously decreased after the same calculation process. A demonstrative measurement using the sensor revealed the practical usefulness for on-site monitoring.
Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel
2017-06-14
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.
Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.
2015-08-24
Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of suchmore » behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.« less
NASA Astrophysics Data System (ADS)
Chen, Xi; Lin, Zheng-Zhe
2018-05-01
Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.
Dimensional Analysis and Electric Potential Due to a Uniformly Charged Sheet
ERIC Educational Resources Information Center
Aghamohammadi, Amir
2011-01-01
Dimensional analysis, superposition principle, and continuity of electric potential are used to study the electric potential of a uniformly charged square sheet on its plane. It is shown that knowing the electric potential on the diagonal and inside the square sheet is equivalent to knowing it everywhere on the plane of the square sheet. The…
Xu, Yuxi; Shi, Gaoquan; Duan, Xiangfeng
2015-06-16
Graphene and its derivatives are versatile building blocks for bottom-up assembly of advanced functional materials. In particular, with exceptionally large specific surface area, excellent electrical conductivity, and superior chemical/electrochemical stability, graphene represents the ideal material for various electrochemical energy storage devices including supercapacitors. However, due to the strong π-π interaction between graphene sheets, the graphene flakes tend to restack to form graphite-like powders when they are processed into practical electrode materials, which can greatly reduce the specific surface area and lead to inefficient utilization of the graphene layers for electrochemical energy storage. The self-assembly of two-dimensional graphene sheets into three-dimensional (3D) framework structures can largely retain the unique properties of individual graphene sheets and has recently garnered intense interest for fundamental investigations and potential applications in diverse technologies. In this Account, we review the recent advances in preparing 3D graphene macrostructures and exploring them as a unique platform for supercapacitor applications. We first describe the synthetic strategies, in which reduction of a graphene oxide dispersion above a certain critical concentration can induce the reduced graphene oxide sheets to cross-link with each other via partial π-π stacking interactions to form a 3D interconnected porous macrostructure. Multiple reduction strategies, including hydrothermal/solvothermal reduction, chemical reduction, and electrochemical reduction, have been developed for the preparation of 3D graphene macrostructures. The versatile synthetic strategies allow for easy incorporation of heteroatoms, carbon nanomaterials, functional polymers, and inorganic nanostructures into the macrostructures to yield diverse composites with tailored structures and properties. We then summarize the applications of the 3D graphene macrostructures for high-performance supercapacitors. With a unique framework structure in which the graphene sheets are interlocked in 3D space to prevent their restacking, the graphene macrostructures feature very high specific surface areas, rapid electron and ion transport, and superior mechanical strength. They can thus be directly used as supercapacitor electrodes with excellent specific capacitances, rate capabilities, and cycling stabilities. We finally discuss the current challenges and future opportunities in this research field. By regarding the graphene as both a single-atom-thick carbon sheet and a conjugated macromolecule, our work opens a new avenue to bottom-up self-assembly of graphene macromolecule sheets into functional 3D graphene macrostructures with remarkable electrochemical performances. We hope that this Account will promote further efforts toward fundamental investigation of graphene self-assembly and the development of advanced 3D graphene materials for their real-world applications in electrochemical energy storage devices and beyond.
Kinetic Studies of Thin Current Sheets at Magnetosheath Jets
NASA Astrophysics Data System (ADS)
Eriksson, E.; Vaivads, A.; Khotyaintsev, Y. V.; Graham, D. B.; Yordanova, E.; Hietala, H.; Markidis, S.; Giles, B. L.; Andre, M.; Russell, C. T.; Le Contel, O.; Burch, J. L.
2017-12-01
In near-Earth space one of the most turbulent plasma environments is the magnetosheath (MSH) downstream of the quasi-parallel shock. The particle acceleration and plasma thermalization processes there are still not fully understood. Regions of strong localized currents are believed to play a key role in those processes. The Magnetospheric Multiscale (MMS) mission has sufficiently high cadence to study these processes in detail. We present details of studies of two different events that contain strong current regions inside the MSH downstream of the quasi-parallel shock. In both cases the shape of the current region is in the form of a sheet, however they show internal 3D structure on the scale of the spacecraft separation (15 and 20 km, respectively). Both current sheets have a normal magnetic field component different from zero indicating that the regions at the different sides of the current sheets are magnetically connected. Both current sheets are boundaries between two different plasma regions. Furthermore, both current sheets are observed at MSH jets. These jets are characterized by localized dynamic pressure being larger than the solar wind dynamic pressure. One current sheet does not seem to be reconnecting while the other shows reconnection signatures. Inside the non-reconnecting current sheet we observe locally accelerated electron beams along the magnetic field. At energies above the beam energy we observe a loss cone consistent with part of the hot MSH-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within this current sheet is similar to the one that occurs at the bow shock, where electron beams and loss cones are also observed. Therefore, we conclude that electron beams observed in the MSH do not have to originate from the bow shock, but can also be generated locally inside the MSH. The reconnecting current sheet also shows signs of thermalization and electron acceleration processes that are discussed in detail.
Nano-Graphene Oxide for Cellular Imaging and Drug Delivery
Sun, Xiaoming; Liu, Zhuang; Welsher, Kevin; Robinson, Joshua Tucker; Goodwin, Andrew; Zaric, Sasa
2010-01-01
Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications. PMID:20216934
Generation of siRNA Nanosheets for Efficient RNA Interference
NASA Astrophysics Data System (ADS)
Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum
2016-04-01
After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.
Techniques for interpretation of geoid anomalies
NASA Technical Reports Server (NTRS)
Chapman, M. E.
1979-01-01
For purposes of geological interpretation, techniques are developed to compute directly the geoid anomaly over models of density within the earth. Ideal bodies such as line segments, vertical sheets, and rectangles are first used to calculate the geoid anomaly. Realistic bodies are modeled with formulas for two-dimensional polygons and three-dimensional polyhedra. By using Fourier transform methods the two-dimensional geoid is seen to be a filtered version of the gravity field, in which the long-wavelength components are magnified and the short-wavelength components diminished.
Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL
NASA Astrophysics Data System (ADS)
Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.
2004-12-01
Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.
Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL
NASA Astrophysics Data System (ADS)
Furno, Ivo
2004-11-01
Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.
NASA Astrophysics Data System (ADS)
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.
NASA Astrophysics Data System (ADS)
Domrin, V. I.; Malova, H. V.; Popov, V. Yu.
2018-04-01
A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth's magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu-Goldberger-Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.
KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.
Schlueter, John A; Geiser, Urs; Funk, Kylee A
2008-02-01
The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.
Silver nanoparticles with tunable work functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp; Tanaka, Daisuke; Ryuzaki, Sou
To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probemore » force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.« less
Water-Floating Giant Nanosheets from Helical Peptide Pentamers
NASA Astrophysics Data System (ADS)
Lee, Jaehun; Nam, Ki Tae
One of the important challenges in the development of protein-mimetic materials is to understand the sequence specific assembly behavior and the dynamic folding change. Conventional strategies to construct two dimensional nanostructures from the peptides have been limited to beta-sheet forming sequences in use of basic building blocks because of their natural tendency to form sheet like aggregations. Here we identified a new peptide sequence, YFCFY that can form dimers by the disulfide bridge, fold into helix and assemble into macroscopic flat sheet at the air/water interface. Because of large driving force for two dimensional assembly and high elastic modulus of the resulting sheet, the peptide assembly induces the flattening of initially round water droplet. Additionally, we found that stabilization of helix by the dimerization is a key determinant for maintaining macroscopic flatness over a few tens centimeter even with a uniform thickness below 10 nm. Furthermore, the capability to transfer 2D film from water droplet to other substrates allows for the multiple stacking of 2D peptide nanostructure, suggesting possible applications in the biomimetic catalysts, biosensor and 2D related electronic devices. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-01.
NASA Astrophysics Data System (ADS)
Parnell, Clare E.; Maclean, Rhona C.; Haynes, Andrew L.; Galsgaard, Klaus
2011-08-01
Magnetic reconnection is an important process that is prevalent in a wide range of astrophysical bodies. It is the mechanism that permits magnetic fields to relax to a lower energy state through the global restructuring of the magnetic field and is thus associated with a range of dynamic phenomena such as solar flares and CMEs. The characteristics of three-dimensional reconnection are reviewed revealing how much more diverse it is than reconnection in two dimensions. For instance, three-dimensional reconnection can occur both in the vicinity of null points, as well as in the absence of them. It occurs continuously and continually throughout a diffusion volume, as opposed to at a single point, as it does in two dimensions. This means that in three-dimensions field lines do not reconnect in pairs of lines making the visualisation and interpretation of three-dimensional reconnection difficult. By considering particular numerical 3D magnetohydrodynamic models of reconnection, we consider how magnetic reconnection can lead to complex magnetic topologies and current sheet formation. Indeed, it has been found that even simple interactions, such as the emergence of a flux tube, can naturally give rise to `turbulent-like' reconnection regions.
Simulations of Solar Wind Turbulence
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, A. V.; Roberts, D. A.
2008-01-01
Recently we have restructured our approach to simulating magnetohydrodynamic (MHD) turbulence in the solar wind. Previously, we had defined a 'virtual' heliosphere that contained, for example, a tilted rotating current sheet, microstreams, quasi-two-dimensional fluctuations as well as Alfven waves. In this new version of the code, we use the global, time-stationary, WKB Alfven wave-driven solar wind model developed by Usmanov and described in Usmanov and Goldstein [2003] to define the initial state of the system. Consequently, current sheets, and fast and slow streams are computed self-consistently from an inner, photospheric, boundary. To this steady-state configuration, we add fluctuations close to, but above, the surface where the flow become super-Alfvenic. The time-dependent MHD equations are then solved using a semi-discrete third-order Central Weighted Essentially Non-Oscillatory (CWENO) numerical scheme. The computational domain now includes the entire sphere; the geometrical singularity at the poles is removed using the multiple grid approach described in Usmanov [1996]. Wave packets are introduced at the inner boundary such as to satisfy Faraday's Law [Yeh and Dryer, 1985] and their nonlinear evolution are followed in time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less
Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2014-01-01
Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.
NASA Astrophysics Data System (ADS)
Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun
2013-09-01
Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.
NASA Astrophysics Data System (ADS)
Sharma, Neetika; Verma, Neha; Jogi, Jyotika
2017-11-01
This paper models the scattering limited electron transport in a nano-dimensional In0.52Al0.48As/In0.53Ga0.47As/InP heterostructure. An analytical model for temperature dependent sheet carrier concentration and carrier mobility in a two dimensional electron gas, confined in a triangular potential well has been developed. The model accounts for all the major scattering process including ionized impurity scattering and lattice scattering. Quantum mechanical variational technique is employed for studying the intrasubband scattering mechanism in the two dimensional electron gas. Results of various scattering limited structural parameters such as energy band-gap and functional parameters such as sheet carrier concentration, scattering rate and mobility are presented. The model corroborates the dominance of ionized impurity scattering mechanism at low temperatures and that of lattice scattering at high temperatures, both in turn limiting the carrier mobility. Net mobility obtained taking various scattering mechanisms into account has been found in agreement with earlier reported results, thus validating the model.
A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure.
Shen, Xuefeng; Mao, Wenting; Ma, Yanhang; Xu, Dongdong; Wu, Peng; Terasaki, Osamu; Han, Lu; Che, Shunai
2018-01-15
A conceptual design and synthesis of ordered mesoporous zeolites is a challenging research subject in material science. Several seminal articles report that one-dimensional (1D) mesostructured lamellar zeolites are possibly directed by sheet-assembly of surfactants, which collapse after removal of intercalated surfactants. However, except for one example of two-dimensional (2D) hexagonal mesoporous zeolite, no other zeolites with ordered 2D or three-dimensional (3D) mesostructures have been reported. An ordered 2D mesoporous zeolite can be templated by a cylindrical assembly unit with specific interactions in the hydrophobic part. A template molecule with azobenzene in the hydrophobic tail and diquaternary ammonium in the hydrophilic head group directs hierarchical MFI zeolite with a 2D square mesostructure. The material has an elongated octahedral morphology, and quaternary, ordered, straight, square channels framed by MFI thin sheets expanded along the a-c planes and joined with 90° rotations. The structural matching between the cylindrical assembly unit and zeolite framework is crucial for mesostructure construction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Static current-sheet models of quiescent prominences
NASA Technical Reports Server (NTRS)
Wu, F.; Low, B. C.
1986-01-01
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.
Static current-sheet models of quiescent prominences
NASA Astrophysics Data System (ADS)
Wu, F.; Low, B. C.
1986-12-01
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.
Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics.
Yam, Kah Meng; Guo, Na; Zhang, Chun
2018-06-15
Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu 2 Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu 2 Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu 2 Si-NiPc-Cu 2 Si junction is about three orders higher than that through graphene-NiPc-graphene. Detailed analysis shows that the surprisingly high conductivity of Cu 2 Si-NiPc-Cu 2 Si originates from the mixing of the Cu 2 Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu 2 Si may be an excellent candidate for electrode materials for future nanoscale devices.
Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics
NASA Astrophysics Data System (ADS)
Meng Yam, Kah; Guo, Na; Zhang, Chun
2018-06-01
Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.
The Influence of Convection on Magnetotail Variability
NASA Technical Reports Server (NTRS)
Peroomian, Vahe; Ashour-Abdalla, Maha; Zelenyi, Lev M.; Petrukovich, Anatoli
1999-01-01
This study investigates the evolution of the magnetotail's magnetic field with the aid of a self-consistent two-dimensional model. In this model the plasma mantle continuously supplies particles to the magnetotail, the ion current periodically updates the magnetic field using the Biot-Savart law. The simulated magnetotail evolves into a quasi-steady state, characterized by the periodic motion of the model's near-Earth X-line. This variability results from the nonadiabatic acceleration of ions in the current sheet and their rapid loss from the tail. The characteristic time scale of variability in the magnetotail is on the order of 4 - 5 minutes. We also investigate how the magnetotail's topology responds to increased convection electric fields, and show examples of observations of variability in the magnetotail.
Laboratory observation of resistive electron tearing in a two-fluid reconnecting current sheet
Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; ...
2016-08-25
The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. Furthermore, the reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C
2013-10-08
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.
2016-05-31
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
NASA Technical Reports Server (NTRS)
Sugioka, I.; Widnall, S. E.
1985-01-01
The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.
Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials
Tan, Chaoliang; Zhang, Hua
2015-01-01
Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising route towards high-yield and mass production of such nanomaterials. These nanomaterials are now finding increasing applications in a wide range of areas including catalysis, energy production and storage, sensor and nanotherapy, to name but a few. PMID:26303763
Optical Enhancement of Degraded Fingerprints.
1986-05-01
system. The integral 00 g(x,y) = ff f ( Cn)h(x-C,y-n)d dn -00 is the convolution operation g(x,y)=f(x,y)*h(x,y) where h(x,y) is the impulse response...periodic ridges on the left (1-) and right (2--) sides of the fingerprint in Figure 3-1 as periodic impulse -sheets (an impulse -sheet is a one...transformation of uniformly spaced, parallel impulse -sheets is a string of impulses (an impulse is a two-dimensional Dirac delta function, i.e. f(x,y) = 6(x,y
Cross-tail current - Resonant orbits
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen
1993-01-01
A technique to generate self-consistent 1D current sheets is described. Groups of monoenergetic protons were followed in a modified Harris magnetic field. This sample current sheet is characterized by resonant quasi-adiabatic orbits. The magnetic moment of a quasi-adiabatic ion which is injected from outside a current sheet changes substantially during the orbit but returns to almost its initial value by the time the ion leaves. Several ion and electron groups were combined to produce a plasma sheet in which the charged particles carry the currents needed to generate the magnetic field in which the orbits were traced. An electric field also is required to maintain charge neutrality. Three distinct orbit types, one involving untrapped ions and two composed of trapped ions, were identified. Limitations associated with the use of a 1D model also were investigated; it can provide a good physical picture of an important component of the cross-tail current, but cannot adequately describe any region of the magnetotail in which the principal current sheet is separated from the plasma sheet boundary layer by a nearly isotropic outer position of the central plasma sheet.
Electrostatic drift instability in a magnetotail configuration: The role of bouncing electrons
NASA Astrophysics Data System (ADS)
Fruit, G.; Louarn, P.; Tur, A.
2017-03-01
To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped electrons that bounce within the sheet. This work follows the initial investigation by Tur, Louarn, and Yanovsky [Phys. Plasmas 17, 102905 (2010)] and Fruit, Louarn, and Tur [Phys. Plasmas 20, 022113 (2013)] that is revised and extended. Using a quasi-dipolar equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with a period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that for a mildly stretched configuration ( L ˜8 ), strongly unstable electrostatic modes may develop in the current sheet with the growth rate of the order of a few seconds provided that the background density gradient responsible for the diamagnetic drift effects is sharp enough: typical length scale over one Earth radius or less. However, when this condition in the density gradient is not met, these electrostatic modes grow too slowly to be accountable for a rapid destabilization of the magnetic structure. This strong but finely tuned instability may offer opportunities to explain features in magnetospheric substorms.
Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin
2013-01-01
Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems. PMID:24220603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950
2013-11-15
Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less
NASA Astrophysics Data System (ADS)
Yokoyama, Takaaki
Temporal evolution of a current sheet with initial perturbations is studied by using the threedimensional resistive magnetohydrodynamic (MHD) simulations. The magnetic reconnection is considered to be the main engine of the energy rele ase in solar flares. The structure of the diffusion region is, however, not stil l understood under the circumstances with enormously large magnetic Reynolds num ber as the solar corona. In particular, the relationship between the flare's macroscopic physics and the microscopic ones are unclear. It is generally believed that the MHD turbulence s hould play a role in the intermediate scale. The initial current sheet is in an approximately hydromagnetic equilibrium with anti-parallel magnetic field in the y-direction. We imposed a finite-amplitude perturbations (=50ee what happens. Special attention is paid upon the evolution of a three-dimens ional structure in the direction along the initial electric current (z-direction ). Our preliminary results are as follows: (1) In the early phase of the evolut ion, high wavenumber modes in the z-direction are excited and grow. (2) Many "X "-type neutral points (lines) are generated along the magnetic neutral line (pla ne) in the current sheet. When they evolve into the non-linear phase, three-dime nsional structures in the z-direction also evolve. The spatial scale in the z-di rection seems to be almost comparable with that in the xy-plane. (3) The energy release rate is reduced in case of 3D simulations compared with 2D ones probably because of the reduction of the inflow cross sections by the formation of pattc hy structures in the current sheet.
TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yi-Min; Bhattacharjee, A., E-mail: yiminh@princeton.edu
2016-02-10
It has been established that the Sweet–Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet–Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnectionmore » rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from −2.3 to −2.1, while the kinetic energy spectral index is slightly steeper, in the range from −2.5 to −2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich–Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.« less
Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping
2018-01-23
Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.
Fluctuation dynamics in reconnecting current sheets
NASA Astrophysics Data System (ADS)
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
Predicting Ice Sheet and Climate Evolution at Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimbach, Patrick
2016-02-06
A main research objectives of PISCEES is the development of formal methods for quantifying uncertainties in ice sheet modeling. Uncertainties in simulating and projecting mass loss from the polar ice sheets arise primarily from initial conditions, surface and basal boundary conditions, and model parameters. In general terms, two main chains of uncertainty propagation may be identified: 1. inverse propagation of observation and/or prior onto posterior control variable uncertainties; 2. forward propagation of prior or posterior control variable uncertainties onto those of target output quantities of interest (e.g., climate indices or ice sheet mass loss). A related goal is the developmentmore » of computationally efficient methods for producing initial conditions for an ice sheet that are close to available present-day observations and essentially free of artificial model drift, which is required in order to be useful for model projections (“initialization problem”). To be of maximum value, such optimal initial states should be accompanied by “useful” uncertainty estimates that account for the different sources of uncerainties, as well as the degree to which the optimum state is constrained by available observations. The PISCEES proposal outlined two approaches for quantifying uncertainties. The first targets the full exploration of the uncertainty in model projections with sampling-based methods and a workflow managed by DAKOTA (the main delivery vehicle for software developed under QUEST). This is feasible for low-dimensional problems, e.g., those with a handful of global parameters to be inferred. This approach can benefit from derivative/adjoint information, but it is not necessary, which is why it often referred to as “non-intrusive”. The second approach makes heavy use of derivative information from model adjoints to address quantifying uncertainty in high-dimensions (e.g., basal boundary conditions in ice sheet models). The use of local gradient, or Hessian information (i.e., second derivatives of the cost function), requires additional code development and implementation, and is thus often referred to as an “intrusive” approach. Within PISCEES, MIT has been tasked to develop methods for derivative-based UQ, the ”intrusive” approach discussed above. These methods rely on the availability of first (adjoint) and second (Hessian) derivative code, developed through intrusive methods such as algorithmic differentiation (AD). While representing a significant burden in terms of code development, derivative-baesd UQ is able to cope with very high-dimensional uncertainty spaces. That is, unlike sampling methods (all variations of Monte Carlo), calculational burden is independent of the dimension of the uncertainty space. This is a significant advantage for spatially distributed uncertainty fields, such as threedimensional initial conditions, three-dimensional parameter fields, or two-dimensional surface and basal boundary conditions. Importantly, uncertainty fields for ice sheet models generally fall into this category.« less
Scanning Thin-Sheet Laser Imaging Microscopy Elucidates Details on Mouse Ear Development
Kopecky, Benjamin; Johnson, Shane; Schmitz, Heather; Santi, Peter; Fritzsch, Bernd
2016-01-01
Background The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. Results Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. Conclusions Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings. PMID:22271591
Scanning thin-sheet laser imaging microscopy elucidates details on mouse ear development.
