DIGE Analysis of Human Tissues.
Gelfi, Cecilia; Capitanio, Daniele
2018-01-01
Two-dimensional difference gel electrophoresis (2-D DIGE) is an advanced and elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2-DE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The two-dye or three-dye systems can be adopted and their choice depends on specific applications. Furthermore, the use of an internal pooled standard makes 2-D DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. The image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing
2017-01-01
Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651
Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing
2017-01-01
As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.
Verification on the Dose Profile Variation of a 3-D—NIPAM Polymer Gel Dosimeter
NASA Astrophysics Data System (ADS)
Hsieh, Bor-Tsung; Wu, Jay; Chang, Yuan-Jen
2013-04-01
A gel dosimeter is a three-dimensional (3-D) device that is used in radiotherapy. It is more efficient than traditional one-dimensional and two-dimensional dosimeters because it can be used in complicated radiation therapy applications. However, the achievement of temporal and spatial stabilities for gel dosimeters remains challenging in clinical applications because the fabrication process affects the polymerization reaction during irradiation. This study investigated the dose profile variation of an N-isopropyl acrylamide (NIPAM) polymer gel dosimeter by using the 3-D optical computed tomography scanner OCTOPUSTM 10X (MGS Research Inc.). Two acrylic containers (diameter=10, height=10, and diameter=15, height=15cm ) filled with polymer gel (gelatin: 5%, NIPAM: 5%, Bis: 3%, THPC: 5 mM) were irradiated by using intensity-modulated radiotherapy (SIEMENS Oncor Impression, 6 MV Photo beam). The treatment field was a 3 cm 3 cm square field, and the prescribed dose was 5 Gy. The results of the reconstruction line profile showed that the uncertainty of non-irradiated gel is less than 1.3% when a container with 10 cm diameters cooled in a refrigerator with a water bath. The maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 2.9%, 2.9%, and 3.1%, respectively. However, the maximum uncertainty of the non-irradiated gel dosimeter increased to 3% when a container with 15 cm diameter was cooled in the same refrigerator. After irradiation, the maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 13.1%, 13.7%, and 12.95%, respectively. The uncertainty differences for gels at different container sizes were attributed to the different cooling rates that were applied to the gels. The time required for large gel containers to cool in the refrigerator was more than 10 h, whereas the cooling process only took 4.2 h for gels in a small container. The time difference produced different temperature histories for gels and may result in changes in gel sensitivity. Given the thermally induced pre-radiation polymerization, the time difference resulted in a deviation in dose profiles. This study reports that thermal control during gel preparation should be carefully performed for clinical applications to achieve a more accurate dose distribution in 3-D image reconstruction.
Choe, Leila H; Lee, Kelvin H
2003-10-01
We investigate one approach to assess the quantitative variability in two-dimensional gel electrophoresis (2-DE) separations based on gel-to-gel variability, sample preparation variability, sample load differences, and the effect of automation on image analysis. We observe that 95% of spots present in three out of four replicate gels exhibit less than a 0.52 coefficient of variation (CV) in fluorescent stain intensity (% volume) for a single sample run on multiple gels. When four parallel sample preparations are performed, this value increases to 0.57. We do not observe any significant change in quantitative value for an increase or decrease in sample load of 30% when using appropriate image analysis variables. Increasing use of automation, while necessary in modern 2-DE experiments, does change the observed level of quantitative and qualitative variability among replicate gels. The number of spots that change qualitatively for a single sample run in parallel varies from a CV = 0.03 for fully manual analysis to CV = 0.20 for a fully automated analysis. We present a systematic method by which a single laboratory can measure gel-to-gel variability using only three gel runs.
Mostaguir, Khaled; Hoogland, Christine; Binz, Pierre-Alain; Appel, Ron D
2003-08-01
The Make 2D-DB tool has been previously developed to help build federated two-dimensional gel electrophoresis (2-DE) databases on one's own web site. The purpose of our work is to extend the strength of the first package and to build a more efficient environment. Such an environment should be able to fulfill the different needs and requirements arising from both the growing use of 2-DE techniques and the increasing amount of distributed experimental data.
Maurye, Praveen; Basu, Arpita; Biswas, Jayanta Kumar; Bandyopadhyay, Tapas Kumar; Naskar, Malay
2018-02-28
Polyacrylamide gel electrophoresis (PAGE) is the most classical technique favored worldwide for resolution of macromolecules in many biochemistry laboratories due to its incessant advanced developments and wide modifications. These ever-growing advancements in the basic laboratory equipments lead to emergence of many expensive, complex, and tricky laboratory equipments. Practical courses of biochemistry at high school or undergraduate levels are often affected by these complications. Two dimensional gel electrophoresis technique (2D-PAGE) used for resolving thousands of proteins in a gel is a combination of isoelectric focusing (first dimension gel electrophoresis technique) and sodium-dodecylsulphate PAGE (second dimension gel electrophoresis technique or SDS-PAGE). Two different laboratory equipments are needed to carry out effective 2D-PAGE technique, which also invites extra burden to the school laboratory. Here, we describe a low cost, time saving and simple gel cassette for protein 2D-PAGE technique that uses easily fabricated components and routine off-the-shelf materials. The performance of the apparatus was verified in a practical exercise by a group of high school students with positive outcomes. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
2014-01-01
Background Various computer-based methods exist for the detection and quantification of protein spots in two dimensional gel electrophoresis images. Area-based methods are commonly used for spot quantification: an area is assigned to each spot and the sum of the pixel intensities in that area, the so-called volume, is used a measure for spot signal. Other methods use the optical density, i.e. the intensity of the most intense pixel of a spot, or calculate the volume from the parameters of a fitted function. Results In this study we compare the performance of different spot quantification methods using synthetic and real data. We propose a ready-to-use algorithm for spot detection and quantification that uses fitting of two dimensional Gaussian function curves for the extraction of data from two dimensional gel electrophoresis (2-DE) images. The algorithm implements fitting using logical compounds and is computationally efficient. The applicability of the compound fitting algorithm was evaluated for various simulated data and compared with other quantification approaches. We provide evidence that even if an incorrect bell-shaped function is used, the fitting method is superior to other approaches, especially when spots overlap. Finally, we validated the method with experimental data of urea-based 2-DE of Aβ peptides andre-analyzed published data sets. Our methods showed higher precision and accuracy than other approaches when applied to exposure time series and standard gels. Conclusion Compound fitting as a quantification method for 2-DE spots shows several advantages over other approaches and could be combined with various spot detection methods. The algorithm was scripted in MATLAB (Mathworks) and is available as a supplemental file. PMID:24915860
Aslebagh, Roshanak; Channaveerappa, Devika; Arcaro, Kathleen F; Darie, Costel C
2018-05-13
Breast cancer (BC) remains a major cause of mortality, and early detection is considered important for reducing BC-associated deaths. Early detection of BC is challenging in young women, due to the limitations of mammography on the dense breast tissue of young women. We recently reported results of a pilot proteomics study, using one-dimensional polyacrylamide gel electrophoresis (1D-PAGE) and mass spectrometry (MS) to investigate differences in milk proteins from women with and without BC. Here, we applied two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MS to compare the protein pattern in milk from the breasts of a single woman who was diagnosed with BC in one breast 24 months after donating her milk. Statistically different gel spots were picked for protein digestion followed by nanoliquid chromatography tandem MS (nanoLC-MS/MS) analysis. The upregulated proteins in BC versus control are alpha-amylase, gelsolin isoform a precursor, alpha-2-glycoprotein 1 zinc isoform CRA_b partial, apoptosis-inducing factor 2 and vitronectin. Several proteins were downregulated in the milk of the breast later diagnosed with cancer as compared to the milk from the healthy breast, including different isoforms of albumin, cholesterol esterase, different isoforms of lactoferrin, different proteins from the casein family and different isoforms of lysozyme. Results warrant further studies to determine the usefulness of these milk proteins for assessing risk and detecting occult disease. MS data is available via ProteomeXchange with identifier PXD009860. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.
Boland, Thomas; Mironov, Vladimir; Gutowska, Anna; Roth, Elisabeth A; Markwald, Roger R
2003-06-01
We recently developed a cell printer (Wilson and Boland, 2003) that enables us to place cells in positions that mimic their respective positions in organs. However, this technology was limited to the printing of two-dimensional (2D) tissue constructs. Here we describe the use of thermosensitive gels to generate sequential layers for cell printing. The ability to drop cells on previously printed successive layers provides a real opportunity for the realization of three-dimensional (3D) organ printing. Organ printing will allow us to print complex 3D organs with computer-controlled, exact placing of different cell types, by a process that can be completed in several minutes. To demonstrate the feasibility of this novel technology, we showed that cell aggregates can be placed in the sequential layers of 3D gels close enough for fusion to occur. We estimated the optimum minimal thickness of the gel that can be reproducibly generated by dropping the liquid at room temperature onto a heated substrate. Then we generated cell aggregates with the corresponding (to the minimal thickness of the gel) size to ensure a direct contact between printed cell aggregates during sequential printing cycles. Finally, we demonstrated that these closely-placed cell aggregates could fuse in two types of thermosensitive 3D gels. Taken together, these data strongly support the feasibility of the proposed novel organ-printing technology. Copyright 2003 Wiley-Liss, Inc.
Miller, M J; Maher, V M; McCormick, J J
1992-11-01
Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P < 0.01, T test, mean ratio of intensity > 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)
Alaiya, A A; Franzén, B; Moberger, B; Silfverswärd, C; Linder, S; Auer, G
1999-01-01
The process of tumor progression leads to the emergence of multiple clones, and to the development of tumor heterogeneity. One approach to the study of the extent of such heterogeneity is to examine the expression of marker proteins in different tumor areas. Two-dimensional gel electrophoresis (2-DE) is a powerful tool for such studies, since the expression of a large number of polypeptide markers can be evaluated. In the present study, tumor cells were prepared from human ovarian tumors and analyzed by 2-DE and PDQUEST. As judged from the analysis of two different areas in each of nine ovarian tumors, the intratumoral variation in protein expression was low. In contrast, large differences were observed when the protein profiles of different tumors were compared. The differences in gene expression between pairs of malignant carcinomas were slightly larger than the differences observed between pairs of benign tumors. We conclude that 2-DE analysis of intratumoral heterogeneity in ovarian cancer tissue indicates a low degree of heterogeneity.
Debnath, Ananya; Thakkar, Foram M; Maiti, Prabal K; Kumaran, V; Ayappa, K G
2014-10-14
Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, Lβ', to the one dimensional (1D) rippled, Pβ' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel Lβ' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of ∼2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.
USDA-ARS?s Scientific Manuscript database
Flour proteins from the US bread wheat Butte 86 were extracted in 0.5% SDS using a two-step procedure with and without sonication and further separated by size exclusion chromatography into monomeric and polymeric fractions. Proteins in each fraction were analyzed by quantitative two-dimensional gel...
Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori
2011-01-01
Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.
Pineda, M; Sajnani, C; Barón, M
2010-01-01
We have analyzed the chloroplast proteome of Nicotiana benthamiana using two-dimensional gel electrophoresis and mass spectrometry followed by a database search. In order to improve the resolution of the two-dimensional electrophoresis gels, we have made separate maps for the low and the high pH range. At least 200 spots were detected. We identified 72 polypeptides, some being isoforms of different multiprotein families. In addition, changes in this chloroplast proteome induced by the infection with the Spanish strain of the Pepper mild mottle virus were investigated. Viral infection induced the down-regulation of several chloroplastidic proteins involved in both the photosynthetic electron-transport chain and the Benson-Calvin cycle.
Gutiérrez-Sánchez, Gerardo; Atwood, James; Kolli, V S Kumar; Roussos, Sévastianos; Augur, Christopher
2012-04-01
Caffeine is toxic to most microorganisms. However, some filamentous fungi, such as Aspergillus tamarii, are able to metabolize this alkaloid when fed caffeine as the sole nitrogen source. The aim of the present work was to identify intracellular A. tamarii proteins, regulated by caffeine, using fluorescence difference two-dimensional gel electrophoresis. Specific proteins from two culture media of A. tamarii grown either on ammonium sulfate or caffeine as the sole nitrogen source were analysed by mass spectrometry. Thirteen out of a total of 85 differentially expressed spots were identified after database search. Identified up-regulated proteins include phosphoglycerate kinase, malate dehydrogenase, dyp-type peroxidase family protein, heat shock protein, Cu, Zn superoxidase dismutase and xanthine dehydrogenase. Some of the proteins identified in this study are involved in the caffeine degradation pathway as well as in stress response, suggesting that stress proteins could be involved in caffeine metabolism in filamentous fungi.
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.
1989-01-01
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.
A brief review of other notable protein detection methods on acrylamide gels.
Kurien, Biji T; Scofield, R Hal
2012-01-01
Several methods have been described to stain proteins analyzed on acrylamide gels. These include ultrasensitive protein detection in one-dimensional and two-dimensional gel electrophoresis using a fluorescent product from the fungus Epicoccum nigrum; a fluorescence-based Coomassie Blue protein staining; visualization of proteins in acrylamide gels using ultraviolet illumination; fluorescence visualization of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution; and increasing the sensitivity four- to sixfold for detecting trace proteins in dye or silver stained polyacrylamide gels using polyethylene glycol 6000. All these methods are reviewed briefly in this chapter.
Pasquali, Matias; Serchi, Tommaso; Planchon, Sebastien; Renaut, Jenny
2017-01-01
The two-dimensional difference gel electrophoresis method is a valuable approach for proteomics. The method, using cyanine fluorescent dyes, allows the co-migration of multiple protein samples in the same gel and their simultaneous detection, thus reducing experimental and analytical time. 2D-DIGE, compared to traditional post-staining 2D-PAGE protocols (e.g., colloidal Coomassie or silver nitrate), provides faster and more reliable gel matching, limiting the impact of gel to gel variation, and allows also a good dynamic range for quantitative comparisons. By the use of internal standards, it is possible to normalize for experimental variations in spot intensities and gel patterns. Here we describe the experimental steps we follow in our routine 2D-DIGE procedure that we then apply to multiple biological questions.
Techniques for characterization and eradication of potato cyst nematode: a review.
Bairwa, Aarti; Venkatasalam, E P; Sudha, R; Umamaheswari, R; Singh, B P
2017-09-01
Correct identification of species and pathotypes is must for eradication of potato cyst nematodes (PCN). The identification of PCN species after completing the life cycle is very difficult because it is based on morphological and morphometrical characteristics. Genetically different populations of PCN are morphologically same and differentiated based on the host differential study. Later on these traditional techniques have been replaced by biochemical techniques viz, one and two dimensional gel electrophoresis, capillary gel electrophoresis, isozymes, dot blot hybridization and isoelectric focusing etc. to distinguish both the species. One and two dimensional gel electrophoresis has used to examine inter- and intra-specific differences in proteins of Globodera rostochiensis and G. pallida . Now application of PCR and DNA based characterization techniques like RAPD, AFLP and RFLP are the important tools for differentiating inter- and intra specific variation in PCN and has given opportunities to accurate identification of PCN. For managing the PCN, till now we are following integrated pest management (IPM) strategies, however these strategies are not effective to eradicate the PCN. Therefore to eradicate the PCN we need noval management practices like RNAi (RNA interference) or Gene silencing.
Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih
2012-12-11
Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.
Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih
2014-05-20
Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.
Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis
Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay
2016-01-01
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins. PMID:28248237
[Proteomic analysis of myocardial hypertrophy induced by left kidney artery coarctation in rats].
Lv, Yuan-yuan; Sun, Biao; Ma, Ji-zheng
2009-05-01
To identify the expression of proteins in cardiomyocytes in rats with left kidney artery coarctation. 16 male SD rats were separated into 2 groups (n=8): 2 kidney 1 Clip group (2K1C) and sham operation group (SO). The postoperational 8th week, after examination by normal doppler and tissue doppler echocardiography, the extracted proteins from cardiomyocytes were isolated by two-dimensional gel electrophoresis with staining. The gel images were acquired by scanner and 2-DE analysis software. Different spots observed on two 2D gels were selected and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Overall, 21 protein spots showed significant difference, and 14 out of which were identified. Kidney artery coactation-induced cardiac hypertrophy displays different expression of proteins in cardiomyocytes.
Pennington, Kyla; McGregor, Emma; Beasley, Clare L; Everall, Ian; Cotter, David; Dunn, Michael J
2004-01-01
A major cause of poor resolution in the alkaline pH range of two-dimensional electrophoresis (2-DE) gels is unsatisfactory separation of basic proteins in the first dimension. We have compared methods for the separation of basic proteins in the isoelectric focusing dimension of human brain proteins. The combined use of anodic cup-loading and the hydroxyethyldisulphide containing solution (DeStreak) produced better resolution in both analytical and micropreparative protein loaded 2-DE gels than the other methods investigated.
Li, Lei; Nelson, Clark J.; Solheim, Cory; Whelan, James; Millar, A. Harvey
2012-01-01
The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a 15N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (KS) and degradation (KD) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify KS and KD for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. KS and KD correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive 15N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability. PMID:22215636
Haebel, S.; Jensen, C.; Andersen, S. O.; Roepstorff, P.
1995-01-01
Simultaneous sequencing, using a combination of mass spectrometry and Edman degradation, of three approximately 15-kDa variants of a cuticular protein extracted from the meal beetle Tenebrio molitor larva is demonstrated. The information obtained by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) time-course monitoring of enzymatic digests was found essential to identify the differences among the three variants and for alignment of the peptides in the sequence. To determine whether each individual insect larva contains all three protein variants, proteins extracted from single animals were separated by two-dimensional gel electrophoresis, electroeluted from the gel spots, and analyzed by MALDI MS. Molecular weights of the proteins present in each sample could be obtained, and mass spectrometric mapping of the peptides after digestion with trypsin gave additional information. The protein isoforms were found to be allelic variants. PMID:7795523
Haebel, S; Jensen, C; Andersen, S O; Roepstorff, P
1995-03-01
Simultaneous sequencing, using a combination of mass spectrometry and Edman degradation, of three approximately 15-kDa variants of a cuticular protein extracted from the meal beetle Tenebrio molitor larva is demonstrated. The information obtained by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) time-course monitoring of enzymatic digests was found essential to identify the differences among the three variants and for alignment of the peptides in the sequence. To determine whether each individual insect larva contains all three protein variants, proteins extracted from single animals were separated by two-dimensional gel electrophoresis, electroeluted from the gel spots, and analyzed by MALDI MS. Molecular weights of the proteins present in each sample could be obtained, and mass spectrometric mapping of the peptides after digestion with trypsin gave additional information. The protein isoforms were found to be allelic variants.
Zakariaee, Seyed Salman; Mesbahi, Asghar; Keshtkar, Ahmad; Azimirad, Vahid
2014-01-01
Polymer gel dosimeter is the only accurate three dimensional (3D) dosimeter that can measure the absorbed dose distribution in a perfect 3D setting. Gel dosimetry by using optical computed tomography (OCT) has been promoted by several researches. In the current study, we designed and constructed a prototype OCT system for gel dosimetry. First, the electrical system for optical scanning of the gel container using a Helium-Neon laser and a photocell was designed and constructed. Then, the mechanical part for two rotational and translational motions was designed and step motors were assembled to it. The data coming from photocell was grabbed by the home-built interface and sent to a personal computer. Data processing was carried out using MATLAB software. To calibrate the system and tune up the functionality of it, different objects was designed and scanned. Furthermore, the spatial and contrast resolution of the system was determined. The system was able to scan the gel dosimeter container with a diameter up to 11 cm inside the water phantom. The standard deviation of the pixels within water flask image was considered as the criteria for image uniformity. The uniformity of the system was about ±0.05%. The spatial resolution of the system was approximately 1 mm and contrast resolution was about 0.2%. Our primary results showed that this system is able to obtain two-dimensional, cross-sectional images from polymer gel samples. PMID:24761377
Della Corte, Anna; Maugeri, Norma; Pampuch, Agnieszka; Cerletti, Chiara; de Gaetano, Giovanni; Rotilio, Domenico
2008-02-01
Thrombin is an agonist inducing platelet activation. We combined two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF MS) to analyse differentially expressed proteins secreted from thrombin-stimulated platelets. Human washed platelets, from healthy volunteers, were stimulated with thrombin 0.5 U/ml at 37 degrees C without stirring and the secreted proteins were resolved by 2D-DIGE. By image analysis, 1094 spots were detected in the 2D gel. The spots whose mean intensity showed at least a five-fold change intensity increase or decrease in the thrombin-activated platelet gel in comparison with unstimulated control were digested by trypsin and subjected to MALDI-TOF MS analysis. Peptides from mass spectra of in-gel digest samples were matched against available databases, using the Mascot search engine (Matrix Science) for peptide mass fingerprint. In the activated platelet secretome, transferrin, glutathione-transferase, WD repeat protein, ER-60, thrombospondin-1 precursor and thrombospondin were the most abundant. Also lamin A, a nuclear protein, not previously identified in platelets, appeared to be released. The novel strategy to combine 2D-DIGE with MALDI-TOF MS is a useful approach for a quantitative analysis of the effect of thrombin on the secretome profile of human platelets.
2003-10-28
These gels were obtained by two-dimensional (2D) electrophoresis, in which proteins move different substances through a polyacrylamide gel matrix based on their molecular weight and total charge in an electric field. The gels illustrate principal investigator David Niesel’s findings that exposure to modeled microgravity results in some Streptoccoccus Pneumonia’s proteins being upregulated and others being downregulated. In 2D protein profiles of whole cell lysates of Streptoccoccus Pneumonia, 6,304 cultured under normal gravity (left), appear to be expressed at higher levels indicated with black circles. Red circles (right) indicate proteins that were grown under modeled microgravity in a high aspect ratio vessel HARV).
NASA Technical Reports Server (NTRS)
Stan-Lotter, Helga; Lang, Frank J., Jr.; Hochstein, Lawrence I.
1989-01-01
The subunits from two purified halobacterial membrane enzymes (ATPase and nitrate reductase) behaved differently with respect to isoelectric focusing, silver staining and interaction with ampholytes. Differential behavior was also observed in whole cell proteins from Halobacterium saccharovorum regarding resolution in two-dimensional gels and silver staining. It is proposed that these differences reflect the existence of two classes of halobacterial proteins.
NASA Astrophysics Data System (ADS)
Mehta, Sunita; Murugeson, Saravanan; Prakash, Balaji; Deepak
2015-10-01
Inspired by the wound healing property of certain trees, we report a novel microbes based additive process for producing three dimensional patterns, which has a potential of engineering applications in a variety of fields. Imposing a two dimensional pattern of microbes on a gel media and allowing them to grow in the third dimension is known from its use in biological studies. Instead, we have introduced an intermediate porous substrate between the gel media and the microbial growth, which enables three dimensional patterns in specific forms that can be lifted off and used in engineering applications. In order to demonstrate the applicability of this idea in a diverse set of areas, two applications are selected. In one, using this method of microbial growth, we have fabricated microlenses for enhanced light extraction in organic light emitting diodes, where densely packed microlenses of the diameters of hundreds of microns lead to luminance increase by a factor of 1.24X. In another entirely different type of application, braille text patterns are prepared on a normal office paper where the grown microbial colonies serve as braille tactile dots. Braille dot patterns thus prepared meet the standard specifications (size and spacing) for braille books.
X-Ray Reflectometry of DMPS Monolayers on a Water Substrate
NASA Astrophysics Data System (ADS)
Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.
2017-12-01
The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Jung, H; Kim, G
2014-06-01
Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less
Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto
2017-06-01
The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017. © 2017 Wiley Periodicals, Inc.
DOE R&D Accomplishments Database
Liang, X.
1998-06-10
The genome of Methanococcus jannaschii has been sequenced completely and has been found to contain approximately 1,770 predicted protein-coding regions. When these coding regions are expressed and how their expression is regulated, however, remain open questions. In this work, mass spectrometry was combined with two-dimensional gel electrophoresis to identify which proteins the genes produce under different growth conditions, and thus investigate the regulation of genes responsible for functions characteristic of this thermophilic representative of the methanogenic Archaea.
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.
1987-09-04
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.
Effects of Microgravity on Streptoccoccus Pneumonia
NASA Technical Reports Server (NTRS)
2003-01-01
These gels were obtained by two-dimensional (2D) electrophoresis, in which proteins move different substances through a polyacrylamide gel matrix based on their molecular weight and total charge in an electric field. The gels illustrate principal investigator David Niesel's findings that exposure to modeled microgravity results in some Streptoccoccus Pneumonia's proteins being upregulated and others being downregulated. In 2D protein profiles of whole cell lysates of Streptoccoccus Pneumonia, 6,304 cultured under normal gravity (left), appear to be expressed at higher levels indicated with black circles. Red circles (right) indicate proteins that were grown under modeled microgravity in a high aspect ratio vessel HARV).
Analysis of proteins using DIGE and MALDI mass spectrometry
In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...
Wang, Wenjie; Shen, Mingyue; Liu, Suchen; Jiang, Lian; Song, Qianqian; Xie, Jianhua
2018-07-15
Effect of different salt ions on the gel properties and microstructure of Mesona blumes polysaccharide (MBP)-soy protein isolates (SPI) mixed gels were investigated. Sodium and calcium ions were chosen to explore their effects on the rheological behavior and gel properties of MBP-SPI mixed gels were evaluated by using rheological, X-ray diffraction, protein solubility determination, and microstructure analysis. Results showed that the addition of salt ions change the crystalline state of gels system, the crystal of gel was enhanced at low ion concentrations (0.005-0.01 M). The two peaks of gel characteristic at 8.9° and 19.9° almost disappeared at high salt ions concentrations (0.015-0.02 M), and new crystallization peaks appeared at around 30° and 45°. The elasticity, viscosity, gel strength, water holding capacity, and thermal stability of gel were increased at low ion concentration. Results showed that the main interactions which promoted gel formation and maintain the three-dimensional structure of the gel were electrostatic interactions, hydrophobic interactions, and disulfide interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, J. Susanne; Zoriy, Miroslav; Pickhardt, Carola; Przybylski, Michael; Becker, J. Sabine
2005-04-01
Identification of metal-containing proteins and determination of Cu, Fe, Zn concentration in very small protein volumes is of increasing importance in protein research. Proteins containing metal ions were analyzed directly and simultaneously in separated protein spots in two-dimensional gels (2D gels) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as an element mass spectrometric technique. In order to study the formation of proteins containing Cu, Zn and Fe in a human brain sample, isotopic-enriched tracers (54Fe, 65Cu and 67Zn) were doped to two-dimensional gels of separated Alzheimer-diseased brain proteins after two-dimensional (2D) gel electrophoresis. The protein spots were screened systematically by LA-ICP-MS with respect to these metal ion intensities. 54Fe/56Fe, 65Cu/63Cu and 67Zn/64Zn isotope ratios in metal-containing proteins were measured directly by LA-ICP-MS. The isotope ratio measurements obtained by LA-ICP-MS indicate certain protein spots with a natural isotope composition of Cu, Zn and/or Fe. These proteins already contained the metal investigated in the original proteins and are stable enough to survive the reducing conditions during gel electrophoresis. On the other hand, proteins with a changed isotope ratio of metals in comparison to the isotope ratio in nature demonstrate the accumulation of tracers within the protein complexes during the tracer experiments in 2D gels. The identification of singular protein spots from Alzheimer-diseased brain separated by 2D gel electrophoresis was attempted by biopolymer mass spectrometry using MALDI-FTICR-MS after excision from the 2D gel and tryptic digestion.
Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis.
Miernyk, Ján A; Jett, Alissa A; Johnston, Mark L
2016-01-01
Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transferred to fresh medium at 7-day intervals. Cultures were harvested by filtration five days (early log phase) or eight days (late log phase) after transfer. In order to evaluate dynamic changes, both intracellular and extracellular proteins were analyzed by 2-dimensional difference gel electrophoresis. Selected spots were subjected to in-gel tryptic-digestion and the resultant peptides were analyzed by nLC-MS/MS. In follow-up studies gel-free shot-gun analyses led to identification of 367 intracellular proteins and 188 extracellular proteins. The significance of the described research is two-fold. First a gel-based proteomics method was applied to the study of the dynamics of the secretome (extracellular proteins). Second, results of a shot-gun non-gel based proteomic survey of both cellular and extracellular proteins are presented. Published by Elsevier B.V.
Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.
Holland, Ashling
2018-01-01
Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.
Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio
2013-01-01
The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499
Mehta, Sunita; Murugeson, Saravanan; Prakash, Balaji; Deepak
2015-01-01
Inspired by the wound healing property of certain trees, we report a novel microbes based additive process for producing three dimensional patterns, which has a potential of engineering applications in a variety of fields. Imposing a two dimensional pattern of microbes on a gel media and allowing them to grow in the third dimension is known from its use in biological studies. Instead, we have introduced an intermediate porous substrate between the gel media and the microbial growth, which enables three dimensional patterns in specific forms that can be lifted off and used in engineering applications. In order to demonstrate the applicability of this idea in a diverse set of areas, two applications are selected. In one, using this method of microbial growth, we have fabricated microlenses for enhanced light extraction in organic light emitting diodes, where densely packed microlenses of the diameters of hundreds of microns lead to luminance increase by a factor of 1.24X. In another entirely different type of application, braille text patterns are prepared on a normal office paper where the grown microbial colonies serve as braille tactile dots. Braille dot patterns thus prepared meet the standard specifications (size and spacing) for braille books. PMID:26486847
USDA-ARS?s Scientific Manuscript database
Iron deficiency is a yield-limiting factor with major implications for field crop production in one-third of the world's agricultural areas, especially those with high soil CaCO3. A two-dimensional gel electrophoresis proteomic approach was combined with a study on the riboflavin synthesis pathway, ...
Dawn, Arnab; Fujita, Norifumi; Haraguchi, Shuichi; Sada, Kazuki; Tamaru, Shun-ichi; Shinkai, Seiji
2009-11-07
A new class of binary organogelator (G1, G2 and G3) based on 2-anthracenecarboxylic acid (2Ac), attached noncovalently with the gelator counterpart containing a 3,4,5-tris(n-dodecyloxy)benzoylamide backbone has been developed. Among the three gelators, two (G2 and G3) are chiral containing D-alanine or L-2-phenylglycine moieties, respectively. They can act as efficient gelators of organic solvents with varying polarity depending upon the gelator systems. Gelator G1 even gelates chiral solvents. The photoirradiation of the gel samples produces photocyclodimers having different degrees of stereoselectivity for different systems. Gels with G1 and G2 produce head-to-head (h-h) photodimers as major products, whereas the stereoselectivity is reversed for the gels with G3 producing head-to-tail (h-t) photodimers as major products. Among those, G2/cyclohexane gel shows the highest degree of stereoselectivity, producing only h-h photodimers with some significant amount of chiral induction. Other chiral systems exhibit low to moderate chiral inductions. The gelator G1 can differentiate between the racemic and enantiomerically pure varieties of a solvent by exhibiting different gel melting temperatures (T(gel)). For different gel systems, T(gel) increases in all the cases as a consequence of photoreaction, except for the G2/cyclohexane gel, where a prominent gel-to-sol phase transition can be observed during the photoreaction. Hydrogen-bonding and pi-pi stacking interactions play the principal roles in constructing the gel structure. The morphologies of the gel systems vary between one-dimensional fibrils and a fibrillar network structure. In addition, the influences of the gelator and solvent polarity on the rate of photoreactions, photoproduct distributions as well as gel structures are investigated.
An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.
Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah
2017-03-01
Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.
Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta
2014-01-01
Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric points and different molecular weights or spots with different isoelectric points and similar molecular weights play an important role in proteome analysis. The regions characteristic of albumin, globulin and legumin and vicilin fractions of globulin with typical MW and pi values were identified as the results of performed 2D electrophoretic separations of pea proteins. 2D gel electrophoresis of albumins and the vicilin fraction of globulins revealed the presence of 4 and 2 spots, respectively, representing potentially allergenic proteins. They probably corresponded to vicilin fragments synthesized during post-translational modification of the analysed protein.
Ignition and combustion characteristics of metallized propellants, phase 2
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine Isp efficiencies, accounting for radiation and two phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of five.
Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John
2015-01-01
Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3–10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima. PMID:26641262
El-Ashram, Saeed; Yin, Qing; Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John
2015-01-01
Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3-10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima.
Hiller, Karsten; Grote, Andreas; Maneck, Matthias; Münch, Richard; Jahn, Dieter
2006-10-01
After the publication of JVirGel 1.0 in 2003 we got many requests and suggestions from the proteomics community to further improve the performance of the software and to add additional useful new features. The integration of the PrediSi algorithm for the prediction of signal peptides for the Sec-dependent protein export into JVirGel 2.0 allows the exclusion of most exported preproteins from calculated proteomic maps and provides the basis for the calculation of Sec-based secretomes. A tool for the identification of transmembrane helices carrying proteins (JCaMelix) and the prediction of the corresponding membrane proteome was added. Finally, in order to directly compare experimental and calculated proteome data, a function to overlay and evaluate predicted and experimental two-dimensional gels was included. JVirGel 2.0 is freely available as precompiled package for the installation on Windows or Linux operating systems. Furthermore, there is a completely platform-independent Java version available for download. Additionally, we provide a Java Server Pages based version of JVirGel 2.0 which can be operated in nearly all web browsers. All versions are accessible at http://www.jvirgel.de
Cong, Wei-Tao; Wang, Xu; Hwang, Sun-Young; Jin, Li-Tai; Choi, Jung-Kap
2012-01-01
A fast and matrix-assisted laser desorption/ionization mass spectrometry compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, zincon and ethyl violet, to form an ion-pair complex. The protocol, including fixing, staining, and quick washing steps, can be completed in 1-1.5 h, depending upon gel thickness. It has the sensitivity comparable to the colloidal Coomassie Brilliant Blue G stain using phosphoric acid as a component of staining solution (4-8 ng). The counterion dye stain does not induce protein modifications that complicate interpretation of peptide mapping data from mass spectrometry. Considering the speed, sensitivity, and compatibility with mass spectrometry, the counterion dye stain may be more practical than any other dye-based protein stains for routine proteomic researches.
NASA Technical Reports Server (NTRS)
Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid
2003-01-01
In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.
Jobim, M I M; Trein, C; Zirkler, H; Gregory, R M; Sieme, H; Mattos, R C
2011-09-01
The objective was to evaluate protein profiles of equine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and to determine whether any of these proteins were related to semen freezability. Seminal plasma was collected from 10 stallions, of high and low semen freezability, housed at the State Stud of Lower Saxony, and routinely used in AI programs. Twenty-five protein spots were identified from the two-dimensional gel (12%), seven of which were present in all samples (all proteins were identified by MALDI-MS). Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used to generate ion images of samples in one or more mass-to-charge (m/z) values, providing the capability of mapping specific molecules to two-dimensional coordinates of the original sample. Of the 25 proteins identified, two spots had greater relative content (P < 0.05) in seminal plasma samples collected from stallions with high semen freezability: spot 5 (80-85 kDa, isoelectric point [pI] 7.54), identified as CRISP-3; and spot 45 (18.2 kDa, pI 5.0-5.2), identified as HSP-2. Conversely, protein content was greater (P < 0.05) in seminal plasma samples from stallions with low semen freezability: spot 7 (75.4 kDa, pI 6.9-7.4), identified as lactoferrin; spot 15 (26.7 kDa, pI 5.51), identified as kallikrein; spot 25 (25 kDa, pI 7.54), identified as CRISP-3; and spot 35 (13.9 kDa, pI 3.8-4.2), identified as HSP-1. In conclusion, there were differences in the seminal plasma protein profile from stallions with high and low semen freezability. Furthermore, CRISP-3 and HSP-2 were potential seminal plasma markers of high semen freezability. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Jung, H
Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less
Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui
2014-03-14
A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). Copyright © 2014 Elsevier B.V. All rights reserved.
He, Huiwen; Chen, Si; Tong, Xiaoqian; An, Zhihang; Ma, Meng; Wang, Xiaosong; Wang, Xu
2017-11-21
Aromatic groups are introduced into the end peripherals of polyhedral oligomeric silsesquioxane (POSS) core-based organic/inorganic hybrid supramolecules to get a novel dendrimer gelator POSS-Z-Asp(OBzl) (POSS-ASP), which have eight aspartate derivative arms to make full use of strong π-π stacking forces to get strong supramolecular gels in addition to multiple hydrogen bindings and van der Waals interactions. POSS-ASP can self-assemble into three-dimensional nanoscale gel networks to provide hybrid physical gels especially with strong mechanical properties and fast-recovery behaviors. Two totally different morphologies of the connected spherical particle structures and banded ultralong fibers are observed owing to the polarity of solvents confirmed by the scanning electron microscopy, polarized optical microscopy, and transmission electron microscopy techniques, expecting the existing various self-assembly models and illustrating the peripherals of the dendrimer and the polarity of solvents having huge influences in the supramolecular self-assembly mechanism. What is more, the thermal stability, rheological properties, and network architecture information have also been investigated via tube-inversion, rotational rheometer, and powder X-ray diffraction methods, the results of which confirm the two different gel formation mechanisms that make POSS-ASP to exhibit two totally different thermal and mechanical properties. Such a study reports a new gelation system in organic or organic/aqueous mixed solvents, which can be helpful for investigating the relationship of dendritic supramolecular gelation and different polarity solvents during the supramolecular self-assembly process of gelators.
Rapid in vitro labeling procedures for two-dimensional gel fingerprinting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.F.; Fowlks, E.R.
1982-01-15
Improvements of existing in vitro procedures for labeling RNA radioactively, and modifications of the two-dimensional polyacrylamide gel electrophoresis system for making RNA fingerprints are described. These improvements are (a) inactivation of phosphatase with nitric acid at pH 2.0 eliminated the phenol-cholorform extraction step during 5'-end labeling with polynucleotide kinase and (..gamma..-/sup 32/P)ATP; (b) ZnSO/sub 4/ inactivation of R Nase T/sub 1/ results in a highly efficient procedure for 3'-end labeling with T4 ligase and (5'-/sup 32/P)pCp; and (c) a rapid 4-min procedure for variable quantity range of /sup 125/I and RNA results in a qualitative and quantitative sample for high-molecularmore » weight RNA fingerprinting. Thus, these in vitro procedures become rapid and reproducible when combined with two-dimensional gel electrophoresis which eliminates simultaneously labeled impurities. Each labeling procedure is compared, using tobacco mosaic virus, Brome mosaic virus, and polio RNA. A series of Ap-rich oligonucleotides was discovered in the inner genome of Brome mosaic Virus RNA-3.« less
Fluctuations and symmetries in two-dimensional active gels.
Sarkar, N; Basu, A
2011-04-01
Motivated by the unique physical properties of biological active matter, e.g., cytoskeletal dynamics in eukaryotic cells, we set up effective two-dimensional (2d) coarse-grained hydrodynamic equations for the dynamics of thin active gels with polar or nematic symmetries. We use the well-known three-dimensional (3d) descriptions (K. Kruse et al., Eur. Phys. J. E 16, 5 (2005); A. Basu et al., Eur. Phys. J. E 27, 149 (2008)) for thin active-gel samples confined between parallel plates with appropriate boundary conditions to derive the effective 2d constitutive relations between appropriate thermodynamic fluxes and generalised forces for small deviations from equilibrium. We consider three distinct cases, characterised by spatial symmetries and boundary conditions, and show how such considerations dictate the structure of the constitutive relations. We use these to study the linear instabilities, calculate the correlation functions and the diffusion constant of a small tagged particle, and elucidate their dependences on the activity or nonequilibrium drive.
Xiping Wang; Christopher Adam Senalik; Robert Ross; Neal Bennett; Debbie Conner
2016-01-01
A laboratory study was conducted to investigate the effects of cedar oil and silica gel treatment on dimensional stability and mechanical performance of southern yellow pine (SYP) boards. Two hundred pieces of SYP and 100 pieces of red oak boards with a nominal dimension of 1 by 6 by 48 in. (25 by 152 by 1,219 mm) were selected for this study. The red oak boards were...
Two-dimensional proteome reference maps for the soybean cyst nematode Heterodera glycines
USDA-ARS?s Scientific Manuscript database
Two-dimensional electrophoresis (2-DE) reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. Results showed...
Swelling-induced and controlled curving in layered gel beams
Lucantonio, A.; Nardinocchi, P.; Pezzulla, M.
2014-01-01
We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okita, T.W.; Nakata, P.A.; Anderson, J.M.
ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tubermore » subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.« less
Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM
NASA Astrophysics Data System (ADS)
Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.
2013-06-01
The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
Ge, Jia-Jia; Huang, Yu-Sen
2017-01-01
AIM To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry (LC-MS/MS). METHODS Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins. Protein concentrations were separated using two-dimensional gel electrophoresis (2-DE). The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots. These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin. The digested peptide separation was conducted by LC-MS/MS. RESULTS The 2-DE maps showed that lens proteins were in a pH range of 3-10 with a relative molecular weight of 21-70 kD. The relative molecular weight of the more abundant proteins was localized at 25-50 kD, and the isoelectric points were found to lie between PI 4-9. The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses. The 29 points were identified by LC-MS/MS, and ten of these proteins were identified by mass spectrometry and database queries: beta-crystallin B1, glyceraldehyde-3-phosphate dehydrogenase, carbonyl reductase (NADPH) 1, cDNA FLJ55253, gamma-crystallin D, GAS2-like protein 3, sorbitol dehydrogenase, DNA FLJ60282, phosphoglycerate kinase, and filensin. CONCLUSION The level of the ten proteins may play an important role in the development of liquefied after-cataracts. PMID:28944190
Culwell, Thomas F.; Thulin, Craig D.; Merrell, Karen J.; Graves, Steven W.
