Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy
NASA Astrophysics Data System (ADS)
Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.
2016-04-01
Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.
One- and two-dimensional dopant/carrier profiling for ULSI
NASA Astrophysics Data System (ADS)
Vandervorst, W.; Clarysse, T.; De Wolf, P.; Trenkler, T.; Hantschel, T.; Stephenson, R.; Janssens, T.
1998-11-01
Dopant/carrier profiles constitute the basis of the operation of a semiconductor device and thus play a decisive role in the performance of a transistor and are subjected to the same scaling laws as the other constituents of a modern semiconductor device and continuously evolve towards shallower and more complex configurations. This evolution has increased the demands on the profiling techniques in particular in terms of resolution and quantification such that a constant reevaluation and improvement of the tools is required. As no single technique provides all the necessary information (dopant distribution, electrical activation,..) with the requested spatial and depth resolution, the present paper attempts to provide an assessment of those tools which can be considered as the main metrology technologies for ULSI-applications. For 1D-dopant profiling secondary ion mass spectrometry (SIMS) has progressed towards a generally accepted tool meeting the requirements. For 1D-carrier profiling spreading resistance profiling and microwave surface impedance profiling are envisaged as the best choices but extra developments are required to promote them to routinely applicable methods. As no main metrology tool exist for 2D-dopant profiling, main emphasis is on 2D-carrier profiling tools based on scanning probe microscopy. Scanning spreading resistance (SSRM) and scanning capacitance microscopy (SCM) are the preferred methods although neither of them already meets all the requirements. Complementary information can be extracted from Nanopotentiometry which samples the device operation in more detail. Concurrent use of carrier profiling tools, Nanopotentiometry, analysis of device characteristics and simulations is required to provide a complete characterization of deep submicron devices.
Three-dimensional atomic arrangement around active/inactive dopant sites in boron-doped diamond
NASA Astrophysics Data System (ADS)
Kato, Yukako; Tsujikawa, Daichi; Hashimoto, Yusuke; Yoshida, Taisuke; Fukami, Shun; Matsuda, Hiroyuki; Taguchi, Munetaka; Matsushita, Tomohiro; Daimon, Hiroshi
2018-06-01
Boron-doped diamond has received significant attention as an advanced material for power devices owing to its high breakdown characteristics. To control the characteristics of diamond related to band conduction, it is essential to determine the atomic structure around dopants and to develop a method of controlling the atomic arrangement around dopants. We measured the photoelectron diffraction of a boron-doped diamond using a display-type ellipsoidal mesh analyzer to examine the dopant sites in heavily boron-doped diamond. The B 1s photoelectron spectrum shows two peaks for different chemical bonding sites. These two dopant sites were identified as the substitutional and interstitial sites in diamond.
Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments
NASA Astrophysics Data System (ADS)
Macfarlane, J. J.; Golovkin, I.; Kulkarni, S.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L. J.
2013-10-01
We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple 2-D plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and K α reemission from the dopant.
Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments
NASA Astrophysics Data System (ADS)
Macfarlane, Joseph; Golovkin, I.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L.
2012-10-01
We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and Kα reemission from the dopant, and to study the sensitivity of the emergent spectra to the dopant and the hot spot and ablator conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.
2016-01-18
Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less
Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.
2015-01-01
The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field. PMID:26481902
Plasmon excitations in doped square-lattice atomic clusters
NASA Astrophysics Data System (ADS)
Wang, Yaxin; Yu, Ya-Bin
2017-12-01
Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).
Plasma chemistry study of PLAD processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Shu; Brumfield, Kyle; Liu, Lequn Jennifer
2012-11-06
Plasma doping (PLAD) shows very different impurity profiles compared to the conventional beam-line-based ion implantations due to its non-mass separation property and plasma environment. There is no simulation for PLAD process so far due to a lack of a dopant profile model. Several factors determine impurity profiles of PLAD process. The most significant factors are: plasma chemistry and deposition/etching characteristics of multi-ion species plasmas. In this paper, we present plasma chemistry and deposition/etching characteristics of PLAD processes versus co-gas dilutions. Four dopant plasmas including B{sub 2}H{sub 6}, BF{sub 3}, AsH{sub 3}, and PH{sub 3}, and two non-dopant plasmas including CH{submore » 4} and GeH{sub 4} are studied and demonstrated.« less
Chee, Augustus K. W.