Kopecky, Benjamin; Johnson, Shane; Schmitz, Heather; Santi, Peter; Fritzsch, Bernd
2012-03-01
The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings. Copyright © 2012 Wiley Periodicals, Inc.
3D finite element modelling of sheet metal blanking process
NASA Astrophysics Data System (ADS)
Bohdal, Lukasz; Kukielka, Leon; Chodor, Jaroslaw; Kulakowska, Agnieszka; Patyk, Radoslaw; Kaldunski, Pawel
2018-05-01
The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. The use of FEM simulation is increasing for investigation and optimizing the blanking process. In the current literature a blanking FEM simulations for the limited capability and large computational cost of the three dimensional (3D) analysis has been largely limited to two dimensional (2D) plane axis-symmetry problems. However, a significant progress in modelling which takes into account the influence of real material (e.g. microstructure of the material), physical and technological conditions can be obtained by using 3D numerical analysis methods in this area. The objective of this paper is to present 3D finite element analysis of the ductile fracture, strain distribution and stress in blanking process with the assumption geometrical and physical nonlinearities. The physical, mathematical and computer model of the process are elaborated. Dynamic effects, mechanical coupling, constitutive damage law and contact friction are taken into account. The application in ANSYS/LS-DYNA program is elaborated. The effect of the main process parameter a blanking clearance on the deformation of 1018 steel and quality of the blank's sheared edge is analyzed. The results of computer simulations can be used to forecasting quality of the final parts optimization.
Constructing superconductors by graphene Chern-Simons wormholes
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Pincak, Richard; Saridakis, Emmanuel N.
2018-03-01
We propose a new model which simulates the motion of free electrons in graphene by the evolution of strings on manifolds. In this model, molecules which constitute sheets of graphene are polygonal point-like structures which build (N + 1) -dimensional manifolds. By breaking the gravitational-analogue symmetry of graphene sheets, we show that two separated child sheets and a Chern-Simons bridge are produced giving rise to a wormhole. In this structure, free electrons are transmitted from one child sheet to the other producing superconductivity. An analogue between "effective gravitons" and "Cooper pairs" is found. In principle, this phenomenology provides the possibility to construct superconductor structures by using the analogue of cosmological models.
Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...
2016-11-16
Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Cheng; Zhang, Pengfei; Dai, Sheng
Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less
Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching
2010-01-01
Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.
Asymmetric Magnetic Reconnection in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.
2013-12-01
Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.
Asymmetric Magnetic Reconnection in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.
2013-12-01
Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.
Interacting tilt and kink instabilities in repelling current channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppens, R.; Porth, O.; Xia, C., E-mail: rony.keppens@wis.kuleuven.be
2014-11-01
We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extensionmore » to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.« less
Turbulent magnetic fluctuations in laboratory reconnection
NASA Astrophysics Data System (ADS)
Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas
2016-07-01
The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies. Recent machine upgrades allow the inclusion of ion dynamics by reducing the drive frequency below f_{ci}. Two numerical codes (EMHD and hybrid, respectively) have been developed at the Max Planck Institute for solar physics and are used to investigate instability mechanisms and scaling laws for the observed results. MRX (PPPL. Princeton) is a zero to medium guide field, toroidal reconnection experiment. Despite the differing plasma parameters, the qualitative magnetic fluctuation behavior (amplitude profiles, spectra and propagation properties) is comparable to VINETA.II. Results from a new measurement campaign at several different guide fields provides partial overlap with VINETA.II guide field ratios and thereby extends the accessible parameter space of our studies.
NASA Astrophysics Data System (ADS)
Tanuma, S.; Shibata, K.
2005-07-01
Space solar missions such as Yohkoh and RHESSI observe the hard X- and gamma-ray emission from energetic electrons in impulsive solar flares. Their energization mechanism, however, is unknown. In this Letter, we suggest that the internal shocks are created in the reconnection jet and that they are possible sites of particle acceleration. We examine how magnetic reconnection creates the multiple shocks by performing two-dimensional resistive magnetohydrodynamic simulations. In this Letter, we use a very small grid to resolve the diffusion region. As a result, we find that the current sheet becomes thin due to the tearing instability, and it collapses to a Sweet-Parker sheet. The thin sheet becomes unstable to the secondary tearing instability. Fast reconnection starts by the onset of anomalous resistivity immediately after the secondary tearing instability. During the bursty, time-dependent magnetic reconnection, the secondary tearing instability continues in the diffusion region where the anomalous resistivity is enhanced. As a result, many weak shocks are created in the reconnection jet. This situation produces turbulent reconnection. We suggest that multiple fast shocks are created in the jet and that the energetic electrons can be accelerated by these shocks.
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George
2012-01-01
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684
Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George
2012-12-03
Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.
A high density two-dimensional electron gas in an oxide heterostructure on Si (001)
NASA Astrophysics Data System (ADS)
Jin, E. N.; Kornblum, L.; Kumah, D. P.; Zou, K.; Broadbridge, C. C.; Ngai, J. H.; Ahn, C. H.; Walker, F. J.
2014-11-01
We present the growth and characterization of layered heterostructures comprised of LaTiO3 and SrTiO3 epitaxially grown on Si (001). Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO3/SrTiO3 interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG) at each interface. Sheet carrier densities of 8.9 × 1014 cm-2 per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.
Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei
2016-08-16
The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.
Energy release and transfer in guide field reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
2010-01-01
Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.
Method and apparatus for assessing material properties of sheet-like materials
Telschow, Kenneth L.; Deason, Vance A.
2002-01-01
Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.
Phthalocyanine based metal containing porous carbon sheet
NASA Astrophysics Data System (ADS)
Honda, Z.; Sakaguchi, Y.; Tashiro, M.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.
2017-03-01
Highly-ordered fused-ring poly copper phthalocyanine (PCuPc) was prepared using copper octacyanophthalocyanine as a building block, and two-dimensional (2D) square superlattices were directly observed by the transmission electron microscopy. Remarkably, we have found a formation of polymer network that consists of a 2D porous PCuPc sheet in which the centers of phthalocyanine units are alternately occupied by Cu atom and vacancy. Using this "half-filling" PCuPc, it must be possible to create alternating arrangements for transition metal centers, and therefore control the magnetic properties of the 2D carbon sheets.
New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby
NASA Technical Reports Server (NTRS)
Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje;
2008-01-01
Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.
Beta functions in Chirally deformed supersymmetric sigma models in two dimensions
NASA Astrophysics Data System (ADS)
Vainshtein, Arkady
2016-10-01
We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 = (2, 2) supersymmetry to the chiral one, 𝒩 = (0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.
Beta Functions in Chirally Deformed Supersymmetric Sigma Models in Two Dimensions
NASA Astrophysics Data System (ADS)
Vainshtein, Arkady
We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 =(2, 2) supersymmetry to the chiral one, 𝒩 =(0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.
Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance
NASA Technical Reports Server (NTRS)
Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.
2000-01-01
At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.
Structural and Electronic Properties of α2-Graphyne Nanotubes: A Density Functional Theory Study
NASA Astrophysics Data System (ADS)
Majidi, Roya
2018-02-01
Another form of carbon-based two-dimensional material in the graphene family, named the α2-graphyne sheet, was predicted very recently. The α2-graphyne sheet was created by doubling each acetylenic linker in an α-graphyne sheet. It exhibited semimetallic Dirac point features similar to graphene and α-graphyne sheets. In the present work, single -walled carbon nanotubes based on an α2-graphyne sheet was introduced. The structural and electronic properties of these nanotubes were studied using density functional theory. It was found that armchair α2-graphyne nanotubes showed metallic behavior, while zigzag α2-graphyne nanotubes were found to have semiconducting or metallic properties depending on tube size. The energy band gap of zigzag α2-graphyne nanotubes decreased with increasing tube diameter. The results indicated that the α2-graphyne sheet and its nanotubes can be proper materials for future nanoelectronics.
Orientation and spread of reconnection x-line in asymmetric current sheets
NASA Astrophysics Data System (ADS)
Liu, Y. H.; Hesse, M.; Wendel, D. E.; Kuznetsova, M.; Wang, S.
2017-12-01
The magnetic field in solar wind plasmas can shear with Earth's dipole magnetic field at arbitrary angles, and the plasma conditions on the two sides of the (magnetopause) current sheet can greatly differ. One of the outstanding questions in such asymmetric geometry is what local physics controls the orientation of the reconnection x-line; while the x-line in a simplified 2D model (simulation) always points out of the simulation plane by design, it is unclear how to predict the orientation of the x-line in a fully three-dimensional (3D) system. Using kinetic simulations run on Blue Waters, we develop an approach to explore this 3D nature of the reconnection x-line, and test hypotheses including maximizing the reconnection rate, tearing mode growth rate or reconnection outflow speed, and the bisection solution. Practically, this orientation should correspond to the M-direction of the local LMN coordinate system that is often employed to analyze diffusion region crossings by the Magnetospheric Multiscale Mission (MMS). In this talk, we will also discuss how an x-line spread from a point source in asymmetric geometries, and the boundary effect on the development of the reconnection x-line and turbulence.
Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy
Sachse, Carsten; Fändrich, Marcus; Grigorieff, Nikolaus
2008-01-01
Alzheimer's disease is a neurodegenerative disorder that is characterized by the cerebral deposition of amyloid fibrils formed by Aβ peptide. Despite their prevalence in Alzheimer's and other neurodegenerative diseases, important details of the structure of amyloid fibrils remain unknown. Here, we present a three-dimensional structure of a mature amyloid fibril formed by Aβ(1-40) peptide, determined by electron cryomicroscopy at ≈8-Å resolution. The fibril consists of two protofilaments, each containing ≈5-nm-long regions of β-sheet structure. A local twofold symmetry within each region suggests that pairs of β-sheets are formed from equivalent parts of two Aβ(1-40) peptides contained in each protofilament. The pairing occurs via tightly packed interfaces, reminiscent of recently reported steric zipper structures. However, unlike these previous structures, the β-sheet pairing is observed within an amyloid fibril and includes significantly longer amino acid sequences. PMID:18483195
NASA Astrophysics Data System (ADS)
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.; Chu, X.; McPherron, R. L.
2016-12-01
Although Earth's Region 1 and 2 currents are related to activities such as substorm initiation, their magnetospheric origin remains unclear. Utilizing the triangular configuration of THEMIS probes at 8-12 RE downtail, we seek the origin of nightside Region 1 and 2 currents. The triangular configuration allows a curlometer-like technique which do not rely on active-time boundary crossings, so we can examine the current distribution in quiet times as well as active times. Our statistical study reveals that both Region 1 and 2 currents exist in the plasma sheet during quiet and active times. Especially, this is the first unequivocal, in-situ evidence of the existence of Region 2 currents in the plasma sheet. Farther away from the neutral sheet than the Region 2 currents lie the Region 1 currents which extend at least to the plasma sheet boundary layer. At geomagnetic quiet times, the separation between the two currents is located 2.5 RE from the neutral sheet. These findings suggest that the plasma sheet is a source of Region 1 and 2 currents regardless of geomagnetic activity level. During substorms, the separation between Region 1 and 2 currents migrates toward (away from) the neutral sheet as the plasma sheet thins (thickens). This migration indicates that the deformation of Region 1 and 2 currents is associated with redistribution of FAC sources in the magnetotail. In some substorms when the THEMIS probes encounter a dipolarization, a substorm current wedge (SCW) can be inferred from our technique, and it shows a distinctively larger current density than the pre-existing Region 1 currents. This difference suggests that the SCW is not just an enhancement of the pre-existing Region 1 current; the SCW and the Region 1 currents have different sources.
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.
2014-01-01
A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.
Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko
2016-05-14
In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.
NASA Astrophysics Data System (ADS)
Bradshaw, Darren; Rosseinsky, Matthew J.
2005-12-01
Reaction of Co(NO3)2ṡ6H2O with the multidentate ligands benzene-1,3,5-tricarboxylate (btc) and the flexible bipyridyl ligand 1,2-bis(4-pyridyl)ethane (bpe) affords the 3-dimensional coordination polymers [Co3(btc)2(bpe)3(eg)2]ṡ(guests) 1, where eg = ethylene glycol, and [Co2(Hbtc)2(bpe)2]ṡ(bpe) 2. Both phases are comprised of infinite metal-carboxylate dimer chains, linked into 2-dimensional sheets by the bpe ligands. These sheets are further linked to adjacent sheets through covalent interactions, 1, or through hydrogen-bonding interactions, 2, to yield the 3-dimensional structures. Phase 1 exhibits solvent filled 1-dimensional pores, whereas 2 is triply-interpenetrated to form a dense solid array.
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.
2011-01-01
Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the plasma in conical theta pinches.
Formation of Sprays From Conical Liquid Sheets
NASA Technical Reports Server (NTRS)
Peck, Bill; Mansour, N. N.; Koga, Dennis (Technical Monitor)
1999-01-01
Our objective is to predict droplet size distributions created by fuel injector nozzles in Jet turbines. These results will be used to determine the initial conditions for numerical simulations of the combustion process in gas turbine combustors. To predict the droplet size distribution, we are currently constructing a numerical model to understand the instability and breakup of thin conical liquid sheets. This geometry serves as a simplified model of the liquid jet emerging from a real nozzle. The physics of this process is difficult to study experimentally as the time and length scales are very short. From existing photographic data, it does seem clear that three-dimensional effects such as the formation of streamwise ligaments and the pulling back of the sheet at its edges under the action of surface tension are important.
Failure prediction of thin beryllium sheets used in spacecraft structures
NASA Technical Reports Server (NTRS)
Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.
1991-01-01
The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure criterion, the load is increased and the process is repeated. Failure results for the plate-plug and clamped plate tests are accurate to within 2 percent.
NASA Astrophysics Data System (ADS)
Xue, Zhike; Yan, Xiaoli; Yang, Liheng; Wang, Jincheng; Feng, Song; Li, Qiaoling; Ji, Kaifan; Zhao, Li
2018-05-01
We report a possible current sheet region associated with a small-scale magnetic reconnection event by using the spectral and imaging observations of the Interface Region Imaging Spectrograph (IRIS) and the magnetograms obtained by the Solar Dynamics Observatory on 2016 August 08. The length and width of the current sheet region are estimated to be from 1.4 ± 0.1 Mm to 3.0 ± 0.3 Mm and from 0.34 ± 0.01 Mm to 0.64 ± 0.09 Mm, respectively. The evolutions of the length of the current sheet region are positively correlated with that of the width. These measurements are among the smallest reported. When the IRIS slit scans the current sheet region, the spectroscopic observations show that the Si IV line is broadened in the current sheet region and the plasma has a blueshifted feature at the middle and a redshifted feature at the ends of the current sheet region. The maximum measured blueshifted and redshifted Doppler velocities are ‑20.8 ± 0.9 and 34.1 ± 0.4 km s‑1, respectively. Additionally, the electron number densities of the plasma in the current sheet region are computed to be around 1011 cm‑3 based on the spectrums of the two O IV lines. The emergence, movement, and cancellation of a small sunspot with negative polarity are observed during the formation and shift of the current sheet region. We suggest that the occurrence and evolution of the magnetic reconnection are driven by the movement of the small sunspot in the photosphere.
NASA Astrophysics Data System (ADS)
Ni, Lubin; Zhang, Wang; Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming; Piao, Yuanzhe; Diao, Guowang
2017-02-01
Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. This study shed new lights to the construction of three dimensional self-assembled graphene materials and their urgent applications in energy storage.
ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousbie, Thierry, E-mail: tsousbie@gmail.com; Department of Physics, The University of Tokyo, Tokyo 113-0033; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033
2016-09-15
Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the bestmore » way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.« less
Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency
NASA Technical Reports Server (NTRS)
Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.
2015-01-01
Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.
NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansteen, V.; Pontieu, B. De; Carlsson, M.
2015-10-01
Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less
Bursting reconnection of the two co-rotating current loops
NASA Astrophysics Data System (ADS)
Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi
2000-10-01
Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.
Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox
Jackson, P. Ryan
2013-01-01
The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.
NASA Astrophysics Data System (ADS)
Kacem, I.; Jacquey, C.; Génot, V.; Lavraud, B.; Vernisse, Y.; Marchaudon, A.; Le Contel, O.; Breuillard, H.; Phan, T. D.; Hasegawa, H.; Oka, M.; Trattner, K. J.; Farrugia, C. J.; Paulson, K.; Eastwood, J. P.; Fuselier, S. A.; Turner, D.; Eriksson, S.; Wilder, F.; Russell, C. T.; Øieroset, M.; Burch, J.; Graham, D. B.; Sauvaud, J.-A.; Avanov, L.; Chandler, M.; Coffey, V.; Dorelli, J.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Saito, Y.; Chen, L.-J.; Penou, E.
2018-03-01
The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-10-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was ~150°, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field ~ 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Detection of oppositely directed reconnection jets in a solar wind current sheet
NASA Astrophysics Data System (ADS)
Davis, M. S.; Phan, T. D.; Gosling, J. T.; Skoug, R. M.
2006-12-01
We report the first two-spacecraft (Wind and ACE) detection of oppositely directed plasma jets within a bifurcated current sheet in the solar wind. The event occurred on January 3, 2003 and provides further direct evidence that such jets result from reconnection. The magnetic shear across the bifurcated current sheet at both Wind and ACE was approximately 150 degrees, indicating that the magnetic shear must have been the same at the reconnection site located between the two spacecraft. These observations thus provide strong evidence for component merging with a guide field approximately 30% of the antiparallel field. The dimensionless reconnection rate based on the measured inflow was 0.03, implying fast reconnection.
Dirac electrons in Moiré superlattice: From two to three dimensions
NASA Astrophysics Data System (ADS)
Hu, Chen; Michaud-Rioux, Vincent; Kong, Xianghua; Guo, Hong
2017-11-01
Moiré patterns in van der Waals (vdW) heterostructures bring novel physical effects to the materials. We report theoretical investigations of the Moiré pattern formed by graphene (Gr) on hexagonal boron nitride (h BN). For both the two-dimensional (2D) flat-sheet and the freestanding three-dimensional (3D) wavelike film geometries, the behaviors of Dirac electrons are strongly modulated by the local high-symmetry stacking configurations of the Moiré pattern. In the 2D flat sheet, the secondary Dirac cone (SDC) dispersion emerges due to the stacking-selected localization of SDC wave functions, while the original Dirac cone (ODC) gap is suppressed due to an overall effect of ODC wave functions. In the freestanding 3D wavelike Moiré structure, we predict that a specific local stacking in the Moiré superlattice is promoted at the expense of other local stackings, leading to an electronic structure more similar to that of the perfectly matching flat Gr/h BN than that of the flat-sheet 2D Moiré pattern. To capture the overall picture of the Moiré superlattice, supercells containing 12 322 atoms are simulated by first principles.
Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.
Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun
2014-07-22
Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.
Electron acceleration by magnetic islands in a dynamically evolved coronal current sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaohua, E-mail: shzhang@mail.iggcas.ac.cn; Wang, Bin; Meng, Lifei
2016-03-25
This work simulated the electron acceleration by magnetic islands in a drastically evolved solar coronal current sheet via the combined 2.5-dimensional (2.5D) resistive Magnetohydrodynamics (MHD) and guiding-center approximation test-particle methods. With high magnetic Reynolds number of 105, the long–thin current sheet is evolved into a chain of magnetic islands, growing in size and coalescing with each other, due to tearing instability. The acceleration of electrons is studied in one typical phase when several large magnetic islands are formed. The results show that the electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20% of themore » electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to be located in the small secondary magnetic islands. We find that the acceleration and spatial distributions of the energetic electrons is caused by the trapping effect of the magnetic islands and the distributions of the parallel electric field E{sub p}.« less
Cross-tail current, field-aligned current, and B(y)
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Lu, Chen; Larson, Douglas J.