2008-01-01
Proteomic biomarker discovery has been called into question. Diamandis hypothesized that seemingly trivial factors, such as eating a hamburger, may cause sufficient proteomic change as to confound proteomic differences. This has been termed the hamburger effect. Little is known about the variability of complex proteomes in response to the environment. Two methods—two-dimensional gel electrophoresis (2DGE) and capillary liquid chromatography–electrospray ionization time-of-flight mass spectrometry (LCMS)—were used to study the hamburger effect in two cross-sections of the soluble fruit fly proteome. 2DGE measured abundant proteins, whereas LCMS measured small proteins and peptides. Proteomic differences between males and females were first evaluated to assess the discriminatory capability of the methods. Likewise, wild-type and white-eyed flies were analyzed as a further demonstration that genetically based proteomic differences could be observed above the background analytical variation. Then dietary interventions were imposed. Ethanol was added to the diet of some populations without significant proteomic effect. However, after a 24-h fast, proteomic differences were found using LCMS but not 2DGE. Even so, only three of ~1000 molecular species were altered significantly, suggesting that the influence of even an extreme diet change produced only modest proteomic variability, and that much of the fruit fly proteome remains relatively constant in response to diet. These experiments suggest that proteomics can be a viable approach to biomarker discovery. PMID:19137114
Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F
2000-07-01
SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.
The PA influenza virus polymerase subunit is a phosphorylated protein.
Sanz-Ezquerro, J J; Fernández Santarén, J; Sierra, T; Aragón, T; Ortega, J; Ortín, J; Smith, G L; Nieto, A
1998-03-01
The induction of proteolysis by expression of the influenza virus PA polymerase subunit is the only biochemical activity ascribed to this protein. In the course of studying viral protein synthesis by two-dimensional gel electrophoresis, we observed the existence of several PA isoforms with different isoelectric points. These isoforms were also present when the PA gene was singly expressed in three different expression systems, indicating that a cellular activity is responsible for its post-translational modification. In vivo labelling with [32P]orthophosphate, followed by two-dimensional gel electrophoresis, clearly demonstrated the incorporation of phosphate into the PA molecule. Phosphoserine and phosphothreonine epitopes were present in PA, while phosphotyrosine residues were absent, as tested by immunoblotting with specific antibodies. These facts, as well as the presence of multiple consensus sites for casein kinase II (CKII) phosphorylation, prompted us to test the involvement of this kinase in PA covalent modification. PA protein purified by immunoprecipitation could be specifically labelled by the catalytic alpha subunit of human CKII, which was expressed and purified from bacteria. Collectively, these data demonstrate that the PA subunit of the influenza virus RNA polymerase is a phosphoprotein.
Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive
2013-10-01
Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.
Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang
2013-01-01
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817
Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.
Li, Huijun; Tan, Yu Jun; Liu, Sijun; Li, Lin
2018-04-04
A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca-GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.
Chang, Po-Hsun; Tsai, Hsieh-Chih; Chen, Yu-Ren; Chen, Jian-Yu; Hsiue, Ging-Ho
2008-10-21
In this study, two nonlinear optic hybrid materials with different dimensional alkoxysilane dyes were prepared and characterized. One NLO silane (Cz2PhSO 2OH- TES), a two-dimensional structure based on carbazole, had a larger rotational volume than the other (DR19-TES). Second harmonic ( d 33) analysis verified there is an optimum heating process for the best poling efficiency. The maximum d 33 value of NLO hybrid film containing Cz2PhSO 2OH was obtained for 10.7 pm/V after precuring at 150 degrees C for 3 h and poling at 210 degrees C for 60 min. The solid-state (29)Si NMR spectrum shows that the main factor influencing poling efficiency and thermal stability was cross-linking degree of NLO silane, but not that of TMOS. In particular, the two-dimensional sol-gel system has a greater dynamic and temporary stability than the one-dimensional system due to Cz2PhSO 2OH-TES requiring a larger volume to rotate in the hybrid matrix after cross-linking.
Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering
Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L.; Weichselbaum, Ralph R.; Ervin, Natalia; Cankova, Zdravka
2009-01-01
Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately reflect the diversity of ECM composition between tissues. In this paper, a method is presented for extracting solutions of proteins and glycoproteins from soft tissues and inducing assembly of these proteins into gels. The extracts contain ECM proteins specific to the tissue source with low levels of intracellular molecules. Gels formed from the tissue-derived extracts have nanostructure similar to ECM in vivo and can be used to culture cells as both a thin substrate coating and a thick gel. This technique could be used to assemble hydrogels with varying composition depending upon the tissue source, hydrogels for three-dimensional culture, as scaffolds for tissue engineering therapies, and to study cell–matrix interactions. PMID:19115821
Optimization of Protein Extraction and Two-Dimensional Electrophoresis Protocols for Oil Palm Leaf.
Daim, Leona Daniela Jeffery; Ooi, Tony Eng Keong; Yusof, Hirzun Mohd; Majid, Nazia Abdul; Karsani, Saiful Anuar Bin
2015-08-01
Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest. However, this effort is impeded by technical challenges. Plant sample preparation for proteomics analysis is plagued with technical challenges due to the presence of polysaccharides, secondary metabolites and other interfering compounds. Although protein extraction methods for plant tissues exist, none work universally on all sample types. Therefore, this study aims to compare and optimize different protein extraction protocols for use with two-dimensional gel electrophoresis of young and mature leaves from the oil palm. Four protein extraction methods were evaluated: phenol-guanidine isothiocyanate, trichloroacetic acid-acetone precipitation, sucrose and trichloroacetic acid-acetone-phenol. Of these four protocols, the trichloroacetic acid-acetone-phenol method was found to give the highest resolution and most reproducible gel. The results from this study can be used in sample preparations of oil palm tissue for proteomics work.
Degroote, Roxane L; Hauck, Stefanie M; Amann, Barbara; Hirmer, Sieglinde; Ueffing, Marius; Deeg, Cornelia A
2014-01-01
Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.
Two-dimensional porous anodic alumina for optoelectronics and photocatalytic application
NASA Astrophysics Data System (ADS)
Khoroshko, L. S.
2015-11-01
Fabrication of porous anodic alumina film structures using anodizing, sol-gel synthesis and photolithography is reported. The structures receive interest as planar waveguides due to strong photoluminescence of the embedded trivalent lanthanides. Mesoporous structures comprising sol-gel derived titania in porous anodic alumina play a role of effective catalyst for water purification.
ERIC Educational Resources Information Center
Maurye, Praveen; Basu, Arpita; Biswas, Jayanta Kumar; Bandyopadhyay, Tapas Kumar; Naskar, Malay
2018-01-01
Polyacrylamide gel electrophoresis (PAGE) is the most classical technique favored worldwide for resolution of macromolecules in many biochemistry laboratories due to its incessant advanced developments and wide modifications. These ever-growing advancements in the basic laboratory equipments lead to emergence of many expensive, complex, and tricky…
Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity
USDA-ARS?s Scientific Manuscript database
Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...
Although two-dimensional electrophoresis (2D-GE) remains the basis for many ecotoxicoproteomic analyses, new, non gel-based methods are beginning to be applied to overcome throughput and coverage limitations of 2D-GE. The overall objective of our research was to apply a comprehe...
NASA Astrophysics Data System (ADS)
Lee, Jason J. S.; Tsai, Chia-Jung; Lo, Man-Kuok; Huang, Yung-Hui; Chen, Chien-Chuan; Wu, Jay; Tyan, Yeu-Sheng; Wu, Tung-Hsin
2008-05-01
A new type of normoxic polymer gel dosimeter, named MAGAT responses well to absorbed dose even when manufacturing in the presence of normal levels of oxygen. The aim of this study was to evaluate dose response, diffusion effect and cumulated dose response under multiple fractional irradiations of the MAGAT gel dosimeter using Multiple Spin-Echo (MSE) Magnetic Resonance (MR) sequence. Dose response was performed by irradiating MAGAT-gel-filled testing vials with a 6 MV linear accelerator and a linear relationship was present with doses from 0 to 6 Gy, but gradually, a bi-exponential function result was obtained with given doses up to 20 Gy. No significant difference in dose response was present between single and cumulated doses (p > 0.05). For study of diffusion effect, edge sharpness of the R2 map imaging between two split doses was smaller than 1 cm of dose profile penumbra between 20% and 80%. In conclusion, the MAGAT polymer gel dosimeter with MSE MR imaging is a promising method for dose verification in clinical radiation therapy practice.
Alterations in brain cerebral cortex proteome of rabies-infected cat.
Kasempimolporn, Songsri; Lumlertdacha, Boonlert; Chulasugandha, Pannipa; Boonchang, Supatsorn; Sitprija, Visith
2014-07-01
Comparative proteome analysis using brain cerebral cortex tissues from cats and dogs infected with/without rabies virus were conducted using both two-dimensional gel-electrophoresis (2-DE) and 2-D fluorescence difference gel- electrophoresis (2D-DIGE) methods. The 2-DE gel images of all samples revealed >1,000 protein spots in each gel. Quantitative intensity analysis revealed the same overall protein pattern in certain regions of the gel, but the rabies-infected brains exhibited more protein spots than the non-infected controls. From approximately 880 protein spots detected by 2D-DIGE, 65 protein spots were increased and 46 were decreased. Eight of these protein spots were randomly selected and annotated by reference to previous known proteome data of rabid dog brains. They were similarly altered in both of the rabies-infected cats and dogs. A more detailed comparison of changes in proteomic profiles of brains between rabid cats and dogs should shed some light on the pathophysiological mechanism of rabies in domestic animals, as most rabies cases have been traceable to or believed to have originated from rabid dogs.
Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa
2010-08-03
The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug release kinetics. The slowest release of pentoxifylline was observed in water where the thickest gel was formed, whereas the fastest release was observed in HCl pH 1.2, in which the gel layer was thinnest. Moreover, experiments simulating physiological conditions showed that changes of pH and ionic strength influence the xanthan gel structure relatively quickly, and consequently the drug release kinetics. It is therefore concluded that drug release is greatly influenced by changes in the xanthan molecular conformation, as reflected in changed thickness of the gel layer. A new method utilizing combination of SPI, multi-echo MRI and T(2) mapping eliminates the limitations of standard methods used in previous studies for determining moving fronts and improves current understanding of the dynamic processes involved in polymer swelling. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M.
Eschenbrenner, Michel; Horn, Troy A; Wagner, Mary Ann; Mujer, Cesar V; Miller-Scandle, Tabbi L; DelVecchio, Vito G
2006-07-01
Brucella species are pathogenic agents that cause brucellosis, a debilitating zoonotic disease that affects a large variety of domesticated animals and humans. Brucella melitensis and Brucella abortus are considered major health threats because of their highly infectious nature and worldwide occurrence. The availability of the annotated genomes for these two species has allowed a comparative proteomics study of laboratory grown B. melitensis 16M and B. abortus 2308 by two-dimensional (2-D) gel electrophoresis and peptide mass fingerprinting. Computer-assisted analysis of the different 2-D gel images of strains 16M and 2308 revealed significant quantitative and qualitative differences in their protein expression patterns. Proteins involved in membrane transport, particularly the high affinity amino acids binding proteins, and those involved in Sec-dependent secretion systems related to type IV and type V secretion systems, were differentially expressed. Differential expression of these proteins may be responsible for conferring specific host preference in the two strains 2308 and 16M.
Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong
2012-01-01
In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584
HIGÓN, MELISSA; COWAN, GRAEME; NAUSCH, NORMAN; CAVANAGH, DAVID; OLEAGA, ANA; TOLEDO, RAFAEL; STOTHARD, J. RUSSELL; ANTÚNEZ, ORETO; MARCILLA, ANTONIO; BURCHMORE, RICHARD; MUTAPI, FRANCISCA
2011-01-01
SUMMARY With the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to compare protein expression and immune cross-reactivity between the trematodes Schistosoma haematobium, S. bovis and Echinostoma caproni in the hope of identifying novel intervention targets. Native adult parasite proteins were separated by 2-dimensional gel electrophoresis and identified through electrospray ionisation tandem mass spectrometry to produce a reference gel. Proteins from differential gel electrophoresis analyses of the three parasite proteomes were compared and screened against sera from hamsters infected with S. haematobium and E. caproni following 2-dimensional Western blotting. Differential protein expression between the three species was observed with circa 5% of proteins from S. haematobium showing expression up-regulation compared to the other two species. There was 91% similarity between the proteomes of the two Schistosoma species and 81% and 78·6% similarity between S. haematobium and S. bovis versus E. caproni, respectively. Although there were some common cross-species antigens, species-species targets were revealed which, despite evolutionary homology, could be due to phenotypic plasticity arising from different host-parasite relationships. Nevertheless, this approach helps to identify novel intervention targets which could be used as broad-spectrum candidates for future use in human and veterinary vaccines. PMID:21729355
Chemistry and Processing of Nanostructured Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, G A; Baumann, T F; Hope-Weeks, L J
2002-01-18
Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2016-01-01
A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.
Monoyios, Andreas; Patzl, Martina; Schlosser, Sarah; Hess, Michael; Bilic, Ivana
2018-02-01
The current study focused on Histomonas meleagridis, a unicellular protozoan, responsible for histomonosis in poultry. Recently, the occurrence of the disease increased due to the ban of effective chemotherapeutic drugs. Basic questions regarding the molecular biology, virulence mechanisms or even life cycle of the flagellate are still puzzling. In order to address some of these issues, we conducted a comparative proteomic analysis of a virulent and an attenuated H. meleagridis strain traced back to a single cell and propagated in vitro as monoxenic mono-eukaryotic cultures. Using two-dimensional electrophoresis (2-DE) for proteome visualization with computational 2-DE gel image and statistical analysis, upregulated proteins in either of the two H. meleagridis strains were detected. Statistical analysis fulfilling two criteria (≥threefold upregulation and P < 0.05) revealed 119 differentially expressed protein spots out of which 62 spots were noticed in gels with proteins from the virulent and 57 spots in gels with proteins from the attenuated culture. Mass spectrometric analysis of 32 protein spots upregulated in gels of the virulent strain identified 17 as H. meleagridis-specific. The identification revealed that these spots belonged to eight different proteins, with the majority related to cellular stress management. Two ubiquitous cellular proteins, actin and enolase, were upregulated in multiple gel positions in this strain, indicating either post-translational modification or truncation, or even both. Additionally, a known virulence factor named legumain cysteine peptidase was also detected. In contrast to this, mass spectrometric analysis of 49 protein spots, upregulated in gels of the attenuated strain, singled out 32 spots as specific for the flagellate. These spots were shown to correspond to 24 different proteins that reflect the increased metabolism, in vitro adaptation of the parasite, and amoeboid morphology. In addition to H. meleagridis proteins, the analysis identified differential expression of Escherichia coli DH5α proteins that could have been influenced by the co-cultivated H. meleagridis strain, indicating a reciprocal interaction of these two organisms during monoxenic cultivation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra
2018-01-01
Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.
A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance
NASA Technical Reports Server (NTRS)
Mueller, Donn C.; Turns, Stephen R.
1993-01-01
A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.
Anderson, H.L.; Kinnison, W.W.; Lillberg, J.W.
1985-04-30
An apparatus and method for electronically reading planar two-dimensional ..beta..-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the ..beta..-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700-..mu..m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.
Anderson, Herbert L.; Kinnison, W. Wayne; Lillberg, John W.
1987-01-01
Apparatus and method for electronically reading planar two dimensional .beta.-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge of the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the .beta.-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700 .mu.m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.
Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi
2013-02-05
A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, B.; Brown, D.
Biological endpoints can complement chemical analyses in monitoring environmental remediation. In some cases the levels of chemical detection are so low that the costs of clean-up to no detection would be prohibitive. And chemical tests do not indicate the availability of the contaminants to the biota. On the other hand many if not most biological tests lack specificity. The authors have investigated a protein expression assay to establish an endpoint for clean-up of sulfur mustard and breakdown products. Earthworms (Lumbricus terrestris) were exposed to sulfur mustard (SM), a breakdown product thiodiethanol (TDE), and ethylene glycol, the solvent for the twomore » chemicals. Tissue from the lining of the coelomic cavity was taken from each of 6 worms in each treatment class. Soluble proteins were extracted and separated on one and two-dimensional (1D and 2D) gels. The 1 D gels showed no difference by eye but the patterns from control and solvent control worms on 2D gels differed from those of worms exposed to TDE and SM. The 1D gel data were digitized and analyzed by pattern recognition using artificial neural networks. The protein patterns under the two treatments and the two controls were learned in one set of data and successfully recognized in a second. This indicated that what was learned was useful in recognizing patterns induced by SM and TDE. Thus a possible endpoint for remediation would be the protein pattern at no effect levels of chemicals of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willard, K.E.
1982-04-01
Two-dimensional gel electrophoretic patterns of human peripheral blood leukocytes from 12 patients with infectious mononucleosis were prepared by use of the ISO-DALT system. Before the two-dimensional separation, the leukocytes were purified by Ficoll-Paque gradient centrifugation and labeled overnight with (/sup 35/S) methionine. Quantitative increases in two proteins were detected in the patterns of infected leukocytes from the patients as compared with controls. Fluorescence-activated cell sorting of leukocytes from normal human peripheral blood before subsequent two-dimensional gel analysis revealed that the dramatic increase in one of these proteins (Inmono:2) could be due to shifts in the population ratios of lymphocytes, monocytes,more » and granulocytes. In contrast, the appearance in the infected leukocytes of a second protein, Inmono:1, could not be accounted for by cell-population shifts. Increased amounts of these two proteins have been found in every patient studied who had clinically detectable infectious mononucleosis. In addition, a patient who displayed symptoms of infectious mononucleosis but who did not have a positive result in the MONOSPOT test (Ortho) until three weeks after our analysis also demonstrated increased relative amounts of these proteins in his leukocyte pattern.« less
Hogrebe, Nathaniel J; Gooch, Keith J
2016-09-01
Much is unknown about the effects of culture dimensionality on cell behavior due to the lack of biomimetic substrates that are suitable for directly comparing cells grown on two-dimensional (2D) and encapsulated within three-dimensional (3D) matrices of the same stiffness and biochemistry. To overcome this limitation, we used a self-assembling peptide hydrogel system that has tunable stiffness and cell-binding site density as well as a fibrous microarchitecture resembling the structure of collagen. We investigated the effect of culture dimensionality on human mesenchymal stem cell differentiation at different values of matrix stiffness (G' = 0.25, 1.25, 5, and 10 kPa) and a constant RGD (Arg-Gly-Asp) binding site concentration. In the presence of the same soluble induction factors, culture on top of stiff gels facilitated the most efficient osteogenesis, while encapsulation within the same stiff gels resulted in a switch to predominantly terminal chondrogenesis. Adipogenesis dominated at soft conditions, and 3D culture induced better adipogenic differentiation than 2D culture at a given stiffness. Interestingly, initial matrix-induced cell morphology was predictive of these end phenotypes. Furthermore, optimal culture conditions corresponded to each cell type's natural niche within the body, highlighting the importance of incorporating native matrix dimensionality and stiffness into tissue engineering strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2356-2368, 2016. © 2016 Wiley Periodicals, Inc.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit
NASA Technical Reports Server (NTRS)
Chen, B. Y.; Janes, H. W.
1997-01-01
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.
Mason, Brooke N; Starchenko, Alina; Williams, Rebecca M; Bonassar, Lawrence J; Reinhart-King, Cynthia A
2013-01-01
Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R
2016-07-15
The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.
Nicholson, C; Tao, L
1993-12-01
This paper describes the theory of an integrative optical imaging system and its application to the analysis of the diffusion of 3-, 10-, 40-, and 70-kDa fluorescent dextran molecules in agarose gel and brain extracellular microenvironment. The method uses a precisely defined source of fluorescent molecules pressure ejected from a micropipette, and a detailed theory of the intensity contributions from out-of-focus molecules in a three-dimensional medium to a two-dimensional image. Dextrans tagged with either tetramethylrhodamine or Texas Red were ejected into 0.3% agarose gel or rat cortical slices maintained in a perfused chamber at 34 degrees C and imaged using a compound epifluorescent microscope with a 10 x water-immersion objective. About 20 images were taken at 2-10-s intervals, recorded with a cooled CCD camera, then transferred to a 486 PC for quantitative analysis. The diffusion coefficient in agarose gel, D, and the apparent diffusion coefficient, D*, in brain tissue were determined by fitting an integral expression relating the measured two-dimensional image intensity to the theoretical three-dimensional dextran concentration. The measurements in dilute agarose gel provided a reference value of D and validated the method. Values of the tortuosity, lambda = (D/D*)1/2, for the 3- and 10-kDa dextrans were 1.70 and 1.63, respectively, which were consistent with previous values derived from tetramethylammonium measurements in cortex. Tortuosities for the 40- and 70-kDa dextrans had significantly larger values of 2.16 and 2.25, respectively. This suggests that the extracellular space may have local constrictions that hinder the diffusion of molecules above a critical size that lies in the range of many neurotrophic compounds.
Wang, Chao; Liu, Ting-Wu; Chalifour, Annie; Chen, Juan; Shen, Zhi-Jun; Liu, Xiang; Wang, Wen-Hua; Zheng, Hai-Lei
2014-01-01
Acid rain (AR) is a serious environmental issue inducing harmful impacts on plant growth and development. It has been reported that Liquidambar formosana, considered as an AR-sensitive tree species, was largely injured by AR, compared with Schima superba, an AR-tolerant tree species. To clarify the different responses of these two species to AR, a comparative proteomic analysis was conducted in this study. More than 1000 protein spots were reproducibly detected on two-dimensional electrophoresis gels. Among them, 74 protein spots from L. formosana gels and 34 protein spots from S. superba gels showed significant changes in their abundances under AR stress. In both L. formosana and S. superba, the majority proteins with more than 2 fold changes were involved in photosynthesis and energy production, followed by material metabolism, stress and defense, transcription, post-translational and modification, and signal transduction. In contrast with L. formosana, no hormone response-related protein was found in S. superba. Moreover, the changes of proteins involved in photosynthesis, starch synthesis, and translation were distinctly different between L. formosana and S. superba. Protein expression analysis of three proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, ascorbate peroxidase and glutathione-S-transferase) by Western blot was well correlated with the results of proteomics. In conclusion, our study provides new insights into AR stress responses in woody plants and clarifies the differences in strategies to cope with AR between L. formosana and S. superba. PMID:25025692
Variables affecting resolution of lung phospholipids in one-dimensional thin-layer chromatography.
Krahn, J
1987-01-01
Resolution of the confusion in the literature about the separation of lung phospholipids in thin-layer chromatographic systems has awaited a systematic study of the variables that potentially affect this separation. In this study I show that: incorporation of ammonium sulfate into silica gel "GHL" has a dramatic effect on separation of lung phospholipids; this effect is equally dramatic but different in activated and nonactivated gels; when it picks up moisture, ammonium sulfate-activated gel very rapidly loses its ability to resolve lecithin from phosphatidylinositol; in gel containing ammonium sulfate, small amounts of phosphatidylethanolamine are hydrolyzed to lyso-phosphatidylethanolamine.
Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut
2005-01-01
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175
Liu, Guo-hua; Rajendran, Narasimmalu; Amemiya, Takashi; Itoh, Kiminori
2011-11-01
A rapid approach based on two-dimensional DNA gel electrophroesis (2-DGE) mapping with selective primer pairs was employed to analyze bacterial community structure in sediments from upstream, midstream and downstream of Sagami River in Japan. The 2-DGE maps indicated that Alpha- and Delta-proteobacteria were major bacterial populations in the upstream and midstream sediments. Further bacterial community structure analysis showed that richness proportion of Alpha- and Delta-proteobacterial groups reflected a trend toward decreasing from the upstream to downstream sediments. The biomass proportion of bacterial populations in the midstream sediment showed a significantly difference from that in the other sediments, suggesting that there may be an environmental pressure on the midstream bacterial community. Lorenz curves, together with Gini coefficients were successfully applied to the 2-DGE mapping data for resolving evenness of bacterial populations, and showed that the plotted curve from high-resolution 2-DGE mapping became less linear and more an exponential function than that of the 1-DGE methods such as chain length analysis and denaturing gradient gel electrophoresis, suggesting that the 2-DGE mapping may achieve a more detailed evaluation of bacterial community. In conclusion, the 2-DGE mapping combined with the selective primer pairs enables bacterial community structure analysis in river sediment and thus it can also monitor sediment pollution based on the change of bacterial community structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, K.; Luftig, R.B.
1988-01-01
The authors detected phosphorylation of the major Moloney murine leukemia virus (M-MuLV) capsid polypeptide, p30, by using /sup 32/P/sub i/-labeled virions. This was observed both on two-dimensional polyacrylamide gels directly or on one-dimensional gels of viral lysates that had been immunoprecipitated with monospecific goat anti-p30 serum. The phosphorylation event had been difficult to detect because pp12 the major virion phosphoprotein incorporates almost all of the /sup 32/P label added to infected cells. When immunoprecipitates from M-MuLV lysates labeled with /sup 32/P/sub i/ were compared with those labeled with (/sup 35/S)methionine, it was calculated that the degree of phosphorylation at themore » p30 domain of Pr65/sup gag/ was only 0.22 to 0.54% relative to phosphorylation at the p12 domain. Two-dimensional gel electrophoresis of the /sup 32/P-labeled p30 immunoprecipitates showed that there were three phosphorylated p30 forms with isoelectric points (pIs) of 5.7, 5.8, and 6.0. These forms were generally more acidic than the (/sup 35/S) methionine-labeled p30 forms, which had pIs of 6.0, 6.1, 6.3 (the major constituent with > 80% of the label), and 6.6. The predominant phosphoamino acid of the major phosphorylated p30 form (pI 5.8) was phosphoserine. Further, tryptic peptide analysis of this p30 form showed that only one peptide was predominantly phosphorylated. Based on a comparison of specific labeling of p30 tryptic peptides with (/sup 14/C)sesrine, (/sup 35/S)methionine, and /sup 32/P/sub i/, we tentatively assigned the phosphorylation site to a 2.4-kilodalton NH/sub 2/-terminal peptide containing triple tandem serines spanning the region from amino acids 4 to 24.« less
Celik, Hasan; Bouhrara, Mustapha; Reiter, David A.; Fishbein, Kenneth W.; Spencer, Richard G.
2013-01-01
We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, nonnegative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. PMID:24035004
Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo
2016-09-01
Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi
2018-07-01
Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.
ERIC Educational Resources Information Center
Kim, Thomas D.; Craig, Paul A.
2010-01-01
Two-dimensional gel electrophoresis (2DGE) remains an important tool in the study of biological systems by proteomics. While the use of 2DGE is commonplace in research publications, there are few instructional laboratories that address the use of 2DGE for analyzing complex protein samples. One reason for this lack is the fact that the preparation…
Photonic devices based on patterning by two photon induced polymerization techniques
NASA Astrophysics Data System (ADS)
Fortunati, I.; Dainese, T.; Signorini, R.; Bozio, R.; Tagliazucca, V.; Dirè, S.; Lemercier, G.; Mulatier, J.-C.; Andraud, C.; Schiavuta, P.; Rinaldi, A.; Licoccia, S.; Bottazzo, J.; Franco Perez, A.; Guglielmi, M.; Brusatin, G.
2008-04-01
Two and three dimensional structures with micron and submicron resolution have been achieved in commercial resists, polymeric materials and sol-gel materials by several lithographic techniques. In this context, silicon-based sol-gel materials are particularly interesting because of their versatility, chemical and thermal stability, amount of embeddable active compounds. Compared with other micro- and nano-fabrication schemes, the Two Photon Induced Polymerization is unique in its 3D processing capability. The photopolymerization is performed with laser beam in the near-IR region, where samples show less absorption and less scattering, giving rise to a deeper penetration of the light. The use of ultrashort laser pulses allows the starting of nonlinear processes like multiphoton absorption at relatively low average power without thermally damaging the samples. In this work we report results on the photopolymerization process in hybrid organic-inorganic films based photopolymerizable methacrylate-containing Si-nanobuilding blocks. Films, obtained through sol-gel synthesis, are doped with a photo-initiator allowing a radical polymerization of methacrylic groups. The photo-initiator is activated by femtosecond laser source, at different input energies. The development of the unexposed regions is performed with a suitable solvent and the photopolymerized structures are characterized by microscopy techniques.
1982-01-01
We have examined the secretogogue responsiveness and the pattern of secretory proteins produced by a transplantable rat pancreatic acinar cell tumor. Dispersed tumor cells were found to discharge secretory proteins in vitro when incubated with hormones that act on four different classes of receptors: carbamylcholine, caerulein, secretin- vasoactive intestinal peptide, and bombesin. With all hormones tested, maximal discharge from tumor cells was only about one-half that of control pancreatic lobules, but occurred at the same dose optima except for secretin, whose dose optimum was 10-fold higher. Biochemical analysis of secretory proteins discharged by the tumor cells was carried out by crossed immunoelectrophoresis and by two-dimensional isoelectric focusing-SDS polyacrylamide gel electrophoresis. To establish a baseline for comparison, secretory proteins from normal rat pancreas were identified according to enzymatic activity and correlated with migration position on two-dimensional gels. Our results indicate that a group of basic polypeptides including proelastase, basic trypsinogen, basic chymotrypsinogen, and ribonuclease, two out of three forms of procarboxypeptidase B, and the major lipase species were greatly reduced or absent in tumor cell secretion. In contrast, the amount of acidic chymotrypsinogen was notably increased compared with normal acinar cells. Although the acinar tumor cells are highly differentiated cytologically and express functional receptors for several classes of pancreatic secretagogues, they show quantitative and qualitative differences when compared with normal pancreas with regard to their production of secretory proteins. PMID:6185502
Robinson, Nicholas P
2013-01-01
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Rachinsky, Anna; Guerrero, Felix D; Scoles, Glen A
2007-12-01
We used gel electrophoresis and mass spectrometry to investigate differences in protein expression in ovarian tissues from Babesia bovis-infected and uninfected southern cattle tick, Rhipicephalus (Boophilus) microplus. Soluble and membrane proteins were extracted from ovaries of adult female ticks, and analyzed by isoelectric focusing (IEF) and one-dimensional or two-dimensional (2-D) gel electrophoresis. Protein patterns were analyzed for differences in expression between infected and uninfected ticks. 2-D separation of proteins revealed a number of proteins that appeared to be up- or down-regulated in response to infection with Babesia, in particular membrane/membrane-associated proteins and proteins in a low molecular mass range between 6 and 36kDa. A selection of differentially expressed proteins was subjected to analysis by capillary-HPLC-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS). Among the ovarian proteins that were up-regulated in infected ticks were calreticulin, two myosin subunits, an endoplasmic reticulum protein, a peptidyl-prolyl cis-trans isomerase (PPIase), a cytochrome c oxidase subunit, a glutamine synthetase, and a family of Kunitz-type serine protease inhibitors. Among the down-regulated ovarian proteins were another PPIase, a hemoglobin subunit, and a lysozyme. This study is part of an ongoing effort to establish a proteome database that can be utilized to investigate specific proteins involved in successful pathogen transmission.
Automated apparatus for producing gradient gels
Anderson, N.L.
1983-11-10
Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.
Automated apparatus for producing gradient gels
Anderson, Norman L.
1986-01-01
Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavoni, J; Silveira, M; Filho, O Baffa
Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less
Griebel, Anja; Obermaier, Christian; Westermeier, Reiner; Moche, Martin; Büttner, Knut
2013-07-01
A new fluorescent amino-reactive dye has been tested for both labelling proteins prior to electrophoretic separations and between the two steps of two-dimensional electrophoresis. A series of experiments showed, that the labelling of lysines with this dye is compatible with all standard additives used for sample preparation, including reducing substances and carrier ampholytes. Using this dye for pre-labelling considerably simplifies the electrophoresis and detection workflow and provides highly sensitive and quantitative visualisation of proteins.
Two-dimensional electrophoretic analysis of nuclear matrix proteins in human colon adenocarcinoma.
Toumpanaki, A; Baltatzis, G E; Gaitanarou, E; Seretis, E; Toumpanakis, C; Aroni, K; Kittas, Christos; Voloudakis-Baltatzis, I E
2009-01-01
The aim of the present study was to observe possible qualitative and quantitative expression differences between nuclear matrix proteins (NMPs) of human colon adenocarcinoma and their mirror biopsies, using the technique of two-dimensional gel electrophoresis, in order to identify the existence of specific NMP fingerprints for colon cancer. Colon tissues were examined ultrastructurally and NMPs were isolated biochemically, by serial extraction of lipids, soluble proteins, DNA, RNA, and intermediate filaments and were separated according to their isoelectric point (pI) and their molecular weight (MW) by high-resolution two-dimensional electrophoresis (2D). By comparing the 2D electropherograms of colon cancer tissues and mirror biopsy tissues we observed qualitative and quantitative expression differences between their NMPs but also a differentiation of NMP composition between the stages of malignancy. Moreover, despite the similarities between mirror biopsy samples, a highlight percentage of exception was observed. Electrophoretic results provided in this study demonstrated that the examined NMPs could be further investigated as potential markers for detection of colorectal cancer in an early stage, for the assessment of the disease progression, as well as useful tools for individual therapy and for preventing a possible recurrence of cancer and metastasis.
Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L
2014-12-01
In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.
Mechanotransduction mechanisms in growing spherically structured tissues
NASA Astrophysics Data System (ADS)
Littlejohns, Euan; Dunlop, Carina M.
2018-04-01
There is increasing experimental interest in mechanotransduction in multi-cellular tissues as opposed to single cells. This is driven by a growing awareness of the importance of physiologically relevant three-dimensional culture and of cell–cell and cell–gel interactions in directing growth and development. The paradigm biophysical technique for investigating tissue level mechanobiology in this context is to grow model tissues in artificial gels with well-defined mechanical properties. These studies often indicate that the stiffness of the encapsulating gel can significantly alter cellular behaviours. We demonstrate here potential mechanisms linking tissue growth with stiffness-mediated mechanotransduction. We show how tissue growth in gel systems generates points at which there is a significant qualitative change in the cellular stress and strain experienced. We show analytically how these potential switching points depend on the mechanical properties of the constraining gel and predict when they will occur. Significantly, we identify distinct mechanisms that act separately in each of the stress and strain fields at different times. These observations suggest growth as a potential physical mechanism coupling gel stiffness with cellular mechanotransduction in three-dimensional tissues. We additionally show that non-proliferating areas, in the case that the constraining gel is soft compared with the tissue, will expand and contract passively as a result of growth. Central compartment size is thus seen to not be a reliable indicator on its own for growth initiation or active behaviour.
MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131
NASA Astrophysics Data System (ADS)
Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.
2010-11-01
MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.
FRET Imaging in Three-dimensional Hydrogels
Taboas, Juan M.
2016-01-01
Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354
Detecting peroxiredoxin hyperoxidation by one-dimensional isoelectric focusing.
Cao, Zhenbo; Bulleid, Neil J
The activity of typical 2-cys peroxiredoxin (Prxs) can be regulated by hyperoxidation with a consequent loss of redox activity. Here we developed a simple assay to monitor the level of hyperoxidation of different typical 2-cys prxs simultaneously. This assay only requires standard equipment and can compare different samples on the same gel. It requires much less time than conventional 2D gels and gives more information than Western blotting with an antibody specific for hyperoxidized peroxiredoxin. This method could also be used to monitor protein modification with a charge difference such as phosphorylation.
Microstructure of β-Sitosterol:γ-Oryzanol Edible Organogels.
Matheson, Andrew B; Koutsos, Vasileios; Dalkas, Georgios; Euston, Stephen; Clegg, Paul
2017-05-09
Rheology and atomic force microscopy (AFM) were employed to examine the microstructure of β-sitosterol:γ-oryzanol organogels in sunflower oil. Using time-resolved rheology, we followed gel formation, paying specific attention to the fibril aggregation process, which had not been studied in detail previously for this system. Using AFM, we observed gel structures directly and obtained detailed information on the gel structure, far exceeding previous studies. Our analysis suggests that though gels are formed by the self-assembly and aggregation of one-dimensional fibrils, the manner in which these fibrils aggregate into ribbons results in complex structures of higher dimensionality. We emphasize that it is a surprise to find ribbons and not twisted strands. Comparing AFM images of 10% w/w and 20% w/w gelator systems, we observed differences in the degree of branching which are consistent with the rheology. We also observed the individual self-assembled fibrils which make up these gels with much greater clarity than in previous microscopy studies, and the fibril diameters of ∼9.8 nm we measured agree excellently with those obtained from existing small-angle neutron scattering data. These results provide new insight into the structure and formation kinetics of this important organogel system.
Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days.
Li, Anning; Mo, Delin; Zhao, Xiao; Jiang, Wei; Cong, Peiqing; He, Zuyong; Xiao, Shuqi; Liu, Xiaohong; Chen, Yaosheng
2013-02-01
Production of high-quality meat is important to satisfy the consumer and make the pig industry competitive. Obese and lean breeds of pig show clear differences in adipogenic capacity and meat quality, but the underlying molecular mechanism remains unclear. We have compared protein expression of the longissimus muscle between Lantang (LT, obese) and Landrace (LR, lean) pigs at the age of 180 days using two-dimensional fluorescence difference gel electrophoresis. Of the 1,400 protein spots detected per gel, 18 were differentially expressed between the two breeds. Using peptide mass fingerprint and tandem mass spectrometry, 17 protein spots were identified, corresponding to ten different proteins that could be divided into four groups: metabolism-related, structure-related, stress-related, and other (unclassified). Among the metabolism-related proteins, COX5A and ATP5B, which participate in oxidative phosphorylation, were highly expressed in LT, whereas ENO3, which is involved in glycolysis, was highly expressed in LR. These results may contribute valuable information to our understanding of the molecular mechanism responsible for differences between obese and lean pigs, such as growth rate and meat quality.
Sinha, P; Hütter, G; Köttgen, E; Dietel, M; Schadendorf, D; Lage, H
1998-11-18
The therapy of advanced cancer using chemotherapy alone or in combination with radiation or hyperthermia yields an overall response rate of about 20-50%. This success is often marred by the development of resistance to cytostatic drugs. Our aim was to study the global analysis of protein expression in the development of chemoresistance in vitro. We therefore used a cell culture model derived from the gastric carcinoma cell line EPG 85-257P. A classical multidrug-resistant subline EPG85-257RDB selected to daunorubicin and an atypical multidrug-resistant cell variant EPG85-257RNOV selected to mitoxantrone, were analysed using two-dimensional electrophoresis in immobilized pH-gradients (pH 4.0-8.0) in the first dimension and linear polyacrylamide gels (12%) in the second dimension. After staining with coomassie brilliant blue, image analysis was performed using the PDQuest system. Spots of interest were isolated using preparative two-dimensional electrophoresis and subjected to microsequencing. A total of 241 spots from the EPG85-257RDB-standard and 289 spots from the EPG85-257RNOV-standard could be matched to the EPG85-257P-standard. Microsequencing after enzymatic hydrolysis in gel, mass spectrometric data and sequencing of the peptides after their fractionation using microbore HPLC identified that two proteins annexin I and thioredoxin were overexpressed in chemoresistant cell lines. Annexin I was present in both the classical and the atypical multidrug-resistant cells. Thioredoxin was found to be overexpressed only in the atypical multidrug-resistant cell line.
Apparatus for electrophoresis separation
Anderson, Norman L.
1978-01-01
An apparatus is disclosed for simultaneously performing electrophoresis separations on a plurality of slab gels containing samples of protein, protein subunits or nucleic acids. A reservoir of buffer solution is divided into three compartments by two parallel partitions having vertical slots spaced along their length. A sheet of flexible, electrically insulative material is attached to each partition and is provided with vertical slits aligned with the slots. Slab-gel holders are received within the slots with the flexible material folded outwardly as flaps from the slits to overlay portions of the holder surfaces and thereby act as electrical and liquid seals. An elongated, spaghetti-like gel containing a sample of specimen that was previously separated by isoelectric focusing techniques is vertically positioned along a marginal edge portion of the slab gel. On application of an electrical potential between the two outer chambers of buffer solution, a second dimensional electrophoresis separation in accordance with molecular weight occurs as the specimen molecules migrate across the slab gel.
Eddhif, Balkis; Guignard, Nadia; Batonneau, Yann; Clarhaut, Jonathan; Papot, Sébastien; Geffroy-Rodier, Claude; Poinot, Pauline
2018-04-01
The data presented here are related to the research paper entitled "Study of a Novel Agent for TCA Precipitated Proteins Washing - Comprehensive Insights into the Role of Ethanol/HCl on Molten Globule State by Multi-Spectroscopic Analyses" (Eddhif et al., submitted for publication) [1]. The suitability of ethanol/HCl for the washing of TCA-precipitated proteins was first investigated on standard solution of HSA, cellulase, ribonuclease and lysozyme. Recoveries were assessed by one-dimensional gel electrophoresis, Bradford assays and UPLC-HRMS. The mechanistic that triggers protein conformational changes at each purification stage was then investigated by Raman spectroscopy and spectrofluorometry. Finally, the efficiency of the method was evaluated on three different complex samples (mouse liver, river biofilm, loamy soil surface). Proteins profiling was assessed by gel electrophoresis and by UPLC-HRMS.
Yoshida, Yutaka; Miyazaki, Kenji; Kamiie, Junichi; Sato, Masao; Okuizumi, Seiji; Kenmochi, Akihisa; Kamijo, Ken'ichi; Nabetani, Takuji; Tsugita, Akira; Xu, Bo; Zhang, Ying; Yaoita, Eishin; Osawa, Tetsuo; Yamamoto, Tadashi
2005-03-01
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.
1993-01-27
Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of
Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura
2013-01-01
In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins (p<0.05), obtained from the tandem mass spectrometry data, were further analyzed with pathway analysis (IPA) to define the functional signature of prenodal lymph and matched plasma. The 1DEF coupled with nanoLC–MS–MS revealed that the common proteome between the two biological fluids (144 out of 253 proteins) was dominated by complement activation and blood coagulation components, transporters and protease inhibitors. The enriched proteome of human lymph (72 proteins) consisted of products derived from the extracellular matrix, apoptosis and cellular catabolism. In contrast, the enriched proteome of human plasma (37 proteins) consisted of soluble molecules of the coagulation system and cell–cell signaling factors. The functional networks associated with both common and source-distinctive proteomes highlight the principal biological activity of these immunologically relevant body fluids. PMID:23202415
Martelli, A M; Falcieri, E; Gobbi, P; Manzoli, L; Cataldi, A; Rana, R A; Cocco, L
1992-04-01
The morphology and the polypeptide composition of the nuclear matrix obtained from 37 degrees C incubated nuclei has been studied in mouse erythroleukemia cells. From a structural point of view, in the absence of heat treatment, the matrix lacked identifiable nucleolar remnants and the internal fibrogranular meshwork whereas a peripheral lamina was seen. On the contrary, the matrix obtained from heat exposed nuclei displayed very electrondense nucleolar remnants and an abundant inner network. These results were obtained irrespective of the type of extracting agent (2M NaCl or 0.2 M (NH4)2SO4) used to remove histones and other soluble proteins. The heat stabilization of the matrix could not be prevented by sulfhydryl blocking chemicals such as iodoacetamide and n-ethylmaleimide, thus suggesting that heat does not stabilize the matrix by inducing the formation of disulfide bonds. Only limited differences in the polypeptide pattern of matrix isolated under different conditions were seen using one-dimensional pore gradient polyacrylamide gels stained with both Coomassie Brilliant Blue and silver despite the fact that the matrix fraction from heat treated nuclei retained about three fold more protein in comparison with controls. The same results were obtained also by means of two-dimensional non-equilibrium gel electrophoresis.
van Brabant, A J; Hunt, S Y; Fangman, W L; Brewer, B J
1998-06-01
DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.