2016-01-01
Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347
NASA Astrophysics Data System (ADS)
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures
Lim, Joonwon; Narayan Maiti, Uday; Kim, Na-Young; Narayan, Rekha; Jun Lee, Won; Sung Choi, Dong; Oh, Youngtak; Min Lee, Ju; Yong Lee, Gil; Hun Kang, Seok; Kim, Hyunwoo; Kim, Yong-Hyun; Ouk Kim, Sang
2016-01-01
Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of −85° of phase angle at 120 Hz. PMID:26796993
NASA Astrophysics Data System (ADS)
Song, Yan; Wang, Xiaocha; Mi, Wenbo
2017-12-01
Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.
Doping of two-dimensional MoS2 by high energy ion implantation
NASA Astrophysics Data System (ADS)
Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang
2017-12-01
Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.
sp-d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets.
Muckel, Franziska; Delikanli, Savas; Hernández-Martínez, Pedro Ludwig; Priesner, Tamara; Lorenz, Severin; Ackermann, Julia; Sharma, Manoj; Demir, Hilmi Volkan; Bacher, Gerd
2018-03-14
In two-dimensional (2D) colloidal semiconductor nanoplatelets, which are atomically flat nanocrystals, the precise control of thickness and composition on the atomic scale allows for the synthesis of heterostructures with well-defined electron and hole wave function distributions. Introducing transition metal dopants with a monolayer precision enables tailored magnetic exchange interactions between dopants and band states. Here, we use the absorption based technique of magnetic circular dichroism (MCD) to directly prove the exchange coupling of magnetic dopants with the band charge carriers in hetero-nanoplatelets with CdSe core and manganese-doped CdS shell (CdSe/Mn:CdS). We show that the strength of both the electron as well as the hole exchange interactions with the dopants can be tuned by varying the nanoplatelets architecture with monolayer accuracy. As MCD is highly sensitive for excitonic resonances, excited level spectroscopy allows us to resolve and identify, in combination with wave function calculations, several excited state transitions including spin-orbit split-off excitonic contributions. Thus, our study not only demonstrates the possibility to expand the extraordinary physical properties of colloidal nanoplatelets toward magneto-optical functionality by transition metal doping but also provides an insight into the excited state electronic structure in this novel two-dimensional material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.
2016-01-25
We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers of nearly identical dopant-profiles. The evolution of zero-field sheet resistance (R{sub ◻}) versus temperature with decreasing film thickness showed a metal to insulator transition. Onmore » the metallic side of the metal-insulator transition, R{sub ◻}(T) and magnetoresistance data were found to be well corroborated with the theoretical framework of electron weak localization in the diffusive transport regime. The temperature dependence of both R{sub ◻} and inelastic scattering length provided strong evidence for a smooth crossover from 2D to 3D weak localization behaviour. Results of this study provide deeper insight into the electron transport in low-dimensional n-type ZnO/TiO{sub x} stacked layers which have potential applications in the field of transparent oxide electronics.« less
Defect-induced mix experiment for NIF
NASA Astrophysics Data System (ADS)
Schmitt, M. J.; Bradley, P. A.; Cobble, J. A.; Hsu, S. C.; Krasheninnikova, N. S.; Kyrala, G. A.; Magelssen, G. R.; Murphy, T. J.; Obrey, K. A.; Tregillis, I. L.; Wysocki, F. J.; Finnegan, S. M.
2013-11-01
The Defect Induced Mix Experiment (DIME-II) will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD) experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI) to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more) thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.