1994-01-01
Orbits of individual charged particles were traced in a one-dimensional magnetic field model that included a uniform cross-tail component B(sub yo). The effects of B(sub yo) on the cross-tail current distribution j(sub y)(z), the average cross-tail drift velocity(nu(sub y)z), and the average pitch angle change(delta alpha) experienced during current sheet encounters were calculated. The addition of a B(sub yo) that exceeded several tenths of one nanotesla completely eliminated all resonance effects for odd-N orbits. An odd-N resonance involves ions that enter and exit the current sheet on the same side. Pitch angles of nearly all such ions changed substantially during a typical current sheet interaction, and there was no region of large cross-tail drift velocity in the presence of a modest B(sub yo). the addition of a very large B(sub yo) guide field in the direction that enhances the natural drift produces a large j(y) and small (Delta alpha) for ions with all energies. The addition of a modest B(sub yo) had less effect near even-N resonances. In this case, ions in a small energy range were found to undergo so little change in pitch angle that particles which originated in the ionosphere would pass through the current sheet and return to the conjugate ionosphere. Finally, the cross-tail drift of ions from regions dominated by stochastic orbits to regions dominated by either resonant or guiding center orbits was considered. The ion drift speed changed substantially during such transitions. The accompanying electrons obey the guiding center equations, so electron drift is more uniform. Any difference between gradients in the fluxes associated with electron and ion drifts requires the presence of a Birkeland current in order to maintain charge neutrality. This plasma sheet region therefore serves as a current generator. The analysis predicts that the resulting Birkeland current connects to the lowest altitude equatorial regions in which ions drift to or from a point at which stochastic orbits predominate. The proposed mechanism appears only in analyses that include non-guiding-center effects.
Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II
NASA Technical Reports Server (NTRS)
Cheng, W. K.; Lai, M.-C.; Chue, T.-H.
1991-01-01
A flame sheet model for heat release is incorporated into a multi-dimensional fluid mechanical simulation for gas turbine application. The model assumes that the chemical reaction takes place in thin sheets compared to the length scale of mixing, which is valid for the primary combustion zone in a gas turbine combustor. In this paper, the details of the model are described and computational results are discussed.
The Spin and Orientation of Dark Matter Halos Within Cosmic Filaments
NASA Astrophysics Data System (ADS)
Zhang, Youcai; Yang, Xiaohu; Faltenbacher, Andreas; Springel, Volker; Lin, Weipeng; Wang, Huiyuan
2009-11-01
Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses lsim1013 h -1 M sun are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at small separation. Overall, the two algorithms for filament/sheet identification investigated here agree well with each other. The method based on halos alone can be easily adapted for use with observational data sets.
NASA Astrophysics Data System (ADS)
Kuzmina, K. S.; Marchevsky, I. K.; Ryatina, E. P.
2017-11-01
We consider the methodology of numerical schemes development for two-dimensional vortex method. We describe two different approaches to deriving integral equation for unknown vortex sheet intensity. We simulate the velocity of the surface line of an airfoil as the influence of attached vortex and source sheets. We consider a polygonal approximation of the airfoil and assume intensity distributions of free and attached vortex sheets and attached source sheet to be approximated with piecewise constant or piecewise linear (continuous or discontinuous) functions. We describe several specific numerical schemes that provide different accuracy and have a different computational cost. The study shows that a Galerkin-type approach to solving boundary integral equation requires computing several integrals and double integrals over the panels. We obtain exact analytical formulae for all the necessary integrals, which makes it possible to raise significantly the accuracy of vortex sheet intensity computation and improve the quality of velocity and vorticity field representation, especially in proximity to the surface line of the airfoil. All the formulae are written down in the invariant form and depend only on the geometric relationship between the positions of the beginnings and ends of the panels.
Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou
2016-06-06
In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge-discharge cycling and the finding fully described in this manuscript.
NASA Astrophysics Data System (ADS)
Edmondson, J. K.; Lynch, B. J.
2017-11-01
We analyze a series of three-dimensional magnetohydrodynamic numerical simulations of magnetic reconnection in a model solar corona to study the effect of the guide-field component on quasi-steady-state interchange reconnection in a pseudostreamer arcade configuration. This work extends the analysis of Edmondson et al. by quantifying the mass density enhancement coherency scale in the current sheet associated with magnetic island formation during the nonlinear phase of plasmoid-unstable reconnection. We compare the results of four simulations of a zero, weak, moderate, and a strong guide field, {B}{GF}/{B}0=\\{0.0,0.1,0.5,1.0\\}, to quantify the plasmoid density enhancement’s longitudinal and transverse coherency scales as a function of the guide-field strength. We derive these coherency scales from autocorrelation and wavelet analyses, and demonstrate how these scales may be used to interpret the density enhancement fluctuation’s Fourier power spectra in terms of a structure formation range, an energy continuation range, and an inertial range—each population with a distinct spectral slope. We discuss the simulation results in the context of solar and heliospheric observations of pseudostreamer solar wind outflow and possible signatures of reconnection-generated structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas
Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less
Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...
2016-12-16
Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less
Yu, X.; Hsu, T.-J.; Hanes, D.M.
2010-01-01
Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.
Nonlinear Alfvén wave propagating in ideal MHD plasmas
NASA Astrophysics Data System (ADS)
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Faranosov, Georgy A; Bychkov, Oleg P
2017-01-01
The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.
2012-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.
Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli
2015-01-01
We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176
Gender and Employment. Current Statistics and Their Implications.
ERIC Educational Resources Information Center
Equity Issues, 1996
1996-01-01
This publication contains three fact sheets on gender and employment statistics and their implications. The fact sheets are divided into two sections--statistics and implications. The statistics present the current situation of men and women workers as they relate to occupations, education, and earnings. The implications express suggestions for…
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
NASA Astrophysics Data System (ADS)
MacDonald, Allan
2007-04-01
Like the classical squares and triangles in Edwin Abbott's 19th century social satire and science fiction novel Flatland, electrons and other quantum particles behave differently when confined to a two-dimensional world. Condensed matter physicists have been intrigued and regularly suprised by two-dimensional electron systems since they were first studied in semiconductor field-effect-transistor devices over forty years ago. I will discuss some important milestones in the study of two-dimensional electrn systems, from the discoveries of the integer and fractional quantum Hall effects in the 1980's to recent quantum Hall effect work on quasiparticles with non-Abelian quantum statistics. Special attention will be given to a new electronic Flatland that has risen to prominence recently, graphene, which consists of a single sheet of carbon atoms in a honeycomb lattice arrangement. Graphene provides a realization of two-dimensional massless Dirac fermions which interact via nearly instantaneous Coulomb interactions. Early research on graphene has demonstrated yet again that Flatland exceeds expectations.
MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele
2016-03-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9.more » We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.« less
Barriers to front propagation in laminar, three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.
2018-03-01
We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
Yokota, Masayuki; Adachi, Toru
2011-07-20
Phase-shifting digital holography is applied to the measurement of the surface profile of the inner surface of a pipe for the detection of a hole in its wall. For surface contouring of the inner wall, a two-wavelength method involving an injection-current-induced wavelength change of a laser diode is used. To illuminate and obtain information on the inner surface, a cone-shaped mirror is set inside the pipe and moved along in a longitudinal direction. The distribution of a calculated optical path length in an experimental alignment is used to compensate for the distortion due to the misalignment of the mirror in the pipe. Using the proposed method, two pieces of metal sheet pasted on the inner wall of the pipe and a hole in the wall are detected. This shows that the three-dimensional profile of a metal plate on the inner wall of a pipe can be measured using simple image processing. © 2011 Optical Society of America
Three-dimensional spherical models of convection in the earth's mantle
NASA Technical Reports Server (NTRS)
Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.
1989-01-01
Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.
Periodic folding of viscous sheets
NASA Astrophysics Data System (ADS)
Ribe, Neil M.
2003-09-01
The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.
Toward laboratory torsional spine magnetic reconnection
NASA Astrophysics Data System (ADS)
Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.
2017-12-01
Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.
Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah
Kenney, Terry A.; Freeman, Michael L.
2011-01-01
The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted cross-stream average water-surface elevations and cross-stream maximum and average velocities showed how these parameters change along the study reach for two simulated discharges of 1,040 ft3/s and 2,790 ft3/s. The profile plots for the simulated streamflow of 1,040 ft3/s show that the highest velocities are associated with the constructed sheet-pile replacement structure. Results for the simulated streamflow of 2,790 ft3/s indicate that the geometry of the 7800 South Bridge causes more backwater and higher velocities than the constructed sheet-pile replacement structure.
A synchronous strobed laser light sheet for helicopter model rotor flow visualization
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Rhodes, David B.; Jones, Stephen B.; Franke, John M.
1990-01-01
A synchronous, strobed laser light sheet has been developed for use in flow visualization of a helicopter rotor model. The light sheet strobe circuit included selectable blade position, strobe duration, and multiple pulses per revolution for rotors having 2 to 9 blades. The flow was seeded with propylene glycol. Between runs, a calibration grid board was placed in the plane of the laser sheet and recorded with the video camera at the position used to record the flow field. A slip-sync mode permitted slow motion visualization of the flow field over complete rotations of the rotor. The system was used to make two-dimensional flow field cuts of a four-bladed rotor operating at advance ratio of 0.37 at wind tunnel speeds up to 79.25 meters per second (260 feet per second).
Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser
NASA Astrophysics Data System (ADS)
Sheng, Wang; Jin-Hai, Si; Jun, Shao; Zhi-yun, Hu; Jing-feng, Ye; Jing-Ru, Liu
2017-11-01
In order to achieve the two-dimensional (2-D) velocity measurement of a flow field at extreme condition, a 2-D interferometric Rayleigh scattering (IRS) velocimetry using a multibeam probe laser was developed. The method using a multibeam probe laser can record the reference interference signal and the flow interference signal simultaneously. What is more, this method can solve the problem of signal overlap using the laser sheet detection method. The 2-D IRS measurement system was set up with a multibeam probe laser, aspherical lens collection optics, and a solid Fabry-Perot etalon. A multibeam probe laser with 0.5-mm intervals was formed by collimating a laser sheet passing through a cylindrical microlens arrays. The aspherical lens was used to enhance the intensity of the Rayleigh scattering signal. The 2-D velocity field results of a Mach 1.5 air flow were obtained. The velocity in the flow center is about 450 m/s. The reconstructed results fit well with the characteristic of flow, which indicate the validity of this technique.
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1986-01-01
The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.
Full-Stokes modeling of grounding line dynamics: some first interplay with measurements
NASA Astrophysics Data System (ADS)
Durand, G.; Gagliardini, O.; Zwinger, T.; Ritz, C.; Le Meur, E.; Rémy, F.
2009-12-01
Movement of the grounding line (i.e, the line between the grounded and the floating part of a marine ice-sheet) is one of the key processes that governs the mass balance of marine ice-sheets. So far, modeling of grounding line migration was inconsistent, leading to poorly reliable forecast of marine ice-sheet evolution. Important theoretical progress has been made these last years to describe the dynamics of the grounding line, and a recently developed full-Stokes model gives consistent results in comparison to this theory. Despite these important breakthroughs, theory as well as the model are restricted to two-dimensional flow line and therefore unable to be applied to a particular three-dimensional glaciological problem. Nevertheless, some first insights can be already drawn from 2D modeling results to improve the adequacy between future modeling and field measurements. We will particularly emphasize on two different aspects. (i) Modeling results have shown the major importance of high grid resolution in the vicinity of the grounding line, questioning strategies for future measurement campaigns of bedrock elevation of coastal glaciers. (ii) An approximately 10 m depression of the surface at the vertical position above the grounding line is a very stable feature produced by the model. Careful investigation of the surface curvature should help to locate grounding line position.
Chen, Haijie; Malliakas, Christos D.; Narayan, Awadhesh; ...
2017-07-17
We report a new two-dimensional compound Pb 3–xSb 1+xS 4Te 2-δ has a charge density wave (CDW) at room temperature. The CDW is incommensurate with q-vector of 0.248(6)a* + 0.246(8)b* + 0.387(9)c* for x = 0.29(2) and d = 0.37(3) due to positional and occupational long range ordering of Te atoms in the sheets. The modulated structure was refined from the single crystal X-ray diffraction data with a superspace group Pmore » $$\\bar{1}$$(αβγ)0 using (3 + 1)-dimensional crystallography. The resistivity increases with decreasing temperature, suggesting semiconducting behavior. The transition temperature (T CDW) of the CDW is ~ 345 K above which the Te square sheets become disordered with no q-vector. Lastly, first-principles density functional theory calculations on the undistorted structure and an approximate commensurate supercell reveal that the gap is due to the structure modulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haijie; Malliakas, Christos D.; Narayan, Awadhesh
We report a new two-dimensional compound Pb 3–xSb 1+xS 4Te 2-δ has a charge density wave (CDW) at room temperature. The CDW is incommensurate with q-vector of 0.248(6)a* + 0.246(8)b* + 0.387(9)c* for x = 0.29(2) and d = 0.37(3) due to positional and occupational long range ordering of Te atoms in the sheets. The modulated structure was refined from the single crystal X-ray diffraction data with a superspace group Pmore » $$\\bar{1}$$(αβγ)0 using (3 + 1)-dimensional crystallography. The resistivity increases with decreasing temperature, suggesting semiconducting behavior. The transition temperature (T CDW) of the CDW is ~ 345 K above which the Te square sheets become disordered with no q-vector. Lastly, first-principles density functional theory calculations on the undistorted structure and an approximate commensurate supercell reveal that the gap is due to the structure modulation.« less
Chen, Haijie; Malliakas, Christos D; Narayan, Awadhesh; Fang, Lei; Chung, Duck Young; Wagner, Lucas K; Kwok, Wai-Kwong; Kanatzidis, Mercouri G
2017-08-16
We report a new two-dimensional compound, Pb 3-x Sb 1+x S 4 Te 2-δ , that has a charge density wave (CDW) at room temperature. The CDW is incommensurate with q-vector of 0.248(6)a* + 0.246(8)b* + 0.387(9)c* for x = 0.29(2) and δ = 0.37(3) due to positional and occupational long-range ordering of Te atoms in the sheets. The modulated structure was refined from the single-crystal X-ray diffraction data with a superspace group P1̅(αβγ)0 using (3 + 1)-dimensional crystallography. The resistivity increases with decreasing temperature, suggesting semiconducting behavior. The transition temperature (T CDW ) of the CDW is ∼345 K, above which the Te square sheets become disordered with no q-vector. First-principles density functional theory calculations on the undistorted structure and an approximate commensurate supercell reveal that the gap is due to the structure modulation.
NASA Astrophysics Data System (ADS)
Ge, Hai-Liang; Xu, Chen; Xu, Kun; Xun, Meng; Wang, Jun; Liu, Jie
2015-03-01
The two-dimensional (2D) triangle lattice air hole photonic crystal (PC) GaN-based light-emitting diodes (LED) with double-layer graphene transparent electrodes (DGTE) have been produced. The current spreading effect of the double-layer graphene (GR) on the surface of the PC structure of the LED has been researched. Specially, we found that the part of the graphene suspending over the air hole of the PC structure was of much higher conductivity, which reduced the average sheet resistance of the graphene transparent conducting electrode and improved the current spreading of the PC LED. Therefore, the work voltage of the DGTE-PC LED was obviously decreased, and the output power was greatly enhanced. The COMSOL software was used to simulate the current density distribution of the samples. The results show that the etching of PC structure results in the degradation of the current spreading and that the graphene transparent conducting electrode can offer an uniform current spreading in the DGTE-PC LED. PACS: 85.60.Jb; 68.65.Pq; 42.70.Qs
Videotex 1983. An ERIC Fact Sheet.
ERIC Educational Resources Information Center
Olson, Michael
The capabilities and potential of videotex, a two-way interactive communication and information retrieval service, are briefly described in this fact sheet. Videotex refers to a two-way linkage between databases and individual consumers in home or office. It is currently being used for information retrieval, transactions (e.g., bill paying,…
A convenient method for large-scale STM mapping of freestanding atomically thin conductive membranes
NASA Astrophysics Data System (ADS)
Uder, B.; Hartmann, U.
2017-06-01
Two-dimensional atomically flat sheets with a high flexibility are very attractive as ultrathin membranes but are also inherently challenging for microscopic investigations. We report on a method using Scanning Tunneling Microscopy (STM) under ultra-high vacuum conditions for large-scale mapping of several-micrometer-sized freestanding single and multilayer graphene membranes. This is achieved by operating the STM at unusual parameters. We found that large-scale scanning on atomically thin membranes delivers valuable results using very high tip-scan speeds combined with high feedback-loop gain and low tunneling currents. The method ultimately relies on the particular behavior of the freestanding membrane in the STM which is much different from that of a solid substrate.
NASA Technical Reports Server (NTRS)
Lieneweg, Udo; Hannaman, David J.
1987-01-01
A quasi-two-dimensional analytical model is developed to account for vertical and horizontal current flow in and adjacent to a square ohmic contact between a metal and a thin semiconducting strip which is wider than the contact. The model includes side taps to the contact area for voltage probing and relates the 'apparent' interfacial resistivity to the (true) interfacial resistivity, the sheet resistance of the semiconducting layer, the contact size, and the width of the 'flange' around the contact. This relation is checked against numerical simulations. With the help of the model, interfacial resistivities of ohmic contacts to GaAs were extracted and found independent of contact size in the range of 1.5-10 microns.
Thutupalli, Shashi; Sun, Mingzhai; Bunyak, Filiz; Palaniappan, Kannappan; Shaevitz, Joshua W.
2015-01-01
The formation of a collectively moving group benefits individuals within a population in a variety of ways. The surface-dwelling bacterium Myxococcus xanthus forms dynamic collective groups both to feed on prey and to aggregate during times of starvation. The latter behaviour, termed fruiting-body formation, involves a complex, coordinated series of density changes that ultimately lead to three-dimensional aggregates comprising hundreds of thousands of cells and spores. How a loose, two-dimensional sheet of motile cells produces a fixed aggregate has remained a mystery as current models of aggregation are either inconsistent with experimental data or ultimately predict unstable structures that do not remain fixed in space. Here, we use high-resolution microscopy and computer vision software to spatio-temporally track the motion of thousands of individuals during the initial stages of fruiting-body formation. We find that cells undergo a phase transition from exploratory flocking, in which unstable cell groups move rapidly and coherently over long distances, to a reversal-mediated localization into one-dimensional growing streams that are inherently stable in space. These observations identify a new phase of active collective behaviour and answer a long-standing open question in Myxococcus development by describing how motile cell groups can remain statistically fixed in a spatial location. PMID:26246416
Lattice Light Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution
Chen, Bi-Chang; Legant, Wesley R.; Wang, Kai; Shao, Lin; Milkie, Daniel E.; Davidson, Michael W.; Janetopoulos, Chris; Wu, Xufeng S.; Hammer, John A.; Liu, Zhe; English, Brian P.; Mimori-Kiyosue, Yuko; Romero, Daniel P.; Ritter, Alex T.; Lippincott-Schwartz, Jennifer; Fritz-Laylin, Lillian; Mullins, R. Dyche; Mitchell, Diana M.; Bembenek, Joshua N.; Reymann, Anne-Cecile; Böhme, Ralph; Grill, Stephan W.; Wang, Jennifer T.; Seydoux, Geraldine; Tulu, U. Serdar; Kiehart, Daniel P.; Betzig, Eric
2015-01-01
Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, too small, or occur too rapidly to see clearly with existing tools. We crafted ultra-thin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at sub-second intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and complexity of living systems. PMID:25342811
Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.
Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick
2018-01-01
In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.
Two-dimensional models for the optical response of thin films
NASA Astrophysics Data System (ADS)
Li, Yilei; Heinz, Tony F.
2018-04-01
In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.
Takahashi, Hironobu; Okano, Teruo
2015-11-18
In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MPI-AMRVAC 2.0 for Solar and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Xia, C.; Teunissen, J.; El Mellah, I.; Chané, E.; Keppens, R.