Pappas, E; Maris, T G; Papadakis, A; Zacharopoulou, F; Damilakis, J; Papanikolaou, N; Gourtsoyiannis, N
2006-10-01
The aim of this work is to investigate experimentally the detector size effect on narrow beam profile measurements. Polymer gel and magnetic resonance imaging dosimetry was used for this purpose. Profile measurements (Pm(s)) of a 5 mm diameter 6 MV stereotactic beam were performed using polymer gels. Eight measurements of the profile of this narrow beam were performed using correspondingly eight different detector sizes. This was achieved using high spatial resolution (0.25 mm) two-dimensional measurements and eight different signal integration volumes A X A X slice thickness, simulating detectors of different size. "A" ranged from 0.25 to 7.5 mm, representing the detector size. The gel-derived profiles exhibited increased penumbra width with increasing detector size, for sizes >0.5 mm. By extrapolating the gel-derived profiles to zero detector size, the true profile (Pt) of the studied beam was derived. The same polymer gel data were also used to simulate a small-volume ion chamber profile measurement of the same beam, in terms of volume averaging. The comparison between these results and actual corresponding small-volume chamber profile measurements performed in this study, reveal that the penumbra broadening caused by both volume averaging and electron transport alterations (present in actual ion chamber profile measurements) is a lot more intense than that resulted by volume averaging effects alone (present in gel-derived profiles simulating ion chamber profile measurements). Therefore, not only the detector size, but also its composition and tissue equivalency is proved to be an important factor for correct narrow beam profile measurements. Additionally, the convolution kernels related to each detector size and to the air ion chamber were calculated using the corresponding profile measurements (Pm(s)), the gel-derived true profile (Pt), and convolution theory. The response kernels of any desired detector can be derived, allowing the elimination of the errors associated with narrow beam profile measurements.
Breloy, Isabelle; Pacharra, Sandra; Aust, Christina; Hanisch, Franz-Georg
2012-08-01
We developed a gel-based global O-glycomics method applicable for highly complex protein mixtures entrapped in discontinuous gradient gel layers. The protocol is based on in-gel proteolysis with pronase followed by (glyco)peptide elution and off-gel reductive β-elimination. The protocol offers robust performance with sensitivity in the low picomolar range, is compatible with gel-based proteomics, and shows superior performance in global applications in comparison with workflows eliminating glycans in-gel or from electroblotted glycoproteins. By applying this method, we analyzed the O-glycome of human myoblasts and of the mouse brain O-glycoproteome. After semipreparative separation of mouse brain proteins by one-dimensional SDS gel electrophoresis, the O-glycans from proteins in different mass ranges were characterized with a focus on O-mannose-based glycans. The relative proportion of the latter, which generally represent a rare modification, increases to comparatively high levels in the mouse brain proteome in dependence of increasing protein masses.
A gel as an array of channels.
Zimm, B H
1996-06-01
We consider the theory of charged point molecules ('probes') being pulled by an electric field through a two-dimensional net of channels that represents a piece of gel. Associated with the position in the net is a free energy of interaction between the probe and the net; this free energy fluctuates randomly with the position of the probe in the net. The free energy is intended to represent weak interactions between the probe and the gel, such as entropy associated with the restriction of the freedom of motion of the probe by the gel, or electrostatic interactions between the probe and charges fixed to the gel. The free energy can be thought of as a surface with the appearance of a rough, hilly landscape spread over the net; the roughness is measured by the standard deviation of the free-energy distribution. Two variations of the model are examined: (1) the net is assumed to have all channels open, or (2) only channels parallel to the electric field are open and all the cross-connecting channels are closed. Model (1) is more realistic but presents a two-dimensional mathematical problem which can only be solved by slow iteration methods, while model (2) is less realistic but presents a one-dimensional problem that can be reduced to simple quadratures and is easy to solve by numerical integration. In both models the mobility of the probe decreases as the roughness parameter is increased, but the effect is larger in the less realistic model (2) if the same free-energy surface is used in both. The mobility in model (2) is reduced both by high points in the rough surface ('bumps') and by low points ('traps'), while in model (1) only the traps are effective, since the probes can flow around the bumps through the cross channels. The mobility in model (2) can be made to agree with model (1) simply by cutting off the bumps of the surface. Thus the simple model (2) can be used in place of the more realistic model (1) that is more difficult to compute.
Kennedy, Mary Jayne; Griffin, Angela; Su, Ruifeng; Merchant, Michael; Klein, Jon
2011-01-01
Urinary proteomic profiling has potential to identify candidate biomarkers of renal injury in infants provided an adequate urine sample can be obtained. Although diapers are used to obtain urine for clinical evaluation, their use for proteomic analysis has not been investigated. We therefore performed feasibility studies on the use of diaper-extracted urine for 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Pediatric waste urine (2–20 mL) was applied to gel-containing, non-gel and cotton-gauze diapers and then mechanically expressed. Urine volume and total protein were measured pre- and post-extraction. Proteins were separated via 2D-PAGE following application of urine (20–40 mL) to each matrix. 2D-PAGE was also performed on clinical specimens collected using each diaper type. Differences in the adsorption and retention of urine volume and protein were noted between matrices. Non-gel and cotton-gauze diapers provided the best protein/volume recovery and the lowest interference with the Bradford assay. 2D-PAGE was also successfully completed using urine samples from both cotton fiber matrices. Conversely, samples from low-gel diapers demonstrated poor protein separation and reproducibility. Diapers containing cotton-fiber matrices appear adequate for 2D-PAGE. Qualitative and quantitative analyses of resolved proteins using replicate, high resolution gels will be required, however, before diaper-extracted urine can be applied in proteomic profiling. PMID:21137001
Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics.
Li, Zhao Bo; Flint, Paul W; Boluyt, Marvin O
2005-09-01
Two-dimensional gel electrophoresis (2-DE) is currently the best method for separating complex mixtures of proteins, and its use is gradually becoming more common in cardiac proteome analysis. A number of variations in basic 2-DE have emerged, but their usefulness in analyzing cardiac tissue has not been evaluated. The purpose of the present study was to systematically evaluate the capabilities and limitations of several 2-DE techniques for separating proteins from rat heart tissue. Immobilized pH gradient strips of various pH ranges, parameters of protein loading and staining, subcellular fractionation, and detection of phosphorylated proteins were studied. The results provide guidance for proteome analysis of cardiac and other tissues in terms of selection of the isoelectric point separating window for cardiac proteins, accurate quantitation of cardiac protein abundance, stabilization of technical variation, reduction of sample complexity, enrichment of low-abundant proteins, and detection of phosphorylated proteins.
Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X
2013-12-19
To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.
Bang, Myun-Ho; Han, Min-Woo; Song, Myoung-Chong; Cho, Jin-Gyeong; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung-Tae; Choi, Myung-Sook; Kim, Se-Young; Baek, Nam-In
2008-08-01
Repeated silica gel and octadecyl silica gel (ODS) column chromatography of the aerial parts of Artemisia princeps PAMPANINI (Sajabalssuk) led to the isolation of a new sesquiterpenoid, 3-((S)-2-methylbutyryloxy)-costu-1(10),4(5)-dien-12,6 alpha-olide (2), along with two previously reported sesquiterpenoids: 8 alpha-angeloyloxy-3beta,4 beta-epoxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (1, carlaolide B) and 3beta,4 beta-epoxy-8 alpha-isobutyryloxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (3, carlaolide A). The structure of compound 2 was elucidated by spectroscopic data analysis, including one dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) experiments. Of the isolates, compound 2 exhibited potent cytotoxicity against human cervix adenocarcinoma cells and induced apoptosis.
Nagai, Takayuki; Ikegami, Yasuhiro; Mizumachi, Hideyuki; Shirakigawa, Nana; Ijima, Hiroyuki
2017-10-01
Two-dimensional monolayer culture is the most popular cell culture method. However, the cells may not respond as they do in vivo because the culture conditions are different from in vivo conditions. However, hydrogel-embedding culture, which cultures cells in a biocompatible culture substrate, can produce in vivo-like cell responses, but in situ evaluation of cells in a gel is difficult. In this study, we realized an in vivo-like environment in vitro to produce cell responses similar to those in vivo and established an in situ evaluation system for hydrogel-embedded cell responses. The extracellular matrix (ECM)-modeled gel consisted of collagen and heparin (Hep-col) to mimic an in vivo-like environment. The Hep-col gel could immobilize growth factors, which is important for ECM functions. Neural stem/progenitor cells cultured in the Hep-col gel grew and differentiated more actively than in collagen, indicating an in vivo-like environment in the Hep-col gel. Second, a thin-layered gel culture system was developed to realize in situ evaluation of the gel-embedded cells. Cells in a 200-μm-thick gel could be evaluated clearly by a phase-contrast microscope and immunofluorescence staining through reduced optical and diffusional effects. Finally, we found that the neural cells cultured in this system had synaptic connections and neuronal action potentials by immunofluorescence staining and Ca 2+ imaging. In conclusion, this culture method may be a valuable evaluation system for neurotoxicity testing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Gangliosides During Tumor Progression in Patients With Prostate Cancer
2004-07-01
plates (10xlO cm) precoated with Silica Gel 60 ( glass or aluminium backing) (E. Merck, Darmstadt, Germany) were used. Two dimensional HPTLC was...Investigation, 15 (1997) 491-499. 16 16. T. Shiraishi, M. T. Kinter, S. E. Mills, M. C. Lippert , G. S. Bova, W. W. Jr. Young, The glycosphingolipids of human...described earlier (21, 22). HPTLC plates (1 Ox1 0 cm) precoated with silica gel 60 ( glass or aluminum backing) (E. Merck, Darmstadt, Germany) were
Preliminary investigation of PAGAT polymer gel radionuclide dosimetry of Tc-99m
NASA Astrophysics Data System (ADS)
Braun, Kelly; Bailey, Dale; Hill, Brendan; Baldock, Clive
2009-05-01
PAGAT polymer gel was investigated as a suitable dosimeter materials for measuring absorbed dose from the unsealed source radionuclide Tc-99m. Differing amounts of Tc-99m over the range of 25-5000 MBq were introduced into a normoxic polymer gel mixture (PAGAT) in sealed nitrogen-filled P6 glass vials. After irradiation the gels were evaluated using MRI more than 48 hours after preparation to allow for radioactive decay. The dose delivered to the vial was also calculated empirically. R2 versus total activity curves were obtained over a number of experiments and these were used to evaluate the relationship between the amount of gel polymerization and the dose deposited by the radionuclide. A linear response up to 1000 MBq (corresponding to 20Gy) was displayed and was still behaving monotonically at 5000 MBq. Polymer gels offer the potential to measure radiation dose three-dimensionally using MRI.
Shuib, A S; Chua, C T; Hashim, O H
1998-01-01
Sera of IgA nephropathy (IgAN) patients and normal subjects were analysed by two-dimensional (2-D) gel electrophoresis. Densitometric analysis of the 2-D gels of IgAN patients and normal subjects revealed that their protein maps were comparable. There was no shift of pI values in the major alpha-heavy chain spots. However, the volume of the alpha-heavy chain bands were differently distributed. Distribution was significantly lower at the anionic region in IgAN patients (mean anionic:cationic ratio of 1.184 +/- 0.311) as compared to normal healthy controls (mean anionic:cationic ratio of 2.139 +/- 0.538). Our data are in support of the previously reported findings that IgA1 of IgAN patients were lacking in sialic acid residues.
Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification
NASA Astrophysics Data System (ADS)
Vandecasteele, Jan; De Deene, Yves
2013-09-01
A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.
Tubulin-isotype analysis of two grass species-resistant to dinitroaniline herbicides.
Waldin, T R; Ellis, J R; Hussey, P J
1992-09-01
Trifluralin-resistant biotypes of Eleusine indica (L.) Gaertn. (goosegrass) and Setaria viridis (L.) Beauv. (green foxtail) exhibit cross-resistance to other dinitroaniline herbicides. Since microtubules are considered the primary target site for dinitroaniline herbicides we investigated whether the differential sensitivity of resistant and susceptible biotypes of these species results from modified tubulin polypeptides. One-dimensional and two-dimensional polyacrylamide gel electrophoresis combined with immunoblotting using well-characterised anti-tubulin monoclonal antibodies were used to display the family of tubulin isotypes in each species. Seedlings of E. indica exhibited four β-tubulin isotypes and one α-tubulin isotype, whereas those of S. viridis exhibited two β-tubulin and two α-tubulin isotypes. Comparison of the susceptible and resistant biotypes within each species revealed no differences in electrophoretic properties of the multiple tubulin isotypes. These results provide no evidence that resistance to dinitroaniline herbicides is associated with a modified tubulin polypeptide in these biotypes of E. indica or S. viridis.
Scott, Jamieson; Tong, Katie; William, Hamilton; ...
2014-10-31
The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less
Jamieson, Scott A; Tong, Katie W K; Hamilton, William A; He, Lilin; James, Michael; Thordarson, Pall
2014-11-25
The kinetics of aggregation of two pyromellitamide gelators, tetrabutyl- (C4) and tetrahexyl-pyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to 6 days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 h) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4, indicating one-dimensional stacking and aggregation corresponding to a multifiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggest that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multifiber braided cluster that has a diameter of about 62 Å. Over a longer period of time, the radius, persistence length, and contour length all continue to increase in 6 days after cooling. These data suggest that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g., tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Jamieson; Tong, Katie; William, Hamilton
The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less
Abulaizi, Mayinuer; Tomonaga, Takeshi; Satoh, Mamoru; Sogawa, Kazuyuki; Matsushita, Kazuyuki; Kodera, Yoshio; Obul, Jurat; Takano, Shigetsugu; Yoshitomi, Hideyuki; Miyazaki, Masaru; Nomura, Fumio
2011-01-01
We searched for novel tumor markers of pancreatic cancer by three-step serum proteome analysis. Twelve serum abundant proteins were depleted using immunoaffinity columns followed by fractionation by reverse-phase high-performance liquid chromatography. Proteins in each fraction were separated by two-dimensional gel electrophoresis. Then the gel was stained by Coomassie Brilliant Blue. Protein spots in which the expression levels were significantly different between cancer and normal control were identified by LC-MS/MS. One hundred and two spots were upregulated, and 84 spots were downregulated in serum samples obtained from patients with pancreatic cancers, and 58 proteins were identified by mass spectrometry. These candidate proteins were validated using western blot analysis and enzyme-linked immunosorbent assay (ELISA). As a result of these validation process, we could confirm that the serum levels of apolipoprotein A-IV, vitamin D-binding protein, plasma retinol-binding protein 4, and tetranectin were significantly decreased in patients with pancreatic cancer. PMID:22091389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Ji, Y
Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less
Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P
2014-07-04
Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.
Zhang, Li-Li; Feng, Ren-Jun; Zhang, Yin-Dong
2012-08-15
Banana peels (Musa spp.) are a good example of a plant tissue where protein extraction is challenging due to the abundance of interfering metabolites. Sample preparation is a critical step in proteomic research and is critical for good results. We sought to evaluate three methods of protein extraction: trichloroacetic acid (TCA)-acetone precipitation, phenol extraction, and TCA precipitation. We found that a modified phenol extraction protocol was the most optimal method. SDS-PAGE and two-dimensional gel electrophoresis (2-DE) demonstrated good protein separation and distinct spots of high quality protein. Approximately 300 and 550 protein spots were detected on 2-DE gels at pH values of 3-10 and 4-7, respectively. Several spots were excised from the 2-DE gels and identified by mass spectrometry. The protein spots identified were found to be involved in glycolysis, the tricarboxylic acid cycle, and the biosynthesis of ethylene. Several of the identified proteins may play important roles in banana ripening. Copyright © 2012 Society of Chemical Industry.
Optimization of Large Gel 2D Electrophoresis for Proteomic Studies of Skeletal Muscle
Reed, Patrick W.; Densmore, Allison; Bloch, Robert J.
2013-01-01
We describe improved methods for large format, 2-dimensional gel electrophoresis (2-DE) that improve protein solubility and recovery, minimize proteolysis, and reduce the loss of resolution due to contaminants and manipulations of the gels, and thus enhance quantitative analysis of protein spots. Key modifications are: (i) the use of 7M urea + 2 M thiourea, instead of 9M urea, in sample preparation and in the tops of the gel tubes; (ii) standardized deionization of all solutions containing urea with a mixed bed ion exchange resin and removal of urea from the electrode solutions; and (iii) use of a new gel tank and cooling device that eliminate the need to run two separating gels in the SDS dimension. These changes make 2D-GE analysis more reproducible and sensitive, with minimal artifacts. Application of this method to the soluble fraction of muscle tissues reliably resolves ~1800 protein spots in adult human skeletal muscle and over 2800 spots in myotubes. PMID:22589104
Characterization of structural proteins of hirame rhabdovirus, HRV
Nishizawa, Toyohiko; Yoshimizu, Mamoru; Winton, James; Ahne, Winfried; Kimura, Takahisa
1991-01-01
Structural proteins of hirame rhabdovirus (HRV) were analyzed by SDS-polyacrylarnide gel electrophoresis, western blotting, 2-dimensional gel electrophoresis, and Triton X-100 treatment. Purified HRV virions were composed of: polymerase (L), glycoprotein (G), nucleoprotein (N), and 2 matrix proteins (M1 and M2). Based upon their relative mobilities, the estimated molecular weights of the proteins were: L, 156 KDa; G, 68 KDa; N, 46.4 KDa; M1, 26.4 KDa; and M2, 19.9 KDa. The electrophorehc pattern formed by the structural proteins of HRV was clearly different from that formed by pike fry rhabdovirus, spring viremia of carp virus, eel virus of America, and eel virus European X which belong to the Vesiculovirus genus; however, it resembled the pattern formed by structural proteins of viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) which are members of the Lyssavirus genus. Among HRV, IHNV, and VHSV, differences were observed in the relative mobilities of the G, N, M1, and M2 proteins. Western blot analysis revealed that the G. N, and M2 proteins of HRV shared antigenic determinants with IHNV and VHSV, but not with any of the 4 fish vesiculoviruses tested. Cross-reactions between the M1 proteins of HRV, IHNV, or VHSV were not detected in this assay. Two-dimensional gel electrophoresis was used to show that HRV differed from IHNV or VHSV in the isoelectric point (PI) of the M1 and M2 proteins. In this system, 2 forms of the M1 protein of HRV and IHNV were observed.These subspecies of M1 had the same relative mobility but different p1 values. Treatment of purified virions with 2% Triton X-100 in Tris buffer containing NaCl removed the G, M1, and M2 proteins of IHNV, but HRV virions were more stable under these conditions.
Florio, Walter; Batoni, Giovanna; Esin, Semih; Bottai, Daria; Maisetta, Giuseppantonio; Pardini, Manuela; Campa, Mario
2003-05-01
Two-dimensional gel electrophoresis and mass spectrometry were used to identify proteins in the isoelectric point range 6-11 in culture filtrates of Mycobacterium bovis bacillus Calmette-Guérin (BCG). Twelve proteins were identified, three of which had not been described previously. The expression of the identified proteins was comparatively analyzed in culture filtrates of BCG in different growth phases and culture conditions. For some of these proteins, the relative protein abundance in the different culture filtrate preparations was significantly different. The differential expression of the identified proteins is discussed in relation to their putative localization and/or biological function.
Almeida, André M.; Palhinhas, Rui G.; Kilminster, Tanya; Scanlon, Timothy; van Harten, Sofia; Milton, John; Blache, Dominique; Greeff, Johan; Oldham, Chris; Coelho, Ana Varela; Cardoso, Luís Alfaro
2016-01-01
Seasonal Weight Loss (SWL) is an important constraint, limiting animal production in the Tropics and the Mediterranean. As a result, the study of physiological and biochemical mechanisms by which domestic animal breeds respond to SWL is important to those interested in animal breeding and the improvement thereof. To that end, the study of the proteome has been instrumental in gathering important information on physiological mechanisms, including those underlying SWL. In spite of that, little information is available concerning physiological mechanisms of SWL in production animals. The objective of this study was to determine differential protein expression in the muscle of three different breeds of sheep, the Australian Merino, the Dorper and the Damara, each showing different levels of tolerance to weight loss (low, medium and high, respectively). Per breed, two experimental groups were established, one labeled “Growth” and the other labeled “Restricted.” After forty-two days of dietary treatment, all animals were euthanized. Muscle samples were then taken. Total protein was extracted from the muscle, then quantified and two-dimensional gel electrophoresis were conducted using 24 cm pH 3–10 immobiline dry strips and colloidal coomassie staining. Gels were analyzed using Samespots® software and spots of interest were in-gel digested with trypsin. The isolated proteins were identified using MALDI-TOF/TOF. Results indicated relevant differences between breeds; several proteins are suggested as putative biomarkers of tolerance to weight loss: Desmin, Troponin T, Phosphoglucomutase and the Histidine Triad nucleotide-binding protein 1. This information is of relevance to and of possible use in selection programs aiming towards ruminant animal production in regions prone to droughts and weight loss. PMID:26828937
Panning for sperm gold: Isolation and purification of apyrene and eupyrene sperm from lepidopterans.
Karr, Timothy L; Walters, James R
2015-08-01
We describe a simple and straightforward procedure for the purification and separation of apyrene and eupyrene forms of lepidopteran sperm. The procedure is generally applicable to both butterfly and moth species with results varying according to the relative amounts of sperm produced and size of sperm storage organs. The technique relies upon inherent differences between eupyene sperm bundles and free apyrene sperm morphology. These differences allow for separation of the sperm morphs by repeated "panning" of sperm bundles into the center of a plastic dish. The purified eupyrene sperm bundles can then be removed and apyrene sperm collected from the supernatant by centrifugation. Efficacy of the purification process was confirmed by light microscopy and gel electrophoresis of the resulting fractions. Both one- and two-dimensional gel electrophoresis identified significant protein differences between the fractions further suggesting that the panning procedure effectively separated eurpyrene from apyrene sperm. The panning procedure should provide a convenient and accessible technique for further studies of sperm biology in lepidopterans. Copyright © 2015 Elsevier Ltd. All rights reserved.
GESA--a two-dimensional processing system using knowledge base techniques.
Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S
1988-12-01
The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.
Quantitative ultra-fast MRI of HPMC swelling and dissolution.
Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D
2010-08-01
For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Smolka, Marcus Bustamante; Martins-de-Souza, Daniel; Martins, Daniel; Winck, Flavia Vischi; Santoro, Carlos Eduardo; Castellari, Rafael Ramos; Ferrari, Fernanda; Brum, Itaraju Junior; Galembeck, Eduardo; Della Coletta Filho, Helvécio; Machado, Marcos Antonio; Marangoni, Sergio; Novello, Jose Camillo
2003-02-01
The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).
2012-01-01
Background Infectious bronchitis virus (IBV) is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE) and two-dimensional fluorescence difference gel electrophoresis (2-DIGE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected in vivo with the highly virulent ck/CH/LDL/97I P5 strain of infectious bronchitis virus (IBV) and the embryo-passaged, attenuated ck/CH/LDL/97I P115 strain. Results Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P5 strain and those given the embryo-passaged, attenuated P115 stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP) beta-1, annexin A2, and annexin A5. Conclusions The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections. PMID:22463732
Wong, Diane K.; Lee, Bai-Yu; Horwitz, Marcus A.; Gibson, Bradford W.
1999-01-01
Iron plays a critical role in the pathophysiology of Mycobacterium tuberculosis. To gain a better understanding of iron regulation by this organism, we have used two-dimensional (2-D) gel electrophoresis, mass spectrometry, and database searching to study protein expression in M. tuberculosis under conditions of high and low iron concentration. Proteins in cellular extracts from M. tuberculosis Erdman strain grown under low-iron (1 μM) and high-iron (70 μM) conditions were separated by 2-D polyacrylamide gel electrophoresis, which allowed high-resolution separation of several hundred proteins, as visualized by Coomassie staining. The expression of at least 15 proteins was induced, and the expression of at least 12 proteins was decreased under low-iron conditions. In-gel trypsin digestion was performed on these differentially expressed proteins, and the digestion mixtures were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the molecular masses of the resulting tryptic peptides. Partial sequence data on some of the peptides were obtained by using after source decay and/or collision-induced dissociation. The fragmentation data were used to search computerized peptide mass and protein sequence databases for known proteins. Ten iron-regulated proteins were identified, including Fur and aconitase proteins, both of which are known to be regulated by iron in other bacterial systems. Our study shows that, where large protein sequence databases are available from genomic studies, the combined use of 2-D gel electrophoresis, mass spectrometry, and database searching to analyze proteins expressed under defined environmental conditions is a powerful tool for identifying expressed proteins and their physiologic relevance. PMID:9864233
Digital-Micromirror-Device Projection Printing System for Meniscus Tissue Engineering
Grogan, Shawn P; Chung, Peter H; Soman, Pranav; Chen, Peter; Lotz, Martin K; Chen, Shaochen; D’Lima, Darryl D
2013-01-01
Meniscus degeneration due to age or injury can lead to osteoarthritis. Though promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal meniscus were seeded on the scaffolds. Cell viability was monitored, and neo-tissue formation was assessed by gene expression analysis and histology after two weeks in serum free culture with TGFβ1 (10ng/ml). Light, confocal and scanning electron microscopy was used to observe cell/GelMA interactions. Tensile mechanical testing was performed on unseeded, fresh scaffolds and two-week old cell-seeded and unseeded scaffolds. Two-week old cell/GelMA constructs were implanted into surgically created meniscus defects in an explant organ culture model. No cytotoxic effects were observed three weeks after implantation, and cells grew and aligned to the patterned GelMA strands. Gene expression profiles and histology indicated promotion of a fibrocartilage-like meniscus phenotype, and scaffold integration with repair tissue was observed in the explant model. We show that micropatterned GelMA scaffolds are non-toxic, produce organized cellular alignment, and promote meniscus-like tissue formation. Prefabrication of GelMA scaffolds with architectures mimicking meniscus collagen bundle organization shows promise for meniscal repair. Furthermore, the technique presented may be scaled to repair larger defects. PMID:23523536
MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source
NASA Astrophysics Data System (ADS)
Marques; T; Fernandes; J; Barbi; G; Nicolucci; P; Baffa; O
2009-05-01
The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.
Identification and proteomic analysis of a novel gossypol-degrading fungal strain.
Yang, Xia; Sun, Jian-Yi; Guo, Jian-Lin; Weng, Xiao-Yan
2012-03-15
Cottonseed meal, an important source of feed raw materials, has limited use in the feed industry because of the presence of the highly toxic gossypol. The aim of the current work was to isolate the gossypol-degrading fungus from a soil microcosm and investigate the proteins involved in gossypol degradation. A fungal strain, AN-1, that uses gossypol as its sole carbon source was isolated and identified as Aspergillus niger. A large number of intracellular proteins were detected using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no significant difference was observed between the glucose-containing and gossypol-containing mycelium extracts. Two-dimensional gel electrophoresis results showed that the protein spots were concentrated in the 25.0-66.2 kDa range and distributed in different pI gradients. PDQuest software showed that 51 protein spots in the gels were differentially expressed. Of these, 20 differential protein spots, including six special spots expressed in gossypol, were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The fungus AN-1 biodegraded gossypol and the proteomic analysis results indicate that some proteins were involved in the gossypol biodegradation during fungus survival, using gossypol as its sole carbon source. Copyright © 2011 Society of Chemical Industry.
Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen
2015-01-01
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen
2015-01-01
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method. PMID:25893432
A Robust Two-Dimensional Separation for Top-Down Tandem Mass Spectrometry of the Low-Mass Proteome
Lee, Ji Eun; Kellie, John F.; Tran, John C.; Tipton, Jeremiah D.; Catherman, Adam D.; Thomas, Haylee M.; Ahlf, Dorothy R.; Durbin, Kenneth R.; Vellaichamy, Adaikkalam; Ntai, Ioanna; Marshall, Alan G.; Kelleher, Neil L.
2010-01-01
For fractionation of intact proteins by molecular weight (MW), a sharply improved two-dimensional (2D) separation is presented to drive reproducible and robust fractionation before top-down mass spectrometry of complex mixtures. The “GELFrEE” (i.e., gel-eluted liquid fraction entrapment electrophoresis) approach is implemented by use of Tris-glycine and Tris-tricine gel systems applied to human cytosolic and nuclear extracts from HeLa S3 cells, to achieve a MW-based fractionation of proteins from 5 to >100 kDa in 1 h. For top-down tandem mass spectroscopy (MS/MS) of the low-mass proteome (5–25 kDa), between 5 and 8 gel-elution (GE) fractions are sampled by nanocapillary-LC-MS/MS with 12 or 14.5 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. Single injections give about 40 detectable proteins, about half of which yield automated ProSight identifications. Reproducibility metrics of the system are presented, along with comparative analysis of protein targets in mitotic versus asynchronous cells. We forward this basic 2D approach to facilitate wider implementation of top-down mass spectrometry and a variety of other protein separation and/or characterization approaches. PMID:19747844
Lecomte, Marie M J; Atkinson, Kelly R; Kay, Daniel P; Simons, Joanne L; Ingram, John R
2013-02-01
The use of biomarkers in skin is a novel diagnostic tool. Interstitial fluid (ISF) from skin provides a snapshot of proteins secreted at the time of sampling giving insights into the patient's health status. A minimally invasive technique for the transdermal collection of human ISF proteins. A low frequency ultrasonic skin permeation device (SonoPrep ultrasonic skin permeation system) was used to produce micropores in the stratum corneum through which ISF was extracted using a portable pulsed vacuum ISF collection device. On average, protein concentrations recovered ranged between 0.064 and 4.792 μg/μL (mean 1.258 μg/μL). Two-dimensional gel electrophoresis revealed that this sample type was amenable to this type of analysis. Gel images indicated that both highly abundant proteins and lower abundance proteins were isolated from the skin. Western blot analysis confirmed the presence of proteins commonly found in plasma and the epidermis. A minimally invasive method for the transdermal recovery of ISF proteins has been developed. We have demonstrated that ISF samples obtained using this approach can be analysed with proteomic techniques, such as two-dimensional gel electrophoresis and western blots, providing another tool for the identification of disease specific protein biomarkers. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Sukmana, I.; Djuansjah, J. R. P.
2013-04-01
We present here a three-dimensional (3D) sandwich system made by poly(ethylene terephthalate) (PET) fibre and fibrin extracellular matrix (ECM) for endothelial cell dictation and angiogenesis guidance. In this three-dimensional system, Human Umbilical Vein Endothelial cells (HUVECs) were firstly cultured for 2 (two) days to cover the PET fibre before sandwiched in two layer fibrin gel containing HUVECs. After 4 (four) days of culture, cel-to-cel connection, tube-like structure and multi-cellular lumen formation were then assessed and validated. Phase contrast and fluorescence imaging using an inverted microscope were used to determine cell-to-cell and cell-ECM interactions. Laser scanning confocal microscopy and histological techniques were used to confirm the development of tube-like structure and multi-cellular lumen formation. This study shows that polymer fibres sandwiched in fibrin gel can be used to dictate endothelial cells undergoing angiogenesis with potential application in cancer and cardiovascular study and tissue engineering vascularisation.
Increase in local protein concentration by field-inversion gel electrophoresis.
Tsai, Henghang; Low, Teck Yew; Freeby, Steve; Paulus, Aran; Ramnarayanan, Kalpana; Cheng, Chung-Pui Paul; Leung, Hon-Chiu Eastwood
2007-09-26
Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE). Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE) in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE) showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS), which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein separation tool.
Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces
NASA Astrophysics Data System (ADS)
Ujiie, Tomohiro
2012-11-01
We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.
Hoffman, Amanda; Wu, Xiaotong; Wang, Jianjie; Brodeur, Amanda; Thomas, Rintu; Thakkar, Ravindra; Hadi, Halena; Glaspell, Garry P.; Duszynski, Molly; Wanekaya, Adam; DeLong, Robert K.
2017-01-01
Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when physiologically important proteins, such as angiotensin-converting enzyme (ACE) and ribonuclease A (RNase A), interact with ZnO nanoparticles (NPs). When RNase A is bound to 5% Mg/ZnO, the intensity is quenched, while the intensity is magnified and a significant shift is seen when torula yeast RNA (TYRNA) is bound to RNase A and 5% Mg/ZnO. The intensity of 5% Mg/ZnO is quenched also when thrombin and thrombin aptamer are bound to the nanocomposite. These data indicate that RNA–protein interaction can occur unimpeded on the surface of NPs, which was confirmed by gel electrophoresis, and importantly that the change in fluorescence excitation, emission, and intensity shown by 2-D FDS may indicate specificity of biomolecular interactions. PMID:29244716
Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays
2014-01-01
Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308
Heat- and light-induced thiol-ene oligomerization of soybean oil-based polymercaptan
USDA-ARS?s Scientific Manuscript database
Polymercaptanized soybean oil (PMSO), the product of a thiol-ene reaction between soybean oil and hydrogen sulfide, is a material of interest as a lubricant additive and polymer precursor. We investigated with gel permeation chromatography, nuclear magnetic resonance (one-dimensional and two-dimensi...
NASA Astrophysics Data System (ADS)
Ballone, P.; Jones, R. O.
2002-10-01
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.
ArRejaie, Aws; Al-Harbi, Fahad; Alagl, Adel S; Hassan, Khalid S
2016-01-01
This study clinically and radiographically investigated the potential of platelet-rich plasma (PRP) gel combined with bovine-derived xenograft to treat dehiscence defects around immediate dental implants. This study was performed on 32 sites from 16 patients who each received an immediate implant for a single tooth replacement at a maxillary anterior or premolar site. Patients were divided into two groups according to the augmented materials used. One group received an immediate implant and filling of defects using a PRP gel plus bovine-derived xenograft. The other group received an immediate implant and filling of defects with a bovine-derived xenograft without PRP gel. Cone beam computed tomography (CBCT) was taken before placement, and at 6 and 12 months postsurgery. Both treatment procedures resulted in significant improvements for the primary outcome regarding bone fill, as well as the marginal bone level. In addition, statistically significant differences were found in the bone density for the combined therapy compared with sites treated with bovine-derived xenografts alone (P ≤ .01). Autogenous PRP gel combined with bovine-derived xenograft demonstrated superiority to the bovine-derived xenograft alone, which suggested that it could be successfully applicable for the treatment of dehiscence around an immediate dental implant. Moreover, CBCT can be used to measure dehiscence and to assess bone thickness along the implant.
The Proteome of Seed Development in the Model Legume Lotus japonicus1[C][W
Dam, Svend; Laursen, Brian S.; Ørnfelt, Jane H.; Jochimsen, Bjarne; Stærfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B.; Enghild, Jan J.; Stougaard, Jens
2009-01-01
We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family. PMID:19129418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Aoshuang
2008-01-01
This dissertation begins with a general introduction of topics related to this work. The following chapters contain three scientific manuscripts, each presented in a separate chapter with accompanying tables, figures, and literature citations. The final chapter summarizes the work and provides some prospective on this work. This introduction starts with a brief treatment of the basic principles of electrophoresis separation, followed by a discussion of gel electrophoresis and particularly polyacrylamide gel electrophoresis for protein separation, a summary of common capillary electrophoresis separation modes, and a brief treatment of micro-bioanalysis application of capillary electrophoresis, and ends with an overview of proteinmore » conformation and dynamics.« less
Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne
2010-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.
Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta
2017-02-01
Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Proteomic responses of switchgrass and prairie cordgrass to senescence
USDA-ARS?s Scientific Manuscript database
Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional,differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differ...
Diekjürgen, Dorina; Grainger, David W
2018-05-09
Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug toxicity studies relevant to drug development and nephrotoxicity goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br; Moreira, Eduardo Ceretta; Dias, Fábio Teixeira
2015-01-15
Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{submore » 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.« less
Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya
2008-03-01
Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.
Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinney, H.L.; Lee, K.J.; McCormick, W.D.
Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less
Proteome of Caulobacter crescentus cell cycle publicly accessible on SWICZ server.
Vohradsky, Jiri; Janda, Ivan; Grünenfelder, Björn; Berndt, Peter; Röder, Daniel; Langen, Hanno; Weiser, Jaroslav; Jenal, Urs
2003-10-01
Here we present the Swiss-Czech Proteomics Server (SWICZ), which hosts the proteomic database summarizing information about the cell cycle of the aquatic bacterium Caulobacter crescentus. The database provides a searchable tool for easy access of global protein synthesis and protein stability data as examined during the C. crescentus cell cycle. Protein synthesis data collected from five different cell cycle stages were determined for each protein spot as a relative value of the total amount of [(35)S]methionine incorporation. Protein stability of pulse-labeled extracts were measured during a chase period equivalent to one cell cycle unit. Quantitative information for individual proteins together with descriptive data such as protein identities, apparent molecular masses and isoelectric points, were combined with information on protein function, genomic context, and the cell cycle stage, and were then assembled in a relational database with a world wide web interface (http://proteom.biomed.cas.cz), which allows the database records to be searched and displays the recovered information. A total of 1250 protein spots were reproducibly detected on two-dimensional gel electropherograms, 295 of which were identified by mass spectroscopy. The database is accessible either through clickable two-dimensional gel electrophoretic maps or by means of a set of dedicated search engines. Basic characterization of the experimental procedures, data processing, and a comprehensive description of the web site are presented. In its current state, the SWICZ proteome database provides a platform for the incorporation of new data emerging from extended functional studies on the C. crescentus proteome.
Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B
1997-01-01
mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865
Huergo, Luciano F; Noindorf, Lilian; Gimenes, Camila; Lemgruber, Renato S P; Cordellini, Daniela F; Falarz, Lucas J; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O; Chubatsu, Leda S; Souza, Emanuel M; Steffens, Maria B R
2010-07-01
This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.
Cugno, Graziano; Parreira, José R; Ferlizza, Enea; Hernández-Castellano, Lorenzo E; Carneiro, Mariana; Renaut, Jenny; Castro, Noemí; Arguello, Anastasio; Capote, Juan; Campos, Alexandre M O; Almeida, André M
2016-01-01
Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer's incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15-20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (down-regulated in the Majorera breed) as a consequence of weight loss.
Cugno, Graziano; Parreira, José R.; Ferlizza, Enea; Hernández-Castellano, Lorenzo E.; Carneiro, Mariana; Renaut, Jenny; Castro, Noemí; Arguello, Anastasio; Capote, Juan
2016-01-01
Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer’s incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15–20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (down-regulated in the Majorera breed) as a consequence of weight loss. PMID:27031334
Zhu, Jialin; Fan, Daming; Zhao, Jianxin; Zhang, Hao; Huang, Jianlian; Zhou, Wenguo; Zhang, Wenhai; Chen, Wei
2016-02-01
In this study, the textural properties and micromechanism of yellowtail seabream (Parargyrops edita, Sparidae) surimi, with and without Chinese oak silkworm pupa homogenate (SPH), were investigated at different levels. The fresh, freeze-dried, and oven-dried SPH all showed a gel-enhancing ability in suwari (40/90 °C) and modori (67/90 °C) gels, in a concentration-dependent manner. Though the drying treatments can improve the storability of SPH, compared with fresh, the effect of the active substance was weakened. Suwari and modori gels added with 5%(w/w, whole product) fresh SPH had the increase in breaking force and deformation by 37.39% and 47.98%, and 85.14% and 78.49%, respectively, compared with the control gel (without SPH addition). The major myofibrillar protein, especially myosin heavy chain (MHC), was better retained by the addition of SPH. Compared the control group, a finer, denser, and more ordered 3-dimensional gel network microstructure was obtained, and different Df (Fractal dimension) was analyzed by using the box count method. This was found in all samples from 2.838 to 2.864 for suwari gels and 2.795 to 2.857 for modori gels, respectively. Therefore, the modori of yellowtail seabream surimi, linked with endogenous proteases, could be retarded in the presence of SPH, leading to an increase in gel strength. © 2015 Institute of Food Technologists®
Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi
2017-06-23
The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Huo, Chenmin; Zhang, Baowen; Wang, Hui; Wang, Fawei; Liu, Meng; Gao, Yingjie; Zhang, Wenhua; Deng, Zhiping; Sun, Daye; Tang, Wenqiang
2016-04-01
To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Maeda, Kenji; Finnie, Christine; Svensson, Birte
2004-01-01
Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots. The technique also provided information about accessible thiol groups in the proteins identified in the barley seed proteome. In total, 16 different putative target proteins were identified from 26 spots using tryptic in-gel digestion, matrix-assisted laser-desorption ionization-time-of-flight MS and database search. HvTrxh1 and HvTrxh2 were shown to have similar target specificity. Barley alpha-amylase/subtilisin inhibitor, previously demonstrated to be reduced by both HvTrxh1 and HvTrxh2, was among the identified target proteins, confirming the suitability of the method. Several alpha-amylase/trypsin inhibitors, some of which are already known as target proteins of thioredoxin h, and cyclophilin known as a target protein of m-type thioredoxin were also identified. Lipid transfer protein, embryospecific protein, three chitinase isoenzymes, a single-domain glyoxalase-like protein and superoxide dismutase were novel identifications of putative target proteins, suggesting new physiological roles of thioredoxin h in barley seeds. PMID:14636158
Kochanek, Ashley R.; Kline, Anthony E.; Gao, Wei-Min; Chadha, Mandeep; Lai, Yichen; Clark, Robert S.B.; Dixon, C. Edward; Jenkins, Larry W.