Yan, Hong; Zhang, Zhaoting; Wang, Shuanhu; Zhang, Hongrui; Chen, Changle; Jin, Kexin
2017-11-08
Modulating transport behaviors of two-dimensional electron gases are of critical importance for applications of the next-generation multifunctional oxide electronics. In this study, transport behaviors of LaAlO 3 /SrTiO 3 heterointerfaces modified through the Ni dopant and the light irradiation have been investigated. Through the Ni dopant, the resistances increase significantly and a resistance upturn phenomenon due to the Kondo effect is observed at T < 40 K. Under a 360 nm light irradiation, the interfaces exhibit a persistent photoconductivity and a suppressed Kondo effect at low temperature due to the increased mobility measured through the photo-Hall method. Moreover, the relative changes in resistance of interfaces induced by light are increased from 800 to 6600% at T = 12 K with increasing the substitution of Ni, which is discussed by the band bending and the lattice effect due to the Ni dopant. This work paves the way for better controlling the emerging properties of complex oxide heterointerfaces and would be helpful for photoelectric device applications based on all-oxides.
NASA Astrophysics Data System (ADS)
Wang, Cunguo; Wang, Rongshun
2000-12-01
Based on energy band theory of solid states, extended Hückel molecular orbital methods (EHMO/CO) were used to calculate the two-dimensional (2D) energy band structures of highly oriented trans-polyacetylene (PA) undoped and doped with n-type dopant (Li, Na, K). The band gaps ( Eg) of undoped PA in directions parallel and perpendicular to the oriented direction were 1.195 and 3.040 eV, respectively. When PA was doped with n-type dopant, the corresponding band gaps Eg1 and Eg2 decreased significantly. Based on the calculated results, we could successfully account for the changes of electrical anisotropy of PA from the undoped state to the doped form. The conductivity anisotropy ratio σ1/ σ2 decreased when PA was doped with n-type dopant, because the PA chains and the dopant showed a strong interchain coupling. It was the interchain coupling that acted as a bridge between two neighboring chains, and made the charge-carrier transport easier between the interchains. The theoretical results for undoped and doped PA are in good agreement with the experiment.
Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L., E-mail: lin.wang@insa-lyon.fr; Laurent, J.; Brémond, G.
2015-11-09
Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. Asmore » an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.« less
NASA Astrophysics Data System (ADS)
Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit
2015-08-01
Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.
CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir
2016-03-28
Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less
Three-dimensional architecture for solid state radiation detectors
Parker, S.
1999-03-30
A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.
Three-dimensional architecture for solid state radiation detectors
Parker, Sherwood
1999-01-01
A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit
2015-08-28
Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The presentmore » study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.« less
Dhar, R S; Ban, D
2013-07-01
The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.
1980-01-01
Quarterly report describes progress in three programs: dc sputtering machine for aluminum and aluminum alloys; two dimensional computer modeling of MOS transistors; and development of computer techniques for calculating redistribution diffusion of dopants in silicon on sapphire films.
Silicon-carbon bond inversions driven by 60-keV electrons in graphene.
Susi, Toma; Kotakoski, Jani; Kepaptsoglou, Demie; Mangler, Clemens; Lovejoy, Tracy C; Krivanek, Ondrej L; Zan, Recep; Bangert, Ursel; Ayala, Paola; Meyer, Jannik C; Ramasse, Quentin
2014-09-12
We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.
NASA Astrophysics Data System (ADS)
Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui
2018-04-01
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.