2018-02-01
We report on the development of MPI-AMRVAC version 2.0, which is an open-source framework for parallel, grid-adaptive simulations of hydrodynamic and magnetohydrodynamic (MHD) astrophysical applications. The framework now supports radial grid stretching in combination with adaptive mesh refinement (AMR). The advantages of this combined approach are demonstrated with one-dimensional, two-dimensional, and three-dimensional examples of spherically symmetric Bondi accretion, steady planar Bondi–Hoyle–Lyttleton flows, and wind accretion in supergiant X-ray binaries. Another improvement is support for the generic splitting of any background magnetic field. We present several tests relevant for solar physics applications to demonstrate the advantages of field splitting on accuracy and robustness in extremely low-plasma β environments: a static magnetic flux rope, a magnetic null-point, and magnetic reconnection in a current sheet with either uniform or anomalous resistivity. Our implementation for treating anisotropic thermal conduction in multi-dimensional MHD applications is also described, which generalizes the original slope-limited symmetric scheme from two to three dimensions. We perform ring diffusion tests that demonstrate its accuracy and robustness, and show that it prevents the unphysical thermal flux present in traditional schemes. The improved parallel scaling of the code is demonstrated with three-dimensional AMR simulations of solar coronal rain, which show satisfactory strong scaling up to 2000 cores. Other framework improvements are also reported: the modernization and reorganization into a library, the handling of automatic regression tests, the use of inline/online Doxygen documentation, and a new future-proof data format for input/output.
Graphene oxide: surface activity and two-dimensional assembly.
Kim, Franklin; Cote, Laura J; Huang, Jiaxing
2010-05-04
Graphene oxide (GO) is a promising precursor for preparing graphene-based composites and electronics applications. Like graphene, GO is essentially one-atom thick but can be as wide as tens of micrometers, resulting in a unique type of material building block, characterized by two very different length scales. Due to this highly anisotropic structure, the collective material properties are highly dependent on how these sheets are assembled. Therefore, understanding and controlling the assembly behavior of GO has become an important subject of research. In this Research News article the surface activity of GO and how it can be employed to create two-dimensional assemblies over large areas is discussed.
EVIDENCE FOR QUASI-ADIABATIC MOTION OF CHARGED PARTICLES IN STRONG CURRENT SHEETS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.
We investigate quasi-adiabatic dynamics of charged particles in strong current sheets (SCSs) in the solar wind, including the heliospheric current sheet (HCS), both theoretically and observationally. A self-consistent hybrid model of an SCS is developed in which ion dynamics is described at the quasi-adiabatic approximation, while the electrons are assumed to be magnetized, and their motion is described in the guiding center approximation. The model shows that the SCS profile is determined by the relative contribution of two currents: (i) the current supported by demagnetized protons that move along open quasi-adiabatic orbits, and (ii) the electron drift current. The simplestmore » modeled SCS is found to be a multi-layered structure that consists of a thin current sheet embedded into a much thicker analog of a plasma sheet. This result is in good agreement with observations of SCSs at ∼1 au. The analysis of fine structure of different SCSs, including the HCS, shows that an SCS represents a narrow current layer (with a thickness of ∼10{sup 4} km) embedded into a wider region of about 10{sup 5} km, independently of the SCS origin. Therefore, multi-scale structuring is very likely an intrinsic feature of SCSs in the solar wind.« less
Plasma Sheet Injections into the Inner Magnetosphere: Two-way Coupled OpenGGCM-RCM model results
NASA Astrophysics Data System (ADS)
Raeder, J.; Cramer, W. D.; Toffoletto, F.; Gilson, M. L.; Hu, B.
2017-12-01
Plasma sheet injections associated with low flux tube entropy bubbles have been found to be the primary means of mass transport from the plasma sheet to the inner magnetosphere. A two-way coupled global magnetosphere-ring current model, where the magnetosphere is modeled by the OpenGGCM MHD model and the ring current is modeled by the Rice Convection Model (RCM), is used to determine the frequency of association of bubbles with injections and inward plasma transport, as well as typical injection characteristics. Multiple geomagnetic storms and quiet periods are simulated to track and characterize inward flow behavior. Dependence on geomagnetic activity levels or drivers is also examined.
NASA Technical Reports Server (NTRS)
Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.;
2016-01-01
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y
2016-05-28
We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
NASA Astrophysics Data System (ADS)
Cui, Jianxun; Adams, John G. M.; Zhu, Yong
2018-05-01
Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.
Penetration Depth Study of Superconducting Gap Structure of 2H-NbSe2
NASA Astrophysics Data System (ADS)
Fletcher, J. D.; Carrington, A.; Diener, P.; Rodière, P.; Brison, J. P.; Prozorov, R.; Olheiser, T.; Giannetta, R. W.
2007-02-01
We report measurements of the temperature dependence of both in-plane and out-of-plane penetration depths (λa and λc, respectively) in 2H-NbSe2. Measurements were made with a radio-frequency tunnel diode oscillator circuit at temperatures down to 100 mK. Analysis of the anisotropic superfluid density shows that a reduced energy gap is located on one or more of the quasi-two-dimensional Nb Fermi surface sheets rather than on the Se sheet, in contrast with some previous reports. This result suggests that the gap structure is not simply related to the weak electron-phonon coupling on the Se sheet and is therefore important for microscopic models of anisotropic superconductivity in this compound.
Theoretical models of non-Maxwellian equilibria for one-dimensional collisionless plasmas
NASA Astrophysics Data System (ADS)
Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.
2016-12-01
It is ideal to use exact equilibrium solutions of the steady state Vlasov-Maxwell system to intialise collsionless simulations. However, exact equilibrium distribution functions (DFs) for a given macroscopic configuration are typically unknown, and it is common to resort to using `flow-shifted' Maxwellian DFs in their stead. These DFs may be consistent with a macrosopic system with the target number density and current density, but could well have inaccurate higher order moments. We present recent theoretical work on the `inverse problem in Vlasov-Maxwell equilibria', namely calculating an exact solution of the Vlasov equation for a specific given magnetic field. In particular, we focus on one-dimensional geometries in Cartesian (current sheets) coordinates.1. From 1D fields to Vlasov equilibria: Theory and application of Hermite Polynomials: (O. Allanson, T. Neukirch, S. Troscheit and F. Wilson, Journal of Plasma Physics, 82, 905820306 (2016) [28 pages, Open Access] )2. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta: (O. Allanson, T. Neukirch, F. Wilson and S. Troscheit, Physics of Plasmas, 22, 102116 (2015) [11 pages, Open Access])3. Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field (O. Allanson, F. Wilson and T. Neukirch, (2016)) (accepted, Physics of Plasmas)
NASA Astrophysics Data System (ADS)
Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.
2016-12-01
Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete empirical interpolation method (DEIM) to approximate the nonlinearity in the forward problem. We show that using only a limited number of forward solves, the resulting subspaces lead to an efficient method to explore the high-dimensional posterior.
Transport properties of two-dimensional metal-phthalocyanine junctions: An ab initio study
NASA Astrophysics Data System (ADS)
Liu, Shuang-Long; Wang, Yun-Peng; Li, Xiang-Guo; Cheng, Hai-Ping
We study two dimensional (2D) electronic/spintronic junctions made of metal-organic frameworks via first-principles simulation. The system consists of two Mn-phthalocyanine leads and a Ni-phthalocyanine center. A 2D Mn phthalocyanine sheet is ferromagnetic half metal and a 2D Ni phthalocyanine sheet is nonmagnetic semiconductor. Our results show that this system has a large tunnel magnetic resistance. The transmission coefficient at Fermi energy decays exponentially with the length of the central region which is not surprising. However, the transmission of the junction can be tuned using gate voltage by up to two orders of magnitude. The origin of the change lies in the mode matching between the lead and the center electronic states. Moreover, the threshold gate voltage varies with the length of the center region which provides a way of engineering the transport properties. Finally, we combine non-equilibrium Green's function and Boltzmann transport equation to compute conductance of the junction. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995. Computations were done using the utilities of NERSC and University of Florida Research Computing.
Cavitation Modeling in Euler and Navier-Stokes Codes
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.
Simulation and experimental research on spherical dome by 3D laser forming of square feet
NASA Astrophysics Data System (ADS)
Yang, Lijun; Wang, Yang
2007-01-01
Laser forming is a technique of using the energy from a laser beam to modify and adjust the curvature of sheet metals or hard materials. 2-dimensional laser forming can reasonably accurately control bend angles with various materials. To advance this process further for realistic forming applications in a manufacturing industry, it is necessary to consider larger scale controlled 3-dimensional laser forming. However, this is a different situation for 3-dimensional laser forming. The work presented in this paper uses the spider scanning path to form the thin square sheet to spherical dome by laser forming. The explicit dynamic analysis on 3-dimentional laser forming is shown in the article. On the base of temperature gradient mechanism of 2-dimensional laser forming, depending on the geometry and the thermo-physical properties of stainless steel lCrl8Ni9Ti, develop the mechanism of laser forming of thin square sheet to the spherical dome. This paper discusses the interaction between moving laser beam and sheet, the temperature field on the sheet, and the step transition of stress and deformation in laser forming. In order to give the verification on the results of simulation, the correlative experiment has progressed with Lumonics JK7O2H Nd:YAG laser. The results of experiments are in accord with the simulation.
Design and development of high frequency matrix phased-array ultrasonic probes
NASA Astrophysics Data System (ADS)
Na, Jeong K.; Spencer, Roger L.
2012-05-01
High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.
Four large-scale field-aligned current systmes in the dayside high-latitude region
NASA Technical Reports Server (NTRS)
Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.
1995-01-01
A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).
Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review
NASA Astrophysics Data System (ADS)
Yang, Xuetong; Xia, Ling; Song, Shaoxian
2017-07-01
Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.
Models for the Representation of Four-Component Systems.
ERIC Educational Resources Information Center
Kartzmark, Elinor M.
1980-01-01
Describes construction of two inexpensive three-dimensional models (tetrahedrons) using glass tubing and colored plastic sheeting. Diagrams show how these models are used in explaining how a point is plotted in a four-component system and how the composition of a point is deduced from its position in the model. (CS)
Garai, Mousumi; Biradha, Kumar
2015-09-01
The homologous series of phenyl and pyridyl substituted bis(acrylamido)alkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl) on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N-H⋯Npy versus N-H⋯O=C) and network geometries. In this series, a greater tendency towards the formation of N-H⋯O hydrogen bonds (β-sheets and two-dimensional networks) over N-H⋯N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N-H⋯O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.
Impact of the storm-time plasma sheet ion composition on the ring current energy density
NASA Astrophysics Data System (ADS)
Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.
2017-12-01
The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].
NASA Astrophysics Data System (ADS)
Gopiraman, Mayakrishnan; Deng, Dian; Kim, Byoung-Suhk; Chung, Ill-Min; Kim, Ick Soo
2017-07-01
Highly porous carbon nanoarchitectures (HPCNs) were derived from biomass materials, namely, corn fibers (CF), corn leafs (CL), and corn cobs (CC). We surprisingly found that by a very simple activation process the CF, CL, and CC materials can be transformed into exciting two-dimensional (2D) and three-dimensional (3D) carbon nanoarchitectures with excellent physicochemical properties. FESEM and HRTEM results confirmed a three different carbon forms (such as foams-like carbon, carbon sheets with several holes and cheese-like carbon morphology) of HPCNs. Huge surface area (2394-3475 m2/g) with excellent pore properties of HPCNs was determined by BET analysis. Well condensed graphitic plans of HPCNs were confirmed by XRD, XPS and Raman analyses. As an electrode material, HPCNs demonstrated a maximum specific capacitance (Cs) of 575 F/g in 1.0 M H2SO4 with good stability over 20,000 cycles. The CC-700 °C showed a tremendous Cs of 375 F/g even at 20000th cycles. To the best of our knowledge, this is the highest Cs by the biomass derived activated carbons in aqueous electrolytes. The CC-700 °C exhibited excellent charge-discharge behavior at various current densities (0.5-10 A g-1). Notably, CC-700 °C demonstrated an excellent Cs of 207 F/g at current density of 10 A g-1. An extraordinary change-discharge behavior was noticed at low current density of 0.5 A g-1.
Three dimensional stress vector sensor array and method therefor
Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery
2005-07-05
A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.
NASA Astrophysics Data System (ADS)
Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.
2016-01-01
Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.
Estimating the impact of internal climate variability on ice sheet model simulations
NASA Astrophysics Data System (ADS)
Tsai, C. Y.; Forest, C. E.; Pollard, D.
2016-12-01
Rising sea level threatens human societies and coastal habitats and melting ice sheets are a major contributor to sea level rise (SLR). Thus, understanding uncertainty of both forcing and variability within the climate system is essential for assessing long-term risk of SLR given their impact on ice sheet evolution. The predictability of polar climate is limited by uncertainties from the given forcing, the climate model response to this forcing, and the internal variability from feedbacks within the fully coupled climate system. Among those sources of uncertainty, the impact of internal climate variability on ice sheet changes has not yet been robustly assessed. Here we investigate how internal variability affects ice sheet projections using climate fields from two Community Earth System Model (CESM) large-ensemble (LE) experiments to force a three-dimensional ice sheet model. Each ensemble member in an LE experiment undergoes the same external forcings but with unique initial conditions. We find that for both LEs, 2m air temperature variability over Greenland ice sheet (GrIS) can lead to significantly different ice sheet responses. Our results show that the internal variability from two fully coupled CESM LEs can cause about 25 35 mm differences of GrIS's contribution to SLR in 2100 compared to present day (about 20% of the total change), and 100m differences of SLR in 2300. Moreover, only using ensemble-mean climate fields as the forcing in ice sheet model can significantly underestimate the melt of GrIS. As the Arctic region becomes warmer, the role of internal variability is critical given the complex nonlinear interactions between surface temperature and ice sheet. Our results demonstrate that internal variability from coupled atmosphere-ocean general circulation model can affect ice sheet simulations and the resulting sea-level projections. This study highlights an urgent need to reassess associated uncertainties of projecting ice sheet loss over the next few centuries to obtain robust estimates of the contribution of ice sheet melt to SLR.
Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet
NASA Astrophysics Data System (ADS)
Liemohn, Michael W.; Xu, Shaosui; Dong, Chuanfei; Bougher, Stephen W.; Johnson, Blake C.; Ilie, Raluca; De Zeeuw, Darren L.
2017-06-01
This study investigates the role of solar EUV intensity at controlling the location of the Mars magnetotail current sheet and the structure of the lobes. Four simulation results are examined from a multifluid magnetohydrodynamic model. The solar wind and interplanetary magnetic field (IMF) conditions are held constant, and the Mars crustal field sources are omitted from the simulation configuration. This isolates the influence of solar EUV. It is found that solar maximum conditions, regardless of season, result in a Venus-like tail configuration with the current sheet shifted to the -Y (dawnside) direction. Solar minimum conditions result in a flipped tail configuration with the current sheet shifted to the +Y (duskside) direction. The lobes follow this pattern, with the current sheet shifting away from the larger lobe with the higher magnetic field magnitude. The physical process responsible for this solar EUV control of the magnetotail is the magnetization of the dayside ionosphere. During solar maximum, the ionosphere is relatively strong and the draped IMF field lines quickly slip past Mars. At solar minimum, the weaker ionosphere allows the draped IMF to move closer to the planet. These lower altitudes of the closest approach of the field line to Mars greatly hinder the day-to-night flow of magnetic flux. This results in a buildup of magnetic flux in the dawnside lobe as the S-shaped topology on that side of the magnetosheath extends farther downtail. The study demonstrates that the Mars dayside ionosphere exerts significant control over the nightside induced magnetosphere of that planet.
2014-01-01
Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor–acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene–porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions. PMID:25412210
Embedded Heaters for Joining or Separating Plastic Parts
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III
2004-01-01
A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.
Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy
Le, A.; Daughton, W.; Karimabadi, H.; ...
2016-03-16
We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fullymore » kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.« less
Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...
2016-10-06
A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less
Multicontrol Over Graphene–Molecule Hetereojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping
The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less
Zehetmayer, M.
2015-01-01
Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor. PMID:25784605
Multicontrol Over Graphene–Molecule Hetereojunctions
Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping
2017-09-15
The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less
Zehetmayer, M
2015-03-18
Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.
Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graser, Siegfried; Kemper, Alexander F; Maier, Thomas A
2010-01-01
Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2 type, K=Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three-dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone BZ of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we presentmore » an effective five-orbital tight-binding fit of the full density functional theory band structure for BaFe2As2 including the kz dispersions. We compare the five-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the random-phase approximation enhanced susceptibility. Using the fluctuation ex- change approximation to determine the leading pairing instability, we then examine the differences between a strictly two-dimensional model calculation over a single kz cut of the BZ and a completely three-dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz=0, which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz=?. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.« less
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
Wang, Qiong-Hua; Li, Xiao-Fang; Zhou, Lei; Wang, Ai-Hong; Li, Da-Hai
2011-03-01
A method is proposed to alleviate the cross talk in multiview autostereoscopic three-dimensional displays based on a lenticular sheet. We analyze the positional relationship between subpixels on the image panel and the lenticular sheet. According to this relationship, optimal synthetic images are synthesized to minimize cross talk by correcting the positions of subpixels on the image panel. Experimental results show that the proposed method significantly reduces the cross talk of view images and improves the quality of stereoscopic images. © 2010 Optical Society of America
Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS
NASA Astrophysics Data System (ADS)
Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.
2018-03-01
This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.
Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet
NASA Astrophysics Data System (ADS)
Iwata, Y.; Miyashita, S.; Iwase, E.
2017-12-01
This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.
Electrically tunable robust edge states in graphene-based topological photonic crystal slabs
NASA Astrophysics Data System (ADS)
Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu
2018-03-01
Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.
Liu, Yonghuan; Wang, Rutao; Yan, Xingbin
2015-06-08
Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g(-1) at 0.5 A g(-1) is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g(-1) at 100 A g(-1). On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg(-1) and an ultrahigh power density of 40 000 W kg(-1).
Liu, Yonghuan; Wang, Rutao; Yan, Xingbin
2015-01-01
Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g−1 at 0.5 A g−1 is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g−1 at 100 A g−1. On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg−1 and an ultrahigh power density of 40 000 W kg−1. PMID:26053847
NASA Astrophysics Data System (ADS)
Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.
2017-12-01
We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.
Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K
2017-06-01
Light-sheet-based fluorescence microscopy features optical sectioning in the excitation process. This reduces phototoxicity and photobleaching by up to four orders of magnitude compared with that caused by confocal fluorescence microscopy, simplifies segmentation and quantification for three-dimensional cell biology, and supports the transition from on-demand to systematic data acquisition in developmental biology applications.
NASA Astrophysics Data System (ADS)
Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.
2017-02-01
Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.
Wu, Han; Zhang, Yu-Qi; Hu, Min-Biao; Ren, Li-Jun; Lin, Yue; Wang, Wei
2017-05-30
Clusters are an important class of nanoscale molecules or superatoms that exhibit an amazing diversity in structure, chemical composition, shape, and functionality. Assembling two types of clusters is creating emerging cluster-assembled materials (CAMs). In this paper, we report an effective approach to produce quasi two-dimensional (2D) CAMs of two types of spherelike clusters, polyhedral oligomeric silsesquioxanes (POSS), and polyoxometalates (POM). To avoid macrophase separation between the two clusters, they are covalently linked to form a POM-POSS cocluster with Janus characteristics and a dumbbell shape. This Janus characteristics enables the cocluster to self-assemble into diverse nanoaggregates, as conventional amphiphilic molecules and macromolecules do, in selective solvents. In our study, we obtained micelles, vesicles, nanosheets, and nanoribbons by tuning the n-hexane content in mixed solvents of acetone and n-hexane. Ordered packing of clusters in the nanosheets and nanoribbons were directly visualized using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) technique. We infer that the increase of packing order results in the vesicle-to-sheet transition and the change in packing mode causes the sheet-to-ribbon transitions. Our findings have verified the effectivity of creating quasi 2D cluster-assembled materials though the cocluster self-assembly as a new approach to produce novel CAMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Takuya; Shibata, Kazunari; Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamicsmore » become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.« less
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Qiu, Jiong; Shibata, Kazunari
2017-10-01
We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.
Performance of steel girders repaired with advanced composite sheets in a corrosive environment.
DOT National Transportation Integrated Search
2017-01-01
This report presents a two-phase research program studying i) galvanic current influencing deterioration of carbon fiber reinforced polymer (CFRP) sheets bonded to a steel substrate and ii) electrochemical reaction for steel beams strengthened with C...
An elastic analysis of stresses in a uniaxially loaded sheet containing an interference-fit bolt
NASA Technical Reports Server (NTRS)
Crews, J. H., Jr.
1972-01-01
The stresses in a sheet with an interference-fit bolt have been calculated for two sheet-bolt interface conditions: a frictionless interface and a fixed (no-slip) interface. The stress distributions were calculated for various combinations of sheet and bolt moduli. The results show that for repeated loading the local stress range is significantly smaller if an interference bolt is used instead of a loosely fitting one. This reduction in local stress range is more pronounced when the ratio of bolt modulus to sheet modulus is large. The analysis also indicates that currently used standard values of interference cause yielding in the sheet.