2009-01-01
Traumatic brain injury (TBI) to postnatal day 17 rats has been shown to produce acute changes in hippocampal global protein levels and spatial learning and memory deficits. The purpose of the present study was to analyze global hippocampal protein changes 2 weeks after a moderate ipsilateral controlled cortical impact in postnatal day 17 rats using 2-dimensional difference gel electrophoresis and mass spectrometry. Paired sham and ipsilateral injured hippocampal lysates were independently labeled with different fluorescent cyanine dyes and coseparated within the same immobilized pH gradient strips and slab gel based on isoelectric point and molecular mass. Significant changes in key proteins involved in glial and neuronal stress, oxidative metabolism, calcium uptake and neurotransmitter function were found 2 weeks after injury, and their potential roles in hippocampal plasticity and cognitive dysfunction were discussed. PMID:16943664
Gel compression considerations for chromatography scale-up for protein C purification.
He, W; Bruley, D F; Drohan, W N
1998-01-01
This work is to establish theoretical and experimental relationships for the scale-up of Immobilized Metal Affinity Chromatography (IMAC) and Immuno Affinity Chromatography for the low cost production of large quantities of Protein C. The external customer requirements for this project have been established for Protein C deficient people with the goal of providing prophylactic patient treatment. Deep vein thrombosis is the major symptom for protein C deficiency creating the potential problem of embolism transport to important organs, such as, lung and brain. Gel matrices for protein C separation are being analyzed to determine the relationship between the material properties of the gel and the column collapse characteristics. The fluid flow rate and pressure drop is being examined to see how they influence column stability. Gel packing analysis includes two considerations; one is bulk compression due to flow rate, and the second is gel particle deformation due to fluid flow and pressure drop. Based on the assumption of creeping flow, Darcy's law is being applied to characterize the flow through the gel particles. Biot's mathematical description of three-dimensional consolidation in porous media is being used to develop a set of system equations. Finite difference methods are being utilized to obtain the equation solutions. In addition, special programs such as finite element approaches, ABAQUS, will be studied to determine their application to this particular problem. Experimental studies are being performed to determine flow rate and pressure drop correlation for the chromatographic columns with appropriate gels. Void fraction is being measured using pulse testing to allow Reynolds number calculations. Experimental yield stress is being measured to compare with the theoretical calculations. Total Quality Management (TQM) tools have been utilized to optimize this work. For instance, the "Scatter Diagram" has been used to evaluate and select the appropriate gels and operating conditions via Taguchi techniques. Targeting customer requirements under the structure of TQM represents a novel approach to graduate student research in an academic institution which is designed to simulate an industrial environment.
Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.
Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L
2011-12-01
Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.
Silk-Fibrin/Hyaluronic Acid Composite Gels for Nucleus Pulposus Tissue Regeneration
Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B.; Min, Byoung-Hyun
2011-01-01
Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration. PMID:21736446
Brasier, Allan R.; Spratt, Heidi; Wu, Zheng; Boldogh, Istvan; Zhang, Yuhong; Garofalo, Roberto P.; Casola, Antonella; Pashmi, Jawad; Haag, Anthony; Luxon, Bruce; Kurosky, Alexander
2004-01-01
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by ±2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection. PMID:15479789
2011-01-01
Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work. Conclusions In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction. PMID:21241518
Novel remodeling of the mouse heart mitochondrial proteome in response to acute insulin stimulation
Pedersen, Brian A; Yazdi, Puya G; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Wang, Ping H
2015-01-01
Mitochondrial dysfunction contributes to the pathophysiology of diabetic cardiomyopathy. The aim of this study was to investigate the acute changes in the mitochondrial proteome in response to insulin stimulation. Cardiac mitochondria from C57BL/6 mice after insulin stimulation were analyzed using two-dimensional fluorescence difference gel electrophoresis. MALDI-TOF MS/MS was utilized to identify differences. Two enzymes involved in metabolism and four structural proteins were identified. Succinyl-CoA ligase [ADP forming] subunit beta was identified as one of the differentially regulated proteins. Upon insulin stimulation, a relatively more acidic isoform of this protein was increased by 53% and its functional activity was decreased by ∼32%. This proteomic remodeling in response to insulin stimulation may play an important role in the normal and diabetic heart. PMID:26610654
Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.
2010-02-15
The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 tomore » 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.« less
Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity
USDA-ARS?s Scientific Manuscript database
Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...
Large strain deformation behavior of polymeric gels in shear- and cavitation rheology
NASA Astrophysics Data System (ADS)
Hashemnejad, Seyed Meysam; Kundu, Santanu
Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.
A novel collagen hydrogel cross-linked by gamma-ray irradiation in acidic pH conditions.
Inoue, Naoki; Bessho, Masahiko; Furuta, Masakazu; Kojima, Takao; Okuda, Shuichi; Hara, Masayuki
2006-01-01
We made a new type of collagen gel by gamma-ray irradiation of an acidic solution of type-I collagen, and performed comparative studies on a conventional gel and the new type of gel. The neutral gel, a conventional 0.3% (w/v) collagen gel, was formed at neutral pH and then irradiated by gamma-rays. The acidic gel, a 0.3% (w/v) collagen gel, was formed directly from the acidic solution of collagen by y-ray irradiation. Both types of gel were prepared, swollen in water and then dried for the measurement of specific water content. The neutral gel showed a relatively high specific water content and shrunk moderately, depending on the dose, while the acidic gel showed lower specific water content and shrunk clearly by y-ray irradiation. A three-dimensional tangled network of microfibrils was clearly observed in the neutral gels by scanning electron microscopy, but not in the acidic gels. From these results, we concluded that the acidic gel was quite different from a conventional collagen gel. Sodium dodecylsulfate-polyacrylamide gel electrophoresis showed that the alpha1 subunit and alpha2 subunit of the collagen molecule were cross-linked. The triple-helical structure of collagen was only partially perturbed, but not denatured completely, because the circular dichroism spectrum of the collagen solution irradiated at 1.3 kGy was similar to that of native collagen solution. Amino-acid analysis revealed that tyrosine, phenylalanine and histidine decreased by irradiation in the neutral gel. In the case of the acidic gel, these three amino acids and methionine decreased. We considered that these amino acids were cross-linking points between the collagen subunits during the gamma-ray irradiation.
Statistical Analysis of Variation in the Human Plasma Proteome
Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; ...
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less
Murugaiyan, Jayaseelan; Weise, Christoph; von Bergen, Martin; Roesler, Uwe
2013-09-01
Biochemical, serological, and genetic analyses have identified two genotypes of Prototheca zopfii, a unicellular microalga belonging to the family Chlorellaceae. The P. zopfii genotype 1, abundantly present in cow barns and environment, remains nonpathogenic, while P. zopfii genotype 2 has been isolated from cows with bovine mastitis. The present study was carried out to identify the protein expression level difference between the pathogenic and nonpathogenic strains of P. zopfii. A total of 782 protein spots were observed on the 2D fluorescence difference gel electrophoresis (2D DIGE) gels among which 63 and 44 proteins were identified to be overexpressed in genotypes 1 and 2, respectively. The limited number of protein entries specific for Prototheca in public repositories resulted mainly in the identification of proteins described in other algae, microorganisms, or plants. Gene ontology (GO) analysis indicated reduced carbohydrate metabolism in genotype 1, while genotype 2 displayed enhanced DNA binding, kinase activity, and signal transduction. These effects point to metabolic and signaling adaptations in the pathogenic strain and provide insights into the evolution of otherwise highly similar strains. All MS data have been deposited in the ProteomeXchange with identifier PXD000126. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Statistical analysis of variation in the human plasma proteome.
Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.
Khajavi, Noushafarin; Akbari, Mohammad; Abolhassani, Farid; Dehpour, Ahmad Reza; Koruji, Morteza; Habibi Roudkenar, Mehryar
2014-01-01
Objective Spermatogonial stem cells (SSCs) are the only cell type that can restore fertility to an infertile recipient following transplantation. Much effort has been made to develop a protocol for differentiating isolated SSCs in vitro. Recently, three-dimensional (3D) culture system has been introduced as an appropriate microenvironment for clonal expansion and differentiation of SSCs. This system provides structural support and multiple options for several manipulation such as addition of different cells. Somatic cells have a critical role in stimulating spermatogenesis. They provide complex cell to cell interaction, transport proteins and produce enzymes and regulatory factors. This study aimed to optimize the culture condition by adding somatic testicular cells to the collagen gel culture system in order to induce spermatogenesis progression. Materials and Methods In this experimental study, the disassociation of SSCs was performed by using a two-step enzymatic digestion of type I collagenase, hyaluronidase and DNase. Somatic testicular cells including Sertoli cells and peritubular cells were obtained after the second digestion. SSCs were isolated by Magnetic Activated Cell Sorting (MACS) using GDNF family receptor alpha-1 (Gfrα-1) antibody. Two experimental designs were investigated. 1. Gfrα-1 positive SSCs were cultured in a collagen solution. 2. Somatic testicular cells were added to the Gfrα-1 positive SSCs in a collagen solution. Spermatogenesis progression was determined after three weeks by staining of synaptonemal complex protein 3 (SCP3)-positive cells. Semi-quantitative Reverse Transcription PCR was undertaken for SCP3 as a meiotic marker and, Crem and Thyroid transcription factor-1 (TTF1) as post meiotic markers. For statistical analysis student t test was performed. Results Testicular supporter cells increased the expression of meiotic and post meiotic markers and had a positive effect on extensive colony formation. Conclusion Collagen gel culture system supported by somatic testicular cells provides a microenvironment that mimics seminiferous epithelium and induces spermatogenesis in vitro. PMID:24518977
Colom, Adai; Galgoczy, Roland; Almendros, Isaac; Xaubet, Antonio; Farré, Ramon; Alcaraz, Jordi
2014-08-01
Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies. © 2013 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
The modern cultivated common bean (Phaseolus vulgaris) has evolved from wild common beans distributed in Central America, Mexico and the Andean region of South America. It has been reported that wild common bean accessions have higher levels of protein content than the domesticated dry bean cultiva...
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
Yue, Kan; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali
2015-01-01
Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. Three dimensional (3D) GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties which mimic the native ECM. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental single-single cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409
Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds
NASA Astrophysics Data System (ADS)
Bampoh, Victoria Naa Kwale
The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel two-dimensional sheets of magnesium and pillared calcium phosphonates. The preparation of these novel compounds has led to the establishment of synthetic protocols that allow for the direct preparation of compounds with defined structural features.
Yu, Yanfei; Wu, Guangyan; Zhai, Zhipeng; Yao, Huochun; Lu, Chengping; Zhang, Wei
2015-01-01
Haemophilus parasuis (H. parasuis) is associated with meningitis, polyserositis, polyarthritis and bacterial pneumonia. At present, its prevention and control is difficult because of the lack of suitable subunit vaccines. Nowadays, high-throughput methods, immunoproteomics, are available to screen for more vaccine candidates. A protein extraction method for H. parasuis and two-dimensional electrophoresis (2-DE) were optimized to provide high-resolution profiles covering pH 3 to 10. Twenty immunoreactive spots were excised from gels after strict comparison between 2-DE Western blot membranes and the relevant gels. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and MALDI-TOF-TOF-MS successfully identified 16 different proteins. Fifteen of them were reported as immunoreactive proteins in H. parasuis for the first time. In addition, recombinant HP5-7 (ABC transporter, periplasmic-binding protein) showed immunoreactivity both with hyperimmune rabbit serum and convalescent swine serum. Four recombinants of the 14 successfully expressed genes showed immunoreactivity with hyperimmune rabbit serum.
Levander, Fredrik; James, Peter
2005-01-01
The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.
Witt, R; Weigand, A; Boos, A M; Cai, A; Dippold, D; Boccaccini, A R; Schubert, D W; Hardt, M; Lange, C; Arkudas, A; Horch, R E; Beier, J P
2017-02-28
Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation compared with two-dimensional experiments. Cultivation on poly-ε-caprolacton-collagen-I nanofibers induced parallel alignment of cells and positive expression of desmin. In this study, we were able to myogenically differentiate MSC upon mono- and co-cultivation with myoblasts. The addition of HGF/IGF-1 might not be essential for achieving successful myogenic differentiation. Furthermore, with the development of a biocompatible nanofiber scaffold we established the basis for further experiments aiming at the generation of functional muscle tissue.
Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank
2012-09-14
Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible. Copyright © 2012 Elsevier B.V. All rights reserved.
Dosimetry study of diagnostic X-ray using doped iodide normoxic polymer gels
NASA Astrophysics Data System (ADS)
Huang, Y. R.; Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Chu, C. H.; Hsieh, B. T.
2014-11-01
In radiotherapy, polymer gel dosimeters are used for three-dimensional (3D) dose distribution. However, the doses are within the Gy range. In this study, we attempted to develop a low-dose 3D dosimeter within the mGy range for diagnostic radiology. The effect of the iodinated compound was used as a dose enhancement sensitizer to enhance the dose sensitivity of normoxic polymer gel dosimeters. This study aims to use N-isopropylacrylamide(NIPAM)-based and methacrylic acid (MAGAT)-based gels to evaluate the potential dose enhancement sensitizer, as well as to compare two gels that may be suitable for measuring diagnostic radiation doses. The suitable formulation of NIPAM gel [5% (w/w) gelatin, 5% (w/w) NIPAM, 3% (w/w) N,N‧-methylenebisacrylamide (BIS), 5 mM tetrakis (hydroxymethyl) phosphonium chloride (THPC), and 87% (w/w) deionized distilled water] and MAGAT gel (4% MAA, 9% gelatin, 87% deionized water, and 10 mM THPC) were used and loaded with clinical iodinated contrast medium agent (Iobitridol, Xenetix® 350). Irradiation was conducted using X-ray computed tomography. The irradiation doses ranged from 0 mGy to 80 mGy. Optical computed tomography was the employed gel measurement system. The results indicate that the iodinated contrast agent yields a quantifiable dose enhancement ratio. The dose enhancement ratios of NIPAM and MAGAT gels are 3.35±0.6 and 1.36±0.3, respectively. The developed NIPAM gel in this study could be suitable for measuring diagnostic radiation doses.
Swimming micro-robot powered by stimuli-sensitive gel
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Alexeev, Alexander
2012-11-01
Using three-dimensional computer simulations, we design a simple maneuverable micro-swimmer that can self-propel and navigate in highly viscous (low Reynolds-number) environments. Our simple swimmer consists of a cubic gel body which periodically changes volume in response to external stimuli, two rigid rectangular flaps attached to the opposite sides of the gel body, and a flexible steering flap at the front end of the swimmer. The stimuli-sensitive body undergoes periodic expansions (swelling) and contractions (deswelling) leading to a time-irreversible beating motion of the propulsive flaps that propel the micro-swimmer. Thus, the responsive gel body acts as an ``engine'' actuating the motion of the swimmer. We examine how the swimming speed depends on the gel and flap properties. We also probe how the swimmer trajectory can be changed using a responsive steering flap whose curvature is controlled by an external stimulus. We show that the turning occurs due to steering flap bending and periodic beating. Furthermore, our simulations reveal that the turning direction can be regulated by changing the intensity of external stimulus.
Peritoneal Culture Alters Streptococcus pneumoniae Protein Profiles and Virulence Properties
Orihuela, Carlos J.; Janssen, Rob; Robb, Christopher W.; Watson, David A.; Niesel, David W.
2000-01-01
We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro. PMID:10992528
Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties
NASA Technical Reports Server (NTRS)
Orihuela, C. J.; Janssen, R.; Robb, C. W.; Watson, D. A.; Niesel, D. W.
2000-01-01
We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.
Comparative study between prokaryotes and eukaryotes by chemical iodination of ribosomal proteins.
Bernabeu, C; Vázquez, D; Conde, F P
1979-04-25
Escherichia coli and Saccharomyces cerevisiae ribosomal proteins were chemically iodinated with 125I by chloramine T under conditions in which the proteins were denatured. The labelled proteins were subsequently separated by two-dimensional gel electrophoresis with an excess of untreated ribosomal proteins from the same species. The iodination did not change the electrophoretic mobility of the proteins as shown by the pattern of spots in the stained gel slabs and their autoradiography. The 125I radioactivity incorporated in the proteins was estimated by cutting out the gel spots from the two-dimensional electrophoresis gel slabs. The highest content of 125I was found in the ribosomal proteins L2, L11, L13, L20/S12, S4 and S9 from E. coli, and L2/L3, L4/L6/S7, L5, L19/L20, L22/S17, L29/S27, L35/L37 and S14/S15 from S. cerevisiae. Comparisons between the electrophoretic patterns of E. coli and S. cerevisiae ribosomal proteins were carried out by coelectrophoresis of labelled and unlabelled proteins from both species. E. coli ribosomal proteins L5, L11, L20, S2, S3 and S15/S16 were found to overlap with L15, L11/L16, L36/L37, S3, S10 and S33 from S. cerevisiae, respectively. Similar coelectrophoresis of E. coli 125I-labelled proteins with unlabelled rat liver and wheat germ ribosomal proteins showed the former to overlap with proteins L1, L11, L14, L16, L19, L20 and the latter with L2, L5, L6, L15, L17 from E. coli.
Liao, Yuliang; Wang, Linjing; Xu, Xiangdong; Chen, Haibin; Chen, Jiawei; Zhang, Guoqian; Lei, Huaiyu; Wang, Ruihao; Zhang, Shuxu; Gu, Xuejun; Zhen, Xin; Zhou, Linghong
2017-06-01
To design and construct a three-dimensional (3D) anthropomorphic abdominal phantom for geometric accuracy and dose summation accuracy evaluations of deformable image registration (DIR) algorithms for adaptive radiation therapy (ART). Organ molds, including liver, kidney, spleen, stomach, vertebra, and two metastasis tumors, were 3D printed using contours from an ovarian cancer patient. The organ molds were molded with deformable gels made of different mixtures of polyvinyl chloride (PVC) and the softener dioctyl terephthalate. Gels with different densities were obtained by a polynomial fitting curve that described the relation between the Hounsfield unit (HU) and PVC-softener blending ratio. The rigid vertebras were constructed by molding of white cement and cellulose pulp. The final abdominal phantom was assembled by arranging all the fabricated organs inside a hollow dummy according to their anatomies, and sealed by deformable gel with averaged HU of muscle and fat. Fiducial landmarks were embedded inside the phantom for spatial accuracy and dose accumulation accuracy studies. Two channels were excavated to facilitate ionization chamber insertion for dosimetric measurements. Phantom properties such as deformable gel elasticity and HU stability were studied. The dosimetric measurement accuracy in the phantom was performed, and the DIR accuracies of three DIR algorithms available in the open source DIR toolkit-DIRART were also validated. The constructed deformable gel showed elastic behavior and was stable in HU values over times, proving to be a practical material for the deformable phantom. The constructed abdominal phantom consisted of realistic anatomies in terms of both anatomical shapes and densities when compared with its reference patient. The dosimetric measurements showed a good agreement with the calculated doses from the treatment planning system. Fiducial-based accuracy analysis conducted on the constructed phantom demonstrated the feasibility of applying the phantom for organ-wise DIR accuracy assessment. We have designed and constructed an anthropomorphic abdominal deformable phantom with satisfactory elastic property, realistic organ density, and anatomy. This physical phantom can be used for routine validations of DIR geometric accuracy and dose accumulation accuracy in ART. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Huda, Md Masrul; Rai, Neeraj
Molecular gels are relatively new class of soft materials, which are formed by the supramolecular aggregation of low molecular weight gelators (LMWGs) in organic solvents and/or water. Hierarchical self-assembly of small gelator molecules lead to three-dimensional complex fibrillar networks, which restricts the flow of solvents and results in viscous solid like materials or gels. These gels have drawn significant attentions for their potential applications for drug delivery, tissue engineering, materials for sensors etc. As of now, self-assembly of gelator molecules into one-dimensional fibers is not well understood, although that is very important to design new gelators for desired applications. Here, we present molecular dynamics study that provides molecular level insight into early stage aggregation of selected gelator, di-Fmoc-L-lysine in binary mixture of organic solvent and water. We will present the role of different functional groups of gelator molecule such as aromatic ring, amide, and carboxylic group on aggregation. We will also present the effect of concentrations of gelator and solvent on self-assembly of gelators. This study has captured helical fiber growth and branching of fiber, which is in good agreement with experimental observations.
Chen, Chen; Gladden, Lynn F; Mantle, Michael D
2014-02-03
This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.
NASA Astrophysics Data System (ADS)
Mueller, Donn Christopher
1997-12-01
Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.
Yoshida, Kanako; Kuramitsu, Yasuhiro; Murakami, Kohei; Ryozawa, Shomei; Taba, Kumiko; Kaino, Seiji; Zhang, Xiulian; Sakaida, Isao; Nakamura, Kazuyuki
2011-06-01
TS-1 is an oral anticancer agent containing two biochemical modulators for 5-fluorouracil (5-FU) and tegafur (FT), a metabolically activated prodrug of 5-FU. TS-1 has been recognized as an effective anticancer drug using standard therapies for patients with advanced pancreatic cancer along with gemcitabine. However, a high level of inherent and acquired tumor resistance to TS-1 induces difficulty in the treatment. To identify proteins linked to the TS-1-resistance of pancreatic cancer, we profiled protein expression levels in samples of TS-1-resistant and -sensitive pancreatic cancer cell lines by using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The cytotoxicity of a 5-FU/5-chloro-2,4-dihydroxypyridine (CDHP) combination towards pancreatic cancer cell lines was evaluated by MTS assay. Panc-1, BxPC-3, MiaPaCa-2 and PK59 showed high sensitivity to the 5-FU/CDHP combination (TS-1-sensitive), whereas PK45p and KLM-1 were much less sensitive (TS-1-resistant). Proteomic analysis showed that eleven spots, including T-complex protein 1 subunit beta, ribonuclease inhibitor, elongation factor 1-delta, peroxiredoxin-2 and superoxide dismutase (Cu-Zn), appeared to be down-regulated, and 29 spots, including hypoxia up-regulated protein 1, lamin-A/C, endoplasmin, fascin and annexin A1, appeared to be up-regulated in TS-1-resistant cells compared with -sensitive cells. These results suggest that the identified proteins showing different expression between TS-1-sensitive and -resistant pancreatic cancer cells possibly relate to TS-1-sensitivity. These findings could be useful to overcome the TS-1-resistance of pancreatic cancer cells.
Southan, Christopher; Cutler, Paul; Birrell, Helen; Connell, John; Fantom, Kenneth G M; Sims, Matthew; Shaikh, Narjis; Schneider, Klaus
2002-02-01
A proteomic study of rat urine was undertaken using two-dimensional gel electrophoresis, microbore high performance liquid chromatography, mass spectrometry and N-terminal sequencing. Five known urinary proteins were identified but two novel peptide fragments matched a large number of rat expressed sequence tags (ESTs) from a liver library. By combining protein chemical and nucleotide data, two 101-residue open reading frames with 90% amino acid identity were determined, rat urinary protein 1 (RUP-1) and RUP-2. The data established signal peptide removal and provided evidence for N-glycosylation. A third related sequence, rat spleen protein (RSP-1) was confirmed from EST searches. These three proteins have been submitted to SWISS-PROT as P81827, P81828 and Q9QXN2, respectively. A fourth novel homologue was found in porcine and bovine ESTs from embryo libraries. Alignment with known homologues showed conserved cysteine positions characteristic of a secreted subfamily of Ly-6 proteins. In two cases, antineoplastic urinary protein and caltrin, these homologues have unverified functional annotations. The RUP sequences showed high scoring matches to three unrelated rat mRNAs subsequently established to be chimeric. Two of these share extended sectional identity to RUP-1 but the third may represent another novel Ly-6 homologue. These chimeras have caused serious annotation errors in secondary databases.
Zhan, Xianquan; Yang, Haiyan; Peng, Fang; Li, Jianglin; Mu, Yun; Long, Ying; Cheng, Tingting; Huang, Yuda; Li, Zhao; Lu, Miaolong; Li, Na; Li, Maoyu; Liu, Jianping; Jungblut, Peter R
2018-04-01
Two-dimensional gel electrophoresis (2DE) in proteomics is traditionally assumed to contain only one or two proteins in each 2DE spot. However, 2DE resolution is being complemented by the rapid development of high sensitivity mass spectrometers. Here we compared MALDI-MS, LC-Q-TOF MS and LC-Orbitrap Velos MS for the identification of proteins within one spot. With LC-Orbitrap Velos MS each Coomassie Blue-stained 2DE spot contained an average of at least 42 and 63 proteins/spot in an analysis of a human glioblastoma proteome and a human pituitary adenoma proteome, respectively, if a single gel spot was analyzed. If a pool of three matched gel spots was analyzed this number further increased up to an average of 230 and 118 proteins/spot for glioblastoma and pituitary adenoma proteome, respectively. Multiple proteins per spot confirm the necessity of isotopic labeling in large-scale quantification of different protein species in a proteome. Furthermore, a protein abundance analysis revealed that most of the identified proteins in each analyzed 2DE spot were low-abundance proteins. Many proteins were present in several of the analyzed spots showing the ability of 2DE-MS to separate at the protein species level. Therefore, 2DE coupled with high-sensitivity LC-MS has a clearly higher sensitivity as expected until now to detect, identify and quantify low abundance proteins in a complex human proteome with an estimated resolution of about 500 000 protein species. This clearly exceeds the resolution power of bottom-up LC-MS investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rani, Lekha; Minz, Ranjana W; Arora, Amit; Kannan, Monica; Sharma, Aman; Anand, Shashi; Gupta, Dheeraj; Panda, Naresh K; Sakhuja, Vinay K
2014-11-01
The present study is a proteomic approach to find differentially expressed proteins in sera of limited and systemic subsets of active disease versus their remitting state in patients with granulomatosis with polyangiitis (GPA) and their correlation with disease activity. Eighteen patients with GPA in active as well as in remitting state and four healthy controls (HC) were included in the study. For proteomics analysis, two-dimensional gel electrophoresis along with matrix-assisted laser desorption ionization time-of-flight mass spectrometry were performed. A total of 14 gels were run from pooled patients' sera from active GPA and remission as well as pooled HC serum. There was significant differential expression of proteins in limited versus systemic GPA and between active systemic versus remitting patients of systemic disease. We identified nine maximally differentially expressed and five proteins which were not detected in HC. Among nine proteins, one (Prolow density lipoprotein receptor-related protein 1) was downregulated and four proteins (haptoglobin Hp, Hp2, vitamin D binding protein, killer cell lectin-like receptor subfamily F member 2), were up-regulated in both limited and systemic active disease, two proteins like Ig gamma-4 chain C region protein and serum albumin were up-regulated in limited active GPA and two proteins, that is, cysteine rich secretory protein LCCL domain-containing 2 precursor and serine-threonine-protein kinase A-Raf were up-regulated in systemic active disease. Levels of interleukin-17 and vitamin-D binding protein (VDBP) by enzyme-linked immunosorbent assay could distinctly demarcate active disease versus remission. Our study provides potential protein markers of active disease versus remission in GPA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter; Rogowska-Wrzesinska, Adelina
2011-07-27
Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly increased carbonylation of important structural proteins in fish muscle, mainly actin and myosin, and degradation products of those proteins were observed, some of them exhibiting increased carbonylation levels.
NASA Technical Reports Server (NTRS)
Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.
2001-01-01
The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.
Allelic analysis of low molecular weight glutenin subunits using 2-DGE in Korean wheat cultivars
USDA-ARS?s Scientific Manuscript database
Two-dimensional gel electrophoresis (2-DGE) was used to determine the allelic compositions of LMW-GS in 32 Korean wheat cultivars. Protein patterns generated by 2-DGE from each cultivar were compared to patterns from standard wheat cultivars for each allele. At the Glu-A3 locus, thirteen c, twelve ...
Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K
2017-01-01
The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for different diseases, which may help to identify the proteins that may serve as markers for diagnostics as well as targets for development of new therapeutic potential. PMID:28469466
Tabaqchali, S; Silman, R; Holland, D
1987-01-01
A new rapid automated method for the identification and classification of microorganisms is described. It is based on the incorporation of 35S-methionine into cellular proteins and subsequent separation of the radiolabelled proteins by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein patterns produced were species specific and reproducible, permitting discrimination between the species. A large number of Gram negative and Gram positive aerobic and anaerobic organisms were successfully tested. Furthermore, there were sufficient differences within species between the protein profiles to permit subdivision of the species. New typing schemes for Clostridium difficile, coagulase negative staphylococci, and Staphylococcus aureus, including the methicillin resistant strains, could thus be introduced; this has provided the basis for useful epidemiological studies. To standardise and automate the procedure an automated electrophoresis system and a two dimensional scanner were developed to scan the dried gels directly. The scanner is operated by a computer which also stores and analyses the scan data. Specific histograms are produced for each bacterial species. Pattern recognition software is used to construct databases and to compare data obtained from different gels: in this way duplicate "unknowns" can be identified. Specific small areas showing differences between various histograms can also be isolated and expanded to maximise the differences, thus providing differentiation between closely related bacterial species and the identification of differences within the species to provide new typing schemes. This system should be widely applied in clinical microbiology laboratories in the near future. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 PMID:3312300
Bermejo, C; Martínez-Ten, P; Recio, M; Ruiz-López, L; Díaz, D; Illescas, T
2014-03-01
To investigate the accuracy of three-dimensional ultrasound (3D-US) with respect to magnetic resonance imaging (MRI), and compared to clinical examination, in the assessment of cervix and vagina in women with uterine malformations. In this prospective study, 16 patients diagnosed with uterine malformation with cervical involvement underwent 3D-US examination. The acquisition of cervical volumes was transvaginal, with four cases repeated in the peri-ovulation period, while vaginal volumes were acquired by transperineal imaging following filling of the vagina with gel. MRI was performed in 13 patients using endovaginal gel. All cases underwent clinical examination, comprising bimanual gynecological examination and speculoscopy. Diagnostic concordance of each of the methods with the gold standard was calculated. 3D-US cervical examinations revealed 12 cases of duplicate cervix, two of complete septate cervix and two of incomplete septate cervix. Images of the cervical canal in the peri-ovulation period were judged subjectively to be better in quality, but did not lead us to change any diagnosis. 3D-US vaginal examinations revealed four cases with a vaginal dividing wall and two with a blind hemivagina. None of the 3D-US findings contradicted the clinical findings of the cervix; however, clinically we observed two cases with vaginal dividing wall that had not been diagnosed with 3D-US. MRI diagnosed nine cases of duplicate cervix, three of complete septate cervix, one of incomplete septate cervix, five of vaginal dividing wall and two of blind hemivagina. One case diagnosed as complete septate cervix was in fact a duplicate cervix on 3D-US and on clinical examination. Compared with the gold standard, both 3D-US and MRI were highly efficient in the diagnosis of anomalies of the cervix and vagina. The overall diagnostic concordance of 3D-US with clinical examination (kappa, 0.84; 95% CI, 0.62-1) was slightly inferior to that of MRI with clinical examination (kappa, 0.9; 95% CI, 0.72-1), but this difference was not statistically significant. The acquisition of isolated cervical volumes, without including the uterus, defines the extent of the ectocervix and the limits of the cervical canal in uterine malformations. The use of endovaginal gel makes possible the diagnosis of associated vaginal anomalies with 3D-US. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
Neurite outgrowth at the interface of 2D and 3D growth environments
NASA Astrophysics Data System (ADS)
Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane
2009-02-01
Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.
Time-dependent gel to gel transformation of a peptide based supramolecular gelator.
Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam
2015-06-28
A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.
Horiuchi, Takayuki; Taoka, Masato; Isobe, Toshiaki; Komano, Teruya; Inouye, Sumiko
2002-07-26
Two genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE. Differences in protein synthesis patterns among more than 700 protein spots were detected during development of the three strains. Fourteen proteins showing distinctly different expression patterns in mutant cells were analyzed in more detail. Five of the 14 proteins were identified as elongation factor Tu (EF-Tu), Dru, DofA, FruA, and protein S by immunoblot analysis and mass spectroscopy. A gene encoding DofA was cloned and sequenced. Although both fruA and csgA genes regulate early development of M. xanthus, they were found to differently regulate expression of several developmental genes. The production of six proteins, including DofA and protein S, was dependent on fruA, whereas the production of two proteins was dependent on csgA, and one protein was dependent on both fruA and csgA. To explain the present findings, a new model was presented in which different levels of FruA phosphorylation may distinctively regulate the expression of two groups of developmental genes.
Proteomic analysis of grape berry skin responding to sunlight exclusion.
Niu, Ning; Cao, Yuegang; Duan, Wei; Wu, Benhong; Li, Shaohua
2013-05-15
The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots resolved in stained gels, the accumulation patterns of 96 spots differed significantly between sunlight-excluded berry skin and that of sunlight-exposed control berries. Seventy-two proteins, including 35 down-regulated and 37 up-regulated proteins, were identified and categorized. Proteins involved in photosynthesis and secondary metabolism, especially UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), the key step for anthocyanin biosynthesis in grape berry skin, were accumulated less in the absence of sunlight. Several isoforms of heat shock proteins were also down-regulated. The proteins that were over-accumulated in sunlight-excluded berry skin were more often related to energy production, glycolysis, the tricarboxylic-acid cycle, protein synthesis and biogenesis of cellular components. Their putative role is discussed in terms of their relevance to sunlight exclusion processes. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.
Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet
2010-01-01
Background Previous studies suggested that dietary tannin ingestion may induce changes in mouse salivary proteins in addition to the primarily studied proline-rich proteins (PRPs). The aim of the present study was to determine the protein expression changes induced by condensed tannin intake on the fraction of mouse whole salivary proteins that are unable to form insoluble tannin-protein complexes. Two-dimensional polyacrylamide gel electrophoresis protein separation was used, followed by protein identification by mass spectrometry. Results Fifty-seven protein spots were excised from control group gels, and 21 different proteins were identified. With tannin consumption, the expression levels of one α-amylase isoform and one unidentified protein increased, whereas acidic mammalian chitinase and Muc10 decreased. Additionally, two basic spots that stained pink with Coomassie Brilliant Blue R-250 were newly observed, suggesting that some induced PRPs may remain uncomplexed or form soluble complexes with tannins. Conclusion This proteomic analysis provides evidence that other salivary proteins, in addition to tannin-precipitating proteins, are affected by tannin ingestion. Changes in the expression levels of the acidic mammalian chitinase precursor and in one of the 14 salivary α-amylase isoforms underscores the need to further investigate their role in tannin ingestion. PMID:21159160
Strohkamp, Sarah; Gemoll, Timo; Habermann, Jens K
2016-10-01
Hallmarks of malignancy can be monitored by protein signatures in serum or plasma. The current challenge in cancer research is the identification of clinically reliable protein biomarkers for diagnostic and prognostic purposes. A widely used and powerful technique to screen tumor markers is two-dimensional gel electrophoresis (2DE). This review provides an overview of 2DE functionality with its advantages and drawbacks as well as a current literature overview of gel-based cancer biomarker discovery in serum/plasma. In this context, 11 of the 12 studies reviewed here identified at least one of eight classical serum or high-abundant proteins (HAPs). Expression levels of those proteins are regulated by a vast variety of different physiological, metabolic and immunological stimuli leading to a questionable application as cancer-specific markers. Misinterpretation of HAPs as tumor markers might be caused by either the experimental setup or the technical and analytical potential in gel-based serum or plasma proteomics to detect low-abundant proteins, or a combination thereof. Additionally, based on currently available technology we propose an optimized experimental workflow to allow detecting cancer-specific protein markers of low abundance in future 2DE studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.
Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel
2017-03-14
Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.
Nam, Seo Hee; Cheong, Jin-Gyu; Jeong, Doyoung; Lee, Seo-Jin; Pan, Cheol-Ho; Jung, Jae Woo; Kim, Hye-Jin; Ryu, Jihye; Kim, Ji Eon; Kim, Somi; Cho, Chang Yun; Kang, Min-Kyung; Lee, Kyung-Min; Lee, Jung Weon
2017-01-01
Transmembrane 4 L six family member 5 (TM4SF5) is highly expressed in hepatocellular carcinoma tissues and enhances migration in two-dimensional environments. Here, we investigated how TM4SF5 is involved in diverse pro-metastatic phenotypes in in vivo-like three-dimensional (3D) extracellular matrix gels. TM4SF5-positive cells aggressively formed invasive foci in 3D Matrigel, depending on TM4SF5-mediated signaling activity, cytoskeletal organization, and matrix metallopeptidase (MMP) 2-mediated extracellular remodeling, whereas TM4SF5-null cells did not. The TM4SF5-null cells did, however, form invasive foci in 3D Matrigel following inhibition of Rho-associated protein kinase or addition of collagen I, suggesting that collagen I compensated for TM4SF5 expression. Similarly, TM4SF5-positive cells expressing vascular endothelial-cadherin formed network-like vasculogenic mimicry in 3D Matrigel and collagen I mixture gels, whereas TM4SF5-negative cells in the mixture gels displayed the network structures only upon further treatment with epidermal growth factor. The foci formation also required MMP2-mediated remodeling of the extracellular matrix. Co-cultures exhibited TM4SF5-positive or cancer-associated fibroblasts at the outward edges of TM4SF5-null cell clusters. Compared with TM4SF5-null cells, TM4SF5-positive cells in 3D collagen gels showed a more invasive outgrowth with dramatic invadopodia. These observations suggest that TM4SF5 plays roles in the promotion of diverse metastatic properties with fewer environmental requirements than TM4SF5-negative cells. PMID:29137358
Sperm membrane proteins associated with the boar semen cryopreservation.
Guimarães, Daianny B; Barros, Tatyane B; van Tilburg, Maurício F; Martins, Jorge A M; Moura, Arlindo A; Moreno, Frederico B; Monteiro-Moreira, Ana C; Moreira, Renato A; Toniolli, Ricardo
2017-08-01
This study aimed to define sperm membrane protein markers of semen freezability of boars with the aid of a proteomic approach. Semen from fourteen adult boars were subjected to slow freezing and rapid thawing. After thawing, sperm vigor and motility were analyzed, and based on these results, animals were separated into two groups: good (GFEs) and poor freezability (PFEs). Sperm membrane proteins were extracted and subjected to two-dimensional electrophoresis. Stained gels were analyzed by computerized resources to indicate differentially expressed protein spots, that were identified by mass spectrometry. Six animals showed good freezability with average sperm vigor and motility of 2.2±0.8 and 41.8±22.9, respectively, whereas eight boars showed poor freezability, with 1.9±0.6 and 26.8±17.5 of sperm vigor sperm motility, respectively. An average of 263±62.2 spots per gel and 234.2±54.6 of spots consistently present in all gels were detected. The intensities of five spots were significantly different between groups. Fc fragment of IgG binding protein and lactadherin were more intense in the PFE group, while Arylsulfatase A and F-actin capping protein subunit alpha 1 were more expressed in the GEF group. Based on their functions and interactions with other proteins, we conclude that these four sperm membrane proteins may act as potential markers of boar semen freezability. Copyright © 2017. Published by Elsevier B.V.
Mouat, Michael F.; Mauldin, Elizabeth A.; Casal, Margret L.
2012-01-01
Lethal acrodermatitis (LAD) is a genetic disease affecting bull terrier dogs. The phenotype is similar to that for acrodermatitis enteropathica in humans, but is currently without treatment. The purpose of the research presented here is to determine the biochemical defects associated with LAD using proteomic methodologies. Two affected (male and female) and one unaffected (male) bull terrier pups were euthanized at 14 weeks of age, their livers dissected and prepared for two-dimensional gel electrophoresis (2DE) and densitometry. Approximately 200 protein spots were observed. The density of the spots within each gel was normalized to the total spot volume of the gel; only those soluble liver protein spots that were consistently different in both of the livers of the affected pups compared to the unaffected pup were excised manually and submitted for MALDI mass spectrometry. Thirteen proteins were identified as differentially expressed in the affected, compared to the unaffected, pups. The proteins were involved in numerous cellular physiological functions, including chaperones, calcium binding, and energy metabolism, as well as being associated with the inflammatory response. Of note were haptoglobin, glutamine synthetase, prohibitin and keratin 10 which exhibited at least a 4-fold level of differential expression. These data represent the first proteomic analysis of this mutation. The differentially expressed proteins that were identified may be key in understanding the etiology of LAD, and may lead to diagnostic tools for its identification within the bull terrier population. PMID:17693109
Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne
2010-12-01
As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.
Pedersen, T V; Olsen, D R; Skretting, A
1997-08-01
A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.
Antunes, Ricardo F; Brandão, Cláudia; Maia, Margarida; Arosa, Fernando A
2011-01-01
Human red blood cells are emerging as a cell type capable to regulate biological processes of neighboring cells. Hereby, we show that human red blood cell conditioned media contains bioactive factors that favor proliferation of normal activated T cells and leukemic Jurkat T cells, and therefore called erythrocyte-derived growth and survival factors. Flow cytometry and electron microscopy in parallel with bioactivity assays revealed that the erythrocyte factors are present in the vesicle-free supernatant, which contains up to 20 different proteins. The erythrocyte factors are thermosensitive and do not contain lipids. Native polyacrylamide gel electrophoresis followed by passive elution and mass spectrometry identification reduced the potential erythrocyte factors to hemoglobin and peroxiredoxin II. Two-dimensional differential gel electrophoresis of the erythrocyte factors revealed the presence of multiple hemoglobin oxy-deoxy states and peroxiredoxin II isoforms differing in their isoelectric point akin to the presence of β-globin chains. Our results show that red blood cells release protein factors with the capacity to sustain T-cell growth and survival. These factors may have an unforeseen role in sustaining malignant cell growth and survival in vivo.
The Formation Mechanism of Hydrogels.
Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang
2017-06-12
Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao
2014-03-01
An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.
Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M
2015-02-01
Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-09-18
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501
New release cell for NMR microimaging of tablets. Swelling and erosion of poly(ethylene oxide).
Abrahmsén-Alami, Susanna; Körner, Anna; Nilsson, Ingvar; Larsson, Anette
2007-09-05
A small release cell, in the form of a rotating disc, has been constructed to fit into the MRI equipment. The present work show that both qualitative and quantitative information of the swelling and erosion behavior of hydrophilic extended release (ER) matrix tablets may be obtained using this release cell and non-invasive magnetic resonance imaging (MRI) studies at different time-points during matrix dissolution. The tablet size, core size and the gel layer thickness of ER matrix formulations based on poly(ethylene oxide) have been determined. The dimensional changes as a function of time were found to correspond well to observations made with texture analysis (TA) methodology. Most importantly, the results of the present study show that both the erosion (displacement of the gel-dissolution media interface) and the swelling (decrease of dry tablet core size) proceed with a faster rate in radial than in axial direction using the rotating disk set-up. This behavior was attributed to the higher shear forces experienced in the radial direction. The results also indicate that front synchronization (constant gel layer thickness) is associated with the formation of an almost constant polymer concentration profile through the gel layer at different time-points.
Gray, A J; Beecher, D E; Olson, M V
1984-01-01
A stand-alone, interactive computer system has been developed that automates the analysis of ethidium bromide-stained agarose and acrylamide gels on which DNA restriction fragments have been separated by size. High-resolution digital images of the gels are obtained using a camera that contains a one-dimensional, 2048-pixel photodiode array that is mechanically translated through 2048 discrete steps in a direction perpendicular to the gel lanes. An automatic band-detection algorithm is used to establish the positions of the gel bands. A color-video graphics system, on which both the gel image and a variety of operator-controlled overlays are displayed, allows the operator to visualize and interact with critical stages of the analysis. The principal interactive steps involve defining the regions of the image that are to be analyzed and editing the results of the band-detection process. The system produces a machine-readable output file that contains the positions, intensities, and descriptive classifications of all the bands, as well as documentary information about the experiment. This file is normally further processed on a larger computer to obtain fragment-size assignments. Images PMID:6320097
Bieri, Stefan; Marriott, Philip J
2006-12-01
A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index information in comprehensive 2D-GC.
Meso-Decorated Switching-Knot Gels
NASA Astrophysics Data System (ADS)
Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu
Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.
Dose evaluation of an NIPAM polymer gel dosimeter using gamma index
NASA Astrophysics Data System (ADS)
Chang, Yuan-Jen; Lin, Jing-Quan; Hsieh, Bor-Tsung; Yao, Chun-Hsu; Chen, Chin-Hsing
2014-11-01
An N-isopropylacrylamide (NIPAM) polymer gel dosimeter has great potential in clinical applications. However, its three-dimensional dose distribution must be assessed. In this work, a quantitative evaluation of dose distributions was performed to evaluate the NIPAM polymer gel dosimeter using gamma analysis. A cylindrical acrylic phantom filled with NIPAM gel measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by a 4×4 cm2 square light field. The irradiated gel phantom was scanned using an optical computed tomography (optical CT) scanner (OCTOPUS™, MGS Research, Inc., Madison, CT, USA) at 1 mm resolution. The projection data were transferred to an image reconstruction program, which was written using MATLAB (The MathWorks, Natick, MA, USA). The program reconstructed the image of the optical density distribution using the algorithm of a filter back-projection. Three batches of replicated gel phantoms were independently measured. The average uncertainty of the measurements was less than 1%. The gel was found to have a high degree of spatial uniformity throughout the dosimeter and good temporal stability. A comparison of the line profiles of the treatment planning system and of the data measured by optical CT showed that the dose was overestimated in the penumbra region because of two factors. The first is light scattering due to changes in the refractive index at the edge of the irradiated field. The second is the edge enhancement caused by free radical diffusion. However, the effect of edge enhancement on the NIPAM gel dosimeter is not as significant as that on the BANG gel dosimeter. Moreover, the dose uncertainty is affected by the inaccuracy of the gel container positioning process. To reduce the uncertainty of 3D dose distribution, improvements in the gel container holder must be developed.
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S.
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3–10 in a molecular weight range of 11–170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6–8. PMID:27239343
Phytochemical Evaluation of Moth Bean (Vigna aconitifolia L.) Seeds and Their Divergence.
Gupta, Neha; Shrivastava, Nidhi; Singh, Pramod Kumar; Bhagyawant, Sameer S
2016-01-01
In the present study, phytochemical contents of 25 moth bean (Vigna aconitifolia) seed accessions were evaluated. This includes protease inhibitors, phytic acid, radical scavenging activity, and tannins. The studies revealed significant variation in the contents of theses phytochemicals. Presence of photochemical composition was correlated with seed storage proteins like albumin and globulin. Qualitative identification of total seed storage protein abundance across two related moth bean accessions using two-dimensional gel electrophoresis (2D-GE) was performed. Over 20 individual protein fractions were distributed over the gel as a series of spots in two moth bean accessions. Seed proteome accumulated spots of high intensity over a broad range of pI values of 3-10 in a molecular weight range of 11-170 kDa. In both seed accessions maximum protein spots are seen in the pI range of 6-8.
Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells
Lam, Yun W.; Evans, Vanessa C.; Heesom, Kate J.; Lamond, Angus I.; Matthews, David A.
2010-01-01
Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. PMID:19812395
Proteomics analysis of the nucleolus in adenovirus-infected cells.
Lam, Yun W; Evans, Vanessa C; Heesom, Kate J; Lamond, Angus I; Matthews, David A
2010-01-01
Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined.
Two-Dimensional Gel Electrophoresis: Discovering Biomolecules for Environmental Bioremediation
NASA Astrophysics Data System (ADS)
Singh, Om V.; Chandel, Anuj K.
Environmental contamination has been viewed as an ecological malaise for which bioremediation can be prescribed as a “perfect medicine.” The solution to the problems with bioremediation lies in analyzing to what extent the microbes’ physiological machinery contributes to the degradation process and which biomolecules and their mechanisms are responsible for regulatory factors within the degradation system, such as protein, metabolite, and enzymatic chemical transformation. In the post-genomic era, recent advances in proteomics have allowed us to elucidate many complex biological mechanisms. Two-dimensional gel electrophoresis (2DE) in conjunction with mass spectrometry (MS) can be utilized to identify the biomolecules and their molecular mechanisms in bioremediation. A set of highly abundant global proteins over a pI range 4-7 was separated and compared by size fractionation (25-100 kDa) on 2DE. We identified a set of catabolic proteins, enzymes, and heat shock molecular chaperones associated with the regulatory network that was found to be overexpressed under phenol-stressed conditions. This chapter also offers optimized ideal directions for 2DE, followed by easy-to-follow directions for a protein identification strategy using MALDI-TOF and targeting novel proteins/enzymes for a universal set of experiments.
Okamoto, Haru; Umeda, Shinsuke; Nozawa, Takehiro; Suzuki, Michihiro T; Yoshikawa, Yasuhiro; Matsuura, Etsuko T; Iwata, Takeshi
2010-01-01
The central region of the primate retina is called the macula. The fovea is located at the center of the macula, where the photoreceptors are concentrated to create a neural network adapted for high visual acuity. Damage to the fovea, e.g., by macular dystrophies and age-related macular degeneration, can reduce central visual acuity. The molecular mechanisms leading to these diseases are most likely dependent on the proteins in the macula which differ from those in the peripheral retina in expression level. To investigate whether the distribution of proteins in the macula is different from the peripheral retina, proteomic analyses of tissues from these two regions of cynomolgus monkeys were compared. Two-dimensional gel electrophoresis and mass spectrometry identified 26 proteins that were present only in the macular gel spots. The expression levels of five proteins, cone photoreceptor specific arrestin-C, gamma-synuclein, epidermal fatty acid binding protein, tropomyosin 1alpha chain, and heterogeneous nuclear ribonucleoproteins A2/B1, were significantly higher in the macula than in the peripheral retina. Immunostaining of macula sections by antibodies to each identified protein revealed unique localization in the retina, retinal pigment epithelial cells and the choroidal layer. Some of these proteins were located in cells with higher densities in the macula. We suggest that it will be important to study these proteins to determine their contribution to the pathogenesis and progression of macula diseases.
Molecular Sieve Bench Testing and Computer Modeling
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.
1995-01-01
The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.
Informatics and Statistics for Analyzing 2-D Gel Electrophoresis Images
Dowsey, Andrew W.; Morris, Jeffrey S.; Gutstein, Howard B.; Yang, Guang-Zhong
2013-01-01
Despite recent progress in “shotgun” peptide separation by integrated liquid chromatography and mass spectrometry (LC/MS), proteome coverage and reproducibility are still limited with this approach and obtaining enough replicate runs for biomarker discovery is a challenge. For these reasons, recent research demonstrates that there is a continuing need for protein separation by two-dimensional gel electrophoresis (2-DE). However, with traditional 2-DE informatics, the digitized images are reduced to symbolic data through spot detection and quantification before proteins are compared for differential expression by spot matching. Recently, a more robust and automated paradigm has emerged where gels are directly aligned in the image domain before spots are detected across the whole image set as a whole. In this chapter, we describe the methodology for both approaches and discuss the pitfalls present when reasoning statistically about the differential protein expression discovered. PMID:20013375
Distinguishing between respiratory syncytial virus subgroups by protein profile analysis.
Walpita, P; Mufson, M A; Stanek, R J; Pfeifer, D; Connor, J D
1992-01-01
We subgrouped 75 strains of respiratory syncytial virus by a protein profile method (PPM) which relies on different mobilities of the phosphoprotein in one-dimensional polyacrylamide gel electrophoresis and does not require monoclonal antibodies. When compared with enzyme immunoassay, PPM correctly subgrouped 54 of 56 subgroup A and all 19 subgroup B strains. Images PMID:1572961
Development of a patient-specific 3D dose evaluation program for QA in radiation therapy
NASA Astrophysics Data System (ADS)
Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong
2015-03-01
We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.
Eslamian, L; Gholami, H; Mortazavi, S A R; Soheilifar, S
2016-11-01
To compare the effectiveness of 5% benzocaine gel and placebo gel on reducing pain caused by fixed orthodontic appliance activation. Thirty subjects (15-25 years) undergoing fixed orthodontics. A randomized, double-blind, placebo-controlled and cross-over clinical trial study was conducted. Subjects were asked to apply a placebo gel and 5% benzocaine gel, exchangeable in two consecutive appointments, twice a day for 3 days and mark their level of pain on a VAS scale. The pain severity was evaluated by means of Mann-Whitney U-test for comparing two gel groups, Kruskal-Wallis nonparametric test for overall differences and post hoc test of Dunnett for paired multiple comparisons. p-value was assigned <0.05. The overall mean value of pain intensity for benzocaine and placebo gels was 0.89 and 1.15, respectively. The Mann-Whitney U-test indicated that there was no significant difference between overall pain in both groups (mean difference = 0.258 p ˂ 0.21). For both groups, pain intensity was significantly lower at 2, 6 and 24 h compared with pain experienced at days 2, 3 and 7. Benzocaine gel caused a decrease in pain perception at 2 h compared with placebo gel. Peak pain intensity was at 2 h for placebo gel and at 6 h for benzocaine gel, followed by a decline in pain perception from that point to day 7 for both gels. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Mora, Eugenio; Flores-Hernández, Edith; Jakoncic, Jean
SdsA, a sodium dodecyl sulfate hydrolase, from Pseudomonas aeruginosa was crystallized in three different crystal polymorphs and their three-dimensional structure was determined. The different polymorphs present different crystal packing habits. One of the polymorphs suggests the existence of a tetramer, an oligomeric state not observed previously, while the crystal packing of the remaining two polymorphs obstructs the active site entrance but stabilizes flexible regions of the protein. Nonconventional crystallization methods that minimize convection, such as counterdiffusion in polyvinyl alcohol gel coupled with the influence of a 500 MHz (10.2 T) magnetic field, were necessary to isolate the poorest diffracting polymorphmore » and increase its internal order to determine its structure by X-ray diffraction. In conclusion, the results obtained show the effectiveness of nonconventional crystallographic methods to isolate different crystal polymorphs.« less
Biogelx: Cell Culture on Self-Assembling Peptide Gels.
Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V
2018-01-01
Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.
Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
Jin, Yifei; Compaan, Ashley; Bhattacharjee, Tapomoy; Huang, Yong
2016-06-03
Freeform fabrication of soft structures has been of great interest in recent years. In particular, it is viewed as a critical step toward the grand vision of organ printing--the on-demand design and fabrication of three-dimensional (3D) human organ constructs for implantation and regenerative medicine. The objective of this study is to develop a novel granular gel support material-enabled, two-step gelation-based 'printing-then-gelation' approach to fabricate 3D alginate structures using filament extrusion. Specifically, a granular Carbopol microgel bath holds the ungelled alginate structure being extruded, avoiding the instantaneous gelation of each printed layer as well as resultant surface tension-induced nozzle clogging. Since Carbopol microgels react with multivalent cations, which are needed for alginate crosslinking, gelatin is introduced as a sacrificial material to make an alginate and gelatin bioink for extrusion, which gels thermally (step-one gelation) to initially stabilize the printed structure for removal from Carbopol. Then gelatin is melted and diffused away while alginate is ionically crosslinked in a 37 °C calcium chloride bath (step-two gelation), resulting in an alginate structure. The proposed 'printing-then-gelation' approach works for alginate structure fabrication, and it is also applicable for the printing of cellular constructs and other similar homogeneous soft structures using a two-step or even multi-step approach. The main conclusions are: (1) 0.8% (w/v) Carbopol bath with a neutral pH value may be most suitable for soft structure printing; (2) it is most effective to use a 0.9% (w/v) NaCl solution to facilitate the removal of residual Carbopol; and (3) alginate structures fabricated using the proposed approach demonstrate better mechanical properties than those fabricated using the conventional 'gelation-while-printing' approach.
NASA Astrophysics Data System (ADS)
Yamashita, Shinichi; Hiroki, Akihiro; Taguchi, Mitsumasa
2014-08-01
Hydrogels with matrix of a cellulose derivative, hydrogel of hydroxpropyl cellulose (HPC), containing two of methacrylate compounds (2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethacrylate (9G)) were irradiated with 60Co γ-rays. The gels become white with irradiation, and thus, could be candidates of a new type of radiation dosimeter utilized in radiation therapy because the gels become white with irradiation and can be confirmed directly by human eyes even at low doses of 1-2 Gy. Radiation-induced change of optical properties, haze value and UV-vis absorption spectrum, of the irradiated gels was measured. Dose response of the white turbidity appearance was different for different compositions of the methacrylate compounds as well as for different dose rates. The degree of the radiation-induced white turbidity was quantified by measuring haze value, showing linear dose response in low dose region (<2 Gy). We also analyzed the gels with a UV-vis spectrometer and HEMA- and 9G-rich gels gave different spectral shapes, indicating that there are at least two mechanisms leading to the white turbidity. In addition, dose rate dependence was smaller for 9G-rich gels than HEMA-rich gels in the range of 0.015-1.5 Gy/min.
Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K
1994-04-01
A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol–gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, includingmore » anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor. - Graphical abstract: Pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. - Highlights: • Silica-doped boehmites were prepared by sol–gel method with supercritical drying. • Ultrathin two-dimensional crystallites of pseudoboehmite were obtained. • Changes in structure and morphology upon calcination were studied. • Simulation of XRD patterns was performed with use of the Debye Scattering Equation. • Thermal stability of alumina depended on morphology inherited from pseudoboehmite.« less
Vítámvás, Pavel; Urban, Milan O.; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T.
2015-01-01
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, 13C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments. PMID:26175745
Tong, Zheng; Wang, Dan; Sun, Yong; Yang, Qian; Meng, Xueru; Wang, Limin; Feng, Weiqiang; Li, Ling; Wurtele, Eve Syrkin; Wang, Xuchu
2017-05-02
Rubber elongation factor (REF) and small rubber particle protein (SRPP) are two key factors for natural rubber biosynthesis. To further understand the roles of these proteins in rubber formation, six different genes for latex abundant REF or SRPP proteins, including REF 138,175,258 and SRPP 117,204,243 , were characterized from Hevea brasiliensis Reyan (RY) 7-33-97. Sequence analysis showed that REFs have a variable and long N-terminal, whereas SRPPs have a variable and long C-terminal beyond the REF domain, and REF 258 has a β subunit of ATPase in its N-terminal. Through two-dimensional electrophoresis (2-DE), each REF/SRPP protein was separated into multiple protein spots on 2-DE gels, indicating they have multiple protein species. The abundance of REF/SRPP proteins was compared between ethylene and control treatments or among rubber tree clones with different levels of latex productivity by analyzing 2-DE gels. The total abundance of each REF/SRPP protein decreased or changed a little upon ethylene stimulation, whereas the abundance of multiple protein species of the same REF/SRPP changed diversely. Among the three rubber tree clones, the abundance of the protein species also differed significantly. Especially, two protein species of REF 175 or REF 258 were ethylene-responsive only in the high latex productivity clone RY 8-79 instead of in RY 7-33-97 and PR 107. Some individual protein species were positively related to ethylene stimulation and latex productivity. These results suggested that the specific protein species could be more important than others for rubber production and post-translational modifications might play important roles in rubber biosynthesis.
Hsieh, Ling-Ling; Shieh, Jiunn-I; Wei, Li-Ju; Wang, Yi-Chun; Cheng, Kai-Yuan; Shih, Cheng-Ting
2017-05-01
Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24h postirradiation. For the 3%/3mm and 2%/2mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A spot-matching method using cumulative frequency matrix in 2D gel images
Han, Chan-Myeong; Park, Joon-Ho; Chang, Chu-Seok; Ryoo, Myung-Chun
2014-01-01
A new method for spot matching in two-dimensional gel electrophoresis images using a cumulative frequency matrix is proposed. The method improves on the weak points of the previous method called ‘spot matching by topological patterns of neighbour spots’. It accumulates the frequencies of neighbour spot pairs produced through the entire matching process and determines spot pairs one by one in order of higher frequency. Spot matching by frequencies of neighbour spot pairs shows a fairly better performance. However, it can give researchers a hint for whether the matching results can be trustworthy or not, which can save researchers a lot of effort for verification of the results. PMID:26019609
Proteomic analysis of protein deposits on worn daily wear silicone hydrogel contact lenses
Wei, Xiaojia; Aliwarga, Yulina; Carnt, Nicole A.; Garrett, Qian; Willcox, Mark D.P.
2008-01-01
Purpose Previous studies have demonstrated deposition of tear proteins onto worn contact lenses. In this study, we used proteomic techniques to analyze the protein deposits extracted from worn daily wear silicone hydrogel contact lenses in combination with different lens care solutions. Methods Worn lenses were collected and protein deposits extracted using urea and surfactant. Protein extracts were desalted, concentrated, and then separated using one-dimensional gel electrophoresis. Individual protein components in extracts were identified using liquid chromatography combined with tandem mass spectrometry (LC-MS-MS) after trypsin digestion. Results One-dimensional gel electrophoresis revealed that lysozyme and other small proteins (around 20 kDa) were the most abundant proteins in the extracts. LC-MS-MS revealed a wide array of proteins in lens extracts with lysozyme and lipocalin 1 being the most commonly identified in deposit extracts. Conclusions Worn contact lenses deposit a wide array of proteins from tear film and other sources. Protein deposit profiles varied and were specific for each contact lens material. PMID:18989384
Tan, Wei Miao; Lau, Seng Fong; Ajat, Mokrish; Mansor, Rozaihan; Abd Rani, Puteri Azaziah Megat; Rahmad, Norasfaliza Binti
2017-03-01
This case study is to report the proteins detected by proteomic analysis of synovial fluid from a dog diagnosed with idiopathic immune-mediated polyarthritis, and to compare it with healthy dogs. Synovial fluid was collected via arthrocentesis from a dog diagnosed with immune-mediated polyarthritis. Protein precipitation was performed on the synovial fluid, followed by isoelectric focusing and 2-dimensional gel electrophoresis. The spots on the 2-dimensional gels were analyzed using MALDI-TOF/MS. The results were then analyzed against the MASCOT database. The results from the proteomic analysis revealed an abundance of several types of immunoglobulins together with the presence of complement C4b-binding protein alpha chain. Actin and keratin were also among the proteins detected. Proteomic studies, facilitate a better understanding of the different levels of proteins expressed during disease activity. Potential disease biomarkers can aid in the diagnosis of disease, as well as help in monitoring treatment efficacy and providing prognosis for the patient. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeno, Hiroyuki; Mochizuki, Tomomitsu; Yoshiba, Kazuto; Kondo, Shingo; Dobashi, Toshiaki
Self-assembling structures and sol-gel transition in solution of optically active and racemic 12-Hydroxystearic acids (HSA) have been investigated by means of small-angle X-ray scattering (SAXS), differential scanning calorimetry and rheological measurements. Apparently two kinds of gel, transparent gel and turbid gel were obtained in different solvents or by changing concentrations in the same solvent. The melting temperature of the turbid gel is higher than that of the transparent gel. The difference can be qualitatively explained by the dissolution of the crystals (melting point depression) in non-ideal solutions. The SAXS profiles of the transparent gel composed of fibrillar structures have a similar shape at different concentrations, although the intensity is larger for the gels with higher concentrations of 12-HSA. The SAXS analysis reveals that the cross-section of fibrils have square or circular shape (no anisotropic shape) with the radius of gyration 83 Å. On the other hand, for the turbid gel structural inhomnogeneity becomes significant with concentration. The gelation properties and the structures are found to be similar in the racemic HSA gel and the optically active (D-HSA) gel.
Preprocessing of 2-Dimensional Gel Electrophoresis Images Applied to Proteomic Analysis: A Review.
Goez, Manuel Mauricio; Torres-Madroñero, Maria Constanza; Röthlisberger, Sarah; Delgado-Trejos, Edilson
2018-02-01
Various methods and specialized software programs are available for processing two-dimensional gel electrophoresis (2-DGE) images. However, due to the anomalies present in these images, a reliable, automated, and highly reproducible system for 2-DGE image analysis has still not been achieved. The most common anomalies found in 2-DGE images include vertical and horizontal streaking, fuzzy spots, and background noise, which greatly complicate computational analysis. In this paper, we review the preprocessing techniques applied to 2-DGE images for noise reduction, intensity normalization, and background correction. We also present a quantitative comparison of non-linear filtering techniques applied to synthetic gel images, through analyzing the performance of the filters under specific conditions. Synthetic proteins were modeled into a two-dimensional Gaussian distribution with adjustable parameters for changing the size, intensity, and degradation. Three types of noise were added to the images: Gaussian, Rayleigh, and exponential, with signal-to-noise ratios (SNRs) ranging 8-20 decibels (dB). We compared the performance of wavelet, contourlet, total variation (TV), and wavelet-total variation (WTTV) techniques using parameters SNR and spot efficiency. In terms of spot efficiency, contourlet and TV were more sensitive to noise than wavelet and WTTV. Wavelet worked the best for images with SNR ranging 10-20 dB, whereas WTTV performed better with high noise levels. Wavelet also presented the best performance with any level of Gaussian noise and low levels (20-14 dB) of Rayleigh and exponential noise in terms of SNR. Finally, the performance of the non-linear filtering techniques was evaluated using a real 2-DGE image with previously identified proteins marked. Wavelet achieved the best detection rate for the real image. Copyright © 2018 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.
Shin, Hyeongho; Olsen, Bradley D; Khademhosseini, Ali
2012-04-01
A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shin, Hyeongho; Olsen, Bradley D.; Khademhosseini, Ali
2012-01-01
A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. PMID:22265786
Monteiro, Valdirene Neves; do Nascimento Silva, Roberto; Steindorff, Andrei Stecca; Costa, Fabio Teles; Noronha, Eliane Ferreira; Ricart, Carlos André Ornelas; de Sousa, Marcelo Valle; Vainstein, Marilene Henning; Ulhoa, Cirano José
2010-10-01
Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.
Protein Separation by Capillary Gel Electrophoresis: A Review
Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong
2011-01-01
Capillary gel electrophoresis (CGE) has been used for protein separation for more than two decades. Due to the technology advancement, current CGE methods are becoming more and more robust and reliable for protein analysis, and some of the methods have been routinely used for the analysis of protein-based pharmaceuticals and quality controls. In light of this progress, we survey 147 papers related to CGE separations of proteins and present an overview of this technology. We first introduce briefly the early development of CGE. We then review the methodology, in which we specifically describe the matrices, coatings, and detection strategies used in CGE. CGE using microfabricated channels and incorporation of CGE with two-dimensional protein separations are also discussed in this section. We finally present a few representative applications of CGE for separating proteins in real-world samples. PMID:22122927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan
2015-05-13
Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. Finally, these results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less
Pastorelli, Roberta; Carpi, Donatella; Campagna, Roberta; Airoldi, Luisa; Pohjanvirta, Raimo; Viluksela, Matti; Hakansson, Helen; Boutros, Paul C; Moffat, Ivy D; Okey, Allan B; Fanelli, Roberto
2006-05-01
One characteristic feature of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity is dramatic interspecies and interstrain variability in sensitivity. This complicates dioxin risk assessment for humans. However, this variability also provides a means of characterizing mechanisms of dioxin toxicity. Long-Evans (Turku/AB) rats are orders of magnitude more susceptible to TCDD lethality than Han/Wistar (Kuopio) rats, and this difference constitutes a very useful model for identifying mechanisms of dioxin toxicity. We adopted a proteomic approach to identify the differential effects of TCDD exposure on liver protein expression in Han/Wistar rats as compared with Long-Evans rats. This allows determination of which, if any, protein markers are indicative of differences in dioxin susceptibility and/or responsible for conferring resistance. Differential protein expression in total liver protein was assessed using two-dimensional gel electrophoresis, computerized gel image analysis, in-gel digestion, and mass spectrometry. We observed significant changes in the abundance of several proteins, which fall into three general classes: (i) TCDD-independent and exclusively strain-specific (e.g. isoforms of the protein-disulfide isomerase A3, regucalcin, and agmatine ureohydrolase); (ii) strain-independent and only dependent on TCDD exposure (e.g. aldehyde dehydrogenase 3A1 and rat selenium-binding protein 2); (iii) dependent on both TCDD exposure and strain (e.g. oxidative stress-related proteins, apoptosis-inducing factor, and MAWD-binding protein). By integrating transcriptomic (microarray) data and genomic data (computational search of regulatory elements), we found that protein expression levels were mainly controlled at the level of transcription. These results reveal, for the first time, a subset of hepatic proteins that are differentially regulated in response to TCDD in a strain-specific manner. Some of these differential responses may play a role in establishing the major differences in TCDD response between these two strains of rats. As such, our work is expected to lead to new insights into the mechanism of TCDD toxicity and resistance.
Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng
2015-12-22
Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.
Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA
NASA Technical Reports Server (NTRS)
Gaynor, J. J.
1984-01-01
Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.
Wilkins, Joanna C.; Homer, Karen A.; Beighton, David
2001-01-01
Streptococcus oralis is the predominant aciduric nonmutans streptococcus isolated from the human dentition, but the role of this organism in the initiation and progression of dental caries has yet to be established. To identify proteins that are differentially expressed by S. oralis growing under conditions of low pH, soluble cellular proteins extracted from bacteria grown in batch culture at pH 5.2 or 7.0 were analyzed by two-dimensional (2-D) gel electrophoresis. Thirty-nine proteins had altered expression at low pH; these were excised, digested with trypsin using an in-gel protocol, and further analyzed by peptide mass fingerprinting using matrix-assisted laser desorption ionization mass spectrometry. The resulting fingerprints were compared with the genomic database for Streptococcus pneumoniae, an organism that is phylogenetically closely related to S. oralis, and putative functions for the majority of these proteins were determined on the basis of functional homology. Twenty-eight proteins were up-regulated following growth at pH 5.2; these included enzymes of the glycolytic pathway (glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase), the polypeptide chains comprising ATP synthase, and proteins that are considered to play a role in the general stress response of bacteria, including the 60-kDa chaperone, Hsp33, and superoxide dismutase, and three distinct ABC transporters. These data identify, for the first time, gene products that may be important in the survival and proliferation of nonmutans aciduric S. oralis under conditions of low pH that are likely to be encountered by this organism in vivo. PMID:11472910
NASA Astrophysics Data System (ADS)
Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.
2015-11-01
The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.
Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress.
Irazusta, Verónica; Estévez, Cristina; Amoroso, María Julia; de Figueroa, Lucía I C
2012-06-01
In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.
Effects of silicone gel on burn scars.
Momeni, Mahnoush; Hafezi, Farhad; Rahbar, Hossein; Karimi, Hamid
2009-02-01
To study the efficacy of silicone gel applied to hypertrophic burn scars, in reducing scar interference with normal function and improving cosmesis. A randomised, double-blind, placebo-controlled trial involving 38 people with hypertrophic burn scars. Each scar was divided into two segments; silicone gel sheet was applied randomly to one of the two and placebo to the other. Participants were seen again after 1 and 4 months. Their data and wound characteristics were collected using the Vancouver scar scale. The median age of participants was 22 years (1.5-60 years) and 16 were male; 4 did not attend follow-up and were excluded from the study. There were no significant differences in baseline characteristics. Although after 1 month all scar scale measures were lower in treated areas, only the vascularity scale was significantly different between the two areas. After 4 months, all scale measures were significantly lower in the silicone gel group than in the control group, except for the pain score. Silicone gel is an effective treatment for hypertrophic burn scars.
Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).
Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C
2011-05-01
The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.
Rodrigues, Silas Pessini; Ventura, José Aires; Zingali, R B; Fernandes, P M B
2009-01-01
A variety of sample preparation protocols for plant proteomic analysis using two-dimensional gel electrophoresis (2-DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2-DE. Four sample preparation methods were tested: (1) phenol extraction and methanol-ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid-acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS-PAGE (1-DE) and 2-DE. Fifteen selected protein spots were trypsinised and analysed by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Methods number 3 and 4 resulted in large quantities of protein with good 1-DE separation and were chosen for 2-DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. The described sample preparation method allows the proteomic analysis of papaya leaves by 2-DE and mass spectrometry (MALDI-TOF-MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species.
Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.
Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran
2017-08-01
We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation.
Brûlet, P; Babinet, C; Kemler, R; Jacob, F
1980-01-01
Two-dimensional gel electrophoresis has allowed the detection of proteins characteristic of inner cell mass and trophectoderm in mouse blastocyst. Certain of the proteins characterizing trophectoderm copurify with intermediate filaments from trophectoderm and a trophoblastoma cell line. A monoclonal antibody prepared against proteins of these intermediate filaments labels a filament network in trophectoderm but not in inner cell mass cells. Images PMID:6933460
NASA Astrophysics Data System (ADS)
Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.
2007-02-01
This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-01-01
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080
Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T
2014-10-01
Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors.
Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti
2014-06-13
A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g(-1) at the current density of 0.5 A g(-1)) and an excellent stability over 1000 consecutive charge-discharge cycles.
Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti
2014-06-01
A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g-1 at the current density of 0.5 A g-1) and an excellent stability over 1000 consecutive charge-discharge cycles.
Long, Jeffrey W
2007-09-01
Ultraporous aperiodic solids, such as aerogels and ambigels, are sol-gel-derived equivalents of architectures. The walls are defined by the nanoscopic, covalently bonded solid network of the gel. The vast open, interconnected space characteristic of a building is represented by the three-dimensionally continuous nanoscopic pore network. We discuss how an architectural construct serves as a powerful metaphor that guides the chemist in the design of aerogel-like nanoarchitectures and in their physical and chemical transformation into multifunctional objects that yield high performance for rate-critical applications.
Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi
2002-09-01
Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.
Jenkins, Rowena; Burton, Neil; Cooper, Rose
2011-04-01
Staphylococcus aureus is an important pathogen that can cause many problems, from impetigo to endocarditis. With its continued resistance to multiple antibiotics, S. aureus remains a serious health threat. Honey has been used to eradicate meticillin-resistant S. aureus (MRSA) strains from wounds, but its mode of action is not yet understood. Proteomics provides a potent group of techniques that can be used to analyse differences in protein expression between untreated bacterial cells and those treated with inhibitory concentrations of manuka honey. In this study, two-dimensional (2D) electrophoresis was combined with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to determine the identities of proteins whose levels of expression were changed at least two-fold following treatment with manuka honey. Protein extracts were obtained from cells grown in tryptone soy broth (with or without manuka honey) by mechanical disruption and were separated on 2D polyacrylamide gels. A protein was isolated in gels prepared from untreated cell extract that was absent from gels made using honey-treated cell extract. Using MALDI-TOF MS, the protein was identified as universal stress protein A (UspA). Downregulation of this protein was confirmed by real-time polymerase chain reaction (PCR), which showed a 16-fold downregulation in honey-treated cells compared with untreated samples. This protein is involved in the stress stamina response and its downregulation could help to explain the inhibition of MRSA by manuka honey. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
A cross-linking study of the Ca2+, Mg2+-activated adenosine triphosphatase of Escherichia coli.
Bragg, P D; Hou, C
1980-05-01
The solubilized Ca2+,Mg2+-activated adenosine triphosphatase of Escherichia coli is composed of five subunits designated alpha, beta, gamma, delta and epsilon in order of decreasing molecular weight. The subunit structure of the enzyme has been investigated by the use of the cleavable cross-linking agents dithiobis(succinimidyl propionate), methyl-4-mercaptobutyrimidate, dimethyl-3,3'-dithiobispropionimidate, disuccinimidyl tartarate, and cupric 1,10-phenanthrolinate. The products of cross-linking were analyzed by two different two-dimensional gel electrophoresis systems. The following cross-linked subunit dimers were observed: alpha 2, beta 2, alpha beta, alpha delta, beta gamma, beta delta, beta epsilon and gamma epsilon. These results, together with other published data, are discussed in relation to a model of the arrangement of the subunits in the ATPase molecule.
[Proteome analysis on interaction between Anoectochilus roxburghii and Mycorrhizal fungus].
Gao, Chuan; Guo, Shun-Xing; Zhang, Jing; Chen, Juan; Zhang, Li-Chun
2012-12-01
To study the mechanism of plant growing promoted by Mycorrhizal fungus through the difference of proteomes. The differential proteomes between uninoculated and inoculated endophytic fungi, Epulorhiza sp. on Anoectochilus roxburghii were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrum. Twenty-seven protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Twenty-two candidate proteins were identified by database comparisons. The function of these proteins mostly involved in signal transduction, metabolic regulation, as well as photosynthesis and substance metabolism. The results indicate that the regulator control system of plant is influenced by fungi action, and the positive regulation improves substance metabolism and photosynthesis, which results in strong plant and higher resistance. It is also deduced that silent genes may exist in endosymbiosis plants.
Characterization of Two Cysteine Transfer RNA Genes from Xenopus Laevis
1984-07-12
containing amino acids glycine, alanine and serine, are produced by the posterior silk gland of Bombyx mori and therefore high level of tRNAgly, tRNA^Ia...1979) Studies on tRNA adaptation, tRNA turnover, precursor tRNA and tRNA gene distribution in Bombyx mori by using two-dimensional polyacrylamlde gel...Nucleic Acids Research, 1^, 8537-8546. 26. Garber, R.L. and Gage, L.P. (1979) Transcription of a cloned Bombyx mori tRNA^2 gene: Nucleotide sequence of
Lee, Y J; Hou, Z Z; Curetty, L; Armour, E P; al-Saadi, A; Bernstein, J; Corry, P M
1992-04-01
Three heat-resistant mutant cell lines (78-1, 78-2, 78-3) were previously selected from Chinese hamster ovary cells. In this study, we investigated whether the differences in intrinsic thermal sensitivity result from alteration of stress protein levels or cellular structural changes. Although there was no significant difference in the levels of stress proteins, i.e., constitutive HSP70 in wild type and three heat-resistant mutant strains, there were marked differences in the amounts of vimentin among the cell lines. Two-dimensional gel electrophoresis and Western blot showed a 2.3-2.9-fold increase in the level of vimentin in the mutant cells under normal growth conditions. Northern blot also revealed higher amounts of vimentin mRNA in the mutant cells. Electron microscopy and immunofluorescence suggest that increased amounts of the vimentin-containing intermediate filaments are correlated with the heat-resistant phenotypes.
Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Peng, Fang; Li, Jianglin; Guo, Tianyao; Yang, Haiyan; Li, Maoyu; Sang, Shushan; Li, Xuejun; Desiderio, Dominic M.; Zhan, Xianquan
2015-12-01
Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the pathogenesis of astrocytoma formation.
Hill, N; Stam, C; Tuinder, S; van Haselen, R A
1995-01-01
A randomised, placebo controlled clinical trial was conducted to examine the efficacy of a homeopathic after-bite gel in the symptomatic relief of mosquito bites. Sixty eight healthy volunteers were bitten under laboratory conditions by Aedes aegypti mosquitoes at three spots, on the ventral aspect of the forearm. One bite was treated with the homeopathic after-bite gel, another bite with a placebo gel which was identical in appearance and smell to the homeopathic after-bite gel, and the third bite remained untreated. Immediately after the bites and 1, 3, 6, 26 and 31 hours post-bite, the length and width of the erythema were measured with a calliper, and photographs were taken of the bite sites from which the size of the erythema was subsequently determined. This was followed by assessment of the extent of itching with a verbal analogue scale, and finally treatment took place. For each spot the total erythema was calculated as the area under the plotted curve of the erythema at different time points (mm2*h) and the total sum of the itch scores was determined. For the bites treated with the homeopathic after-bite gel the median total erythema was 10.500 mm2*h. For the spots treated with the placebo gel and the untreated spots the median total erythema was 12.900 mm2*h and 13.300 mm2*h, respectively. The difference between the spots treated with the homeopathic after-bite gel and the untreated spots came close to significance (two-tailed P = 0.06), which was not the case for the difference between the spots treated with the homeopathic after-bite gel and the spots treated with placebo gel (P = 0.13). After pooling the data of a very similar previous pilot study and the present study (ntotal = 83), the homeopathic after-bite gel was significantly superior to no treatment (two-tailed P = 0.003) as well as to placebo gel (two-tailed P = 0.03). Comparing itching after the three treatments, no significant differences could be demonstrated. The extent of itching was positively correlated with the area of the erythema (r = 0.63). Treatment of mosquito bites with the homeopathic after-bite gel will reduce the erythema compared to no treatment. Comparison with the placebo gel suggests it is the plant extracts which are the active components of this gel.
[Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].
Furuta, Takuya
2017-01-01
Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.
High transparent shape memory gel
NASA Astrophysics Data System (ADS)
Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu
2014-03-01
Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.
Meso-decorated self-healing gels: network structure and properties
NASA Astrophysics Data System (ADS)
Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu
2013-04-01
Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.
Yu, Hye-Sun; Lee, Eun-Jung; Seo, Seog-Jin; Knowles, Jonathan C; Kim, Hae-Won
2015-09-01
Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical properties of the hybrid gels were significantly improved in terms of the deformation resistance to an applied load and the modulus values under a dynamic oscillation. Mesenchymal stem cells adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel contraction behaviors, possibly due to the stiffer networks and higher resistance to cell-mediated degradation. Furthermore, the osteogenic differentiation of cells, including the expression of bone-associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together with the physico-chemical and mechanical properties, the cellular behaviors observed within 3D gel matrices, being different from the previous approaches reported on 2D substrates, provide new information on the feasibility and usefulness of the silica-collagen system for stem cell culture and tissue engineering of hard tissues. © The Author(s) 2015.
Novel royal jelly proteins identified by gel-based and gel-free proteomics.
Han, Bin; Li, Chenxi; Zhang, Lan; Fang, Yu; Feng, Mao; Li, Jianke
2011-09-28
Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.
Genetic diversity of functional food species Spinacia oleracea L. by protein markers.
Rashid, M; Yousaf, Z; Haider, M S; Khalid, S; Rehman, H A; Younas, A; Arif, A
2014-01-01
Exploration of genetic diversity contributes primarily towards crop improvement. Spinaciaoleracea L. is a functional food species but unfortunately the genetic diversity of this vegetable is still unexplored. Therefore, this research was planned to explore the genetic diversity of S. oleracea by using morphological and protein markers. Protein profile of 25 accessions was generated on sodium dodecyl sulphate polyacrylamide gel. Total allelic variation of 27 bands was found. Out of these, 20 were polymorphic and the rest of the bands were monomorphic. Molecular weights of the bands ranged from 12.6 to 91.2 kDa. Major genetic differences were observed in accession 20541 (Peshawar) followed by 20180 (Lahore) and 19902 (AVRDC). Significant differences exist in the protein banding pattern. This variation can further be studied by advanced molecular techniques, including two-dimensional electrophoresis and DNA markers.
Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi
2016-01-01
Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.
Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi
2016-01-01
Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252
Starita-Geribaldi, Mireille; Samson, Michel; Guigonis, Jean-Marie; Pointis, Georges; Fenichel, Patrick
2008-06-01
Two isoforms of human cytoplasmic isocitrate dehydrogenase (IDPc) of close molecular weights and different isoelectric points were identified in human seminal plasma (SP) by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). These two isoforms were detected in the normospermic men SP and their expressions were markedly altered in patients with testicular seminoma, the most frequent testicular germ cell cancer (TGCC): increase of the more acidic spot and decrease of the more basic one. Since oligospermia has been considered as a high risk pathological condition for developing a testicular cancer, the two IDPc isoforms were analyzed in SP of a group of secretory azoospermic patients. In this group the two spots displayed similar variations of expression to those observed in testicular seminoma. These results propose IDPc as a promising SP biomarker of testicular seminoma. Whether IDPc alteration in secretory azoospermia is predictive of testicular seminoma remains to be elucidated. (c) 2007 Wiley-Liss, Inc.
[Influence of different sol-gel system on the luminescence of nanocrystalline ZnO powder].
Guo, Shu-xia; Zhang, Xing-tang; Zhang, Zhong-suo; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang
2005-08-01
ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of powder samples was examined by XRD and TEM. The results indicate that the two ZnO samples have the same crystal and energy band structure. Their photoluminescence (PL) spectra in ultraviolet region are analogous, but their photoluminescence (PL) spectra in visible region are different. The reason is that the two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.
[Influence of different sol-gel systems on the luminescence of nanocrystalline ZnO powders].
Guo, Shu-xia; Zhang, Zhong-suo; Zhang, Xing-tang; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang
2005-11-01
ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of the powdersamples was examined by XRD and TEM. The results indicate that two ZnO samples have the same crystal and energy band structure. Their photolurminescence (PL) spectra in the ultraviolet region are analogous, but their photoluminescence (PL) spectra in the visible region are different. The reason is that two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.