Packing of flexible 2D materials in vesicles
NASA Astrophysics Data System (ADS)
Zou, Guijin; Yi, Xin; Zhu, Wenpeng; Gao, Huajian
2018-06-01
To understand the mechanics of cellular packing of two-dimensional (2D) materials, we perform systematic molecular dynamics simulations and theoretical analysis to investigate the packing of a flexible circular sheet in a spherical vesicle and the 2D packing problem of a strip in a cylindrical vesicle. Depending on the system dimensions and the bending rigidity ratio between the confined sheet and the vesicle membrane, a variety of packing morphologies are observed, including a conical shape, a shape of three-fold symmetry, a cylindrically curved shape, an axisymmetrically buckled shape, as well as the initial circular shape. A set of buckling analyses lead to phase diagrams of the packing morphologies of the encapsulated sheets. These results may have important implications on the mechanism of intracellular packing and toxicity of 2D materials.
Yang, Wanlu; Gao, Zan; Wang, Jun; Ma, Jing; Zhang, Milin; Liu, Lianhe
2013-06-26
A Ni-Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nanocomposite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni-Al LDH/CNT nanocrystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance (1562 F/g at 5 mA/cm(2)), excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhenyu; Lin, Yu; Wang, Xueyi
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less
Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...
2016-07-07
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less
NASA Astrophysics Data System (ADS)
Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.
2017-12-01
We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.
Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.
Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat
2017-10-01
Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
NASA Astrophysics Data System (ADS)
Guo, Chinlin
We studied two particular biomedical systems which exhibit collective molecular behavior. One is clustering of tumor necrosis factor receptor I (TNFR1), and another is β-sheet folding and aggregation. Receptor clustering has been shown to be a crucial step in many signaling events but its biological meaning has not been adequately addressed. Here, via a simple lattice model, we show how cells use this clustering machinery to enhance sensitivity as well as robustness. On the other hand, intracellular deposition of aggregated protein rich in β-sheet is a prominent cytopathological feature of most neurodegenerative diseases. How this aggregation occurs and how it responds to therapy is not completely understood. Here, we started from a reconstruction of the H-bond potential and carry out a full investigation of β-sheet thermodynamics as well as kinetics. We show that β-sheet aggregation is most likely due to molecular stacking and found that the minimal length of an aggregate mutant polymer corresponds well with the number observed in adult Huntington's disease. We have also shown that molecular agents such as dendrimers might fail at high-dose therapy; instead, a potential therapy strategy is to block β-turn formation. Our predictions can be used for future experimental tests and clinical trials.
Multi-scale multi-point observation of dipolarization in the near-Earth's magnetotail
NASA Astrophysics Data System (ADS)
Nakamura, R.; Varsani, A.; Genestreti, K.; Nakamura, T.; Baumjohann, W.; Birn, J.; Le Contel, O.; Nagai, T.
2017-12-01
We report on evolution of the dipolarization in the near-Earth plasma sheet during two intense substorms based on observations when the four spacecraft of the Magnetospheric Multiscale (MMS) together with GOES and Geotail were located in the near Earth magnetotail. These multiple spacecraft together with the ground-based magnetogram enabled to obtain the location of the large- scale substorm current wedge (SCW) and overall changes in the plasma sheet configuration. MMS was located in the southern hemisphere at the outer plasma sheet and observed fast flow disturbances associated with dipolarizations. The high time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and the flow disturbances separately and to resolve signatures below the ion-scales. We found small-scale transient field-aligned current sheets associated with upward streaming cold plasmas and Hall-current layers in the fast flow shear region. Observations of these current structures are compared with simulations of reconnection jets.
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.; ...
2017-04-03
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations
NASA Astrophysics Data System (ADS)
Guo, W.; Ma, J.; Yu, Z.
2017-03-01
A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.
Shen, Xibo; Song, Chen; Wang, Jinye; Shi, Dangwei; Wang, Zhengang; Liu, Na; Ding, Baoquan
2012-01-11
Construction of three-dimensional (3D) plasmonic architectures using structural DNA nanotechnology is an emerging multidisciplinary area of research. This technology excels in controlling spatial addressability at sub-10 nm resolution, which has thus far been beyond the reach of traditional top-down techniques. In this paper, we demonstrate the realization of 3D plasmonic chiral nanostructures through programmable transformation of gold nanoparticle (AuNP)-dressed DNA origami. AuNPs were assembled along two linear chains on a two-dimensional rectangular DNA origami sheet with well-controlled positions and particle spacing. By rational rolling of the 2D origami template, the AuNPs can be automatically arranged in a helical geometry, suggesting the possibility of achieving engineerable chiral nanomaterials in the visible range. © 2011 American Chemical Society
Swarm observation of field-aligned current and electric field in multiple arc systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, M.; Donovan, E.; Burchill, J. K.
2017-12-01
It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. These types of events are termed "unipolar FAC" events. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs, which are termed as "multipolar FAC" events. Comparisons of these two types of FAC events are presented with 17 "unipolar FAC" events and 12 "multipolar FAC" events. The results show that "unipolar FAC" and "multipolar FAC" events have systematic differences in terms of MLT, arc width and separation, and dependence on substorm onset time. For "unipolar FAC" events, significant electric field enhancements are shown on the edges of the broad upward current sheet. Electric field fluctuations inside the multiple arc system can be large or small. For "multipolar FAC" events, a strong correlation between magnetic and electric field indicate uniform conductance within each upward current sheet. The electrodynamical structures of multiple arc systems presented in this paper represents a step toward understanding arc generation.
Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event
NASA Astrophysics Data System (ADS)
Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.
2017-12-01
During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1985-01-01
A three-dimensional MHD simulation code is used to model the magnetospheric configuration when the IMF has both a northward B(z) component and a B(y) component in the east-west direction. Projections of the plasma pressure, the field-aligned velocity, the field-aligned vorticity, and the field-aligned current along the magnetic field lines into the northern ionosphere are shown and discussed. Cross-sectional patterns of these parameters are shown. The results demonstrate that the B(y) component of the IMF strongly influences the plasma sheet configuration and the magnetospheric convection pattern.
NASA Astrophysics Data System (ADS)
Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo
2017-05-01
In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.
NASA Astrophysics Data System (ADS)
Jiang, Cheng-Wei; Ni, I.-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson
2014-05-01
How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06627d
Khan, Junaid Ahmad; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A.
2015-01-01
This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857
Optical Forging of Graphene into Three-Dimensional Shapes.
Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika
2017-10-11
Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.
Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes.
Anderson, Robert H; Ho, Siew Yen; Sanchez-Quintana, Damian; Redmann, Klaus; Lunkenheimer, Paul P
2006-06-01
There is lack of consensus concerning the three-dimensional arrangement of the myocytes within the ventricular muscle masses. Bioengineers are seeking to model the structure of the heart. Although the success of such models depends on the accuracy of the anatomic evidence, most of them have been based on concepts that are far from anatomical reality, which ignore many significant previous accounts of anatomy presented over the past 400 years. During the 19th century, Pettigrew emphasized that the heart was built on the basis of a modified blood vessel rather than in the form of skeletal muscles. This fact was reemphasized by Lev and Simkins as well as Grant in the 20th century, but the caveats listed by these authors have been ignored by proponents of two current concepts, which state either that the myocardium is arranged in the form of a "unique myocardial band," or that the walls of the ventricles are sequestrated in uniform fashion by laminar sheets of fibrous tissue extending from epicardium to endocardium. These two concepts are themselves incompatible and are further at variance with the majority of anatomic studies, which have emphasized the regional heterogeneity to be found in the three-dimensional packing of the myocytes within a supporting matrix of fibrous tissue. We reemphasize the significance of this three-dimensional muscular mesh, showing how the presence of intruding aggregates of myocytes extending in oblique transmural fashion also contends against the notion that all myocytes are orientated with their long axes parallel to the epicardial and enodcardial surfaces.
Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide.
Jiang, Tao; Xu, Chunfu; Zuo, Xiaobing; Conticello, Vincent P
2014-08-04
A collagen-mimetic peptide, NSIII, has been designed with three sequential blocks having positive, neutral, and negative charges, respectively. The non-canonical imino acid, (2S,4S)-4-aminoproline (amp), was used to specify the positive charges at the Xaa positions of (Xaa-Yaa-Gly) triads in the N-terminal domain of NSIII. Peptide NSIII underwent self-assembly from aqueous solution to form a highly homogeneous population of nanosheets. Two-dimensional crystalline sheets formed in which the length of the peptide defined the height of the sheets. These results contrasted with prior results on a similar multi-domain collagen-mimetic polypeptides in which the sheets had highly polydisperse distribution of sizes in the (x/y)- and (z)-dimensions. The structural differences between the two nanosheet assemblies were interpreted in terms of the relative stereoelectronic effects of the different aminoproline derivatives on the local triple helical conformation of the peptides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gea, Saharman; Reynolds, Christopher T; Roohpour, Nima; Wirjosentono, Basuki; Soykeabkaew, Nattakan; Bilotti, Emiliano; Peijs, Ton
2011-10-01
Bacterial cellulose (BC) is a natural hydrogel, which is produced by Acetobacter xylinum (recently renamed Gluconacetobacter xylinum) in culture and constitutes of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. Here, a two-step purification process is presented that significantly improves the structural, mechanical, thermal and morphological behaviour of BC sheet processed from these hydrogels produced in static culture. Alkalisation of BC using a single-step treatment of 2.5 wt.% NaOH solution produced a twofold increase in Young's modulus of processed BC sheet over untreated BC sheet. Further enhancements are achieved after a second treatment with 2.5 wt.% NaOCl (bleaching). These treatments were carefully designed in order to prevent any polymorphic crystal transformation from cellulose I to cellulose II, which can be detrimental for the mechanical properties. Scanning electron microscopy and thermogravimetric analysis reveals that with increasing chemical treatment, morphological and thermal stability of the processed films are also improved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Exploring the brain on multiple scales with correlative two-photon and light sheet microscopy
NASA Astrophysics Data System (ADS)
Silvestri, Ludovico; Allegra Mascaro, Anna Letizia; Costantini, Irene; Sacconi, Leonardo; Pavone, Francesco S.
2014-02-01
One of the unique features of the brain is that its activity cannot be framed in a single spatio-temporal scale, but rather spans many orders of magnitude both in space and time. A single imaging technique can reveal only a small part of this complex machinery. To obtain a more comprehensive view of brain functionality, complementary approaches should be combined into a correlative framework. Here, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, taking advantage of blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living thy1-GFP-M mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from the apical portion, the whole pyramidal neuron can then be segmented. The correlative approach presented here allows contextualizing within a three-dimensional anatomic framework the neurons whose dynamics have been observed with high detail in vivo.
NASA Astrophysics Data System (ADS)
Leguy, G.; Lipscomb, W. H.; Asay-Davis, X.
2017-12-01
Ice sheets and ice shelves are linked by the transition zone, the region where the grounded ice lifts off the bedrock and begins to float. Adequate resolution of the transition zone is necessary for numerically accurate ice sheet-ice shelf simulations. In previous work we have shown that by using a simple parameterization of the basal hydrology, a smoother transition in basal water pressure between floating and grounded ice improves the numerical accuracy of a one-dimensional vertically integrated fixed-grid model. We used a set of experiments based on the Marine Ice Sheet Model Intercomparison Project (MISMIP) to show that reliable grounding-line dynamics at resolutions 1 km is achievable. In this presentation we use the Community Ice Sheet Model (CISM) to demonstrate how the representation of basal lubrication impacts three-dimensional models using the MISMIP-3D and MISMIP+ experiments. To this end we will compare three different Stokes approximations: the Shallow Shelf Approximation (SSA), a depth-integrated higher-order approximation, and the Blatter-Pattyn model. The results from our one-dimensional model carry over to the 3-D models; a resolution of 1 km (and in some cases 2 km) remains sufficient to accurately simulate grounding-line dynamics.
Modeling the heliospheric current sheet: Solar cycle variations
NASA Astrophysics Data System (ADS)
Riley, Pete; Linker, J. A.; Mikić, Z.
2002-07-01
In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (<~5 AU). We find that these deformations are most pronounced at solar minimum and become less significant at solar maximum, when interaction regions are less effective. Although solar maximum is typically associated with transient, rather than corotating, processes, we show that even under such conditions, the HCS can maintain its structure over the course of several solar rotations. While the HCS may almost always be topologically equivalent to a ``ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.
NASA Astrophysics Data System (ADS)
Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin
2017-12-01
In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.
2017-12-01
It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.
NASA Astrophysics Data System (ADS)
Sadeghzadeh, S.
2017-11-01
Two-dimensional (2D) materials have recently attracted a great attraction. This paper provides a detailed discussion on the rupture mechanisms of different allotropes of boron. As a new 2D material by using a reactive molecular dynamics model, probable types of rupture for borophene sheets were studied, among which two dominant mechanisms were observed: creation of the cracks and formation of nanopores. The results obtained are compared to those for graphene and h-BN nano sheets, although the rupture mechanism was completely different from the graphene and h-BN sheets. The simulations suggested that borophene might remain more stable against external mechanical loads than graphene and BN sheets. Cracking leads to larger strain along the loading direction, whereas the creation of local pores spends the imposed energy for breaking the internal bonds and so flowing the external energy into the various bonds increases the number of pores. For the armchair-types, cracking is a dominant mechanism while for the zigzag-type the common mechanism is the creation of nanopores. These interesting results may help to design a new class of semiconductors that remain stable even when are sustaining uncontrollable external stresses.
NASA Astrophysics Data System (ADS)
Jayachandra Babu, M.; Sandeep, N.; Ali, M. E.; Nuhait, Abdullah O.
The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively.
Nonlinear reconnecting edge localized modes in current-carrying plasmas
Ebrahimi, F.
2017-05-22
Nonlinear edge localized modes in a tokamak are examined using global three-dimensional resistive magnetohydrodynamics simulations. Coherent current-carrying filament (ribbon-like) structures wrapped around the torus are nonlinearly formed due to nonaxisymmetric reconnecting current sheet instabilities, the so-called peeling-like edge localized modes. These fast growing modes saturate by breaking axisymmetric current layers isolated near the plasma edge and go through repetitive relaxation cycles by expelling current radially outward and relaxing it back. The local bidirectional fluctuation-induced electromotive force (emf) from the edge localized modes, the dynamo action, relaxes the axisymmetric current density and forms current holes near the edge. Furthermore, the three-dimensionalmore » coherent current-carrying filament structures (sometimes referred to as 3-D plasmoids) observed here should also have strong implications for solar and astrophysical reconnection.« less
Chen, Zhe; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin
2018-01-30
Wear occurs between two rubbing surfaces. Severe wear due to seizure under high pressure leads to catastrophic failures of mechanical systems and raises wide concerns. In this paper, a kind of synthetic oil-soluble ultrathin MoS 2 sheets is synthesized and investigated as lubricant additives between steel surfaces. It is found that, with the ultrathin MoS 2 sheets, the wear can be controlled under the nominal pressure of about 1 GPa, whereas the bearable nominal pressure for traditional lubricants is only a few hundred megapascals. It is found that when wear is under control, the real pressure between the asperities agrees with the breaking strength of ultrathin MoS 2 . Therefore, it is believed that, because of the good oil solubility and ultrasmall thickness, the ultrathin MoS 2 sheets can easily enter the contact area between the contacting asperities. Then, the localized seizure and further wear are prevented because there will be no metal-to-metal contact as long as the real pressure between the asperities is below the breaking strength of ultrathin MoS 2 . In this way, the upper limit pressure the lubricant can work is dependent on the mechanical properties of the containing ultrathin two-dimensional (2D) sheets. Additionally, ultrathin MoS 2 sheets with various lateral sizes are compared, and it is found that sheets with a larger size show better lubrication performance. This work discovers the lubrication mechanism of ultrathin MoS 2 sheets as lubricant additives and provides an inspiration to develop a novel generation of lubricant additives with high-strength ultrathin 2D materials.
Mechanical exfoliation of two-dimensional materials
NASA Astrophysics Data System (ADS)
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Multiscale modelling of a composite electroactive polymer structure
NASA Astrophysics Data System (ADS)
Wang, P.; Lassen, B.; Jones, R. W.; Thomsen, B.
2010-12-01
Danfoss PolyPower has developed a tubular actuator comprising a dielectric elastomer sheet with specially shaped compliant electrodes rolled into a tube. This paper is concerned with the modelling of this kind of tubular actuator. This is a challenging task due to the system's multiscale nature which is caused by the orders of magnitude difference between the length and thickness of the sheets as well as the thickness of the electrodes and the elastomer in the sheets. A further complication is the presence of passive parts at both ends of the actuator, i.e. areas without electrodes which are needed in order to avoid short circuits between negative and positively charged electrodes on the two sides of the sheet. Due to the complexities in shape and size it is necessary to introduce some simplifying assumptions. This paper presents a set of models where the three-dimensional problem has been reduced to two-dimensional problems, ensuring that the resulting models can be handled numerically within the framework of the finite element method. These models have been derived by expressing Navier's equation in elliptical cylindrical coordinates in order to take full advantage of the special shape of these actuators. Emphasis is placed on studying the passive parts of the actuator, as these degrade the effectiveness of the actuator. Two approaches are used here to model the passive parts: a spring-stiffness analogy model and a longitudinal section model of the actuator. The models have been compared with experimental results for the force-elongation characteristics of the commercially available PolyPower 'InLastor push' actuator. The comparison shows good agreement between model and experiments for the case where the passive parts were taken into account. One of the models developed is subsequently used to study geometric effects—specifically the effect of changing the ellipticity of the tubular actuator on the actuator's performance is investigated.
Amir, Fatima Z.; Pham, V. H.; Mullinax, D. W.; ...
2016-06-07
Ruthenium oxide (RuO 2) nanomaterials exist as excellent materials for electrochemical capacitors. However, they tend to suffer from low mechanical flexibility when cast into films, which makes them unsuitable for flexible device applications. Herein, we report an environmentally friendly and solution-processable approach to fabricate RuO 2-based composite electrodes for flexible solid state supercapacitors. The composites were produced by anchoring RuO 2 nanoparticles onto holey reduced graphene oxide (HRGO) via a sol-gel method, followed by the electrophoretic deposition (EPD) of the material into thin films. The uniform anchoring of ultra-small RuO 2 nanoparticles on the two-dimensional HRGO sheets resulted in HRGO-RuOmore » 2 hybrid sheets with excellent mechanical flexibility of HRGO. EPD induced a layer-by-layer assembly mechanism for the HRGO-RuO 2 hybrid sheets, which resulted in a binder-free, flexible electrode. The obtained HRGO-RuO 2 flexible supercapacitors exhibited excellent electrochemical capacitive performance in a PVA-H 2SO 4 gel electrolyte with a specific capacitance of 418 F g -1 and superior cycling stability of 88.5% capacitance retention after 10,000 cycles. Additionally, these supercapacitors exhibited high rate performance with capacitance retention of 85% by increasing the current density from 1.0 to 20.0 Ag -1, and excellent mechanical flexibility with only 4.9% decay in the performance when bent 180°.« less
NASA Astrophysics Data System (ADS)
Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael
Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.
Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buyers, W J.L.; Holden, T M; Svensson, E C
1977-11-01
Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the (001) domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along themore » spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons.« less
Methyl (4-bromo-benzene-sulfonamido)acetate.
Arshad, Muhammad Nadeem; Tahir, M Nawaz; Khan, Islam Ullah; Ahmad, Ejaz; Shafiq, Muhammad
2008-11-20
The title compound, C(9)H(10)BrNO(4)S, is an inter-mediate for the formation of benzothia-zines. In the crystal structure, inter-molecular N-H⋯O hydrogen bonds link the mol-ecules, forming R(2) (2)(10) ring motifs, which are linked into a two-dimensional polymeric sheet through inter-molecular C-H⋯O hydrogen bonds.
Some aspects of unsteady separation
NASA Technical Reports Server (NTRS)
Smith, C. R.; Walker, J. D. A.