Kimura, Kosei; Wada, Akira; Ueta, Masami; Ogata, Akihiko; Tanaka, Satoru; Sakai, Akiko; Yoshida, Hideji; Fushitani, Hideo; Miyamoto, Akiko; Fukushima, Masakazu; Uchiumi, Toshio; Tanigawa, Nobuhiko
2010-11-01
Many auxiliary functions of ribosomal proteins (r-proteins) have received considerable attention in recent years. However, human r-proteins have hardly been examined by proteomic analysis. In this study, we isolated ribosomal particles and subsequently compared the proteome of r-proteins between the DLD-1 human colon cancer cell line and its 5-fluorouracil (5-FU)-resistant sub-line, DLD-1/5-FU, using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis, which has a superior ability to separate basic proteins, and we discuss the role of r-proteins in 5-FU resistance. Densitometric analysis was performed to quantify modulated proteins, and protein spots showing significant changes were identified by employing matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Three basic proteins (L15, L37 and prohibitin) which were significantly modulated between DLD-1 and DLD-1/5-FU were identified. Two proteins, L15 and L37, showed down-regulated expression in DLD-1/5-FU in comparison to DLD-1. Prohibitin, which is not an r-protein and is known to be localized in the mitochondria, showed up-regulated expression in DLD-1/5-FU. These 3 proteins may be related to 5-FU resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Oostrom, Martinus; Truex, Michael J.
2016-01-12
Injectable slow-release permanganate gel (ISRPG), formed by mixing KMnO 4 solution with fumed silica powder, may have a potential application in remediating chlorinated solvent plumes in groundwater. A series of batch, column, and flow cell experiments has been completed to test the gel behavior under a variety of conditions. The experiments have provided information on ISRPG rheology, permanganate (MnO 4 - ) release dynamics and distribution, and trichloroethene (TCE) degradation by ISRPG-released oxidant. The gel possesses remarkable shear thinning characteristics, resulting in a relative low viscosity during mixing, and facilitating its subsurface injection and distribution. Batch tests revealed that MnOmore » 4 - was diffused out from ISRPG into water while the gel did not dissolve or disperse into water but maintained its initial shape. Column experiments showed that MnO 4 - release from ISRPG lasted considerably longer than the release from aqueous solution. TCE degradation by ISRPG-released MnO 4 - was much more effective than that when MnO 4 - was delivered using aqueous solution injection. In two-dimensional flow cell experiments, it was demonstrated that ISRPG slowly released a long-lasting low concentration MnO 4 - plume sufficient for remediation and sustainable in an aquifer for a long period of time.« less
Caititu: a tool to graphically represent peptide sequence coverage and domain distribution.
Carvalho, Paulo C; Junqueira, Magno; Valente, Richard H; Domont, Gilberto B
2008-10-07
Here we present Caititu, an easy-to-use proteomics software to graphically represent peptide sequence coverage and domain distribution for different correlated samples (e.g. originated from 2D gel spots) relatively to the full-sequence of the known protein they are related to. Although Caititu has a broad applicability, we exemplify its usefulness in Toxinology using snake venom as a model. For example, proteolytic processing may lead to inactivation or loss of domains. Therefore, our proposed graphic representation for peptides identified by two dimensional electrophoresis followed by mass spectrometric identification of excised spots can aid in inferring what kind of processing happened to the toxins, if any. Caititu is freely available to download at: http://pcarvalho.com/things/caititu.
Protein expression in Arabidopsis thaliana after chronic clinorotation
NASA Technical Reports Server (NTRS)
Piastuch, William C.; Brown, Christopher S.
1994-01-01
Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional sodium doedocyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.
Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi
2015-09-01
The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd. Copyright © 2015 Elsevier Inc. All rights reserved.
Separation and partial characterization of guinea-pig caseins.
Craig, R K; McIlreavy, D; Hall, R L
1978-01-01
1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:697741
Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru
2014-09-01
This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications
Lee, Bae Hoon; Lum, Nathaniel; Seow, Li Yuan; Lim, Pei Qi; Tan, Lay Poh
2016-01-01
Gelatin methacryloyl (GelMA) has been increasingly considered as an important bioink material due to its tailorable mechanical properties, good biocompatibility, and ability to be photopolymerized in situ as well as printability. GelMA can be classified into two types: type A GelMA (a product from acid treatment) and type B GelMA (a product from alkali treatment). In current literature, there is little research on the comparison of type A GelMA and type B GelMA in terms of synthesis, rheological properties, and printability for bioink applications. Here, we report the synthesis, rheological properties, and printability of types A and B GelMA. Types A and B GelMA samples with different degrees of substitution (DS) were prepared in a controllable manner by a time-lapse loading method of methacrylic anhydride (MAA) and different feed ratios of MAA to gelatin. Type B GelMA tended to have a slightly higher DS compared to type A GelMA, especially in a lower feed ratio of MAA to gelatin. All the type A and type B GelMA solutions with different DS exhibited shear thinning behaviours at 37 °C. However, only GelMA with a high DS had an easy-to-extrude feature at room temperature. The cell-laden printed constructs of types A and B GelMA at 20% w/v showed around 75% cell viability. PMID:28773918
Comparative proteomics of leaves found at different stem positions of maize seedlings.
Chen, Yi-Bo; Wang, Dan; Ge, Xuan-Liang; Zhao, Biligen-Gaowa; Wang, Xu-Chu; Wang, Bai-Chen
2016-07-01
To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ultrapure glass optical waveguide development in microgravity by the sol-gel process
NASA Technical Reports Server (NTRS)
Mukherjee, S. P.
1980-01-01
The alkali-borosilicate system was selected as the glass system for the preparation of ultrapure low loss glasses suitable for optical communication. The effect of different oxide contents on the absorption loss was critically reviewed. One composition was chosen to develop the gel preparation procedure in the alkali-borosilicate system. In addition, several procedures for the preparation of gels based on two different approaches were developed. The influence of different preparation parameters were investigated qualitatively. Several conclusions are drawn from the results.
Protein Changes in Macrophages Induced by Plasma from Rats Exposed to 35-GHz Millimeter Waves
2010-12-01
HumanEffectiveness Directorate, Air Force Research Laboratory, Brooks City-Base,Texas A macrophage assay and proteomic screening were used to...mW/cm2 until core temperature reached 41.0 8C. Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to...stimulation. Proteins of interest were identified using peptide mass fingerprinting. Compared to plasma from sham- exposed rats, plasma from
Process of forming a sol-gel/metal hydride composite
Congdon, James W [Aiken, SC
2009-03-17
An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.
Gozal, David; Jortani, Saeed; Snow, Ayelet B.; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Kim, Jinkwan; Capdevila, Oscar Sans
2009-01-01
Rationale: Sleep studies are laborious, expensive, inaccessible, and inconvenient for diagnosing obstructive sleep apnea (OSA) in children. Objectives: To examine whether the urinary proteome uncovers specific clusters that are differentially expressed in the urine of children with OSA. Methods: Two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry proteomics followed by validation with western blot of ELISA. Measurements and Main Results: Morning urine proteins from 60 children with polysomnographically confirmed OSA and from matched children with primary snoring (n = 30) and control subjects (n = 30) were assessed. A total of 16 proteins that are differentially expressed in OSA were identified, and 7 were confirmed by either immunoblots or ELISA. Among the latter, receiver–operator curve analyses of urinary concentrations of uromodulin, urocortin-3, orosomucoid-1, and kallikrein assigned favorable predictive properties to these proteins. Furthermore, combinatorial approaches indicated that the presence of values beyond the calculated cutoff concentrations for three or more of the proteins yielded a sensitivity of 95% and a specificity of 100%. Conclusions: Proteomic approaches reveal that pediatric OSA is associated with specific and consistent alterations in urinary concentrations of specific protein clusters. Future studies aiming to validate this approach as a screening method of habitually snoring children appears warranted. PMID:19797158
Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi
2015-12-10
D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression. Copyright © 2015 Elsevier B.V. All rights reserved.
Mobility of long-chain DNA in two-dimensional artificial gels
NASA Astrophysics Data System (ADS)
Turner, Stephen W. P.; Han, Jongyoon; Craighead, Harold G.
2000-03-01
In this study, a two-dimensional array of nanofabricated obstacles is used as an artificial gel to study the electrophoretic mobility dependence of DNA as a function of pore size, molecule length and electric field. Limitations in feature size have prevented previous studies from testing the crossover from the separating to the non-separating regime predicted by the biased reptation model of Lumpkin, Dejardin and Zimm[1] and the modified model of Duke, Semenov and Viovy.[2] That limitation is overcome in this work with the use of electron beam lithography to define features as small as 30 nm. Attainment of these feature sizes was made possible by the use of a sacrificial-layer-based technique for fluidics fabrication.[3] A novel band-launching strategy is used to provide band separation data for the first time in this system. Molecule lengths between 5 and 150 kilobases are studied for electric field strengths from 0.1 to 20 Volts per meter. [1] O. Lumpkin, P. Dejardin and B. Zimm, Biopolymers, Vol. 24, 1573-1593 (1985) [2] T. Duke, A. Semenov and J. Viovy, Phys. Rev. Lett. Vol. 69, No. 22, 3260-3263 (1992) [3] S. Turner, A. Perez, A. Lopez, and H. Craighead, J. Vac. Sci. Technol. B 16(6) 3835-3840 (1998)
Modeling and simulation of a chemically stimulated hydrogel bilayer bending actuator
NASA Astrophysics Data System (ADS)
Sobczyk, Martin; Wallmersperger, Thomas
2017-04-01
Stimuli-sensitive hydrogels are polymeric materials, which are able to reversibly swell in water in response to evironmental changes. Relevant stimuli include variations of pH, temperature, concentration of specific ions etc. Stacked layers composed of multiple thin hydrogels - also referred to as hydrogel-layer composites - combine the distinct sensing properties of different hydrogels. This approach enables the development of sophisticated microfluidic devices such as bisensitive valves or fluid-sensitive deflectors. In order to numerically simulate the swelling of a polyelectrolyte hydrogel in response to an ion concentration change the multifield theory is adopted. The set of partial differential equations - including the description of the chemical, the electrical and the mechanical field - are solved using the Finite Element Method. Simulations are carried out on a two-dimensional domain in order to capture interactions between the different fields. In the present work, the ion transport is governed by diffusive and migrative fluxes. The distribution of ions in the gel and the solution bath result in an osmotic pressure difference, which is responsible for the mechanical deformation of the hydrogel-layer composite. The realized numerical investigation gives an insight into the evolution of the displacement field, the distribution of ions and the electric potential within the bulk material and the interface between gel and solution bath. The predicted behavior of the relevant field variables is in excellent agreement with results available in the literature.
Epperson, L. Elaine; Rose, James C.; Carey, Hannah V.
2010-01-01
Hibernators are unique among mammals in their ability to survive extended periods of time with core body temperatures near freezing and with dramatically reduced heart, respiratory, and metabolic rates in a state known as torpor. To gain insight into the molecular events underlying this remarkable physiological phenotype, we applied a proteomic screening approach to identify liver proteins that differ between the summer active (SA) and the entrance (Ent) phase of winter hibernation in 13-lined ground squirrels. The relative abundance of 1,600 protein spots separated on two-dimensional gels was quantitatively determined using fluorescence difference gel electrophoresis, and 74 unique proteins exhibiting significant differences between the two states were identified using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Proteins elevated in Ent hibernators included liver fatty acid-binding protein, fatty acid transporter, and 3-hydroxy-3-methylglutaryl-CoA synthase, which support the known metabolic fuel switch to lipid and ketone body utilization in winter. Several proteins involved in protein stability and protein folding were also elevated in the Ent phase, consistent with previous findings. In contrast to transcript screening results, there was a surprising increase in the abundance of proteins involved in protein synthesis during Ent hibernation, including several initiation and elongation factors. This finding, coupled with decreased abundance of numerous proteins involved in amino acid and nitrogen metabolism, supports the intriguing hypothesis that the mechanism of protein preservation and resynthesis is used by hibernating ground squirrels to help avoid nitrogen toxicity and ensure preservation of essential amino acids throughout the long winter fast. PMID:19923364
2010-11-01
minced finely with scissors, and transferred to a pre-cooled hand-held glass dounce homogenizer. The pestle was passed through the dounce until the...Nakajima, Sarin experiences in Japan : acute toxicity and long-term effects. Journal of the Neurological Sciences, 2006. 249(1): p. 76-85. 9. Shih, T.-M
Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir
2017-01-01
Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.
Tawde, Pallavi; Venkatesh, Yeldur P; Wang, Fang; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H
2006-10-01
The identity of allergenic almond proteins is incomplete. Our objective was to characterize patient IgE reactivity to a recombinant and corresponding native almond allergen. An almond cDNA library was screened with sera from patients with allergy for IgE binding proteins. Two reactive clones were sequenced, and 1 was expressed. The expressed recombinant allergen and its native counterpart (purified from unprocessed almond flour) were assayed by 1-dimensional and 2-dimensional gel electrophoresis, dot blot, and ELISA, and screened for cross-reactivity with grass profilin. The 2 selected clones encoded profilin (designated Pru du 4) sequences that differed by 2 silent mutations. By dot-blot analyses, 6 of 18 patient sera (33%) reacted with the recombinant Pru du 4 protein, and 8 of 18 (44%) reacted with the native form. ELISA results were similar. Almond and ryegrass profilins were mutually inhibitable. Two-dimensional immunoblotting revealed the presence of more than 1 native almond profilin isoform. The strength of reactivity of some patients' serum IgE differed markedly between assays and between native and recombinant profilins. Almond nut profilin is an IgE-binding food protein that is cross-reactive with grass pollen profilin and is susceptible to denaturation, resulting in variable reactivity between assay types and between patients. Serum IgE of nearly half of the tested patients with almond allergy reacts with almond nut profilin. Because most patients also had pollinosis, the well-known cross-reactivity between pollen and food profilins could account for this pattern of reactivity.
Martins, Luís Miguel Lourenço; Marques, Andreia Grilo; Pereira, Luísa Maria Dotti Silva; Goicoa, Ana; Semião-Santos, Saul José; Bento, Ofélia Pereira
2015-04-01
Specific immunotherapy has shown to be very useful for allergy control in dogs, with a common success rate ranging from 65% to 70%. However, this efficacy could probably be improved and the identification of individual allergomes, with the choice of more adequate molecular allergen pools for specific immunotherapy, being the strategy. To map Dermatophagoides pteronyssinus (Der p) allergens for mite-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to house-dust mite immunotherapy. To identify the Der p mite allergome for dogs, 20 individuals allergic to dust-mites and sensitized to Der p, were selected. The extract from Der p was submitted to isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes and immunoblottings were performed with patient sera. Allergen-bound specific IgE was detected. Eleven allergens were identified from isoelectric focusing (IEF), as well as from 1-D SDS PAGE. From 2-D SDS-PAGE, 24 spots were identified. Several similarities were found between dog and human allergograms and no absolute correlation between sensitization and allergy was observed either. As in humans, different individual allergograms do not seem to implicate different clinical patterns, but may influence the response to specific immunotherapy. The molecular epidemiology approach in veterinary allergy management, by the characterization of individual patients' allergoms and by choosing the best molecular allergen pool for each patient could also improve the efficacy of allergy immunotherapy.
Muroya, Susumu; Ohnishi-Kameyama, Mayumi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Chikuni, Koichi
2007-05-16
To investigate changes in myosin light chains (MyLCs) during postmortem aging of the bovine longissimus muscle, we performed two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results of fluorescent differential gel electrophoresis showed that two spots of the myosin regulatory light chain (MyLC2) at pI values of 4.6 and 4.7 shifted toward those at pI values of 4.5 and 4.6, respectively, by 24 h postmortem when rigor mortis was completed. Meanwhile, the MyLC1 and MyLC3 spots did not change during the 14 days postmortem. Phosphoprotein-specific staining of the gels demonstrated that the MyLC2 proteins at pI values of 4.5 and 4.6 were phosphorylated. Furthermore, possible N-terminal region peptides containing one and two phosphoserine residues were detected in each mass spectrum of the MyLC2 spots at pI values of 4.5 and 4.6, respectively. These results demonstrated that MyLC2 became doubly phosphorylated during rigor formation of the bovine longissimus, suggesting involvement of the MyLC2 phosphorylation in the progress of beef rigor mortis. Bovine; myosin regulatory light chain (RLC, MyLC2); phosphorylation; rigor mortis; skeletal muscle.
Spiral pattern in a radial displacement in a Hele-Shaw cell
NASA Astrophysics Data System (ADS)
Ban, Mitsumasa; Nagatsu, Yuichiro; Hayashi, Atsushi; Kato, Yoshihiro; Tada, Yutaka
2008-11-01
When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. We have experimentally shown that the pattern created by the displacement of a more-viscous fluid by a less-viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more-viscous sodium polyacrylate solution is displaced by a less-viscous trivalent iron ion (Fe^3+) solution with a sufficiently high concentration of Fe^3+. Another experiment in order to investigate the mechanism of spiral pattern formation revealed that an instantaneous chemical reaction takes place between the two fluids and at high Fe^3+ concentrations it produces a film of the gel at the contact plane. The gel is formed by three-dimensional network structures between the polyacrylate solution and the trivalent iron ion (Fe^3+) solution. We have proposed a physical model that the gel's film is responsible for the form of the spiral pattern.
DIGE Analysis Software and Protein Identification Approaches.
Hmmier, Abduladim; Dowling, Paul
2018-01-01
DIGE is a high-resolution two-dimensional gel electrophoresis method, with excellent dynamic range obtained by fluorescent tag labeling of protein samples. Scanned images of DIGE gels show thousands of protein spots, each spot representing a single or a group of protein isoforms. By using commercially available software, each protein spot is defined by an outline, which is digitized and correlated with the quantity of proteins present in each spot. Software packages include DeCyder, SameSpots, and Dymension 3. In addition, proteins of interest can be excised from post-stained gels and identified with conventional mass spectrometry techniques. High-throughput mass spectrometry is performed using sophisticated instrumentation including matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), MALDI-TOF/TOF, and liquid chromatography tandem mass spectrometry (LC-MS/MS). Tandem MS (MALDI-TOF/TOF or LC-MS/MS), analyzes fragmented peptides, resulting in amino acid sequence information, especially useful when protein spots are low abundant or where a mixture of proteins is present.
Lesson learned and dispelled myths: three-dimensional imaging of the human vagina.
Barnhart, Kurt T; Pretorius, E Scott; Malamud, Daniel
2004-05-01
Three-dimensional imaging of the human vagina demonstrates that the cross section can be a "W," rather than an "H," and that intravaginal gel can ascend into the endocervix and presumably into the endometrium.
Chen, J; Irianto, J; Inamdar, S; Pravincumar, P; Lee, D A; Bader, D L; Knight, M M
2012-09-19
This study adopts a combined computational and experimental approach to determine the mechanical, structural, and metabolic properties of isolated chondrocytes cultured within three-dimensional hydrogels. A series of linear elastic and hyperelastic finite-element models demonstrated that chondrocytes cultured for 24 h in gels for which the relaxation modulus is <5 kPa exhibit a cellular Young's modulus of ∼5 kPa. This is notably greater than that reported for isolated chondrocytes in suspension. The increase in cell modulus occurs over a 24-h period and is associated with an increase in the organization of the cortical actin cytoskeleton, which is known to regulate cell mechanics. However, there was a reduction in chromatin condensation, suggesting that changes in the nucleus mechanics may not be involved. Comparison of cells in 1% and 3% agarose showed that cells in the stiffer gels rapidly develop a higher Young's modulus of ∼20 kPa, sixfold greater than that observed in the softer gels. This was associated with higher levels of actin organization and chromatin condensation, but only after 24 h in culture. Further studies revealed that cells in stiffer gels synthesize less extracellular matrix over a 28-day culture period. Hence, this study demonstrates that the properties of the three-dimensional microenvironment regulate the mechanical, structural, and metabolic properties of living cells. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ward, Marilyn; Felix, Heather
2012-04-01
The purpose of this study was to assess the efficacy of two different BriteSmile hydrogen peroxide (H2O2) gels in a split-arch protocol for whitening teeth in a clinical setting when used in conjunction with a BriteSmile BS4000 lamp. Fifteen subjects were enrolled into a single-center clinical trial. The efficacy of the BriteSmile BS4000 lamp using both 15% H2O2 and 25% H2O2 gel formulations was tested. Study subjects were concurrently exposed to the whitening lamp with the 15% H2O2 gel placed on half of their anterior teeth and the 25% H2O2 gel on the other half for a total light and gel exposure of 60 minutes. The clinical data collected were shade score, gingival health, and dentinal hypersensitivity self-assessment. Changes in tooth shade were better for subjects exposed to the 25% gel and the dental whitening lamp (average 8.0 shade changes) compared to subjects exposed to the 15% gel and dental whitening lamp (average 7.6 shade changes) immediately after treatment. The same held true at the 7-day follow-up (25% gel average 7.4 shade changes versus 15% gel average 7.3 shade changes). However, these differences were not statistically significant. No reports of irritation of gingival soft tissues were documented. The relative changes in mean sensitivity scores were similar for both groups with no significant differences in mean sensitivity scores between the groups. Both concentrations of H2O2 gel and the whitening lamp combined gave study subjects an average of 8.0 (25% gel) and 7.6 (15% gel) shade changes immediately after treatment. The 7-day follow-up examination resulted in a regression of lightest to an average of 7.4 (25% gel) and 7.3 (15% gel). It was concluded that the use of the chairside whitening light and either 15% or 25% hydrogen peroxide gel is safe and effective for whitening teeth in 1 hour.
Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells.
Gebhard, Christiane; Miller, Ingrid; Hummel, Karin; Neschi Née Ondrovics, Martina; Schlosser, Sarah; Walter, Ingrid
2018-04-15
Osteosarcoma is an aggressive bone tumor with high metastasis rate in the lungs and affects both humans and dogs in a similar way. Three-dimensional tumor cell cultures mimic the in vivo situation of micro-tumors and metastases and are therefore better experimental in vitro models than the often applied two-dimensional monolayer cultures. The aim of the present study was to perform comparative proteomics of standard monolayer cultures of canine osteosarcoma cells (D17) and three-dimensional spheroid cultures, to better characterize the 3D model before starting with experiments like migration assays. Using DIGE in combination with MALDI-TOF/TOF we found 27 unique canine proteins differently represented between these two culture systems, most of them being part of a functional network including mainly chaperones, structural proteins, stress-related proteins, proteins of the glycolysis/gluconeogenesis pathway and oxidoreductases. In monolayer cells, a noticeable shift to more acidic pI values was noticed for several proteins of medium to high abundance; two proteins (protein disulfide isomerase A3, stress-induced-phosphoprotein 1) showed an increase of phosphorylated protein species. Protein distribution within the cells, as detected by immunohistochemistry, displayed a switch of stress-induced-phosphoprotein 1 from the cytoplasm (in monolayer cultures) to the nucleus (in spheroid cultures). Additionally, Western blot testing revealed upregulated concentrations of metastasin (S100A4), triosephosphate isomerase 1 and septin 2 in spheroid cultures, in contrast to decreased concentrations of CCT2, a subunit of the T-complex. Results indicate regulation of stress proteins in the process of three-dimensional organization characterized by a hypoxic and nutrient-deficient environment comparable to tumor micro-metastases. Osteosarcoma is an aggressive bone tumor that early spreads to the lungs. Three-dimensional tumor cell cultures represent the avascular stage of micro-tumors and metastases, and should therefore represent a better experimental in vitro model compared to two-dimensional monolayer cultures. Significant differences have been reported in response to drug and radiation treatment between these two culture systems. A gel-based proteomic investigation was performed to compare protein patterns of a canine osteosarcoma cell line cultivated under those two conditions, to learn more about altered cell composition and its impact on cell behaviour. Due to the fact that the canine osteosarcoma is an accepted model for the human disease, results will be relevant for the human species as well. Copyright © 2018 Elsevier B.V. All rights reserved.
Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz
2014-01-01
Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB. PMID:25340555
Perlikowski, Dawid; Wiśniewska, Halina; Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz
2014-01-01
Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB.
Separation and characterization of needle and xylem maritime pine proteins.
Costa, P; Pionneau, C; Bauw, G; Dubos, C; Bahrmann, N; Kremer, A; Frigerio, J M; Plomion, C
1999-01-01
Two-dimensional gel electrophoresis (2-DE) and image analysis are currently used for proteome analysis in maritime pine (Pinus pinaster Ait.). This study presents a database of expressed proteins extracted from needles and xylem, two important tissues for growth and wood formation. Electrophoresis was carried out by isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second. Silver staining made it possible to detect an average of 900 and 600 spots on 2-DE gels from needles and xylem, respectively. A total of 28 xylem and 35 needle proteins were characterized by internal peptide microsequencing. Out of these 63 proteins, 57 (90%) could be identified based on amino acid similarity with known proteins, of which 24 (42%) have already been described in conifers. Overall comparison of both tissues indicated that 29% and 36% of the spots were specific to xylem and needles, respectively, while the other spots were of identical molecular weight and isoelectric point. The homology of spot location in 2-DE patterns was further validated by sequence analysis of proteins present in both tissues. A proteomic database of maritime pine is accessible on the internet (http://www.pierroton.inra.fr/genetics/2D/).
High solid loading aqueous base metal/ceramic feedstock for injection molding
NASA Astrophysics Data System (ADS)
Behi, Mohammad
2001-07-01
Increasing volume fraction of metal powder in feedstock provided lower shrinkage. Reduction of the shrinkage results in better dimensional precision. The rheology of the feedstock material plays an important role to allowing larger volume fractions of the metal powder to be incorporated in the feedstock formulations. The viscosity of the feedstock mainly depends on the binder viscosity, powder volume fraction and characteristics of metal powder. Aqueous polysaccharide agar was used as a baseline binder system for this study. The effect of several gel-strengthening additives on 1.5wt% and 2wt% agar gel was evaluated. A new gel-strengthening additive was found to be the most effective among the others. The effect of other additives such as glucose, sucrose and fructose on viscosity of baseline binder and feedstock was investigated. Two new agar based binder compositions were developed. The use of these new binder formulations significantly improved the volume fraction of the metal powder, the stability of the feedstock, and reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel metal powders, one gas atomized and, the other water atomized, were used for this research.
Measuring Dilution of Microbicide Gels with Optical Imaging
Drake, Tyler K.; Shah, Tejen; Peters, Jennifer J.; Wax, Adam; Katz, David F.
2013-01-01
We present a novel approach for measuring topical microbicide gel dilution using optical imaging. The approach compares gel thickness measurements from fluorimetry and multiplexed low coherence interferometry in order to calculate dilution of a gel. As a microbicide gel becomes diluted at fixed thickness, its mLCI thickness measurement remains constant, while the fluorimetry signal decreases in intensity. The difference between the two measurements is related to the extent of gel dilution. These two optical modalities are implemented in a single endoscopic instrument that enables simultaneous data collection. A preliminary validation study was performed with in vitro placebo gel measurements taken in a controlled test socket. It was found that change in slope of the regression line between fluorimetry and mLCI based measurements indicates dilution. A dilution calibration curve was then generated by repeating the test socket measurements with serial dilutions of placebo gel with vaginal fluid simulant. This methodology can provide valuable dilution information on candidate microbicide products, which could substantially enhance our understanding of their in vivo functioning. PMID:24340006
One plunge or two?--hand disinfection with alcohol gel.
Macdonald, Duncan J M; Mckillop, Elisabeth C A; Trotter, Sylvia; Gray, Alastair J R
2006-04-01
To compare health care workers' hand surface coverage using two different volumes of alcohol gel for hand disinfection. and methods. A total of 84 members of staff in our hospital were studied. Subjects were asked to disinfect their hands with alcohol gel containing a clear fluorescent substance. Performance was assessed by using UV light to identify areas which had been missed, and the total surface area missed was calculated. A total of 42 subjects received 3.5 ml of alcohol gel, and 42 age-, sex-, and job-matched subjects received 1.75 ml of alcohol gel. Significantly less area was missed when hand disinfecting with double the volume of alcohol gel; 1.23 versus 6.35% surface area was missed (P < 0.001). Doubling the volume of alcohol gel used for hand disinfection significantly improves the efficiency of coverage of the hands with alcohol gel. This may result in lower bacterial count on the hands and may reduce the spread of nosocomial infections including that of methicillin-resistant Staphylococcus aureus.
Keratin gel in the management of Epidermolysis bullosa.
Denyer, J; Marsh, C; Kirsner, R S
2015-10-01
Epidermolysis bullosa (EB) describes a number of genetically inherited conditions which cause skin fragility and minor trauma leading to skin damage, skin loss and wounding. Owing to the fragility of the skin and requirement for frequent dressing changes, at present, the optimal dressing(s) is not clear. Our objective was to assess the use of a keratin gel in the management of wounds in patients with different forms of EB. We treated patients with different types of EB and a range of wounds with a novel keratin gel. In a convenience sample of consecutive patients, we introduced the keratin gel into their treatment regimen maintaining other aspects of their care. Patients reported faster healing and more resilient healed skin. Of the ten patients treated in this pilot study, six found the gel effective; two found it ineffective; and in two patients, it caused itching leading to discontinuation of the treatment. The results of this case study series suggest that keratin gel can be useful in the management of EB and are consistent with previous published experiences.
Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.
Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L
2012-10-23
One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.
NASA Astrophysics Data System (ADS)
Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan
2017-08-01
A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.
Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype
Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas
2010-01-01
Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123
Refining and Mutual Separation of Rare Earths Using Biomass Wastes
NASA Astrophysics Data System (ADS)
Inoue, Katsutoshi; Alam, Shafiq
2013-10-01
Two different types of adsorption gels were prepared from biomass wastes. The first gel was produced from astringent persimmon peel rich in persimmon tannin, a polyphenol compound, which was prepared by means of simple dehydration condensation reaction using concentrated sulfuric acid for crosslinking. This adsorption gel was intended to be employed for the removal of radioactive elements, uranium (U(VI)) and thorium (Th(IV)), from rare earths. The second gel was prepared from chitosan, a basic polysaccharide, produced from shells of crustaceans such as crabs, shrimps, prawns, and other biomass wastes generated in marine product industry, by immobilizing functional groups of complexanes such as ethylendiaminetetraacetic acid and diethylentriaminepentaacetic acid (DTPA). This gel was developed for the mutual separation of rare earths. Of the two adsorption gels evaluated, the DTPA immobilized chitosan exhibited the most effective mutual separation among light rare earths.
Physicochemical properties of giant embryo rice Seonong 17 and Keunnunjami.
Chung, Soo Im; Lee, Sang Chul; Kang, Mi Young
2017-05-01
This study was carried out to determine the physicochemical properties of giant embryo rice "Seonong 17" and "Keunnunjami" in comparison with the normal embryo rice. Scanning electron microscopy revealed that Seonong 17 and Keunnunjami have larger embryo and that starch granules from Keunnunjami were more tightly packed with smaller air spaces between granules. Seonong 17 exhibited the lowest amylose content. Keunnunjami showed the highest protein content, pasting temperature, peak and breakdown viscosities, and gelatinization temperature and enthalpy. Both giant embryo rice samples contained significantly higher amounts of essential amino acids and unsaturated fatty acids than the normal rice. Proteomic analysis using two-dimensional gel electrophoresis revealed differences in the protein profile of Seonong 17 and Keunnunjami. The results could serve as baseline information in evaluating the quality of these two giant embryo rice cultivars and provide a better understanding of their potential uses and food industry applications.
Shin, Geewook; Lee, Hyungjun; Palaksha, K. J.; Kim, Youngrim; Lee, Eunyoung; Shin, Yongseung; Lee, Eunggoo; Park, Kyungdae
2006-01-01
The present study was undertaken to produce monoclonal antibodies (MAbs) against immunoglobulin (Ig) purified from black rockfish (Sebastes schlegeli Higendorf) serum using protein A, mannan binding protein, and goat IgG affinity columns. These three different ligands were found to possess high affinity for black rockfish serum Ig. All of the Igs purified eluted at only 0.46 M NaCl concentration in anion exchange column chromatography and consisted of two bands at 70 kDa and 25 kDa in SDS-PAGE; they also had similar antigenicity for MAbs to Ig heavy chain in immunoblot assays. Therefore, black rockfish Ig is believed to exist as a single isotype within serum. The MAbs produced against Ig heavy chain reacted specifically with spots distributed over the pI range from 4.8 to 5.6 with a molecular weight of 70 kDa on two dimensional gel electrophoresis immunoblot profiles. PMID:16871026
Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis.
Hegedüs, Eva; Kókai, Endre; Kotlyar, Alexander; Dombrádi, Viktor; Szabó, Gábor
2009-09-01
Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.
Chen, Chuchu; Yang, Chuang; Li, Suiyi; Li, Dagang
2015-12-10
We reported a highly conductive nanocomposite made with multiwalled carbon nanotubes (MWCNTs) and chitin nanofibers (ChNFs). The MWCNTs were dispersed into ChNFs by the simple process of vacuum-filtration, forming a three-dimensional network structure. In this approach, MWCNT acted as a filler to introduce electron channel paths throughout the ChNF skeleton. And then, a hybrid hydrogel system (20 wt.% NaOH, -18 °C) was applied to prepare the ChNF/MWCNT gel-film followed with drying process. It is found that the resultant ChNF/MWCNT gel-film exposed much more MWCNT areas forming denser structure due to the shrinking of ChNFs after the gelation treatment. Compared with ChNF/MWCNT film, the one treated under hydrogel system (ChNF/MWCNT gel-film) exhibited almost twice higher conductivity (9.3S/cm for 50 wt.% MWCNTs in gel-film; whereas 4.7S/cm for 50 wt.% MWCNTs in film). Moreover, the facile and low-cost of this conductive paper may have great potential in development of foldable electronic devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dueholm, M; Christensen, J W; Rydbjerg, S; Hansen, E S; Ørtoft, G
2015-06-01
To evaluate the diagnostic efficiency of two-dimensional (2D) and three-dimensional (3D) transvaginal ultrasonography, power Doppler angiography (PDA) and gel infusion sonography (GIS) at offline analysis for recognition of malignant endometrium compared with real-time evaluation during scanning, and to determine optimal image parameters at 3D analysis. One hundred and sixty-nine consecutive women with postmenopausal bleeding and endometrial thickness ≥ 5 mm underwent systematic evaluation of endometrial pattern on 2D imaging, and 2D videoclips and 3D volumes were later analyzed offline. Histopathological findings at hysteroscopy or hysterectomy were used as the reference standard. The efficiency of the different techniques for diagnosis of malignancy was calculated and compared. 3D image parameters, endometrial volume and 3D vascular indices were assessed. Optimal 3D image parameters were transformed by logistic regression into a risk of endometrial cancer (REC) score, including scores for body mass index, endometrial thickness and endometrial morphology at gray-scale and PDA and GIS. Offline 2D and 3D analysis were equivalent, but had lower diagnostic performance compared with real-time evaluation during scanning. Their diagnostic performance was not markedly improved by the addition of PDA or GIS, but their efficiency was comparable with that of real-time 2D-GIS in offline examinations of good image quality. On logistic regression, the 3D parameters from the REC-score system had the highest diagnostic efficiency. The area under the curve of the REC-score system at 3D-GIS (0.89) was not improved by inclusion of vascular indices or endometrial volume calculations. Real-time evaluation during scanning is most efficient, but offline 2D and 3D analysis is useful for prediction of endometrial cancer when good image quality can be obtained. The diagnostic efficiency at 3D analysis may be improved by use of REC-scoring systems, without the need for calculation of vascular indices or endometrial volume. The optimal imaging modality appears to be real-time 2D-GIS. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Explaining the texture properties of whey protein isolate/starch co-gels from fracture structures.
Fu, Wei; Nakamura, Takashi
2017-04-01
The effects of tapioca starch (TS) and potato starch (PS) on texture properties of whey protein isolate (WPI)/starch co-gels were investigated for fracture structures. We focused on two types of WPI network structures. In a fine-stranded structure at pH 6.8, the WPI/TS co-gel fractured similarly to the WPI single gel. The WPI/PS co-gel was broken at a lower strain and lower stress. In a random aggregation at pH 5.8, the WPI/TS co-gel reached a yielding point at a lower strain, whereas the WPI/PS co-gel fractured at a higher strain and higher stress. In the fracture structures, it was revealed that breaks occurred in different places in these cases, which could explain the different texture properties of samples. This study tries to explain the texture properties of WPI/starch co-gels from fracture structures and provides a reference to predict texture properties of the WPI/starch food system.
Liu, Yang; Kimura, Kazuhiro; Orita, Tomoko; Teranishi, Shinichiro; Suzuki, Katsuyoshi; Sonoda, Koh-Hei
2015-04-01
Scarring and contraction of the conjunctiva are common complications of many ocular diseases. We investigated the effects of all-trans-retinoic acid (ATRA) on the contractility of human Tenon's capsule fibroblasts (HTFs) cultured in a three-dimensional collagen gel. HTFs were cultured in a three-dimensional gel of type I collagen and in the absence or presence of transforming growth factor (TGF)-β, ATRA, or an inhibitor of matrix metalloproteinases (MMPs). Collagen gel contraction was evaluated by measurement of gel diameter. The release of MMPs and tissue inhibitors of metalloproteinases (TIMPs) into culture supernatants was assessed by immunoblot analysis and gelatin zymography. The release of lactate dehydrogenase activity from HTFs was measured with a colorimetric assay kit. ATRA inhibited TGF-β-induced collagen gel contraction mediated by HTFs in a concentration- and time-dependent manner. TGF-β induced the release of MMP-1, MMP-2 and MMP-3 by HTFs, and ATRA inhibited these effects of TGF-β on MMP-1 and MMP-3 release. ATRA also stimulated TIMP-1 release from HTFs in the presence of TGF-β. Furthermore, TGF-β-induced collagen gel contraction was blocked by the MMP inhibitor GM6001. ATRA did not exhibit cytotoxicity for HTFs. ATRA inhibited TGF-β-induced collagen gel contraction mediated by HTFs, likely in part by attenuating the production of MMP-1 and MMP-3 and by stimulating the production of TIMP-1. ATRA may therefore prove to be of clinical value for inhibition of scar formation in the conjunctiva. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.
2004-11-01
Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner ismore » further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.« less
A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication
Clement, Carlos E.; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong
2017-01-01
We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2) than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts. PMID:28772400
A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.
Clement, Carlos E; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong
2017-01-05
We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance ( c ≈ 10 μF/cm²) than that of conventional dielectrics such as SiO₂. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts.
Material Properties of Silicon Carbide Fibers with Continuously Applied Sol-Gel Alumina Coatings
1990-12-01
71 Coating Characterization ...................... 73 iii Two-Dimensional Plane Strain Analysis .................. 78 VI ...Axial Load in the Coating of Fiber Serie T ...... .82 vi List of Figures (continued) Figure Page 39. Tangential Stress Due to Axial Load in the Coating...residual stress will be presented 17 Fiur Vi o a CaFber EfIVfef Sic=’/. Figure 1. Sectional View of a Coated Fiber first, since these stresses are of
Hensold, J O; Housman, D E
1988-01-01
Two-dimensional protein gels were used to systematically assess changes in gene expression in Friend erythroleukemia cells after exposure to inducers of differentiation. A rapid decrease in expression of the stress protein HSP70 was observed after exposure to inducers. The kinetics of this change suggest that it may be related to the cellular events that regulate the onset of differentiation. Images PMID:3164440
Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana
2014-01-01
Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of gel properties produced by chemical reactions on viscous fingering
NASA Astrophysics Data System (ADS)
Ujiie, Tomohiro; Nagatsu, Yuichiro; Ban, Mitsumasa; Iwata, Shuichi; Kato, Yoshihito; Tada, Yutaka
2011-11-01
We have experimentally investigated viscous fingering with chemical reaction producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. For high concentration of ferric ion, viscous fingering pattern was changed into spiral pattern in the former system, whereas into fracture pattern in the latter system. We consider that the difference in the change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We have found that the gel in the former case is more elastic. Furthermore, we have discussed the relationship between the measured rheological properties and the observed spiral or fracturing patterns.
Upon Generating (2+1)-dimensional Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Bai, Yang; Wu, Lixin
2016-06-01
Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.
A bead-spring chain as a one-dimensional polyelectrolyte gel.
Manning, Gerald S
2018-05-23
The physical principles underlying expansion of a single-chain polyelectrolyte coil caused by Coulomb repulsions among its ionized groups, and the expansion of a cross-linked polyelectrolyte gel, are probably the same. In this paper, we analyze a "one-dimensional" version of a gel, namely, a linear chain of charged beads connected by Hooke's law springs. In the Debye-Hückel range of relatively weak Coulomb strength, where counterion condensation does not occur, the springs are realistically stretched on a nanolength scale by the repulsive interactions among the beads, if we use a spring constant normalized by the inverse square of the solvent Bjerrum length. The persistence length and radius of gyration counter-intuitively decrease when Coulomb strength is increased, if analyzed in the framework of an OSF-type theory; however, a buckling theory generates the increase that is consistent with bead-spring simulations.
Proteomic biomarkers in lung cancer.
Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L
2013-09-01
The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance.
Lau, C O; Tan, C H; Khoo, H E; Li, Q T; Yuen, R
1995-01-01
A purification procedure for Lophozozymus pictor toxin (LPTX) following ethanolic extraction of whole crab homogenate is described. The ethanol-extracted toxin (LPTX-E) had higher yield and specific activity than the hot aqueous-extracted one (LPTX-H). It was found that LPTX-E was fluorescent and cochromatographed with LPTX-H on two-dimensional thin-layer chromatography. Although LPTX-E, LPTX-H, and palytoxin (P. caribaeorum, PTX) had similar migration and retention times when analysed on high performance capillary electrophoresis and gel permeation-high performance liquid chromatography respectively, LPTX-E and LPTX-H were both fluorescent in contrast to PTX. In addition, LPTX-E had a different retention time compared with PTX when chromatographed on reversed phase high performance liquid chromatography in the solvent system 80% acetonitrile and 0.02 M Tris-HCl, pH 7.2, at a 4:1 ratio, respectively, indicating some differences in their chemical structures.
Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.
Fan, Changjiang; Wang, Dong-An
2017-10-01
Hydrogels have been promising candidate scaffolds for cell delivery and tissue engineering due to their tissue-like physical properties and capability for homogeneous cell loading. However, the encapsulated cells are generally entrapped and constrained in the submicron- or nanosized gel networks, seriously limiting cell growth and tissue formation. Meanwhile, the spatially confined settlement inhibits attachment and spreading of anchorage-dependent cells, leading to their apoptosis. In recent years, macroporous hydrogels have attracted increasing attention in use as cell delivery vehicles and tissue engineering scaffolds. The introduction of macropores within gel scaffolds not only improves their permeability for better nutrient transport but also creates space/interface for cell adhesion, proliferation, and extracellular matrix deposition. Herein, we will first review the development of macroporous gel scaffolds and outline the impact of macropores on cell behaviors. In the first part, the advantages and challenges of hydrogels as three-dimensional (3D) cell culture scaffolds will be described. In the second part, the fabrication of various macroporous hydrogels will be presented. Third, the enhancement of cell activities within macroporous gel scaffolds will be discussed. Finally, several crucial factors that are envisaged to propel the improvement of macroporous gel scaffolds are proposed for 3D cell culture and tissue engineering.
Radiofrequency radiation effects on the common bean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomkins, K.; Griggs, L.; Myles, E.L.
Our environment is bombarded daily with thousands of objects we can visually detect. However, invisible to humans are the electromagnetic waves that penetrate our environment. Electromagnetic waves consist of a large spectrum of waves including the harmful gamma rays, x-rays, and ultraviolet rays. The question that has increased tremendously is: can low energy electromagnetic waves become harmful to living organisms? The purpose of this study is to determine the effect of radiofrequency radiation on protein synthesis of the common bean. Phaseolus vulgaris (kidney bean) was surface-sterilized and allowed to germinate on Mushurage and Skoog`s medium for 1 week. Hypocotyls weremore » wounded and placed on media to initiate callus production. Six petri dishes containing 1 g of callus were used in the experiment. Three dishes were exposed to 100kH in a Crawford cell for 24h. The remaining three petri dishes with callus were used as a control. After the exposure period, the protein from callus was extracted and analyzed by one-dimensional gel electrophoresis. The results show that hypocotyl growth was not different between control and experimental groups after 24 h. The result of one-dimensional gel electrophoresis did not show observable differences in protein synthesized by the control and experimental groups. Analysis of protein synthesis is still ongoing.« less
Kwon, S Y; Park, S D; Park, K
2014-08-01
Numerous modalities have been used to treat keloids and hypertrophic scars; however, optimal treatment has not yet been established. Therefore, prevention is the mainstay. Recently, silicone gel and tretinoin cream have been shown to be useful for the prevention of hypertrophic scars and keloids. However, there has been no comparative study of the two topical agents thus far. To determine and compare the effectiveness of silicone gel and tretinoin cream for the prevention of hypertrophic scars and keloids resulting from postoperative wounds and for scar improvement. This study included 26 patients with 44 different wounds. The postoperative wounds were divided into two treatment groups and one control group. The patients in the first and second treatment group applied silicone gel and tretinoin cream, respectively, twice a day on their wounds after their stitches were removed. In contrast, the control group patients did not apply anything. We used the Modified Vancouver Scar Scale to quantitatively examine the effectiveness of silicone gel and tretinoin cream just after stitches removal, and at 4, 8, 12 and 24 weeks after removal of the stitches. The silicone gel and tretinoin cream effectively prevented hypertrophic scars and keloids and improved scar effects in the two treatment groups compared with those in the control group. However, no significant difference was noted between the two treatment groups. To prevent hypertrophic scars and keloids and improve scars after surgery, application of a silicone gel or a tretinoin cream to the wounds is needed. © 2013 European Academy of Dermatology and Venereology.
Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra
2017-06-01
In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.
Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.
Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis
Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656
Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings
2014-01-01
Background Although protein phosphorylation is an important post-translational modification affecting protein function and metabolism, dynamic changes in this process during ontogenesis remain unexplored in woody angiosperms. Methods Phosphorylated proteins from leaves of three apple seedlings at juvenile, adult vegetative and reproductive stages were extracted and subjected to alkaline phosphatase pre-treatment. After separating the proteins by two-dimensional gel electrophoresis and phosphoprotein-specific Pro-Q Diamond staining, differentially expressed phosphoproteins were identified by MALDI-TOF-TOF mass spectrometry. Results A total of 107 phosphorylated protein spots on nine gels (three ontogenetic phases × three seedlings) were identified by MALDI-TOF-TOF mass spectrometry. The 55 spots of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) large-chain fragments varied significantly in protein abundance and degree of phosphorylation among ontogenetic phases. Abundances of the 27 spots corresponding to Rubisco activase declined between juvenile and reproductive phases. More extensively, phosphorylated β-tubulin chain spots with lower isoelectric points were most abundant during juvenile and adult vegetative phases. Conclusions Protein phosphorylation varied significantly during vegetative phase change and floral transition in apple seedlings. Most of the observed changes were consistent among seedlings and between hybrid populations. PMID:24904238
Nasal protein profiles in work-related asthma caused by different exposures.
Suojalehto, H; Lindström, I; Wolff, H; Puustinen, A
2018-03-01
The mechanisms of work-related asthma (WRA) are incompletely delineated. Nasal cell samples may be informative about processes in the lower airways. Our aim was to determine the nasal protein expression profiles of WRA caused by different kind of exposures. We collected nasal brush samples from 82 nonsmoking participants, including healthy controls and WRA patients exposed to (i) protein allergens, (ii) isocyanates and (iii) welding fumes the day after relevant exposure. The proteome changes in samples were analysed by two-dimensional difference gel electrophoresis, and the differentially regulated proteins found were identified by mass spectrometry. Immunological comparison was carried out using Western blot. We detected an average of 2500 spots per protein gel. Altogether, 228 protein spots were chosen for identification, yielding 77 different proteins. Compared to the controls, exposure to protein allergens had the largest effects on the proteome. Hierarchical clustering revealed that protein allergen- and isocyanate-related asthma had similar profiles, whereas asthma related to welding fumes differed. The highly overrepresented functional categories in the asthma groups were defence response, protease inhibitor activity, inflammatory and calcium signalling, complement activation and cellular response to oxidative stress. Immunological analysis confirmed the found abundance differences in galectin 10 and protein S100-A9 between the groups. Work-related asthma patients exposed to protein allergens and isocyanates elicit similar nasal proteome responses and the profiles of welders and healthy controls were alike. Revealed biological activities of the protein expression changes are associated with allergic inflammation and asthma. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Integration of gel-based proteome data with pProRep.
Laukens, Kris; Matthiesen, Rune; Lemière, Filip; Esmans, Eddy; Onckelen, Harry Van; Jensen, Ole Nørregaard; Witters, Erwin
2006-11-15
pProRep is a web application integrating electrophoretic and mass spectral data from proteome analyses into a relational database. The graphical web-interface allows users to upload, analyse and share experimental proteome data. It offers researchers the possibility to query all previously analysed datasets and can visualize selected features, such as the presence of a certain set of ions in a peptide mass spectrum, on the level of the two-dimensional gel. The pProRep package and instructions for its use can be downloaded from http://www.ptools.ua.ac.be/pProRep. The application requires a web server that runs PHP 5 (http://www.php.net) and MySQL. Some (non-essential) extensions need additional freely available libraries: details are described in the installation instructions.
Hayashi, Shin-Ichiro
2017-01-01
With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.
Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A
2004-08-01
In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.
Yadav, P Jaya Prakash; Ghosh, Goutam; Maiti, Biswajit; Aswal, Vinod K; Goyal, P S; Maiti, Pralay
2008-04-17
Thermoreversible gelation of poly(vinylidene fluoride) (PVDF) has been studied in a new series of solvents (phthalates), for example, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dihexyl phthalate (DHP) as a function of temperature and polymer concentration, both by test tube tilting and dynamic light scattering (DLS) method. The effect of aliphatic chain length (n) of diesters on the gelation kinetics, structure/microstructure and morphology of PVDF gels has been examined. Gelation rate was found to increase with increasing aliphatic chain length of diester. DLS results indicate that the sol-gel transformation proceeds via two-steps: first, microgel domains were formed, and then the infinite three-dimensional (3D) network is established by connecting microgels through polymer chains. The crystallites are responsible for 3D network for gelation in phthalates, and alpha-polymorph is formed during gelation producing higher amount of crystallinity with increasing aliphatic chain length of diester. Morphology of the networks of dried gels in different phthalates showed that fibril thickness and lateral dimensions decrease with higher homologues of phthalates. The scattering intensity is fitted with Debye-Bueche model in small-angle neutron scattering and suggested that both the correlation length and interlamellar spacing increases with n. A model has been proposed, based on electronic structure calculations, to explain the conformation of PVDF chain in presence of various phthalates and their complexes, which offer the cause of higher gelation rate for longer aliphatic chain length.
Proteomic analysis of zebrafish embryos exposed to simulated-microgravity
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing
Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics
Sol-Gel Manufactured Energetic Materials
Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.
2005-05-17
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Sol-gel manufactured energetic materials
Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.
2003-12-23
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Glycoproteomics of cerebrospinal fluid in neurodegenerative disease
NASA Astrophysics Data System (ADS)
Sihlbom, Carina; Davidsson, Pia; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.
2004-05-01
Cerebrospinal fluid (CSF) from individual patients with Alzheimer's disease (AD) was separated by narrow range two-dimensional (2D) gel electrophoresis and analyzed by electrospray FT-ICR MS in this glycoproteomic study. Because several altered proteins in the comparison between AD patients and healthy controls individuals are isoforms of glycoproteins, it is important to determine if the modifying glycans are also altered. FT-ICR MS and fragmentation of glycopeptides with infrared multiphoton dissociation (IRMPD) offers abundant fragment ions through breakage at the glycosidic linkages with excellent mass accuracy, which facilitates the structural determination of the site-specific N-linked glycosylation. We present results from a structural comparison of proteins from three AD patients and three control individuals of different glycosylated isomers of [alpha]-1-antitrypsin, [beta]-trace and apolipoprotein J.
NASA Astrophysics Data System (ADS)
Li, Xu; Xu, Yuan; He, Bin
2006-03-01
An experimental feasibility study was conducted on magnetoacoustic tomography with magnetic induction (MAT-MI). It is demonstrated that the two-dimensional MAT-MI system can detect and image the boundaries between regions of different electrical conductivities with high spatial resolution. Utilizing a magnetic stimulation coil, MAT-MI evokes magnetically induced eddy current in an object which is placed in a static magnetic field. Because of the existence of Lorenz forces, the eddy current in turn causes acoustic vibrations, which are measured around the object in order to reconstruct the electrical impedance distribution of the object. The present experimental results from the saline and gel phantoms are promising and suggest the merits of MAT-MI in imaging electrical impedance of biological tissue with high spatial resolution.
Fazal, Zeeshan; Pelowitz, Jennifer; Johnson, Patrick E; Harper, Jason C; Brinker, C Jeffrey; Jakobsson, Eric
2017-04-25
In order to design hybrid cellular/synthetic devices such as sensors and vaccines, it is important to understand how the metabolic state of living cells changes upon physical confinement within three-dimensional (3D) matrices. We analyze the gene expression patterns of stationary phase Saccharomyces cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and relate those patterns to known naturally occurring metabolic states. Silica encapsulation methods employed were lipid-templated mesophase silica thin films formed by cell-directed assembly (CDA), lipid-templated mesophase silica particles formed by spray drying (SD), and glycerol-doped silica gel monoliths prepared from an aqueous silicate (AqS+g) precursor solution. It was found that the cells for all three-encapsulated methods enter quiescent states characteristic of response to stress, albeit to different degrees and with differences in detail. By the measure of enrichment of stress-related gene ontology categories, we find that the AqS+g encapsulation is more amenable to the cells than CDA and SD encapsulation. We hypothesize that this differential response in the AqS+g encapsulation is related to four properties of the encapsulating gel: (1) oxygen permeability, (2) relative softness of the material, (3) development of a protective sheath around individual cells (visible in TEM micrographs vide infra), and (4) the presence of glycerol in the gel, which has been previously noted to serve as a protectant for encapsulated cells and can serve as the sole carbon source for S. cerevisiae under aerobic conditions. This work represents a combination of experiment and analysis aimed at the design and development of 3D encapsulation procedures to induce, and perhaps control, well-defined physiological behaviors.
Formulation development and evaluation of innovative two-polymer (SR-2P) bioadhesive vaginal gel.
Podaralla, Satheesh; Alt, Carsten; Shankar, Gita N
2014-08-01
The main objective of this investigation was to study the feasibility of developing a vaginal bioadhesive microbicide using a SRI's proprietary two-polymer gel platform (SR-2P). Several formulations were prepared with different combinations of temperature-sensitive polymer (Pluronic® F-127) and mucoadhesive polymer (Noveon® AA-1), producing gels of different characteristics. Prototype polymeric gels were evaluated for pH, osmolality, buffering capacity, and viscosity under simulated vaginal semen dilutions, and bioadhesivity using ex vivo mini pig vaginal tissues and texture analyzer. The pH of the polymeric gel formulations ranged from 5.1 to 6.4; the osmolality varied from 13 to 173 mOsm. Absolute viscosity ranged from 513 to 3,780 cPs, and was significantly reduced (1.5- to 3-fold) upon incubation with simulated vaginal and semen fluid mixture. Among the tested gels (indicated in the middle row as a molar ratio of a mixture of Noveon vs. Pluronic), only SR-2P retained gel structure upon dilution with simulated fluids and mild simulated coital stress. The pH of the SR-2P gel was maintained at about 4.6 in simulated vaginal fluid and also showed high peak force of adhesion in mini pig vaginal tissue. Furthermore, SR-2P gel caused no or only minimal irritation in a mouse vaginal irritation model. The results of this preliminary study demonstrated the potential application of SR-2P gel as a vaginal microbicide vehicle for delivery of anti-HIV agents.
Modeling the Dynamics of Gel Electrophorresis in the High School Classroom
ERIC Educational Resources Information Center
Saucedo, Skyler R.
2013-01-01
Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaya, T.; Takahashi, N.; Nishida, K.
2005-01-01
We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does includemore » only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.« less
Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution
Stellwagen, Nancy C.
2009-01-01
This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510
Analysis of electrophoresis performance
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.
NASA Astrophysics Data System (ADS)
Sobieski, Brian
As modern society begins to focus on sustainability and renewable resources there is a growing need for the polymer industry to develop more environmentally friendly materials and practices. Part of this movement can be seen in the use of recycled materials in new products and in the development of bio-based, biodegradable polymers. Bio-based, biodegradable polymers are produced from renewable carbon sources, such as vegetable oils, typically polymerized using fermentation reactions via bacteria, and are able to be consumed by bacteria in landfills to completely convert the polymers to water and CO2. One class of such polymers are poly(hydroxyalkanoate)'s (PHAs), which are chiral, aliphatic polyesters. Within this class of polyesters are poly(hydroxybutyrate) (PHB) and the copolymer poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), which have received extensive study due to their material properties as thermoplastics. Although the properties of PHB have been widely explored, much still remains to be understood about these promising biodegradable polymers. Specifically, PHB and its copolymers exhibit physical gelation in most solvents, yet the origin and mechanism of gelation and the properties of the resulting gel state are unknown. This research effort was primarily focused on investigating the physical gel state of PHBHx. Five goals were laid out and completed: determining the origin of gelation, the mechanism of gelation, the structure of the gel state, the properties of the gel state, and the effects of gelation on electrospun fibers of PHBHx. These goals were achieved through material characterization of the gel state utilizing infrared spectroscopy/two-dimensional correlation spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and many other analysis methods. Crystallization of the polymer in solution was found to cause gelation in PHBHx solutions, where the polymer crystals act as tie points forming an interconnected network. The process of crystallization in solution was determined to follow the same method as crystallization in the bulk, neat polymer as it is cooled from a molten state. Morphological studies revealed that the polymer forms sub-micron fibrils and ribbons in xxviii the gel system forming an interconnected polymer network. The utility of this morphology combined with the bio-compatibility of PHBHx were demonstrated through growth of stem cells on the gel samples. Surprisingly, the stem cells did not differentiate and thrived on the freeze-dried PHBHx gels. These results indicate that the gel state of PHBHx could be used as a tissue engineering scaffold whose material properties can be tuned to the desired application without the concern of the stem cells differentiating into an unwanted cell type. Combined with the ease of generation of the PHBHx gels, these results show promising potential for industrial production of excellent three-dimensional culturing scaffolds. It was also found that the gels do not show signs of aging after gelation is complete and that the polymer exists in the amorphous and primary alpha crystal phases when gelled. Electrospun fibers of the polymer in solution with a solvent that promotes gelation displayed a new morphology. Rather than the typical cylindrical fiber morphology, these fibers formed coiled fiber mats. It is proposed that the formation of crystals before the fibers are formed causes the fibers to collapse thus forming the coils. Additional research was conducted on the neat polymer itself to further explore its material properties. PHB and PHBHx tend to have multiple melting transitions when heated to the amorphous phase. This multiple melting behavior was caused by the same, primary crystal form recrystallizing and having a bimodal size distribution, rather than arising from two different crystal phases. Thermal degradation of the copolymers was also studied and the reaction pathway suggested, beginning with the formation of a six-member ring precursor leading to chain scission of the polymer. It was also found that the formation of this precursor may cause the higher 3HHx content copolymers to be slightly more stable at high temperatures due to steric hindrance. Strain-induced crystallization of the beta crystal of PHBHx was performed in the 13 mol % 3HHx PHBHx by stretching films of the copolymer. All the research conducted during this project were performed to generate additional applications and further the utility of this class of bio-based, biodegradable polyesters.
Kuchel, Philip W; Shishmarev, Dmitry; Puckeridge, Max; Levitt, Malcolm H; Naumann, Christoph; Chapman, Bogdan E
2015-12-01
(133)Cs nuclear magnetic resonance (NMR) spectroscopy was conducted on (133)Cs(+) in gelatin hydrogels that were either relaxed or stretched. Stretching generated a septet from this spin-7/2 nucleus, and its nuclear magnetic relaxation was studied via z-spectra, and two-dimensional nuclear Overhauser (NOESY) spectroscopy. Various spectral features were well simulated by using Mathematica and the software package SpinDynamica. Spectra of CsCl in suspensions of human erythrocytes embedded in gelatin gel showed separation of the resonances from the cation inside and outside the cells. Upon stretching the sample, the extracellular (133)Cs(+) signal split into a septet, while the intracellular peak was unchanged, revealing different alignment/ordering properties of the environment inside and around the cells. Differential interference contrast light microscopy confirmed that the cells were stretched when the overall sample was elongated. Analysis of the various spectral features of (133)Cs(+) reported here opens up applications of this K(+) congener for studies of cation-handling by metabolically-active cells and tissues in aligned states. Copyright © 2015 Elsevier Inc. All rights reserved.
Meyer, H W; Bunjes, H; Ulrich, A S
1999-06-01
The phase transition of hydrated brain sphingomyelin occurs at around 35 degrees C, which is close to the physiological temperature. Freeze-fracture electron microscopy is used to characterize different gel state morphologies in terms of solid-ordered and liquid-ordered phase states, according to the occurrence of ripples and other higher-dimensional bilayer deformations. Evidently, the natural mixed-chain sphingomyelin does not assume the flat L beta, phase but instead the rippled P beta, phase, with symmetric and asymmetric ripples as well as macroripples and an egg-carton pattern, depending on the incubation conditions. An unexpected difference was observed between samples that are hydrated above and below the phase transition temperature. When the lipid is hydrated at low temperature, a sponge-like network of bilayers is formed in the gel state, next to some normal lamellae. The network loses its ripples during cold-incubation, which indicates the formation of a liquid-ordered (lo) gel phase. Ripples re-appear upon warming and the sponge-like network disintegrates spontaneously and irreversibly into small vesicles above the phase transition.
2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.
Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen
2016-11-15
Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne.
Mokhtari, Fatemeh; Faghihi, Gita; Basiri, Akram; Farhadi, Sadaf; Nilforoushzadeh, Mohammadali; Behfar, Shadi
2016-01-01
Acne vulgaris is the most common skin disease. Local and systemic antimicrobial drugs are used for its treatment. But increasing resistance of Propionibacterium acnes to antibiotics has been reported. In a double-blind clinical trial, 40 patients with mild to moderate acne vulgaris were recruited. one side of the face was treated with Clindamycin Gel 1% and the other side with Azithromycin Topical Gel 2% BID for 8 weeks and then they were assessed. Average age was 21. 8 ± 7 years. 82.5% of them were female. Average number of papules, pustules and comedones was similarly reduced in both groups and, no significant difference was observed between the two groups (P > 0.05, repeated measurs ANOVA). The mean indexes of ASI and TLC also significantly decreased during treatment in both groups, no significant difference was observed between the two groups. (P > 0.05, repeated measurs ANOVA). Also, impact of both drugs on papules and pustules was 2-3 times greater than the effect on comedones. Average satisfaction score was not significant between the two groups (P = 0.6, repeated measurs ANOVA). finally, frequency distribution of complications was not significant between the two groups (P > 0.05, Fisher Exact test). Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy.
Gkretsi, Vasiliki; Stylianou, Andreas; Louca, Maria; Stylianopoulos, Triantafyllos
2017-04-18
Breast cancer (BC) is the most common malignant disease in women, with most patients dying from metastasis to distant organs, making discovery of novel metastasis biomarkers and therapeutic targets imperative. Extracellular matrix (ECM)-related adhesion proteins as well as tumor matrix stiffness are important determinants for metastasis. As traditional two-dimensional culture does not take into account ECM stiffness, we employed 3-dimensional collagen I gels of increasing concentration and stiffness to embed BC cells of different invasiveness (MCF-7, MDA-MB-231 and MDA-MB-231-LM2) or tumor spheroids. We tested the expression of cell-ECM adhesion proteins and found that Ras Suppressor-1 (RSU-1) is significantly upregulated in increased stiffness conditions. Interestingly, RSU-1 siRNA-mediated silencing inhibited Urokinase Plasminogen Activator, and metalloproteinase-13, whereas tumor spheroids formed from RSU-1-depleted cells lost their invasive capacity in all cell lines and stiffness conditions. Kaplan-Meier survival plot analysis corroborated our findings showing that high RSU-1 expression is associated with poor prognosis for distant metastasis-free and remission-free survival in BC patients. Taken together, our results indicate the important role of RSU-1 in BC metastasis and set the foundations for its validation as potential BC metastasis marker.
Zeng, L. W.; Singh, R. S.
1993-01-01
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F(1) hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F(1) hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes. PMID:8224814
Zeng, L W; Singh, R S
1993-09-01
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F1 hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F1 hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.
Miscible viscous fingering involving production of gel by chemical reactions
NASA Astrophysics Data System (ADS)
Nagatsu, Yuichiro; Hoshino, Kenichi
2015-11-01
We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.
Tachibana, K; Marquardt, H; Yokoya, S; Friesen, H G
1988-10-01
We have reported that the secretion of at least 17 distinct peptides [including rat (rGH)] GH by cultured rat pituitary cells was stimulated by GH-releasing hormone and inhibited by somatostatin, when analyzed by two-dimensional polyacrylamide gel electrophoresis. Three of these peptides (no. 23, 24, and 25) were not rGH immunoreactive. In order to determine whether these three peptides are fragments, degradation products or posttranscriptionally modified forms of rGH, rGH and peptide no. 23 were characterized structurally. From partial peptide maps of rGH and peptide no. 23 by V8 protease or chymotrypsin, it appeared that these peptides were not related to each other. By N-terminal microsequencing of two-dimensional polyacrylamide gel electrophoresis purified peptide, we have obtained the sequence of 24 N-terminal amino acid residues of peptide no. 23. This sequence has no significant homology with rGH or any other reported protein sequence. Antiserum was generated against a synthetic oligopeptide corresponding to amino acid residues 3-24 of peptide no. 23. The antiserum cross-reacted with peptides no. 23, 24, and 25 upon Western blot analysis. These results indicate that peptide no. 23 has a novel structure unrelated to other pituitary hormones. Since its secretion is influenced by GH-releasing hormone and somatostatin, peptide no. 23 may represent a previously unrecognized structurally unique growth factor.
Sandovall, A.O.; Andrews, K.; Wahab, A.; Choudhary, M.I.; Ahmed, A.
2014-01-01
The RI-INBRE Centralized Core Facility was established in 2003 and participates annually in Undergraduate Summer Research Program. It provides students hands on research experience in key technologies in biomedical sciences. We present here the isolation and purification of water soluble proteins from ginger, a rhizome of the plant, Zingiber officinale. It is an important ingredient of species used in traditional South Asian cuisines. In Indian, Pakistani and Chinese folk medicine, ginger is used for gastro-intestinal disorders, nausea, vomiting, inflammatory diseases, muscle and joint pain. Limited studies have been reported on the bioactive proteins from ginger extract. The water soluble proteins were extracted from ginger root and successfully purified to homogeneity by using two-dimensional liquid chromatography (FPLC/RP-HPLC) approach. The ginger root was washed with distilled water; skin removed and then emulsified using an electric blender. Sample was stirred for four days at 4°C with and without protease inhibitor. Purification of a 42kDa protein was achieved by employing gel filtration, ion-exchange and reversed phase HPLC. The homogeneity of the protein was confirmed by SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. Future work will be conducted on the protein characterization using mass spectrometry and Edman protein sequencing. Supported by grant 5P20GM103430 from the National Institute of General Medical Sciences, NIH, USA.
Kornasiewicz, Oskar; Bojarczuk, Kamil; Bugajski, Marek; Golab, Jakub; Krawczyk, Marek
2012-10-01
Primary graft non-function (PNF) is a rare, life-threatening complication of liver transplantation. Increasing use of extended criteria donor pools and high-risk recipients seem to influence the incidence of PNF. Primary failure is associated with high patient morbidity and inferior graft survival. The only available treatment for PNF is emergency hepatic retransplantation, which is also correlated with significant morbidity and mortality. Therefore, researchers are working to identify risk factors of diagnostic value to prevent PNF. The current study attempted to explore liver proteomic patterns in patients with PNF. Using two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry (LC-MS), we compared liver protein homogenates from 3 patients with PNF to those obtained from 6 healthy liver samples to identify potential new biomarkers of PNF. Our comparisons revealed 21 proteins with differential expression (13 upregulated and 8 downregulated). Most of these proteins are involved in energy metabolism, lipid metabolism, peptide cleavage, cell differentiation, and apoptosis. Although none of these proteins appeared more than once in separate analyses, this preliminary study shows that two-dimensional gel electrophoresis and LC-MS may allow identification of characteristic proteins to be used as biomarkers of a life-threatening complication of liver transplantation. Larger-scale analyses could improve patient care by finding suitable prognostic and therapeutic options. These data represent the first global proteomic approach to study PNF.
Vödisch, Martin; Scherlach, Kirstin; Winkler, Robert; Hertweck, Christian; Braun, Hans-Peter; Roth, Martin; Haas, Hubertus; Werner, Ernst R; Brakhage, Axel A; Kniemeyer, Olaf
2011-05-06
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus.
Bjerneld, Erik J; Johansson, Johan D; Laurin, Ylva; Hagner-McWhirter, Åsa; Rönn, Ola; Karlsson, Robert
2015-09-01
A pre-labeling protocol based on Cy5 N-hydroxysuccinimide (NHS) ester labeling of proteins has been developed for one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. We show that a fixed amount of sulfonated Cy5 can be used in the labeling reaction to label proteins over a broad concentration range-more than three orders of magnitude. The optimal amount of Cy5 was found to be 50 to 250pmol in 20μl using a Tris-HCl labeling buffer at pH 8.7. Labeling protein samples with a fixed amount of dye in this range balances the requirements of sub-nanogram detection sensitivity and low dye-to-protein (D/P) ratios for SDS-PAGE. Simulations of the labeling reaction reproduced experimental observations of both labeling kinetics and D/P ratios. Two-dimensional electrophoresis was used to examine the labeling of proteins in a cell lysate using both sulfonated and non-sulfonated Cy5. For both types of Cy5, we observed efficient labeling across a broad range of molecular weights and isoelectric points. Copyright © 2015 Elsevier Inc. All rights reserved.
Fabrication of 3D Reconstituted Organoid Arrays by DNA-programmed Assembly of Cells (DPAC)
Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J
2016-01-01
Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) that are composed into specific three dimensional (3D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this unit, we describe DNA-programmed Assembly of Cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide “velcro,” allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids, and permits positioning constituent cells with single-cell resolution even within cultures several centimeters long. PMID:27622567
Analgesic effect of topical oral capsaicin gel in burning mouth syndrome.
Jørgensen, Mette Rose; Pedersen, Anne Marie Lynge
2017-03-01
To investigate the effectiveness of repeated topical application of oral capsaicin gel in two different concentrations for relief of burning/stinging sensations in patients with burning mouth syndrome (BMS). This randomized double-blind cross-over study included 22 female patients with BMS. The patients were randomized for topical application of either 0.01% or 0.025% oral capsaicin gel on the dorsal part of tongue three times daily for 14 days, followed by 14 days wash-out period, and finally treatment with the other concentration of oral gel three times daily for 14 days. A visual analogue scale (VAS) was used to assess the severity of pain five times during the intervention period. 18 patients completed the intervention. Their VAS score at baseline was 5.5 ± 0.6 cm (mean ± SD). Treatment with the two concentrations of capsaicin gels significantly improved the burning/stinging symptoms assessed on VAS compared with baseline (p = 0.002). There was no statistically significant difference between the two concentrations of the gels on relieving symptoms. Four patients dropped out during the intervention period due to gastrointestinal side-effects. Topical capsaicin might be an alternative for the short-term treatment of BMS. However, further studies are needed to investigate especially the gastro-intestinal side-effects which may limit its long-term use.
NASA Astrophysics Data System (ADS)
Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.
2013-06-01
This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yinfa, Ma.
Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will bemore » described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.« less
In situ ultrasound imaging of silk hydrogel degradation and neovascularization.
Leng, Xiaoping; Liu, Bin; Su, Bo; Liang, Min; Shi, Liangchen; Li, Shouqiang; Qu, Shaohui; Fu, Xin; Liu, Yue; Yao, Meng; Kaplan, David L; Wang, Yansong; Wang, Xiaoqin
2017-03-01
Ultrasound (US) is a useful technique to monitor morphological and functional changes of biomaterial implants without sacrificing the animal. Contrast-enhanced ultrasound (CEUS) along with two-dimensional (2D) US were used to characterize the biodegradation and neovascularization of silk protein (8 wt%) hydrogel implants in rats. Cylinder-shaped silk hydrogel plugs were implanted into the space between the hind limb thigh muscles in Wistar rats (n = 6). The increase of echogenicity in 2D US revealed tissue-ingrowth-accompanied gel degradation over 18 weeks. The shape and size of the implanted gels remained qualitatively unchanged until week 15, as confirmed by Bland and Altman analysis and visualization of retrieved samples. Using CEUS, neovascularization was monitored by the presence of microbubbles in the gel area, and the dynamic vascularization process was indicated by the contrast enhancement values, which showed a relatively low level (< 5 dB) during weeks 1-8 and significantly increased levels (around 20 dB at week 15 and > 35 dB at week 18), suggesting that major vascularization had occurred in the gel implants by this time point. Histological and scanning electron microscopic analysis of explants revealed time-dependent increases in the pore size of the gel matrix, the presence of endothelial and red blood cells and the number of blood vessels in the gel implants, indicating that degradation and vascularization did occur in silk gel implants during the time period. The present study demonstrates the use of US imaging for monitoring of in vivo degradation and vascularization of silk implants in a non-destructive way. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Susan A., E-mail: s.bernal@sheffield.ac.uk; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD; Provis, John L., E-mail: j.provis@sheffield.ac.uk
2013-11-15
Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclearmore » magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.« less
Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan
2018-03-01
Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.
Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering
Gu, Zhen; Jamal, Syed; Detamore, Michael S.
2013-01-01
Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275
Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality
NASA Astrophysics Data System (ADS)
Vogel, Nancy Amanda
Nanomaterials bridge the gap between bulk materials and molecular structures and are known for their unique material properties and highly functional nature which make them attractive for a variety of potential applications, from energy storage and pollution sensors to agricultural and biomedical products. These potential applications, coupled with advances in nanotechnology, have generated considerable interest in nanostructure research. The work presented in this dissertation focuses on two such nanostructures, electrospun nanofibers and nanodiamond particles, with an overarching goal of tailoring the material behavior for a desired outcome. Our first research theme focuses on realizing the full potential of chitosan electrospinning by understanding the mechanism that enables fiber formation through cyclodextrin complexation as a function of solution properties, solvent types, and cyclodextrin content. We demonstrate that cyclodextrin addition not only enables chitosan fiber formation, but also extends the composition and solvent window for nanofiber synthesis while introducing a variety of mat topologies, including three-dimensional, self-supporting mats. These fiber formation improvements cannot be fully explained by conventional electrospinning parameters, but instead seem to be related to the molecular interactions between chitosan and cyclodextrin. Our second research theme entails the modification of highly water soluble, poly(vinyl alcohol) (PVA) nanofibers dissolution properties via atomic layer deposition (ALD) post treatments. In this work, we demonstrate that applying different thicknesses of aluminum oxide nano-coatings can improve the stability of PVA nanofibers in high humidity conditions and significantly decrease the solubility of electrospun PVA mats in water, from seconds to multiple weeks. Controlling mat dissolution allows for the unique opportunity to modulate small molecule, such as drug, release from nanofibers without altering the core material so that prolonged release can be readily achieved from highly water soluble nanofibers. The final research theme focuses on gaining a fundamental understanding of a new class of materials, nanodiamond, so that a desired microstructure can be achieved via functionalization or manipulating processing parameters. In particular, we utilize both steady and dynamic rheology techniques to systematically investigate systems of nanodiamonds dispersed in model nonpolar (mineral oil) and polar (glycerol) media. In both cases, selfsupporting colloidal gels form at relatively low nanodiamond content; however, the gel behavior is highly dependent on the type of media used. Nanodiamonds dispersed in mineral oil exhibit characteristic colloidal gel behavior, with a rheological response that is independent of both frequency and time. However, nanodiamonds dispersed in glycerol exhibit a time dependent response, with the strength of the colloidal gels increasing several orders of magnitude. We attribute these rheological differences to changes in solvent complexity, where new particle-solvent and particle-particle interactions have the potential to delay optimal gel formation. In addition to colloidal gel formation, we use large oscillatory strains to probe the effect of processing parameters on microstructure disruption and recovery. The results indicate that the formation and rearrangement of the nanodiamond microstructures are concentration dependent for both media types; however, the recovery after breakdown is different for each system. Recovery of the nanodiamond/mineral oil gels is incomplete, with the strength of the recovered gel being significantly reduced. In contrast, the original strength of the nanodiamond/glycerol gels is recoverable as the system restructures with time. The practical implications of these results are significant as it suggest that shear history and solvent polarity play a dominant role in nanodiamond processing.
Morris, Jeffrey S
2012-01-01
In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods presented are applied to two specific proteomic technologies, MALDI-TOF and 2D gel electrophoresis, these methods and the other principles discussed in the paper apply much more broadly to other expression proteomics technologies.
Fan, Lei; Liu, Can; Chen, Xiuxing; Zou, Yan; Zhou, Zhengnan; Lin, Chenkai; Tan, Guoxin; Zhou, Lei; Ning, Chenyun; Wang, Qiyou
2018-05-30
Current treatment approaches for spinal cord injuries (SCIs) are mainly based on cellular transplantation. Induced pluripotent stem cells (iPSCs) without supply constraints and ethical concerns have emerged as a viable treatment option for repairing neurological disorders. However, the primarily limitations in the neuroregeneration field are uncontrolled cell differentiation, and low cell viability caused by the ischemic environment. The mechanical property of three-dimensional (3D) hydrogel can be easily controlled and shared similar characteristics with nerve tissue, thus promoting cell survival and controlled cell differentiation. We propose the combination of a 3D gelatin methacrylate (GelMA) hydrogel with iPSC-derived NSCs (iNSCs) to promote regeneration after SCI. In vitro, the iNSCs photoencapsulated in the 3D GelMA hydrogel survived and differentiated well, especially in lower-moduli hydrogels. More robust neurite outgrowth and more neuronal differentiation were detected in the soft hydrogel group. To further evaluate the in vivo neuronal regeneration effect of the GelMA hydrogels, a mouse spinal cord transection model was generated. We found that GelMA/iNSC implants significantly promoted functional recovery. Further histological analysis showed that the cavity areas were significantly reduced, and less collagen was deposited in the GelMA/iNSC group. Furthermore, the GelMA and iNSC combined transplantation decreased inflammation by reducing activated macrophages/microglia (CD68-positive cells). Additionally, GelMA/iNSC implantation showed striking therapeutic effects of inhibiting GFAP-positive cells and glial scar formation while simultaneously promoting axonal regeneration. Undoubtedly, use of this 3D hydrogel stem cell-loaded system is a promising therapeutic strategy for SCI repair.
Mustafa, Mehnaz G.; Petersen, John R.; Ju, Hyunsu; Cicalese, Luca; Snyder, Ned; Haidacher, Sigmund J.; Denner, Larry; Elferink, Cornelis
2013-01-01
Chronic hepatic disease damages the liver, and the resulting wound-healing process leads to liver fibrosis and the subsequent development of cirrhosis. The leading cause of hepatic fibrosis and cirrhosis is infection with hepatitis C virus (HCV), and of the patients with HCV-induced cirrhosis, 2% to 5% develop hepatocellular carcinoma (HCC), with a survival rate of 7%. HCC is one of the leading causes of cancer-related death worldwide, and the poor survival rate is largely due to late-stage diagnosis, which makes successful intervention difficult, if not impossible. The lack of sensitive and specific diagnostic tools and the urgent need for early-stage diagnosis prompted us to discover new candidate biomarkers for HCV and HCC. We used aptamer-based fractionation technology to reduce serum complexity, differentially labeled samples (six HCV and six HCC) with fluorescent dyes, and resolved proteins in pairwise two-dimensional difference gel electrophoresis. DeCyder software was used to identify differentially expressed proteins and spots picked, and MALDI-MS/MS was used to determine that ApoA1 was down-regulated by 22% (p < 0.004) in HCC relative to HCV. Differential expression quantified via two-dimensional difference gel electrophoresis was confirmed by means of 18O/16O stable isotope differential labeling with LC-MS/MS zoom scans. Technically independent confirmation was demonstrated by triple quadrupole LC-MS/MS selected reaction monitoring (SRM) assays with three peptides specific to human ApoA1 (DLATVYVDVLK, WQEEMELYR, and VSFLSALEEYTK) using 18O/16O-labeled samples and further verified with AQUA peptides as internal standards for quantification. In 50 patient samples (24 HCV and 26 HCC), all three SRM assays yielded highly similar differential expression of ApoA1 in HCC and HCV patients. These results validated the SRM assays, which were independently confirmed by Western blotting. Thus, ApoA1 is a candidate member of an SRM biomarker panel for early diagnosis, prognosis, and monitoring of HCC. Future multiplexing of SRM assays for other candidate biomarkers is envisioned to develop a biomarker panel for subsequent verification and validation studies. PMID:24008390
Simoneau, P; Louisy-Louis, N; Plenchette, C; Strullu, D G
1994-06-01
Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors.
Simoneau, Philippe; Louisy-Louis, Nathalie; Plenchette, Christian; Strullu, Désiré Georges
1994-01-01
Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors. Images PMID:16349273
Fontanillo, Miriam; Angulo-Pachón, César A; Escuder, Beatriu; Miravet, Juan F
2013-12-15
The reaction between succinic anhydride and a diamine derived from L-valine should afford efficiently a molecular gelator. Based on this reaction, it should be feasible to prepare molecular gels at room temperature, avoiding the conventional thermal treatment required for the solubilization of the gelator, by in situ, simultaneous, synthesis and gelation. The gels prepared by in situ and conventional heating-cooling protocols could present important differences relevant for potential practical applications of these materials. The gelator was synthesized by reaction of succinic anhydride and a diamine derived from L-valine, affording two new amide bonds. The molecular gels were studied by IR, NMR, electron microscopy, X-ray diffraction and DSC. The results indicate that different polymorphic fibrillar networks are formed depending on the gel preparation method, highlighting how the properties of molecular gels can be tuned in this way. Significant differences between thermal and in situ gels were found in properties such as thermal stability, thixotropic behavior or release of an entrapped dye. In situ synthesis-gelation has also been shown to provide gels in media such as oleic acid which cannot be jellified by conventional heating-cooling procedures. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin
2016-09-08
An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.
Ioannides, D; Rigopoulos, D; Katsambas, A
2002-09-01
Topical application of isotretinoin and adapalene has proved effective in treating acne vulgaris. Both drugs demonstrate therapeutic advantages and less irritancy over tretinoin, the most widely used treatment for acne. They both act as retinoid agonists, but differ in their affinity profile for nuclear and cytosolic retinoic acid receptors. To compare the efficacy and tolerability of adapalene gel 0.1% and isotretinoin gel 0.05% in the treatment of acne vulgaris of the face, in a randomized open-label clinical trial. Eighty patients were enrolled and were instructed to apply adapalene gel 0.1% or isotretinoin gel 0.05% once daily over a 12-week treatment period. Efficacy determination included noninflammatory and inflammatory lesion counts by the investigator and global evaluation of improvement. Cutaneous tolerance was assessed by determining erythema, scaling and burning with pruritus. Adapalene and isotretinoin gels were highly effective in treating facial acne. Adapalene gel produced greater reductions in noninflammatory and inflammatory lesion counts than did isotretinoin gel, but differences between treatments were not statistically significant. Adapalene gel was significantly better tolerated than isotretinoin gel during the whole treatment period. The two gels studied demonstrated comparable efficacy. When adapalene and isotretinoin were compared, significantly lower skin irritation was noted with adapalene, indicating that adapalene may begin a new era of treatment with low-irritant retinoids.
Process for preparing energetic materials
Simpson, Randall L [Livermore, CA; Lee, Ronald S [Livermore, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA; Swansiger, Rosalind W [Livermore, CA; Fox, Glenn A [Livermore, CA
2011-12-13
Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.