1992-01-01
Unsteady separation can be forced in a variety of ways and in this presentation two fundamental means will be considered: (1) the introduction of convected vorticular disturbances into the flow; and (2) the influence of a specific type of three-dimensional geometry. In both situations a response of the viscous flow near the wall is provoked wherein the fluid near the surface abruptly focuses into a narrow region that erupts from the surface into the mainstream. In two-dimensional flows, the eruption takes the form of a narrow, explosively-growing spike, while in three-dimensional situations, examples are presented which indicate that the eruption is along a narrow zone in the shape of a crescent-shaped plume. The nature of the three-dimensional flow near a circular cylinder, which is mounted normal to a flat plate, is also examined in this study. Here the three-dimensional geometry induces complex three-dimensional separations periodically. The dynamics of the generation process is studied experimentally in a water channel using hydrogen bubble wires and a laser sheet, and the main features of the laminar regime through to transition are documented.
In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S
2015-08-25
We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.
Evaluating conducting network based transparent electrodes from geometrical considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ankush; Kulkarni, G. U., E-mail: guk@cens.res.in
2016-01-07
Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained frommore » conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting the properties of a network simply from image analysis and will be helpful in improvisation and comparison of various TEs and better understanding of electrical percolation.« less
Evaluating conducting network based transparent electrodes from geometrical considerations
NASA Astrophysics Data System (ADS)
Kumar, Ankush; Kulkarni, G. U.
2016-01-01
Conducting nanowire networks have been developed as viable alternative to existing indium tin oxide based transparent electrode (TE). The nature of electrical conduction and process optimization for electrodes have gained much from the theoretical models based on percolation transport using Monte Carlo approach and applying Kirchhoff's law on individual junctions and loops. While most of the literature work pertaining to theoretical analysis is focussed on networks obtained from conducting rods (mostly considering only junction resistance), hardly any attention has been paid to those made using template based methods, wherein the structure of network is neither similar to network obtained from conducting rods nor similar to well periodic geometry. Here, we have attempted an analytical treatment based on geometrical arguments and applied image analysis on practical networks to gain deeper insight into conducting networked structure particularly in relation to sheet resistance and transmittance. Many literature examples reporting networks with straight or curvilinear wires with distributions in wire width and length have been analysed by treating the networks as two dimensional graphs and evaluating the sheet resistance based on wire density and wire width. The sheet resistance values from our analysis compare well with the experimental values. Our analysis on various examples has revealed that low sheet resistance is achieved with high wire density and compactness with straight rather than curvilinear wires and with narrower wire width distribution. Similarly, higher transmittance for given sheet resistance is possible with narrower wire width but of higher thickness, minimal curvilinearity, and maximum connectivity. For the purpose of evaluating active fraction of the network, the algorithm was made to distinguish and quantify current carrying backbone regions as against regions containing only dangling or isolated wires. The treatment can be helpful in predicting the properties of a network simply from image analysis and will be helpful in improvisation and comparison of various TEs and better understanding of electrical percolation.
NASA Astrophysics Data System (ADS)
Tsai, C. Y.; Forest, C. E.; Pollard, D.
2017-12-01
The Antarctic ice sheet (AIS) has the potential to be a major contributor to future sea-level rise (SLR). Current projections of SLR due to AIS mass loss remain highly uncertain. Better understanding of how ice sheets respond to future climate forcing and variability is essential for assessing the long-term risk of SLR. However, the predictability of future climate is limited by uncertainties from emission scenarios, model structural differences, and the internal variability that is inherently generated within the fully coupled climate system. Among those uncertainties, the impact of internal variability on the AIS changes has not been explicitly assessed. In this study, we quantify the effect of internal variability on the AIS evolutions by using climate fields from two large-ensemble experiments using the Community Earth System Model to force a three-dimensional ice sheet model. We find that internal variability of climate fields, particularly atmospheric fields, among ensemble members leads to significantly different AIS responses. Our results show that the internal variability can cause about 80 mm differences of AIS contribution to SLR by 2100 compared to the ensemble-mean contribution of 380-450 mm. Moreover, using ensemble-mean climate fields as the forcing in the ice sheet model does not produce realistic simulations of the ice loss. Instead, it significantly delays the onset of retreat of the West Antarctic Ice Sheet for up to 20 years and significantly underestimates the AIS contribution to SLR by 0.07-0.11 m in 2100 and up to 0.34 m in the 2250's. Therefore, because the uncertainty caused by internal variability is irreducible, we seek to highlight a critical need to assess the role of internal variability in projecting the AIS loss over the next few centuries. By quantifying the impact of internal variability on AIS contribution to SLR, policy makers can obtain more robust estimates of SLR and implement suitable adaptation strategies.
NASA Technical Reports Server (NTRS)
Maynard, N. C.; Burke, W. J.; Erickson, G. M.; Nakamura, M.; Mukai, T.; Kokubun, S.; Yamamoto, T.; Jacobsen, B.; Egeland, A.; Samson, J. C.;
1997-01-01
Geotail plasma and field measurements at -95 R(sub E) are compared with extensive ground-based, near-Earth, and geosynchronous measurements to study relationships between auroral activity and magnetotail dynamics during the expansion phases of two substorms. The studied intervals are representative of intermittent, moderate activity. The behavior of the aurora and the observed effects at Geotail for both events are harmonized by the concept of the activation of near-Earth X lines (NEXL) after substorm onsets, with subsequent discharges of one or more plasmoids down the magnetotail. The plasmoids must be viewed as three-dimensional structures which are spatially limited in the dawn-dusk direction. Also, reconnection at the NEXL must proceed at variable rates on closed magnetic field lines for significant times before beginning to reconnect lobe flux. This implies that the plasma sheet in the near-Earth magnetotail is relatively thick in comparison with an embedded current sheet and that both the NEXL and distant X line can be active simultaneously. Until reconnection at the NEXL engages lobe flux, the distant X line maintains control of the poleward auroral boundary. If the NEXL remains active after reaching the lobe, the auroral boundary can move poleward explosively. The dynamics of high-latitude aurora in the midnight region thus provides a means for monitoring these processes and indicating when significant lobe flux reconnects at the NEXL.
NASA Astrophysics Data System (ADS)
Sun, Di; Liu, Fu-Jing; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun
2011-10-01
Two mixed-ligand Ag(I) coordination polymers (CPs), [Ag 2(bipy) 2(sub)·5H 2O] n ( 1), [Ag 2(bipy) 2(aze)·3H 2O] n ( 2), (bipy = 4,4'-bipyridine, H 2sub = suberic acid, H 2aze = azelaic acid) have been synthesized and structurally characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric (TG) analysis, and single crystal X-ray diffraction. Both 1 and 2 are two-dimensional (2D) sheets based on infinite [Ag(bipy)] n double chain incorporating Ag⋯Ag interactions. Interestingly, two different water clusters are encapsulated in the voids between the sheets of 1 and 2. For 1, one water decamer (H 2O) 10 based on a cyclic water tetramer was hydrogen-bonded with the host 2D sheet. While, one water hexamer (H 2O) 6 also based on a cyclic water tetramer was observed in 2. Comparing the experimental results, it is comprehensible that the dicarboxylates play a crucial role in the formation of the different water clusters. Moreover, the thermal stabilities of them were also discussed.
Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk
2014-10-15
In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer.more » We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.« less
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Choueiri, Edgar Y.; Polzin, Kurt A.
2007-01-01
The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Accelerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally with time-integrated photography. The goal is to help in understanding the mechanisms and conditions controlling the strength and extent of the current sheet, which are two indices important for FARAD as a propulsion concept. The profiles of these two indices along the inside walls of the conical acceleration coil are assumed to be related to the profiles of the strength and extent of the luminosity pattern derived from photographs of the discharge. The variations of these profiles as a function of uniform back-fill neutral pressure (with no background magnetic field and all parameters held constant) provided the first clues on the nature and qualitative dependencies of current sheet formation. It was found that there is an optimal pressure for which both indices reach a maximum and that the rate of change in these indices with pressure differs on either side of this optimal pressure. This allowed the inference that current sheet formation follows a Townsend-like breakdown mechanism modified by the existence of a finite pressure-dependent radio-frequency-generated electron density background. The observation that the effective location of the luminosity pattern favors the exit-half of the conical coil is explained as the result of the tendency of the inductive discharge circuit to operate near its minimal self-inductance. Movement of the peak in the luminosity pattern towards the upstream side of the cone with increasing pressure is believed to result from the need of the circuit to compensate for the increase in background plasma resistivity due to increasing pressure.
Space Charge Effect in the Sheet and Solid Electron Beam
NASA Astrophysics Data System (ADS)
Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung
1998-11-01
We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.
Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition
NASA Astrophysics Data System (ADS)
Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.
2014-12-01
How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.
Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; ...
2015-04-02
Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng
Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Harries, W. L.
1978-01-01
A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.
THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howes, Gregory G.
2016-08-20
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less
Prediction of R-curves from small coupon tests
NASA Technical Reports Server (NTRS)
Yeh, J. R.; Bray, G. H.; Bucci, R. J.; Macheret, Y.
1994-01-01
R-curves were predicted for Alclad 2024-T3 and C188-T3 sheet using the results of small-coupon Kahn tear tests in combination with two-dimensional elastic-plastic finite element stress analyses. The predictions were compared to experimental R-curves from 6.3, 16 and 60-inch wide M(T) specimens and good agreement was obtained. The method is an inexpensive alternative to wide panel testing for characterizing the fracture toughness of damage-tolerant sheet alloys. The usefulness of this approach was demonstrated by performing residual strength calculations for a two-bay crack in a representative fuselage structure. C188-T3 was predicted to have a 24 percent higher load carrying capability than 2024-T3 in this application as a result of its superior fracture toughness.
NASA Astrophysics Data System (ADS)
Daikoku, Akihiro; Yamaguchi, Shinichi; Toide, Yukari; Fujiwara, Koji; Takahashi, Norio
This paper examines the cogging torque of permanent magnet motors resulting from the magnetic anisotropy of non-oriented steel sheets used for magnetic core. The cogging torque due to the magnetic anisotropy is calculated by FEM using two modeling methods; one is the newly developed method which takes account of the two-dimensional magnetic properties in arbitrary directions, and the other is the conventional method which uses only two magnetization curves both in rolling and transverse directions. In the proposed method, the measured magnetic properties are treated in two different ways; in the first way the data are used directly, and in the second way the data are interpolated using Bèzier surface. As a result, all of three models show the cogging torque component resulting from the magnetic anisotropy, that has less pulsation numbers per rotation than that of isotropic model. The difference of the cogging torque amplitude between the three models is small in the region of low magnetic flux density, however, it gradually becomes large along with the increase in magnetic flux density. The measured results of cogging torque is proximate to the results calculated by two-dimensional magnetic property method using the magnetic property data directly. The error is approximately 4% at the point where the cogging torque component resulting from the magnetic anisotropy is maximum.
NASA Astrophysics Data System (ADS)
Keika, Kunihiro; Seki, Kanako; Nosé, Masahito; Miyoshi, Yoshizumi; Lanzerotti, Louis J.; Mitchell, Donald G.; Gkioulidou, Matina; Manweiler, Jerry W.
2018-01-01
We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures
NASA Astrophysics Data System (ADS)
All Abbas, J. M.; Atmaca, G.; Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.
2017-08-01
Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger-Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.
Analytical theory of the space-charge region of lateral p-n junctions in nanofilms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurugubelli, Vijaya Kumar, E-mail: vkgurugubelli@gmail.com; Karmalkar, Shreepad
There is growing interest in fabricating conventional semiconductor devices in a nanofilm which could be a 3D material with one reduced dimension (e.g., silicon-on-insulator (SOI) film), or single/multiple layers of a 2D material (e.g., MoS{sub 2}), or a two dimensional electron gas/two dimensional hole gas (2DEG/2DHG) layer. Lateral p-n junctions are essential parts of these devices. The space-charge region electrostatics in these nanofilm junctions is strongly affected by the surrounding field, unlike in bulk junctions. Current device physics of nanofilms lacks a simple analytical theory of this 2D electrostatics of lateral p-n junctions. We present such a theory taking intomore » account the film's thickness, permittivity, doping, interface charge, and possibly different ambient permittivities on film's either side. In analogy to the textbook theory of the 1D electrostatics of bulk p-n junctions, our theory yields simple formulas for the depletion width, the extent of space-charge tails beyond this width, and the screening length associated with the space-charge layer in nanofilm junctions; these formulas agree with numerical simulations and measurements. Our theory introduces an electrostatic thickness index to classify nanofilms into sheets, bulk and intermediate sized.« less
Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia
2017-06-14
Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.
Nonlinear distortion of thin liquid sheets
NASA Astrophysics Data System (ADS)
Mehring, Carsten Ralf
Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times are reported for modulated semi-infinite annular and conical sheets. Comparisons between the different geometric configurations are made. For periodically disturbed planar sheets, accuracy of the employed reduced-dimension approach is demonstrated by comparison with more accurate two-dimensional vortex dynamics simulations.
NASA Astrophysics Data System (ADS)
Cowley, S. W. H.; Provan, G.; Hunt, G. J.; Jackman, C. M.
2017-01-01
We mathematically model the modulation effects on Saturn's equatorial magnetotail and magnetodisk current sheet produced by the combined magnetic field perturbations of the northern and southern planetary period oscillation (PPO) systems, specifically north-south displacements associated with the radial perturbation field and thickness modulations associated with the colatitudinal perturbation field. Since the phasing of the two PPO systems is taken to be related to the radial field perturbations, while the relative phasing of the colatitudinal perturbations is opposite for the two systems, the north-south oscillations reinforce when the two PPO systems are in phase, while the thickening-thinning effects reinforce when they are in antiphase. For intermediate relative phases we show that when the northern PPO system leads the southern the sheet is thicker when moving south to north than when moving north to south, while when the northern PPO system lags the southern the sheet is thicker when moving north to south than when moving south to north, thus leading to sawtooth profiles in the radial field for near-equatorial observers, of opposite senses in the two cases. Given empirically determined modulation amplitudes, the maximum sawtooth effect is found to be small when one system dominates the other, but becomes clear when the amplitude of one system lies within a factor of 2 of the other.
Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai
2015-12-01
Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets. Electronic supplementary information (ESI) available: Additional experimental information, and SEM images of Cu EPD films. See DOI: 10.1039/c5nr06599b
Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young
2017-01-01
Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes. PMID:28139765
Lee, Jung Han; Kim, Jeong A; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young
2017-01-31
Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V 2 O 5 ) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V 2 O 5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V 2 O 5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V 2 O 5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V 2 O 5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V 2 O 5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V 2 O 5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.
NASA Astrophysics Data System (ADS)
Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young
2017-01-01
Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.
Single crystalline electronic structure and growth mechanism of aligned square graphene sheets
NASA Astrophysics Data System (ADS)
Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.
2018-03-01
Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)
Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya
2018-01-18
Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.
Shimizu, Tatsuya
2014-01-01
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.
Wave-induced drift of large floating sheets
NASA Astrophysics Data System (ADS)
Christensen, K. H.; Weber, J. E.
In this article we study the wave-induced drift of large, flexible shallow floating objects, referred to as sheets. When surface waves propagate through a sheet, they provide a mean stress on the sheet, resulting in a mean drift. In response, the sheet generates an Ekman current. The drift velocity of the sheet is determined by (i) the wave-induced stress, (ii) the viscous stress due to the Ekman current, and (iii) the Coriolis force. The sheet velocity and the current beneath the sheet are determined for constant and depth-varying eddy viscosities.
Topology and convection of a northward interplanetary magnetic field reconnection event
NASA Astrophysics Data System (ADS)
Wendel, Deirdre E.
>From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines produce a torsion of the reconnecting singular magnetic field lines within the magnetopause. The simulation and data show that magnetopause reconnection topology is three-dimensional in a way that challenges accepted models of neutral lines and x-lines with guide fields.
Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet
NASA Astrophysics Data System (ADS)
Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.
2017-12-01
Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.
The firehose instability during multiple reconnection in the Earth's magnetotail
NASA Astrophysics Data System (ADS)
Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia
2017-04-01
We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.
Strain tensor selection and the elastic theory of incompatible thin sheets.
Oshri, Oz; Diamant, Haim
2017-05-01
The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009)JMPSA80022-509610.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.
The Growth of Instabilities in Annular Liquid Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Honnery, Damon R; Soria, Julio
An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed imagemore » correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.« less
NASA Astrophysics Data System (ADS)
Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed
2017-11-01
Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.
Strain tensor selection and the elastic theory of incompatible thin sheets
NASA Astrophysics Data System (ADS)
Oshri, Oz; Diamant, Haim
2017-05-01
The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009), 10.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.
Mechanics of Nanotubes and Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Wei, Cheng-Yu; Cho, Kyeong-Jae; Menon, Madhu; Osman, Mohamed; Biegel, Bryan A. (Technical Monitor)
2002-01-01
CNT is a tubular form of carbon with diameter as small as 1 nm. Length: few nm to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties: Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.
Phenomenological plasmon broadening and relation to the dispersion
NASA Astrophysics Data System (ADS)
Hobbiger, Raphael; Drachta, Jürgen T.; Kreil, Dominik; Böhm, Helga M.
2017-02-01
Pragmatic ways of including lifetime broadening of collective modes in the electron liquid are critically compared. Special focus lies on the impact of the damping parameter onto the dispersion. It is quantitatively exemplified for the two-dimensional case, for both, the charge ('sheet'-)plasmon and the spin-density plasmon. The predicted deviations fall within the resolution limits of advanced techniques.
Time-reversed, flow-reversed ballistics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zernow, L.; Chapyak, E. J.; Scheffler, D. R.
2001-01-01
Two-dimensional simulations of planar sheet jet formation are studied to examine the hydrodynamic issues involved when simulations are carried out in the inverse direction, that is, with reversed time and flow. Both a realistic copper equation of state and a shockless equation of state were used. These studies are an initial step in evaluating this technique as a ballistics design tool.
NASA Astrophysics Data System (ADS)
Driessen, F. A. J. M.; Bauhuis, G. J.; Hageman, P. R.; van Geelen, A.; Giling, L. J.
1994-12-01
The modulation-doped ordered-GaInP2/disordered-GaInP2 homojunction is presented. Capacitance-voltage (CV) profiling techniques, temperature-dependent Hall and resistivity measurements, cross-sectional transverse electron micrographs (TEM), and high-field magnetotransport have been used to characterize this structure grown by metal-organic vapor-phase epitaxy. The CV measurements showed a narrow profile at the homointerface with an order of magnitude reduction in carrier density within 3 nm. Typical two-dimensional behavior was observed from Hall data showing sheet carrier densities as high as 3.6×1013 cm-2 without carrier freeze-out, and constant mobilities around 900 cm2 V-1 s-1 below T=100 K. The 300-K channel conductivity of this junction is 3.2×10-3 Ω-1, which is higher than reported for other two-dimensional electron gases. By proper choice of the substrate orientation, domains of only the (111¯) ordering variant were present. TEM showed elongated shapes of average thickness 3.5-6 nm and length 75 nm in the (011) plane. By using Hall bars with different current directions, an asymmetry is observed for the contributions to the scattering mechanisms which determine the mobility: ``mesoscopic'' interface-roughness scattering for T<100 K and cluster scattering for 100
Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.
1995-01-01
A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.
Modelling water flow under glaciers and ice sheets
Flowers, Gwenn E.
2015-01-01
Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082
Modelling water flow under glaciers and ice sheets.
Flowers, Gwenn E
2015-04-08
Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow 'elements' specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development.
Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering
NASA Astrophysics Data System (ADS)
Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand
2010-03-01
Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.
NASA Astrophysics Data System (ADS)
Holway, Kevin; Thaxton, Christopher S.; Calantoni, Joseph
2012-11-01
Morphodynamic models of coastal evolution require relatively simple parameterizations of sediment transport for application over larger scales. Calantoni and Thaxton (2008) [6] presented a transport parameterization for bimodal distributions of coarse quartz grains derived from detailed boundary layer simulations for sheet flow and near sheet flow conditions. The simulation results, valid over a range of wave forcing conditions and large- to small-grain diameter ratios, were successfully parameterized with a simple power law that allows for the prediction of the transport rates of each size fraction. Here, we have applied the simple power law to a two-dimensional cellular automaton to simulate sheet flow transport. Model results are validated with experiments performed in the small oscillating flow tunnel (S-OFT) at the Naval Research Laboratory at Stennis Space Center, MS, in which sheet flow transport was generated with a bed composed of a bimodal distribution of non-cohesive grains. The work presented suggests that, under the conditions specified, algorithms that incorporate the power law may correctly reproduce laboratory bed surface measurements of bimodal sheet flow transport while inherently incorporating vertical mixing by size.
Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets
NASA Astrophysics Data System (ADS)
Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X. S.; Chan, Siew Hwa; Sun, Qiang
2012-06-01
Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], 10.1021/ja108628r, where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO2 capture by considering the adsorptions of H2/CO2 gas mixtures. It is found that ScPc sheet shows a good selectivity for CO2, and the excess uptake capacity of single-component CO2 on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO2 molecules play a key role in the capture.
Three-dimensional structure of dilute pyroclastic density currents
NASA Astrophysics Data System (ADS)
Andrews, B. J.
2013-12-01
Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins, particularly after the current head has passed. In some currents, the head can persist as a large, vertically oriented vortex long after the bulk of the current has lifted off to form a coignimbrite plume. These unconfined experiments show that three-dimensional structures can affect PDC behavior and suggest that our typical cross-sectional or 'cartoon' understanding of PDCs misses what may be very important parts of PDC dynamics.
Three-dimensional real-time imaging of bi-phasic flow through porous media
NASA Astrophysics Data System (ADS)
Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.
2011-11-01
We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.
Spatially resolving density-dependent screening around a single charged atom in graphene
NASA Astrophysics Data System (ADS)
Wong, Dillon; Corsetti, Fabiano; Wang, Yang; Brar, Victor W.; Tsai, Hsin-Zon; Wu, Qiong; Kawakami, Roland K.; Zettl, Alex; Mostofi, Arash A.; Lischner, Johannes; Crommie, Michael F.
2017-05-01
Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.
Guildenbecher, Daniel R.; Gao, Jian; Chen, Jun; ...
2017-04-19
When a spherical liquid drop is subjected to a step change in relative gas velocity, aerodynamic forces lead to drop deformation and possible breakup into a number of secondary fragments. In order to investigate this flow, a digital in-line holography (DIH) diagnostic is proposed which enables rapid quantification of spatial statistics with limited experimental repetition. To overcome the high uncertainty in the depth direction experienced in previous applications of DIH, a crossed-beam, two-view configuration is introduced. With appropriate calibration, this diagnostic is shown to provide accurate quantification of fragment sizes, three-dimensional positions and three-component velocities in a large measurement volume.more » We apply these capabilities in order to investigate the aerodynamic breakup of drops at two non-dimensional Weber numbers, We, corresponding to the bag (We = 14) and sheet-thinning (We = 55) regimes. Ensemble average results show the evolution of fragment size and velocity statistics during the course of breakup. Our results indicate that mean fragment sizes increase throughout the course of breakup. For the bag breakup case, the evolution of a multi-mode fragment size probability density is observed. This is attributed to separate fragmentation mechanisms for the bag and rim structures. In contrast, for the sheet-thinning case, the fragment size probability density shows only one distinct peak indicating a single fragmentation mechanism. Compared to previous related investigations of this flow, many orders of magnitude more fragments are measured per condition, resulting in a significant improvement in data fidelity. For this reason, this experimental dataset is likely to provide new opportunities for detailed validation of analytic and computational models of this flow.« less
A two-dimensional, iterative solution for the jet flap
NASA Technical Reports Server (NTRS)
Herold, A. C.
1973-01-01
A solution is presented for the jet-flapped wing in two dimensions. The main flow is assumed to be inviscid and incompressible. The flow inside the jet is considered irrotational and the upper and lower boundaries between the jet and free stream are assumed to behave as vortex sheets which allow no mixing. The solution is found to be in satisfactory agreement with two dimensional experimental results and other theoretical work for intermediate values of momentum coefficient, but the regions of agreement vary with jet exit angle. At small values of momentum coefficient, the trajectory for the jet, as computed by this method, has more penetration than that of other available data, while at high values of moment coefficient this solution results in less penetration of the jet into the main flow.
Two-dimensional magnetohydrodynamic model of emerging magnetic flux in the solar atmosphere
NASA Technical Reports Server (NTRS)
Shibata, K.; Tajima, T.; Steinolfson, R. S.; Matsumoto, R.
1989-01-01
The nonlinear undular mode of the magnetic buoyancy instability in an isolated horizontal magnetic flux embedded in a two-temperature layered atmosphere (solar corona-chromosphere/photosphere) is investigated using a two-dimensional magnetohydrodynamic code. The results show that the flux sheet with beta of about 1 is initially located at the bottom of the photosphere, and that the gas slides down the expanding loop as the instability develops, with the evacuated loop rising as a result of enhanced magnetic buoyancy. The expansion of the magnetic loop in the nonlinear regime displays self-similar behavior. The rise velocity of the magnetic loop in the high chromosphere (10-15 km/s) and the velocity of downflow noted along the loop (30-50 km/s) are consistent with observed values for arch filament systems.
The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers
NASA Astrophysics Data System (ADS)
Hsu, Yu-Jen
Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by using a UV-Ozone treatment to shift the threshold voltage and increase the current of the transistor under both compressive and tensile strain. An array of strain sensors which maps the strain field on a PVDF film surface is demonstrated in this work. The strain sensor experience inspires a tone analyzer built using distributed resonator architecture on a tensioned piezoelectric PVDF sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers monolithically with the PVDF sheet to convert the piezoelectric charge signal into a current signal for future applications such as sound field imaging. The PVDF sheet material is instrumented along its length and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant frequency component of an incoming sound is demonstrated using linear system decomposition of the time-averaged response of the sheet using no time domain detection. Our design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain electronic signal processing of the incoming signal. The concepts of the PVDF strain sensor and the tone analyzer trigger the idea of an active matrix microphone through the integration of organic thin film transistors with a freestanding piezoelectric polymer sheet. Localized acoustic pressure detection is enabled by switch transistors and local transimpedance amplification built into the active matrix architecture. The frequency of detection ranges from DC to 15KHz; the bandwidth is extended using an architecture that provides for virtually zero gate/source and gate/drain capacitance at the sensing transistors and low overlap capacitance at the switch transistors. A series of measurements are taken to demonstrate localized acoustic wave detection, high pitch sound diffraction pattern mapping, and directional listening. This system permits the direct visualization of a two dimensional sound field in a format that was previously inaccessible. In addition to the piezoelectric property, pyroelectricity is also exhibited by PVDF and is essential in the world of sensors. An integration of PVDF and OFET for the IR heat sensing is demonstrated to prove the concept of converting pyroelectric charge signal to a electric current signal. The basic pyroelectricity of PVDF sheet is first examined before making a organic transistor integrated IR sensor. Then, two types of architectures are designed and tested. The first one uses the structure similar to the PVDF strain sensor, and the second one uses a PVDF capacitor to gate the integrated OFETs. The conversion from pyroelectric signal to transistor current signal is observed and characterized. This design provides a flexible and gain-tunable version for IR heat sensors.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
Protein design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather, and Aida.
Sander, C; Vriend, G; Bazan, F; Horovitz, A; Nakamura, H; Ribas, L; Finkelstein, A V; Lockhart, A; Merkl, R; Perry, L J
1992-02-01
What is the current state of the art in protein design? This question was approached in a recent two-week protein design workshop sponsored by EMBO and held at the EMBL in Heidelberg. The goals were to test available design tools and to explore new design strategies. Five novel proteins were designed: Shpilka, a sandwich of two four-stranded beta-sheets, a scaffold on which to explore variations in loop topology; Grendel, a four-helical membrane anchor, ready for fusion to water-soluble functional domains; Finger-clasp, a dimer of interdigitating beta-beta-alpha units, the simplest variant of the "handshake" structural class; Aida, an antibody binding surface intended to be specific for flavodoxin; Leather--a minimal NAD binding domain, extracted from a larger protein. Each design is available as a set of three-dimensional coordinates, the corresponding amino acid sequence and a set of analytical results. The designs are placed in the public domain for scrutiny, improvement, and possible experimental verification.
Distributioin, orientation and scales of the field-aligned currents measured by Swarm
NASA Astrophysics Data System (ADS)
Yang, J.; Dunlop, M. W.
2016-12-01
We have statistically studied the R1, R2 and net field aligned currents using the FAC data of the Swarm satellites. We also have investigated the statistical, dual-spacecraft correlations of field-aligned current signatures between two Swarm spacecraft (A and C). For the first time we have inferred the orientations of the current sheets of FACs directly, using the maximum correlations, obtained from sliding data segments, which show clear trends in magnetic local time (MLT). To compare with this we also check the MVAB method. To explore the scale and variability of the current sheet supposition, we investigate the MLT dependence of the maximum correlations in different time shift or longitude shift bins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay-Davis, Xylar Storm
The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently beingmore » incorporated into two manuscripts in preparation.« less
Tunable surface plasmon instability leading to emission of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumbs, Godfrey; Donostia International Physics Center; Iurov, Andrii, E-mail: aiurov@chtm.unm.edu
2015-08-07
We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wavemore » vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.« less
NASA Astrophysics Data System (ADS)
Lyons, L. R.; Zou, S.; Heinselman, C. J.; Nicolls, M. J.; Anderson, P. C.
2009-05-01
The plasma sheet moves earthward (equatorward in the ionosphere) after enhancements in convection, and the electrodynamics of this response is strongly influenced by Region 2 magnetosphere-ionosphere coupling. We have used Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) observations associated with two relatively abrupt southward turnings of the IMF to provide an initial evaluation of aspects of this response. The observations show that strong westward sub-auroral polarization streams (SAPS) flow regions moved equatorward as the plasma sheet electron precipitation (the diffuse aurora) penetrated equatorward following the IMF southward turnings. Consistent with our identification of these flows as SAPS, concurrent DMSP particle precipitation measurements show the equatorial boundary of ion precipitation equatorward of the electron precipitation boundary and that westward flows lie within the low-conductivity region between the two boundaries where the plasma sheet ion pressure gradient is expected to drive downward R2 currents. Evidence for these downward currents is seen in the DMSP magnetometer observations. Preliminary examination indicates that the SAPS response seen in the examples presented here may be common. However, detailed analysis will be required for many more events to reliably determine if this is the case. If so, it would imply that SAPS are frequently an important aspect of the inner magnetospheric electric field distribution, and that they are critical for understanding the response of the magnetosphere-ionosphere system to enhancements in convection, including understanding the earthward penetration of the plasma sheet. This earthward penetration is critical to geomagnetic disturbance phenomena such as the substorm growth phase and the formation of the stormtime ring current. Additionally, for one example, a prompt electric field response to the IMF southward turnings is seen within the inner plasma sheet.
Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.
Lee, Si-Hwa; Sridhar, Vadahanambi; Jung, Jung-Hwan; Karthikeyan, Kaliyappan; Lee, Yun-Sung; Mukherjee, Rahul; Koratkar, Nikhil; Oh, Il-Kwon
2013-05-28
In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene--nanotube--iron three-dimensional nanostructure as an anode material in lithium-ion batteries. The nanostructure comprises vertically aligned carbon nanotubes grown directly on graphene sheets along with shorter branches of carbon nanotubes stemming out from both the graphene sheets and the vertically aligned carbon nanotubes. This bio-inspired hierarchical structure provides a three-dimensional conductive network for efficient charge-transfer and prevents the agglomeration and restacking of the graphene sheets enabling Li-ions to have greater access to the electrode material. In addition, functional iron-oxide nanoparticles decorated within the three-dimensional hierarchical structure provides outstanding lithium storage characteristics, resulting in very high specific capacities. The anode material delivers a reversible capacity of ~1024 mA · h · g(-1) even after prolonged cycling along with a Coulombic efficiency in excess of 99%, which reflects the ability of the hierarchical network to prevent agglomeration of the iron-oxide nanoparticles.
Quantum friction on monoatomic layers and its classical analog
NASA Astrophysics Data System (ADS)
Maslovski, Stanislav I.; Silveirinha, Mário G.
2013-07-01
We consider the effect of quantum friction at zero absolute temperature resulting from polaritonic interactions in closely positioned two-dimensional arrays of polarizable atoms (e.g., graphene sheets) or thin dielectric sheets modeled as such arrays. The arrays move one with respect to another with a nonrelativistic velocity v≪c. We confirm that quantum friction is inevitably related to material dispersion, and that such friction vanishes in nondispersive media. In addition, we consider a classical analog of the quantum friction which allows us to establish a link between the phenomena of quantum friction and classical parametric generation. In particular, we demonstrate how the quasiparticle generation rate typically obtained from the quantum Fermi golden rule can be calculated classically.
Growth and nonlinear response of driven water bells
NASA Astrophysics Data System (ADS)
Kolinski, John M.; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran
2017-04-01
A water bell forms when a fluid jet impacts upon a target and separates into a two-dimensional sheet. Depending on the angle of separation from the target, the sheet can curve into a variety of different geometries. We show analytically that harmonic perturbations of water bells have linear wave solutions with geometry-dependent growth. We test the predictions of this model experimentally with a custom target system, and observe growth in agreement with the model below a critical forcing amplitude. Once the critical forcing amplitude is exceeded, a nonlinear transcritical bifurcation occurs; the response amplitude increases linearly with increasing forcing amplitude, albeit with a fundamentally different spatial form, and distinct nodes appear in the amplitude envelope.
NASA Astrophysics Data System (ADS)
Yoshinaga, Takao
2018-04-01
Linear temporal instabilities of a two-dimensional planar liquid sheet in a static electric field are investigated when the relaxation and convection of surface electric charges are considered. Both viscous sheet liquid and inviscid surrounding liquid are placed between two parallel sheath walls, on which an external electric field is imposed. In particular, effects of the electric Peclet number {Pe} (charge relaxation time/convection time) and the electric Euler number Λ (electric pressure/liquid inertial) on the instabilities are emphasized for the symmetric and antisymmetric deformations of the sheet. It is found that the unstable mode is composed of the aerodynamic and electric modes, which are merged with each other for the symmetric deformation and separated for the antisymmetric deformation. For the symmetric deformation, the combined mode is more destabilized with the decrease of {Pe} and the increase of Λ. On the other hand, for the antisymmetric deformation, the electric mode is more destabilized and the aerodynamic mode is left unchanged with the decrease of {Pe}, while the electric mode is more destabilized but the aerodynamic mode is more stabilized with the increase of Λ. It is also found for both symmetric and antisymmetric deformations that the instabilities are most suppressed when {σ }R≃ 1/{ε }P ({σ }R: conductivity ratio of the surrounding to the sheet liquid, {ε }P: permittivity ratio of the sheet to the surrounding liquid), whose trend of the instabilities is more enhanced with the decrease of {Pe} except for vanishingly small {Pe}.
Bifurcation analysis and phase diagram of a spin-string model with buckled states.
Ruiz-Garcia, M; Bonilla, L L; Prados, A
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Bifurcation analysis and phase diagram of a spin-string model with buckled states
NASA Astrophysics Data System (ADS)
Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Sun, Jin; Kelbert, Anna; Egbert, G.D.
2015-01-01
Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.
Phonon transport in single-layer boron nanoribbons
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-11-01
Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.
''Cloud in Cell'' technique applied to the roll up of vortex sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, G.R.
The problem of the roll up of a two dimensional vortex sheet generated by a wing in an ideal fluid is phrased in terms of the streamfunction and the vortex sheet strength. A numerical method is used to calculate the time evolution of the vortex sheet by adapting the ''Cloud In Cell'' technique introduced in solving many particle simulations in plasma physics (see J. P. Christiansen, J. Computational Physics 13 (1973)). Two cases are considered for the initial distribution of circulation, one corresponding to an elliptically loaded wing and the other simulating the wing with a flap deployed. Results indicatemore » that small scale behaviour plays an important part in the roll up. Typically, small scale perturbations result in small structures which evolve into ever increasing larger structures by vortex amalgamation. Conclusions are given from a number of tests exploring the validity of the method. Briefly, small scale perturbations are introduced artificially by the grid; but once the process of vortex amalgamation is well underway, the emerging large scale behaviour is relatively insensitive to the precise details of the initial perturbations. Since clearly defined structures result from the application of this method, it promises to aid considerably in understanding the behaviour of vortex wakes.« less
NASA Technical Reports Server (NTRS)
Hones, E. W., Jr.; Bame, S. J.; Birn, J.; Paschmann, G.; Russell, C. T.
1982-01-01
The magnetic field in the plasmoid which is created by the reconnection of magnetic field lines at a neutral line formed in the near-earth region of the plasma sheet at substorm onset, and which flows out of the magnetotail into the magnetosphere's wake, displays a strong positive or negative Y(SM) component that has been difficult to reconcile with the standard, two-dimensional reconnection geometry. It is shown that this deviation of the magnetic field is a manifestation of the newly-reconnected field line loop's draping toward the tail's central or midnight meridian, and that the draping is a consequence of the three-dimensional plasma flow associated with the reconnection process.
Ring current dynamics and plasma sheet sources. [magnetic storms
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1984-01-01
The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.
Liu, Na; Su, Yanli; Wang, Zhiqiang; Wang, Zhen; Xia, Jinsong; Chen, Yong; Zhao, Zhigang; Li, Qingwen; Geng, Fengxia
2017-08-22
A three-dimensional (3D) macroscopic network of manganese oxide (MnO 2 ) sheets was synthesized by an easily scalable solution approach, grafting the negatively charged surfaces of the MnO 2 sheets with an aniline monomer by electrostatic interactions followed by a quick chemical oxidizing polymerization reaction. The obtained structure possessed MnO 2 sheets interconnected with polyaniline chains, producing a 3D monolith rich in mesopores. The MnO 2 sheets had almost all their reactive centers exposed on the electrode surface, and combined with the electron transport highways provided by polyaniline and the shortened diffusion paths provided by the porous structure, the deliberately designed electrode achieved an excellent capacitance of 762 F g -1 at a current of 1 A g -1 and cycling performance with a capacity retention of 90% over 8000 cycles. Furthermore, a flexible asymmetric supercapacitor based on the constructed electrode and activated carbon serving as the positive and negative electrodes, respectively, was successfully fabricated, delivering a maximum energy density of 40.2 Wh kg -1 (0.113 Wh cm -2 ) and power density of 6227.0 W kg -1 (17.44 W cm -2 ) in a potential window of 0-1.7 V in a PVA/Na 2 SO 4 gel electrolyte.
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram
2012-01-01
A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.
ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Kelly, T. J.; Russell, C. T.
1985-01-01
Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.
Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation.
Ozgur, Beytullah; Sayar, Mehmet
2016-10-06
Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.
Xie, Jian-De; Gu, Siyong; Zhang, Houan
2017-09-21
This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period (i.e., 10 min) to fast synthesize Pd nanocrystals onto a carbon support at 150 °C. The selection of carbon support plays a crucial role in affecting Pd particle size and dispersion uniformity. The robust design of Pd-rGO catalyst electrode displays an enhanced electrocatalytic activity and sensitivity toward GOR. The enhanced performance is mainly attributed to the synergetic effect that combines small crystalline size and two-dimensional conductive support, imparting high accessibility to non-enzymatic GOR. The rGO sheets serve as a conductive scaffold, capable of fast conducting electron. The linear plot of current response versus glucose concentration exhibits good correlations within the range of 1-12 mM. The sensitivity of the Pd-rGO catalyst is significantly enhanced by 3.7 times, as compared to the Pd-GS catalyst. Accordingly, the Pd-rGO catalyst electrode can be considered as a potential candidate for non-enzymatic glucose biosensor.
Pulsed Electromagnetic Acceleration of Plasma: A Review
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.
Xie, Jian-De; Zhang, Houan
2017-01-01
This work outlines a synthetic strategy inducing the microwave-assisted synthesis of palladium (Pd) nanocrystals on a graphite sphere (GS) and reduced graphene oxide (rGO) supports, forming the Pd catalysts for non-enzymatic glucose oxidation reaction (GOR). The pulse microwave approach takes a short period (i.e., 10 min) to fast synthesize Pd nanocrystals onto a carbon support at 150 °C. The selection of carbon support plays a crucial role in affecting Pd particle size and dispersion uniformity. The robust design of Pd-rGO catalyst electrode displays an enhanced electrocatalytic activity and sensitivity toward GOR. The enhanced performance is mainly attributed to the synergetic effect that combines small crystalline size and two-dimensional conductive support, imparting high accessibility to non-enzymatic GOR. The rGO sheets serve as a conductive scaffold, capable of fast conducting electron. The linear plot of current response versus glucose concentration exhibits good correlations within the range of 1–12 mM. The sensitivity of the Pd-rGO catalyst is significantly enhanced by 3.7 times, as compared to the Pd-GS catalyst. Accordingly, the Pd-rGO catalyst electrode can be considered as a potential candidate for non-enzymatic glucose biosensor. PMID:28934104
Akhtar, M Shaheer; Kwon, Soonji; Stadler, Florian J; Yang, O Bong
2013-06-21
Novel and highly effective composite electrolytes were prepared by combining the two dimensional graphene (Gra) and polyethylene oxide (PEO) for the solid electrolyte of dye sensitized solar cells (DSSCs). Gra sheets were uniformly coated by the polymer layer through the ester carboxylate bonding between oxygenated species on Gra sheets and PEO. The Gra-PEO composite electrolyte showed the large scale generation of iodide ions in a redox couple. From rheological analysis, the decrease in viscosity after the addition of LiI and I2 in the Gra-PEO electrolyte might be explained by the dipolar interactions being severely disrupted by the ionic interactions of Li(+), I(-), and I3(-) ions. A composite electrolyte with 0.5 wt% Gra presented a higher ionic conductivity (3.32 mS cm(-1)) than those of PEO and other composite electrolytes at room temperature. A high overall conversion efficiency (∼5.23%) with a very high short circuit current (JSC) of 18.32 mA cm(-2), open circuit voltage (VOC) of 0.592 V and fill factor (FF) of 0.48 was achieved in DSSCs fabricated with the 0.5 wt% Gra-PEO composite electrolyte. This enhanced photovoltaic performance might be attributed to the large scale formation of iodide ions in the redox electrolyte and the relatively high ionic conductivity.
Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan
2013-12-01
Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Chongchen; Guo, Guangliang; Wang, Peng
2013-01-01
Two lanthanide based metal-organic frameworks, [NaLn(oba)(ox)(H2O)] (Lndbnd6 Eu(1) and Sm(2)) were obtained from 4,4'-oxybisbenzoic acid, sodium oxalate and corresponding lanthanide salts by hydrothermal synthesis. They were characterized by single-crystal X-ray diffraction, IR spectra, and photoluminescent spectra. The crystallographic data reveals that complexes 1 and 2 are isomorphous and isostructural, composed of three-dimensional framework built up of distorted tricapped trigonal EuO9 units, distorted octahedron NaO6 units, 4,4'-oxybis(benzoate) and oxalate. The carboxylate oxygen atoms of the 4,4'-oxybis(benzoate) and oxalate ligand are coordinated to lanthanide ions and sodium ions, resulting into two-dimensional inorganic sheets, which are further linked into three-dimensional network by organic ligands. Thermogravimetric analyses of 1-2 display a considerable thermal stability. Photoluminescent measurements indicated that europium complex 1 displayed strong red emission.
Superconductivity in electron-doped arsenene
NASA Astrophysics Data System (ADS)
Kong, Xin; Gao, Miao; Yan, Xun-Wang; Lu, Zhong-Yi; Xiang, Tao
2018-04-01
Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the $p_z$-like electrons of arsenic atoms and the $A_1$ phonon mode around the $K$ point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12\\% applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishio, Yui; Yamaguchi, Satoshi; Yamazaki, Youichi
2013-12-04
We determined rigorously the energy states of a two-dimensional electron gas (2DEG) in high electron mobility transistors (HEMTs) with a pseudomorphically strained InAs channel (InAs PHEMTs) taking into account the non-parabolicity of the conduction band for InAs. The sheet carrier concentration of 2DEG for the non-parabolic energy band was about 50% larger than that for the parabolic energy band and most of the electrons are confined strongly in the InAs layer. In addition, the threshold voltage for InAs PHEMTs was about 0.21 V lower than that for conventional InGaAs HEMTs.
Trends and Techniques for Space Base Electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.
1979-01-01
Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki
2006-07-01
The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less
NASA Astrophysics Data System (ADS)
Annett, James; Kusmartsev, Feodor; Bianconi, Antonio
2009-01-01
In 2001, the discovery of superconductivity in MgB2 rapidly led to the understanding that its complex multi-sheeted Fermi surface had two distinct values of the gap parameter Δ, each with its own characteristic temperature dependence. While the theory of multigap superconductivity had been developed long ago, this was the first well studied example where multigap behaviour was observed clearly, and indeed is essential to understand the full superconducting properties of the material. Following this discovery, evidence for multigap behaviour has appeared in a number of materials, including cuprates, ruthenates, and most recently the iron pnictides. As well as multigap pairing on different Fermi-surface sheets, strong gap anisotropy in k-space and strong modulations of the gap in real space (e.g. stripes and phase separation models) are also important in cuprates. The aim of this special section is to present a selection of high-quality papers from experts in these diverse systems, showing the links and common physical issues arising from the existence of multi-component Cooper pairing. The papers collected together for the special section provide a snapshot of the current state of the understanding of multi-component superconductivity in a wide range of materials. In a model motivated by MgB2, Tanaka and Eschrig describe Abrikosov vortex lattice in a two-gap superconductor, examining how the vortex structure is modified by three-dimensionality or quasi two-dimensionality of the Fermi surface. The multi-sheeted Fermi surfaces of the nickel borocarbides are probed using angle-resolved positron annihilation spectroscopy, described by Dugdale et al, leading to a full three-dimensional picture of the complex Fermi surface in this superconducting material. Possible evidence for multigap superconductivity in the iron pnictides, obtained using Andreev point contact spectroscopy, is described by Samuely et al. The iron pnictides are also the subject of the article by Caivano et al, in which it is proposed that the Feschbach resonance mechanism operating near to a quantum critical point may lead to stripe-like fluctuations in these materials. A number of papers describe multigap-related effects in high-Tc superconductors. In particular, Atkinson shows how the existence of CuO chain states at the Fermi surface leads to a set of resonances in the induced gap in the chain layer, which have a pronounced effect on the vortex core shape. Kristoffel et al discuss the existence of the two coherence lengths in two-gap superconductors, and describe how this leads to spatially periodic fluctuations, with possible application to high-temperature superconductivity. Kugel et al describe a scenario for phase separation due to long-range Coulomb forces leading to microstrain and nanoscale inhomogeneities in high-Tc cuprates. Kusmartsev and Saarela also argue that charge over-screening may lead to 'Coulomb bubbles' in high-Tc superconductors. Finally, Wysokiński et al describe multigap effects in strontium ruthenate, in particular the effects on the NMR relaxation rate spectra, which are obtained for NMR on different nuclear species.
NASA Astrophysics Data System (ADS)
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
A Description of Local Time Asymmetries in the Kronian Current Sheet
NASA Astrophysics Data System (ADS)
Nickerson, J. S.; Hansen, K. C.; Gombosi, T. I.
2012-12-01
Cassini observations imply that Saturn's magnetospheric current sheet is displaced northward above the rotational equator [C.S. Arridge et al., Warping of Saturn's magnetospheric and magnetotail current sheets, Journal of Geophysical Research, Vol. 113, August 2008]. Arridge et al. show that this hinging of the current sheet above the equator occurs over the noon, midnight, and dawn local time sectors. They present an azimuthally independent model to describe this paraboloid-like geometry. We have used our global MHD model, BATS-R-US/SWMF, to study Saturn's magnetospheric current sheet under various solar wind dynamic pressure and solar zenith angle conditions. We show that under reasonable conditions the current sheet does take on the basic shape of the Arridge model in the noon, midnight, and dawn sectors. However, the hinging distance parameter used in the Arridge model is not a constant and does in fact vary in Saturn local time. We recommend that the Arridge model should be adjusted to account for this azimuthal dependence. Arridge et al. does not discuss the shape of the current sheet in the dusk sector due to an absence of data but does presume that the current sheet will assume the same geometry in this region. On the contrary, our model shows that this is not the case. On the dusk side the current sheet hinges (aggressively) southward and cannot be accounted for by the Arridge model. We will present results from our simulations showing the deviation from axisymmetry and the general behavior of the current sheet under different conditions.
Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.
2006-01-01
The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.
Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.
Methyl (4-bromobenzenesulfonamido)acetate
Arshad, Muhammad Nadeem; Tahir, M. Nawaz; Khan, Islam Ullah; Ahmad, Ejaz; Shafiq, Muhammad
2008-01-01
The title compound, C9H10BrNO4S, is an intermediate for the formation of benzothiazines. In the crystal structure, intermolecular N—H⋯O hydrogen bonds link the molecules, forming R 2 2(10) ring motifs, which are linked into a two-dimensional polymeric sheet through intermolecular C—H⋯O hydrogen bonds. PMID:21581352
NASA Astrophysics Data System (ADS)
Scerrato, Daria; Giorgio, Ivan; Rizzi, Nicola Luigi
2016-06-01
In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in Zeitschrift für angewandte Mathematik und Physik 66(5):2855-2870, 2015; Alibert et al. in Math Mech Solids 8(1):51-73, 2003; dell'Isola et al. in Int J Non-Linear Mech 80:200-208, 2016; Int J Solids Struct 81:1-12, 2016). The model that we employ here, developed by Steigmann and dell'Isola (Acta Mech Sin 31(3):373-382, 2015) and first investigated in Giorgio et al. (Comptes rendus Mecanique 2016, doi: 10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.
Current status of solar cell performance of unconventional silicon sheets
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Liu, J. K.
1981-01-01
It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.
Why S, Not X, Marks the Spot for CME/Flare Eruptions
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Sterling, Alphonse; Gary, Allen; Cirtain, Jonathan; Falconer, David
2010-01-01
For any major CME/flare eruption: I. The field that erupts is an arcade in which the interior is greatly sheared and twisted. Most of the free magnetic energy to be released: a) Is in the shear and twist of the interior field. b) Is Not due to a big current sheet. The eruption is unleashed by reconnection at a growing current sheet. The current sheet is still little when the reconnection turns on. The unleashed eruption then makes the current sheet much bigger by building it up faster than the reconnection can tear it down. II. Most X-ray jets work the opposite way: a) Tapped free energy is in the field of a pre-jet current sheet. b) Current sheet built by small arcade emerging into ambient field. c) Current sheet still much smaller than the arcade when reconnection turns on and tears it down, producing a jet. III. These rules reflect the low-beta condition in the eruptive magnetic field
AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF OBLIQUE PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippov, Alexander A.; Spitkovsky, Anatoly; Cerutti, Benoit, E-mail: sashaph@princeton.edu
2015-03-01
We present “first-principles” relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are accelerated by surface electric fields and emit photons capable of producing electron–positron pairs. We inject secondary pairs at the locations of primary energetic particles whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere with the Y-point and current sheet. Solutions with obliquities ≤40° do not show pair production in the open field line region because the local currentmore » density along the magnetic field is below the Goldreich–Julian value. The bulk outflow in these solutions is charge-separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of the pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved spacetime or multipolar surface fields.« less
The Thermal Ion Dynamics Experiment and Plasma Source Instrument
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.;
1995-01-01
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.
NASA Astrophysics Data System (ADS)
Khanna, Ravi
1992-01-01
A selectively contacted dual-channel high electron mobility transistor (SCD-CHEMT) has been designed, fabricated, and electrically characterized, in order to better understand the properties of two layers of two-dimensional electron gases (2DEGs) confined within a quantum well. The 2DEGs are placed under a Schottky barrier control gate which modulates their sheet charge densities, and by use of auxiliary Schottky barrier gates and two levels of ohmic contacts, electrical contacts to the individual channels in which each 2DEG resides is achieved. The design of the dual channel FET structure, and its practical realization by recourse to process development and fabrication are described, as are the techniques, results, and interpretations of electrical characterizations used to analyze the completed device. Critical fabrication procedures involving photolithography, etching, deposition, shallow and deep ohmic contact formation, and gate formation are developed, and a simple technique to reduce gate leakage by photo-oxidation is demonstrated. Analysis of the completed device is performed using one-dimensional band diagram simulations, magnetotransport and electrical measurements. Magnetotransport studies establish the existence of two 2DEGs within the quantum well at 4K. Drain current vs. drain voltage, and transconductance vs. gate voltage characteristics at room temperature confirm the presence of two 2DEGs and show that current flow between them occurs easily at room temperature. Carrier electron mobility profiles are taken of the 2DEGs and show that the lower 2DEG has a mobility comparable to that of a 2DEG formed at a normal interface, indicating that the "inverted interface problem" has been overcome. Capacitance vs. gate voltage measurements are taken, which are consistent with a simple device model consisting of gate depletion and interelectrode parasitic capacitances. It is concluded from the analysis that the dual channel system resides in three basic states: (1) Both channels are occupied by 2DEGs or (2) The upper channel is depleted, or (3) Both channels depleted. Finally, increase in isolation between the two 2DEGs is dramatically demonstrated at 77K by the drain current vs. drain voltage, and transconductance vs. gate voltage characteristics.
NASA Astrophysics Data System (ADS)
Oh, Sejoon; Jang, Han-Soo; Choi, Chel-Jong; Cho, Jaehee
2018-04-01
Dielectric layers prepared by different deposition methods were used for the surface passivation of AlGaN/GaN heterostructure field-effect transistors (HFETs) and the corresponding electrical characteristics were examined. Increases in the sheet charge density and the maximum drain current by approximately 45% and 28%, respectively, were observed after the deposition of a 100 nm-thick SiO2 layer by plasma-enhanced chemical vapor deposition (PECVD) on the top of the AlGaN/GaN HFETs. However, SiO2 deposited by a radio frequency (rf) sputter system had the opposite effect. As the strain applied to AlGaN was influenced by the deposition methods used for the dielectric layers, the carrier transport in the two-dimensional electron gas formed at the interface between AlGaN and GaN was affected accordingly.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
NASA Technical Reports Server (NTRS)
North, G. R.; Crowley, T. J.
1984-01-01
Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.
Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won
2012-07-25
Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.
OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Yang, K.
2016-05-20
We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggestsmore » the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.« less
NASA Astrophysics Data System (ADS)
Yang, Xiangwen; Lin, Zhixing; Zheng, Jingxu; Huang, Yingjuan; Chen, Bin; Mai, Yiyong; Feng, Xinliang
2016-04-01
This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window.This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol-water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode-electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg-1 and a high power density of 6.2 kW kg-1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window. Electronic supplementary information (ESI) available: ESI figures. See DOI: 10.1039/c6nr00468g
Effects of electron pressure anisotropy on current sheet configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.
2016-09-15
Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.
2008-01-01
Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.
Oblique impact of dense granular sheets
NASA Astrophysics Data System (ADS)
Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.
2013-11-01
Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.
Resonant coupling through a slot to a loaded cylindrical cavity: Experimental results
NASA Astrophysics Data System (ADS)
Norgard, John D.; Sega, Ronald M.
1990-03-01
The effect of cavity geometry on the energy coupled through a slot aperture is investigated through the use of planar mappings of the internal cavity field. A copper cylinder, closed at both ends, is constructed with copper mesh sections incorporated at the ends of the cylinder and in the cylinder wall opposite a thin slot aperture placed in the wall. The frequencies used for testing are 2 to 4 GHz. Internal field mapping is accomplished by placing thin carbon-loaded sheets in the plane of interest and recording the digitized temperature distribution using an infrared scanning system. The sheets are calibrated such that the temperature data is transformed to current densities or electric field strengths. Using several positions for the detection material, a three-dimensional field profile is obtained. The onset of the internal cavity resonance is studied as it is related to the energy coupled through small apertures.
Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs
Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W.; Schalek, Richard; Hayworth, Kenneth J.; Hand, Arthur R.; Yankova, Maya; Huber, Greg; Lichtman, Jeff W.; Rapoport, Tom A.; Kozlov, Michael M.
2013-01-01
The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used novel staining and automated ultra-thin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. PMID:23870120
NASA Astrophysics Data System (ADS)
Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong
2016-09-01
In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.
Growth and Development of Three-Dimensional Plant Form.
Whitewoods, Christopher D; Coen, Enrico
2017-09-11
Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energized Oxygen : Speiser Current Sheet Bifurcation
NASA Astrophysics Data System (ADS)
George, D. E.; Jahn, J. M.
2017-12-01
A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs significantly from previous investigations involving heavy ions in that they are energized as opposed to being simply thermal. This is a variation based firmly on published in-situ measurements. It also differs in that a complete population is used as opposed to simply test particles in a magnetic field model.
Analysis of Magnetic Flux Rope Chains Embedded in Martian Current Sheets Using MAVEN Data
NASA Astrophysics Data System (ADS)
Bowers, C. F.; DiBraccio, G. A.; Brain, D.; Hara, T.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; Halekas, J. S.
2017-12-01
The magnetotail of Mars is formed as the interplanetary magnetic field (IMF) drapes around the planet's conducting ionosphere and localized crustal magnetic fields. In this scenario, a cross-tail current sheet separates the sunward and anti-sunward tail lobes. This tail current sheet is a highly dynamic region where magnetic reconnection is able to occur between the oppositely oriented fields. Magnetic flux ropes, a by-product of magnetic reconnection in the tail or in the ionosphere characterized by their helical outer wraps and strong axial core field, are commonly observed in the Martian magnetotail. An initial study using Mars Global Surveyor measurements reported a chain of flux ropes in the tail. During this event, 3 flux ropes were observed during a single traversal of the tail current sheet with a duration of 4 minutes. Here, we perform a statistical survey of these chain-of-flux-rope events to characterize their occurrence in the tail current sheet using Mars Atmosphere and Volatile EvolutioN (MAVEN) data. We implement the well-established technique of Minimum Variance Analysis to confirm the helical structure of the flux ropes and also determine local current sheet orientation. Thorough visual examination of more than 1600 orbits has resulted in the identification of 784 tail current sheet traversals. We determine the current sheet thickness to be on the order of 100-1000 km. From these current sheet observations, a subset of 30 events include embedded chain of flux ropes within the current sheet structure. We find that 87% of these flux rope chain events are identified in the southern latitude regions of Mars, associated with crustal fields. Their location suggests that magnetic reconnection occurring near crustal fields may be the source of these flux ropes. These statistical measurements of both current sheets and associated flux rope chains provide information about the complex magnetospheric dynamics at Mars, and how these dynamics affect atmospheric loss to space.
Reduced magnetohydrodynamic theory of oblique plasmoid instabilities
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Bhattacharjee, A.; Huang, Y.-M.
2012-02-01
The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by Bo=Bpotanh(x /λ)ŷ+Bzoẑ, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the poloidal field Byo(x)=Bpotanh(x /λ), which is the only resonant surface in 2D or in the absence of a guide field. Here, Bpo is the asymptotic value of the equilibrium poloidal field, Bzo is the constant equilibrium guide field, and λ is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θ ≡arctan(kz/ky). The resonant surface location for angle θ is xs=λarctanh(μ), where μ =tanθBzo/Bpo and the existence of a resonant surface requires |θ |
On the tensionless limit of gauged WZW models
NASA Astrophysics Data System (ADS)
Bakas, I.; Sourdis, C.
2004-06-01
The tensionless limit of gauged WZW models arises when the level of the underlying Kac-Moody algebra assumes its critical value, equal to the dual Coxeter number, in which case the central charge of the Virasoro algebra becomes infinite. We examine this limit from the world-sheet and target space viewpoint and show that gravity decouples naturally from the spectrum. Using the two-dimensional black-hole coset SL(2,Bbb R)k/U(1) as illustrative example, we find for k = 2 that the world-sheet symmetry is described by a truncated version of Winfty generated by chiral fields with integer spin s geq 3, whereas the Virasoro algebra becomes abelian and it can be consistently factored out. The geometry of target space looks like an infinitely curved hyperboloid, which invalidates the effective field theory description and conformal invariance can no longer be used to yield reliable space-time interpretation. We also compare our results with the null gauging of WZW models, which correspond to infinite boost in target space and they describe the Liouville mode that decouples in the tensionless limit. A formal BRST analysis of the world-sheet symmetry suggests that the central charge of all higher spin generators should be fixed to a critical value, which is not seen by the contracted Virasoro symmetry. Generalizations to higher dimensional coset models are also briefly discussed in the tensionless limit, where similar observations are made.
NASA Astrophysics Data System (ADS)
Born, A.; Stocker, T. F.
2014-12-01
The long, high-resolution and largely undisturbed depositional record of polar ice sheets is one of the greatest resources in paleoclimate research. The vertical profile of isotopic and other geochemical tracers provides a full history of depositional and dynamical variations. Numerical simulations of this archive could afford great advances both in the interpretation of these tracers as well as to help improve ice sheet models themselves, as show successful implementations in oceanography and atmospheric dynamics. However, due to the slow advection velocities, tracer modeling in ice sheets is particularly prone to numerical diffusion, thwarting efforts that employ straightforward solutions. Previous attemps to circumvent this issue follow conceptually and computationally extensive approaches that augment traditional Eulerian models of ice flow with a semi-Lagrangian tracer scheme (e.g. Clarke et al., QSR, 2005). Here, we propose a new vertical discretization for ice sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world ice flow as a thinning of underlying layers (see figure). A new layer is added to the surface at equidistant time intervals (isochronally). Therefore, each layer is uniquely identified with an age. Horizontal motion follows the shallow ice approximation using an implicit numerical scheme. Vertical diffusion of heat which is physically desirable is also solved implicitly. A simulation of a two-dimensional section through the Greenland ice sheet will be discussed.