Composition and method for self-assembly and mineralization of peptide-amphiphiles
Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX
2012-02-28
The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
Composition and method for self-assembly and mineralization of peptide amphiphiles
Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX
2009-06-30
The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
Nakano, Keiichi; Tamura, Shogo; Otuka, Kohei; Niizeki, Noriyasu; Shigemura, Masahiko; Shimizu, Chikara; Matsuno, Kazuhiko; Kobayashi, Seiichi; Moriyama, Takanori
2013-07-15
Three-dimensional gel electrophoresis (3-DE), which combines agarose gel electrophoresis and isoelectric focusing/SDS-PAGE, was developed to characterize monoclonal proteins (M-proteins). However, the original 3-DE method has not been optimized and its specificity has not been demonstrated. The main goal of this study was to optimize the 3-DE procedure and then compare it with 2-DE. We developed a highly sensitive 3-DE method in which M-proteins are extracted from a first-dimension agarose gel, by diffusing into 150 mM NaCl, and the recovery of M-proteins was 90.6%. To validate the utility of the highly sensitive 3-DE, we compared it with the original 3-DE method. We found that highly sensitive 3-DE provided for greater M-protein recovery and was more effective in terms of detecting spots on SDS-PAGE gels than the original 3-DE. Moreover, highly sensitive 3-DE separates residual normal IgG from M-proteins, which could not be done by 2-DE. Applying the highly sensitive 3-DE to clinical samples, we found that the characteristics of M-proteins vary tremendously between individuals. We believe that our highly sensitive 3-DE method described here will prove useful in further studies of the heterogeneity of M-proteins. Copyright © 2013 Elsevier Inc. All rights reserved.
Optimizing Suprathel®-therapy by the use of Octenidine-Gel®.
Radu, C A; Gazyakan, E; Germann, G; Riedel, K; Reichenberger, M; Ryssel, H
2011-03-01
A prospective, randomized, non-blinded, clinical study was conducted to evaluate the feasibility and practicability as well as pain reduction and ease of handling of Flammazine® versus Octenidine-Gel® s a primary local antiseptic before synthetic skin substitute application in partial-thickness burns. Thirty patients with a median age of 42 years suffering from second-degree burns were included in the study. Burns were randomly selected, one area was treated with Flammazine®/gauze, another area in the same patient was treated with Octenidine-Gel®/gauze as initial antiseptic treatment. Within 24 h the first gauze change was performed followed by wound inspection, disinfection and synthetic skin substitute application. The study focused on patient pain score, analysis of wound bed and ease of handling of the two local antiseptic agents. There was a significant difference between Flammazine® versus Octenidine-Gel® regarding patient pain score and ease of handling. Octenidine-Gel® was less painful (p < 0.05) and easier to handle (p < 0.05). There was no significant difference for wound bed evaluation between the two antiseptic agents. A tendency for better wound bed preparation was seen with the use of Octenidine-Gel®. Based on the findings of this study Octenidine-Gel® is recommended as a local antiseptic agent, because when compared to Flammazine®, Octenidine-Gel® proved to be better in terms of ease of care, simplicity application, with gentler and faster detachment of the gel from wound surfaces and consequently far less pain during dressing changes. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
REINHARDT, K.; WONG, C. H.; GEORGIOU, A. S.
2008-01-01
SUMMARY The global increase of the human parasite, the common bed bug Cimex lectularius, calls for specific pest control target sites. The bed bug is also a model species for sexual conflict theory which suggests seminal fluids may be highly diverse. The species has a highly unusual sperm biology and seminal proteins may have unique functions. 1-D PAGE gels showed 40 to 50% band sharing between C. lectularius and another cimicid species, Afrocimex constrictus. However, adult, sexually rested C. lectularius males were found to store 5 to 7μg of seminal protein and with only 60μg of protein we obtained informative 2-D PAGE gels. These showed 79% shared protein spots between two laboratory populations, and more than half of the shared protein spots were detected in the mated female. Further analysis using liquid chromatography electrospray ionisation tandem mass spectrometry revealed that 26.5% of the proteins had matches among arthropods in data bases and 14.5% matched Drosophila proteins. These included ubiquitous proteins but also those more closely associated with reproduction such as moj 29, ubiquitin, the stress-related elongation factor EF-1alpha, a protein disulfide isomerase and an antioxidant, Peroxiredoxin 6. PMID:19091156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jitianu, Andrei; Cadars, Sylvian; Zhang, Fan
This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si–C bonds in the hybrid glasses and 8-membered ring structures in the Si–O–Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimersmore » (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous.« less
Jitianu, Andrei; Cadars, Sylvian; Zhang, Fan; Rodriguez, Gabriela; Picard, Quentin; Aparicio, Mario; Mosa, Jadra; Klein, Lisa C.
2017-01-01
This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si-C bonds in the hybrid glasses and 8-membered ring structures in the Si-O-Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimers (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous. PMID:28262904
Numerical modelling and experimental study of liquid evaporation during gel formation
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
Saad, Maged M; Kobayashi, Hajime; Marie, Corinne; Brown, Ian R; Mansfield, John W; Broughton, William J; Deakin, William J
2005-02-01
Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this limitation, a more sensitive proteomics-based strategy was developed. Secreted proteins from wild-type NGR234 were separated by two-dimensional gel electrophoresis, and the gel was compared to similar gels containing the proteins from a TTSS mutant (NGROmegarhcN). To identify the proteins, spots unique to the NGR234 gels were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and the data were compared to the sequence of the symbiotic plasmid of NGR234. A nonpolar mutant of one of these proteins was generated called NopB. NopB is required for Nop secretion but inhibits the interaction with Pachyrhizus tuberosus and augments nodulation of Tephrosia vogelii. Flavonoids and a functional TTSS are required for the formation of some surface appendages on NGR234. In situ immunogold labeling and isolation of these pili showed that they contain NopB.
Saad, Maged M.; Kobayashi, Hajime; Marie, Corinne; Brown, Ian R.; Mansfield, John W.; Broughton, William J.; Deakin, William J.
2005-01-01
Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this limitation, a more sensitive proteomics-based strategy was developed. Secreted proteins from wild-type NGR234 were separated by two-dimensional gel electrophoresis, and the gel was compared to similar gels containing the proteins from a TTSS mutant (NGRΩrhcN). To identify the proteins, spots unique to the NGR234 gels were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and the data were compared to the sequence of the symbiotic plasmid of NGR234. A nonpolar mutant of one of these proteins was generated called NopB. NopB is required for Nop secretion but inhibits the interaction with Pachyrhizus tuberosus and augments nodulation of Tephrosia vogelii. Flavonoids and a functional TTSS are required for the formation of some surface appendages on NGR234. In situ immunogold labeling and isolation of these pili showed that they contain NopB. PMID:15659692
NASA Astrophysics Data System (ADS)
Greenfield, Megan Ann
One of the great challenges in supramolecular chemistry is the design of molecules that can self-assemble into functional aggregates with well-defined three-dimensional structures and bulk material properties. Since the self-assembly of nanostructures is greatly influenced by both the nature of the self-assembling components and the environmental conditions in which the components assemble, this work explores how changes in the molecular design and the environment affect the properties of self-assembled structures. We first explore how to control the mechanical properties of self-assembled fibrillar networks by changing environmental conditions. We report here on how changing pH, screening ions, and solution temperature affect the gelation, stiffness, and response to deformation of peptide amphiphile gels. Although the morphology of PA gels formed by charge neutralization and salt-mediated charge screening are similar by electron microscopy, rheological measurements indicate that the calcium-mediated ionic bridges in CaCl2-PA gels form stronger intra- and inter-fiber crosslinks than the hydrogen bonds formed by the protonated carboxylic acid residues in HCl-PA gels. In contrast, the structure of PA gels changes drastically when the PA solution is annealed prior to gel formation. Annealed PA solutions are birefringent and can form viscoelastic strings of aligned nanofibers when manually dragged across a thin film of CaCl2. These aligned arrays of PA nanofibers hold great promise in controlling the orientation of cells in three-dimensions. Separately, we applied the principles of molecular design to create buckled membrane nanostructures that mimic the shape of viruses. When oppositely charged amphiphilic molecules are mixed they can form vesicles with a periodic two-dimensional ionic lattice that opposes the membrane's natural curvature and can result in vesicle buckling. Our results demonstrate that a large +3 to -1 charge imbalance between the cationic and anionic head groups of amphiphiles enables their co-assembly into small buckled vesicles. In contrast to previous reports, the structures described here form without the rigorous exclusion of salt and are tolerant to physiological salt concentrations. Our work opens a new path for exploring how ionic laterally correlated domains can influence the morphology of self-assembled nanostructures.
Dynamics of the sol—gel transition in organic—inorganic nanocomposites
NASA Astrophysics Data System (ADS)
Judeinstein, P.; Oliveira, P. W.; Krug, H.; Schmidt, H.
1994-03-01
Two different techniques have been used to follow the gelation of photochromic organic—inorganic nanocomposites. The variations of molecular and macromolecular motions in these complex systems have been analyzed. Photo-correlation spectroscopy probes the formation of the gel network. Forced Rayleigh scattering experiences the microstructure of the mixtures via the measurement of the translational diffusion coefficient of entrapped photoreactive targets. In the different mixtures, a drop of the network mobility could be observed around the sol to gel conversion, while the entrapped molecules do not experience the macroscopic transition.
Defect Detection on Carbon Fibre Reinforced Plastics (cfrp) with Laser Generated Lamb Waves
NASA Astrophysics Data System (ADS)
Focke, O.; Huke, P.; Hildebrandt, A.
2011-06-01
Standard ultrasound methods using a phased-array or a single transducer are commonly used for non-destructive evaluation (NDE) during manufacturing of carbon fiber reinforced plastics (CFRP) parts and certificated testing schemes were developed for individual parts and geometries. However, most testing methods need direct contact, matching gels and remain therefore time consuming. Laser-Ultrasonics is advantageous due to the contactless measurement technology and high accessibility even on complex parts. Despite the non-destructive testing with body waves, we show that the NDE can be expanded using two-dimensional surface (Lamb) waves for detection of delaminations close to the surface or small deteriorations caused by e.g. impacts. Lamb waves have been excited with a single transducer and with a short-pulse Laser with additionally producing A0-and S0-Lamb waves. The waves were detected with a shearography setup that allows for measuring two-dimensionally the displacement of a surface. Short integration times of the camera were realized using a pulsed ruby laser for illumination. As a consequence to the anisotropy the propagation in different directions exhibits individual characteristics like amplitude, damping and velocity. This has motivated to build up models for the propagation of Lamb waves and to compare them with experimental results.
James, G T; Yeoman, L C; Matsui, S i; Goldberg, A H; Busch, H
1977-05-31
The nonhistone chromatin protein, C-14, was extracted from chromatin of Novikoff hepatoma ascites cells and isolated in high purity as shown by its migration as a single dense spot on two-dimensional polyacrylamide gels. Its mobility on sodium dodecyl sulfate gels is consistent with a molecular weight of approximately 70 000. The amino acid composition shows that protein C-14 has an acidic:basic amino acid ratio of 1.8. Its amino terminal amino acid is lysine. Protein C-14 stimulated the incorporation of [3H]UMP into RNA by approximately 30% when added to naked DNA and homologous RNA polymerase I. A 30% stimulation of [3H]UMP incorporation into RNA was also found when protein C-14 was added to an E. coli RNA polymerase system containing either E. coli or Novikoff hepatoma DNA.
Three-dimensional printing fiber reinforced hydrogel composites.
Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M
2014-09-24
An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure the two inks into a single composite material. Spatial control of fiber distribution within the digital models allowed for the fabrication of a series of materials with a spectrum of swelling behavior and mechanical properties with physical characteristics ranging from soft and wet to hard and dry. A comparison with the "rule of mixtures" was used to show that the swollen composite materials adhere to standard composite theory. A prototype meniscus cartilage was prepared to illustrate the potential application in bioengineering.
Singh, R; Chénier, D; Bériault, R; Mailloux, R; Hamel, R D; Appanna, V D
2005-09-30
We demonstrate a facile blue native polyacrylamide gel electrophoresis (BN-PAGE) technique to detect two malate-generating enzymes, namely fumarase (FUM), malate synthase (MS) and four oxaloacetate-forming enzymes, namely pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), citrate lyase (CL) and aspartate aminotransferase (AST). Malate dehydrogenase (MDH) was utilized as a coupling enzyme to detect either malate or oxaloacetate in the presence of their respective substrates and cofactors. The latter four oxaloacetate-forming enzymes were identified by 2,6-dichloroindophenol (DCIP) and p-iodonitrotetrazolium (INT) while the former two malate-producing enzymes were visualized by INT and phenazine methosulfate (PMS) in the reaction mixtures, respectively. The band formed at the site of enzymatic activity was easily quantified, while Coomassie staining provided information on the protein concentration. Hence, the expression and the activity of these enzymes can be readily evaluated. A two-dimensional (2D) BN-PAGE or SDS-PAGE enabled the rapid purification of the enzyme of interest. This technique also provides a quick and inexpensive means of quantifying these enzymatic activities in normal and stressed biological systems.
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.
NASA Astrophysics Data System (ADS)
Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin
2009-04-01
The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing optical CT-scanned radiochromic gels allows for the acquisition of a self-consistent volumetric data set in a single exposure, with sufficient spatial resolution to accurately characterize small fields.
Shaaban, Omar M; Fetih, Gihan N; Abdellah, Noura H; Ismail, Saeyd; Ibrahim, Maggie A; Ibrahim, El-sayed A
2011-07-01
To compare the efficacy of a novel vaginal delivery system for metronidazole (0.8% MTZ in situ gel) versus a conventional MTZ vaginal gel product in the treatment of bacterial vaginosis (BV). All consecutive patients who presented to a tertiary care hospital with symptoms suggestive of BV were approached to participate in the study. Forty-two eligible participants were randomly assigned to either MTZ in situ gel or a conventional vaginal gel product twice daily for 5 days. All participants were re-examined after one and 4 weeks of the beginning of treatment to ensure cure of infection and any side-effects. Demographic criteria of the participants were comparable in the two treatment groups. The cure rate after one week from the treatment was 85% in the in situ gel group and 71.4% in the conventional vaginal gel group (P = 0.294), while after 4 weeks, the cure rate showed significant difference in the in situ gel group as compared to the conventional vaginal gel group (16/20 [80%]) and (9/19 [47.4%]), respectively (P = 0.034). Pilot testing showed that in situ MTZ vaginal gel is more effective than the conventional vaginal gel for long-term cure of BV. These findings suggest a novel and efficient long-term treatment of BV. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.
Guo, Minghui; Liu, Shucheng; Ismail, Marliya; Farid, Mohammed M; Ji, Hongwu; Mao, Weijie; Gao, Jing; Li, Chengyong
2017-07-15
Dense phase carbon dioxide (DPCD) could induce protein conformation changes. Myosin and shrimp surimi from Litopenaeus vannamei were treated with DPCD at 5-25MPa and 40-60°C for 20min. Myosin secondary structure was investigated by circular dichroism and shrimp surimi gel strength was determined using textural analysis to develop correlations between them. DPCD had a greater effect on secondary structure and gel strength than heating. With increasing pressure and temperature, the α-helix content of DPCD-treated myosin decreased, while the β-sheet, β-turn and random coil contents increased, and the shrimp surimi gel strength increased. The α-helix content was negatively correlated with gel strength, while the β-sheet, β-turn and random coil contents were positively correlated with gel strength. Therefore, when DPCD induced myosin to form a gel, the α-helix of myosin was unfolded and gradually converted to a β-sheet. Such transformations led to protein-protein interactions and cross-linking, which formed a three-dimensional network to enhance the gel strength. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bravo-Pérez, Manuel; Sánchez-López, José D.; Muñoz-Soto, Esther; Romero-Olid, María N.; Baca-García, Pilar
2013-01-01
Purpose: Alveolar osteitis (AO) is the most common postoperative complication of dental extractions. The purpose of this study was to compare the effectiveness of 1% versus 0.2% chlorhexidine (CHX) gel in reducing postoperative AO after surgical extraction of mandibular third molars, and assess the impact of treatment on the Oral HealthRelated Quality of Life (OHRQoL). Material and Methods: This clinical study was a randomized, double-blind clinical trial. Eighty eight patients underwent surgical extraction of one retained mandibular third molar with the intra-alveolar application of 0.2% CHX gel. Afterwards, they were assigned to one of two groups: 1% CHX gel (n=42) or 0.2% CHX gel (n=46). The patients applied the gel twice a day to the wound for one week. All patients were evaluated for AO. Results: In the 0.2% CHX gel group, 13% of AO incidence was found, while in the 1% CHX gel group, AO incidence was 7%, a difference that was not statistically significant. Variables such as sensation of pain and inflammation at baseline and during one week, as well as OHRQoL of the patients at 24 hours and 7 days post-extraction, gave no statistically significant differences. Conclusions: There are no significant differences in AO after surgical extraction of mandibular third molars, when comparing applying 1% CHX gel twice a day for 7 days with 0.2% CHX gel. Key words:Alveolar osteitis, chlorhexidine gel, third molar. PMID:23722126
2015-01-01
The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol–gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5–50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein–lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins. PMID:25062385
Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks
Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben
2015-01-01
When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839
Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan
2018-06-01
Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Cimmino, Flora; Spano, Daniela; Capasso, Mario; Zambrano, Nicola; Russo, Roberta; Zollo, Massimo; Iolascon, Achille
2007-07-01
Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which G beta2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer.
Blood Sampling and Preparation Procedures for Proteomic Biomarker Studies of Psychiatric Disorders.
Guest, Paul C; Rahmoune, Hassan
2017-01-01
A major challenge in proteomic biomarker discovery and validation for psychiatric diseases is the inherent biological complexity underlying these conditions. There are also many technical issues which hinder this process such as the lack of standardization in sampling, processing and storage of bio-samples in preclinical and clinical settings. This chapter describes a reproducible procedure for sampling blood serum and plasma that is specifically designed for maximizing data quality output in two-dimensional gel electrophoresis, multiplex immunoassay and mass spectrometry profiling studies.
Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach
2006-02-01
Anthony J Williams, X-C May Lu, Renwu Chen, Zhilin Liao, Rebeca Connors, Kevin K Wang, Ron L Hayes, Frank C Tortella, Jitendra R Dave. High throughput... YANG , A., et al. (2002). Evalu- ation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell...apoptosis. J. Biol. Chem. 279, 1030–1039. Kuida K., Zheng T. S., Na S., Kuan C., Yang D., Karasuyama H., Rakic P. and Flavell R. A. (1996) Decreased apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willard, K.E.; Thorsrud, A.K.; Munthe, E.
Human leukocyte proteins from more than 150 patients with rheumatoid arthritis, together with age- and sex-matched controls, were analyzed by use of the ISO-DALT technique of two-dimensional polyacrylamide gel electrophoresis. Patients with ankylosing spondylitis, polymyalgia rheumatica, psoriatic arthritis, calcium tendinitis, post-infectious arthritis, and asymmetrical seronegative arthritis were also included as positive controls. Synthesis of several proteins, referred to by number as members of the Rheuma set, is shown to increase in the leukocyte preparations from patients with classical rheumatoid arthritis. Several of these proteins are specific to monocytes or granulocytes; others are of unknown cellular origin, but appear to bemore » unique to rheumatoid arthritis. The Rheuma proteins appear to be indicators of disease activity, because their increased synthesis can be correlated with sedimentation rate and other clinical indices of rheumatoid disease activity.« less
Quantitative characterization of 3D deformations of cell interactions with soft biomaterials
NASA Astrophysics Data System (ADS)
Franck, Christian
In recent years, the importance of mechanical forces in directing cellular function has been recognized as a significant factor in biological and physiological processes. In fact, these physical forces are now viewed equally as important as biochemical stimuli in controlling cellular response. Not only do these cellular forces, or cell tractions, play an important role in cell migration, they are also significant to many other physiological and pathological processes, both at the tissue and organ level, including wound healing, inflammation, angiogenesis, and embryogenesis. A complete quantification of cell tractions during cell-material interactions can lead to a deeper understanding of the fundamental role these forces play in cell biology. Thus, understanding the function and role of a cell from a mechanical framework can have important implications towards the development of new implant materials and drug treatments. Previous research has contributed significant descriptions of cell-tissue interactions by quantifying cell tractions in two-dimensional environments; however, most physiological processes are three-dimensional in nature. Recent studies have shown morphological differences in cells cultured on two-dimensional substrates versus three-dimensional matrices, and that the intrinsic extracellular matrix interactions and migration behavior are different in three dimensions versus two dimensions. Hence, measurement techniques are needed to investigate cellular behavior in all three dimensions. This thesis presents a full-field imaging technique capable of quantitatively measuring cell traction forces in all three spatial dimensions, and hence addresses the need of a three-dimensional quantitative imaging technique to gain insight into the fundamental role of physical forces in biological processes. The technique combines laser scanning confocal microscopy (LSCM) with digital volume correlation (DVC) to track the motion of fluorescent particles during cell-induced or externally applied deformations. This method is validated by comparing experimentally measured non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression with the corresponding analytical solution. Utilization of a newly developed computationally efficient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement accuracy, in particular under large deformations. Using this technique, the full three-dimensional substrate displacement fields are experimentally determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the first study to show the highly three-dimensional structure of cell-induced displacement and traction fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from the traditional theories based on two-dimensional data. These results provide new insight into the dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the development of new three-dimensional cell motility and adhesion models. As this study reveals, the mechanical interactions of cells and their extracellular matrix appear to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for investigating the mechanics of cell-matrix interactions while providing a platform to access detailed information of the intricate biomechanical coupling for many cellular responses. Thus, this method has the capability to provide direct quantitative experimental data showing how cells interact with their surroundings in three dimensions and might stimulate new avenues of scientific thought in understanding the fundamental role physical forces play in regulating cell behavior.
Gelling Properties of Fish/Pork Mince Mixtures.
Liu, Ru; Zhao, Siming; Regenstein, Joe M; Liu, Qing; Yang, Hong; Xiong, Shanbai
2016-02-01
The gel properties of silver carp/pork mince mixtures were investigated as well as the protein structural changes and interactions during gelling using rheology, SEM, and FT-Raman spectroscopy. The breaking force values for gels containing 0% to 40% pork was significantly lower (P < 0.05) compared with gels containing 50% to 100% pork. Gels containing 70% to 100% pork had significantly higher (P < 0.05) breaking force values compared with gels containing 50% to 60% pork. Deformation values were more mixed. Dynamic rheological data suggested that mixing fish and pork at 3:7 could strengthen the gel network. The addition of 40% pork or above, significantly decreased (P < 0.05) the water retention of the gels compared with the 100% fish gels. The dimensional ordering of gels was also reduced by addition of pork. The reduced ordering was one of the reasons for the low water retention for fish/pork mixed gels. Raman spectral analysis confirmed that mixing fish and pork in 7:3 and 3:7 ratios could promote hydrophobic interactions such as bringing tyrosine residues into the intermolecular interface. The interactions in the 3:7 fish/pork mixed gels were favorable for forming a stronger gel. However, the interactions in the 7:3 fish/pork mixed gels were adverse. The water retention of gels was related to both molecular interactions and secondary structures of protein as well as the microstructure of the gels. © 2016 Institute of Food Technologists®
Effect of propolis gel on the in vitro reduction of dentin permeability
SALES-PERES, Silvia Helena de Carvalho; de CARVALHO, Flávia Negreiros; MARSICANO, Juliane Avansini; MATTOS, Maria Cecília; PEREIRA, José Carlos; FORIM, Moacir Rossi; da SILVA, Maria Fatima das Graças Fernandes
2011-01-01
Objective The aim of this study was to evaluate the capacity of potassium oxalate, fluoride gel and two kinds of propolis gel to reduce the hydraulic conductance of dentin, in vitro. Material and Methods The methodology used for the measurement of hydraulic conductance of dentin in the present study was based on a model proposed in literature. Thirty-six 1-mm-thick dentin discs, obtained from extracted human third molars were divided into 4 groups (n=9). The groups corresponded to the following experimental materials: GI-10% propolis gel, pH 4.1; GII-30% propolis gel; GIII-3% potassium oxalate gel, pH 4,1; and GIV-1.23% fluoride gel, pH 4.1, applied to the dentin under the following surface conditions: after 37% phosphoric acid and before 6% citric acid application. The occluding capacity of the dentin tubules was evaluated using scanning electron microscopy (SEM) at ×500, ×1,000 and ×2,000 magnifications. Data were analyzed statistically by two-way ANOVA and Tukey's test at 5% significance level. Results Groups I, II, III, IV did not differ significantly from the others in any conditions by reducing in hydraulic conductance. The active agents reduced dentin permeability; however they produced the smallest reduction in hydraulic conductance when compared to the presence of smear layer (P<0.05). The effectiveness in reducing dentin permeability did not differ significantly from 10% or 30% propolis gels. SEM micrographs revealed that dentin tubules were partially occluded after treatment with propolis. Conclusions Under the conditions of this study, the application of 10% and 30% propolis gels did not seem to reduce the hydraulic conductance of dentin in vitro, but it showed capacity of partially obliterating the dentin tubules. Propolis is used in the treatment of different oral problems without causing significant great collateral effects, and can be a good option in the treatment of patients with dentin sensitivity. PMID:21956588
Adhesive Properties of Polyacrylate Gels
NASA Astrophysics Data System (ADS)
Flanigan, Cynthia; Shull, Kenneth
1998-03-01
Soft, low-modulus gels provide an interesting opportunity to examine small adhesive interactions between two bodies in contact. As shown through dynamic rheological studies, our materials undergo a rapid gelation as they are cooled from a viscous liquid at elevated temperatures to a soft, elastic solid at room temperature. At low temperatures, the gels exhibit a linearly elastic response and display moduli close to 100Pa, thereby forming materials with great potential for quantifying weak adhesive interactions with a variety of bodies ranging from polymer surfaces to biological entities. Our current studies focus on investigating interfacial effects by performing axisymmetric adhesion tests with a model polyacrylate gel formed by diluting the copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) to a 5-15 percent solution in 2-ethyl hexanol, a selective solvent for the midblock. We have explored two different experimental geometries including a hemispherical rigid indenter of glass pressed into a gel layer of varying thicknesses, and a soft, gel cap in contact with a rigid polymer surface. By simultaneously measuring the applied load, displacement between the two bodies, and contact area during loading cycles, we are able to employ a linearly elastic fracture mechanics analysis to obtain estimates of the gel's modulus over a range of polymer concentrations, and G, the energy release rate.
Raman, Babu; Nandakumar, M P; Muthuvijayan, Vignesh; Marten, Mark R
2005-11-05
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions. Copyright (c) 2005 Wiley Periodicals, Inc.
A reference map of the Arabidopsis thaliana mature pollen proteome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noir, Sandra; Braeutigam, Anne; Colby, Thomas
The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of themore » identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome.« less
[Plasma proteomic analysis in children with infectious mononucleosis].
Ran, Zhi-Ling; Xiao, Bin; Liu, Hong-Rui; Liu, You-Ping; Sheng, Qiao-Ni
2015-03-01
To explore the abnormal expression of plasma proteins by analysis of proteomic expression profile in children with infectious mononucleosis (IM). Two dimensional gel electrophoresis (2-DE) followed by the mass spectrometry was used to examine important protein spots with different expression levels between children with IM and normal controls. Seven differential proteins were obtained: hemopexin, vitamin D binding protein, fetuin A, C-reactive protein, apolipoprotein A, haptoglobin and transthyretin. Compared with the control group, haptoglobin showed a higher expression level in children with IM, and the expression levels of the other proteins were obviously down-regulated. The expression changes of differential proteins identified in this study are all related with the liver acute injury, suggesting that children with IM are associated with acute liver injury. Further studies on the characteristics of above proteins will contribute to the diagnosis and treatment of pediatric IM.
Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels
NASA Astrophysics Data System (ADS)
Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.
1983-06-01
Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.
NASA Astrophysics Data System (ADS)
Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo
2012-08-01
The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.
Tünsmeyer, J; Bojarski, I; Nolte, I; Kramer, S
2009-07-01
To compare the effects of the Sirius rescue sheet with gel pads versus gel pads alone on intraoperative body temperature in dogs less than 10 kg. Forty small breed dogs undergoing elective surgical procedures were randomly assigned to two groups. One group was intraoperatively laid on warmed gel pads, and the other group was additionally wrapped in a Sirius rescue sheet. Oesophageal body temperature was determined every 10 minutes and compared between groups. Temperature of gel pads was measured preoperatively and postoperatively to compare heat loss of the gel pads between groups. The body temperature of dogs wrapped with the Sirius rescue sheet increased intraoperatively. In dogs just lying on warmed gel pads, a decrease in mean body temperature was revealed and mean body temperatures differed between groups after 40 minutes. Extent of heat loss from the gel pads did not differ between the groups. The Sirius rescue sheet, used in addition to warmed gel pads, led to higher intraoperative body temperatures in small breed dogs undergoing surgical procedures to the extremities and the head. The cost-effectiveness and ease of handling make this a useful addition to clinical practice.
Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo
2015-11-01
Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.
Thomas, Katherine K; Sanchez, Sixto; Garcia, Patricia J; Holmes, King K
2005-09-01
The objective of this study was to determine why different criteria for response to treatment of bacterial vaginosis (BV) led to markedly different conclusions about treatment efficacy in a randomized trial comparing metronidazole gel versus metronidazole/nystatin ovules. We compared the impact of two treatment regimens on individual components of Amsel and Nugent criteria at follow-up visits 14, 42, and 104 days after initiating treatment. Compared with gel, ovules more effectively eliminated amines, clue cells, and Gardnerella, Prevotella, or Mobiluncus morphotypes from vaginal fluid, thus achieving cure based on "usual" criteria (absence of BV by Amsel or Nugent criteria), but did not more effectively restore Lactobacillus morphotypes or lower vaginal pH, thus not meeting Federal Drug Administration (FDA) criteria for cure. Because early vaginal recolonization by lactobacilli was poor after both gel and ovules, FDA draft criteria for cure missed marked differences in treatment efficacies against Gardnerella, clue cells, and amines. Cure defined more "usually" may give more useful information.
Structural changes of malt proteins during boiling.
Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning
2009-03-09
Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.
Gold, M H; Foster, T D; Adair, M A; Burlison, K; Lewis, T
2001-07-01
Topical silicone gel sheeting has been used for more than 20 years to help reduce the size of hypertrophic scars and keloids. Its clinical efficacy and safety is well established. To determine whether topical silicone gel sheeting can be used to prevent hypertrophic scars and keloids from forming following dermatologic skin surgery. Patients undergoing skin surgery were stratified into two groups: those with no history of abnormal scarring (low-risk group) and those with a history of abnormal scarring (high-risk group). Following the procedure, patients within each group were randomized to receive either routine postoperative care or topical silicone gel sheeting (48 hours after surgery). Patients were followed for 6 months. In the low-risk group, there were no statistical differences between individuals using routine postoperative care or using topical silicone gel sheets. In the high-risk group, there was a statistical difference (39% versus 71%) between patients who did not develop abnormal scars and used topical silicone gel sheeting and patients who developed abnormal scars after routine postoperative treatment. Those individuals having a scar revision procedure also showed a statistical difference if topical silicone gel sheeting was used following surgery. Topical silicone gel sheeting, with a 20-year history of satisfaction in dermatology, now appears to be useful in the prevention of hypertrophic scars and keloids in patients undergoing scar revision.
Frkanec, Leo; Zinić, Mladen
2010-01-28
Bis(amino acid)- and bis(amino alcohol)oxalamide gelators represent the class of versatile gelators whose gelation ability is a consequence of strong and directional intermolecular hydrogen bonding provided by oxalamide units and lack of molecular symmetry due to the presence of two chiral centres. Bis(amino acid)oxalamides exhibit ambidextrous gelation properties, being capable to form gels with apolar and also highly polar solvent systems and tend to organise into bilayers or inverse bilayers in hydrogel or organic solvent gel assemblies, respectively. (1)H NMR and FTIR studies of gels revealed the importance of the equilibrium between the assembled network and smaller dissolved gelator assemblies. The organisation in gel assemblies deduced from spectroscopic structural studies are in certain cases closely related to organisations found in the crystal structures of selected gelators, confirming similar organisations in gel assemblies and in the solid state. The pure enantiomer/racemate gelation controversy is addressed and the evidence provided that rac-16 forms a stable toluene gel due to resolution into enantiomeric bilayers, which then interact giving gel fibres and a network of different morphology compared to its (S,S)-enantiomer gel. The TEM investigation of both gels confirmed distinctly different gel morphologies, which allowed the relationship between the stereochemical form of the gelator, the fibre and the network morphology and the network solvent immobilisation capacity to be proposed. Mixing of the constitutionally different bis(amino acid) and bis(amino alcohol)oxalamide gelators resulted in some cases in highly improved gelation efficiency denoted as synergic gelation effect (SGE), being highly dependent also on the stereochemistry of the component gelators. Examples of photo-induced gelation based on closely related bis(amino acid)-maleic acid amide and -fumaramide and stilbene derived oxalamides where gels form by irradiation of the solution of a non-gelling isomer and its photo-isomerisation into gelling isomer are provided, as well as examples of luminescent gels, gel-based fluoride sensors, LC-gels and nanoparticle-hydrogel composites.
Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E
2004-09-07
Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.
Bielejewski, Michal; Tritt-Goc, Jadwiga
2010-11-16
The dynamics of bulk toluene and toluene confined in the 1,2-O-(1-ethylpropylidene)-α-D-glucofuranose gel was studied using (1)H field-cycling nuclear magnetic resonance relaxometry. The proton spin-lattice relaxation time T(1) was measured as a function of the magnetic field strength and temperature. The observed dispersion in the frequency range 10(4)-10(6) Hz for the relaxation rate of toluene in the gel system give evidence of the interaction between the toluene and the gelator aggregates. The data were interpreted in terms of the two-fraction fast-exchange model. Additionally it was also shown that a cooling rate during gel preparation process influences the gel microstructure and leads to different gelator-solvent interactions as reflected in a different behavior of the proton spin-lattice relaxation rate of toluene within the gel observed at the low frequency range.
From a 2DE-gel spot to protein function: lesson learned from HS1 in chronic lymphocytic leukemia.
Apollonio, Benedetta; Bertilaccio, Maria Teresa Sabrina; Restuccia, Umberto; Ranghetti, Pamela; Barbaglio, Federica; Ghia, Paolo; Caligaris-Cappio, Federico; Scielzo, Cristina
2014-10-19
The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease's biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as "spots" on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells.
Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration.
Cui, Suxia; Hu, Jia; Guo, Shilei; Wang, Jie; Cheng, Yali; Dang, Xinxing; Wu, Lili; He, Yikun
2012-01-01
Physcomitrella patens is an extremely dehydration-tolerant moss. However, the molecular basis of its responses to loss of cellular water remains unclear. A comprehensive proteomic analysis of dehydration- and rehydration-responsive proteins has been conducted using quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE), and traditional 2-D gel electrophoresis (2-DE) combined with MALDI TOF/TOF MS. Of the 216 differentially-expressed protein spots, 112 and 104 were dehydration- and rehydration-responsive proteins, respectively. The functional categories of the most differentially-expressed proteins were seed maturation, defence, protein synthesis and quality control, and energy production. Strikingly, most of the late embryogenesis abundant (LEA) proteins were expressed at a basal level under control conditions and their synthesis was strongly enhanced by dehydration, a pattern that was confirmed by RT-PCR. Actinoporins, phosphatidylethanolamine-binding protein, arabinogalactan protein, and phospholipase are the likely dominant players in the defence system. In addition, 24 proteins of unknown function were identified as novel dehydration- or rehydration-responsive proteins. Our data indicate that Physcomitrella adopts a rapid protein response mechanism to cope with dehydration in its leafy-shoot and basal expression levels of desiccation-tolerant proteins are rapidly upgraded at high levels under stress. This mechanism appears similar to that seen in angiosperm seeds.
Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration
Cui, Suxia; Hu, Jia; Guo, Shilei; Wang, Jie; Cheng, Yali; Dang, Xinxing; Wu, Lili; He, Yikun
2012-01-01
Physcomitrella patens is an extremely dehydration-tolerant moss. However, the molecular basis of its responses to loss of cellular water remains unclear. A comprehensive proteomic analysis of dehydration- and rehydration-responsive proteins has been conducted using quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE), and traditional 2-D gel electrophoresis (2-DE) combined with MALDI TOF/TOF MS. Of the 216 differentially-expressed protein spots, 112 and 104 were dehydration- and rehydration-responsive proteins, respectively. The functional categories of the most differentially-expressed proteins were seed maturation, defence, protein synthesis and quality control, and energy production. Strikingly, most of the late embryogenesis abundant (LEA) proteins were expressed at a basal level under control conditions and their synthesis was strongly enhanced by dehydration, a pattern that was confirmed by RT-PCR. Actinoporins, phosphatidylethanolamine-binding protein, arabinogalactan protein, and phospholipase are the likely dominant players in the defence system. In addition, 24 proteins of unknown function were identified as novel dehydration- or rehydration-responsive proteins. Our data indicate that Physcomitrella adopts a rapid protein response mechanism to cope with dehydration in its leafy-shoot and basal expression levels of desiccation-tolerant proteins are rapidly upgraded at high levels under stress. This mechanism appears similar to that seen in angiosperm seeds. PMID:21994173
Stroud, Leah J; Šlapeta, Jan; Padula, Matthew P; Druery, Dylan; Tsiotsioras, George; Coorssen, Jens R; Stack, Colin M
2017-03-01
Certain clinical isolates of Tritrichomonas foetus infect the urogenital tract of cattle while others infect the gastrointestinal tract of cats. Previous studies have identified subtle genetic differences between these isolates with the term "genotype" adopted to reflect host origin. The aim of this work was to seek evidence of host-specific adaptation and to clarify the relationship between T. foetus genotypes. To do this we characterised the proteomes of both genotypes using two-dimensional gel electrophoresis (2DE) coupled with LC-MS/MS. Our comparative analysis of the data revealed that both genotypes exhibited largely similar proteoform profiles; however differentiation was possible with 24 spots identified as having a four-fold or greater change. Deeper analysis using 2DE zymography and protease-specific fluorogenic substrates revealed marked differences in cysteine protease (CP) expression profiles between the two genotypes. These variances in CP activities could also account for the pathogenic and histopathological differences previously observed between T. foetus genotypes in cross-infection studies. Our findings highlight the importance of CPs as major determinants of parasite virulence and provide a foundation for future host-parasite interaction studies, with direct implications for the development of vaccines or drugs targeting T. foetus. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Nedrelow, David S; Bankwala, Danesh; Hyypio, Jeffrey D; Lai, Victor K; Barocas, Victor H
2018-05-01
The mechanical behavior of collagen-fibrin (col-fib) co-gels is both scientifically interesting and clinically relevant. Collagen-fibrin networks are a staple of tissue engineering research, but the mechanical consequences of changes in co-gel composition have remained difficult to predict or even explain. We previously observed fundamental differences in failure behavior between collagen-rich and fibrin-rich co-gels, suggesting an essential change in how the two components interact as the co-gel's composition changes. In this work, we explored the hypothesis that the co-gel behavior is due to a lack of percolation by the dilute component. We generated a series of computational models based on interpenetrating fiber networks. In these models, the major network component percolated the model space but the minor component did not, instead occupying a small island embedded within the larger network. Each component was assigned properties based on a fit of single-component gel data. Island size was varied to match the relative concentrations of the two components. The model predicted that networks rich in collagen, the stiffer component, would roughly match pure-collagen gel behavior with little additional stress due to the fibrin, as seen experimentally. For fibrin-rich gels, however, the model predicted a smooth increase in the overall network strength with added collagen, as seen experimentally but not consistent with an additive parallel model. We thus conclude that incomplete percolation by the low-concentration component of a co-gel is a major determinant of its macroscopic properties, especially if the low-concentration component is the stiffer component. Models for the behavior of fibrous networks have useful applications in many different fields, including polymer science, textiles, and tissue engineering. In addition to being important structural components in soft tissues and blood clots, these protein networks can serve as scaffolds for bioartificial tissues. Thus, their mechanical behavior, especially in co-gels, is both interesting from a materials science standpoint and significant with regard to tissue engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kobayashi, Takashi; Nishizawa, Koji; Ogura, Keiji
2003-01-01
To determine whether urethral injection of anesthetic and lubricating agent before outpatient flexible cystoscopic examination is worthwhile regarding patient tolerance of pain. A randomized prospective study was conducted. A total of 133 consecutive men scheduled to undergo flexible cystoscopy were randomized to receive 11 mL of 0.2% oxybuprocaine hydrochloride gel (group 1), 11 mL of plain lubricating gel (group 2), or no gel injection (group 3). In every group, 2% lidocaine gel was applied to the fiberscope. Patients recorded the level of pain during gel instillation, scope insertion, and intravesical observation separately on a 100-mm visual analog self-assessment scale. Pain scores for gel instillation were approximately two thirds those for scope insertion and intravesical observation in groups 1 and 2. No significant difference was noted in the pain score of each group during either scope insertion or intravesical observation. Pain during intraurethral gel instillation is significant. Anesthetic gel instillation has no advantage compared with no-gel injection in men when lubricating gel is applied to a flexible fiberscope.
Antimicrobial efficacy of alcohol-based hand gels.
Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C
2010-03-01
In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Zhao, Lei; Huang, Jiahe; Zhang, Yuancheng; Wang, Tao; Sun, Weixiang; Tong, Zhen
2017-04-05
Facile preparation, rapid actuating, and versatile actions are great challenges in exploring new kinds of hydrogel actuators. In this paper, we presented a facile sticking method to prepare Janus bilayer and multilayer hydrogel actuators that benefited from a special tough and adhesive PAA-clay hydrogel. Combining physical and chemical cross-linking reagents, we endowed the PAA gel with both toughness and adhesion. This PAA gel was reinforced by further cross-linking with Fe 3+ . These two hydrogels with different cross-linking densities exhibited different swelling capabilities and moduli in the media manipulated by pH and ionic strength, thus acting as promising candidates for soft actuators. On the basis of these gels, we designed hydrogel actuators of rapid response in several minutes and precisely controlled actuating direction by sticking two hydrogel layers together. Elaborate soft actuators such as bidirectional bending flytrap, gel hand with grasp, open, and gesturing actions as well as word-writing actuator were prepared. This method could be generalized by using other stimuli-responsive hydrogels combined with the adhesive PAA gel, which would open a new way to programmable and versatile soft actuators.