Femtosecond-laser hyperdoping silicon in an SF{sub 6} atmosphere: Dopant incorporation mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sher, Meng-Ju, E-mail: msher@stanford.edu; Mangan, Niall M.; Lin, Yu-Ting
2015-03-28
In this paper, we examine the fundamental processes that occur during femtosecond-laser hyperdoping of silicon with a gas-phase dopant precursor. We probe the dopant concentration profile as a function of the number of laser pulses and pressure of the dopant precursor (sulfur hexafluoride). In contrast to previous studies, we show the hyperdoped layer is single crystalline. From the dose dependence on pressure, we conclude that surface adsorbed molecules are the dominant source of the dopant atoms. Using numerical simulation, we estimate the change in flux with increasing number of laser pulses to fit the concentration profiles. We hypothesize that themore » native oxide plays an important role in setting the surface boundary condition. As a result of the removal of the native oxide by successive laser pulses, dopant incorporation is more efficient during the later stage of laser irradiation.« less
NASA Technical Reports Server (NTRS)
Asenov, Asen
1998-01-01
A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 microns MOSFET's is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFET's. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFET's was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaochen; Singh, Arunima K.; Fang, Lei
Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less
Behavior of a chemically doped graphene junction
NASA Astrophysics Data System (ADS)
Farmer, Damon B.; Lin, Yu-Ming; Afzali-Ardakani, Ali; Avouris, Phaedon
2009-05-01
Polyethylene imine and diazonium salts are used as complementary molecular dopants to engineer a doping profile in a graphene transistor. Electronic transport in this device reveals the presence of two distinct resistance maxima, alluding to neutrality point separation and subsequent formation of a spatially abrupt junction. Carrier mobility in this device is not significantly affected by molecular doping or junction formation, and carrier transmission is found to scale inversely with the effective channel length of the device. Chemical dilutions are used to modify the dopant concentration and, in effect, alter the properties of the junction.
NASA Astrophysics Data System (ADS)
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Gan, Zhaofeng; Perea, Daniel E.; Yoo, Jinkyoung; ...
2016-09-13
Doped Si-Ge nanowire (NW) heterojunctions were grown using the vapor-liquid-solid method with AuGa and Au catalyst particles. Transmission electron microscopy and off-axis electron holography (EH) were used to characterize the nanostructure and to measure the electrostatic potential profile across the junction resulting from electrically active dopants, while atom-probe tomography (APT) was used to determine the Si, Ge and total (active and inactive) dopant concentration profiles. A comparison of the measured potential profile with simulations indicated that Ga dopants unintentionally introduced during AuGa catalyst growth were electronically inactive despite APT results that showed considerable amounts of Ga in the Si region.more » 10% P in Ge and 100% B in Si were estimated to be activated, which was corroborated by in situ electron-holography biasing experiments. This combination of EH, APT, in situ biasing and simulations allows a better knowledge and understanding of the electrically active dopant distributions in NWs.« less
NASA Astrophysics Data System (ADS)
Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei
2016-10-01
technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).
Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe) 5(Bi 2Se 3) 3
Ren, Xiaochen; Singh, Arunima K.; Fang, Lei; ...
2016-09-07
Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the totnographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom, probe tomography (APT). Also, APT analysis shows that Ag dopes both Bi 2Se 3 and PbSe layers in (PbSe) 5(Bi 2Se 3) 3, and correlations :in the position of Ag atoms suggest a pairing across neighboring Bi 2Se 3 and PbSe layers. Finally, density functional theory (DFT)more » calculations confirm the favorability of substitutional-doping for both Pb and Bi and provide insights into the,observed spatial correlations in dopant locations.« less
Bottom-up assembly of metallic germanium
NASA Astrophysics Data System (ADS)
Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, Lareine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.
2015-08-01
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
Ge p-channel tunneling FETs with steep phosphorus profile source junctions
NASA Astrophysics Data System (ADS)
Takaguchi, Ryotaro; Matsumura, Ryo; Katoh, Takumi; Takenaka, Mitsuru; Takagi, Shinichi
2018-04-01
The solid-phase diffusion processes of three n-type dopants, i.e., phosphorus (P), arsenic (As), and antimony (Sb), from spin-on-glass (SOG) into Ge are compared. We show that P diffusion can realize both the highest impurity concentration (˜7 × 1019 cm-3) and the steepest impurity profile (˜10 nm/dec) among the cases of the three n-type dopants because the diffusion coefficient is strongly dependent on the dopant concentration. As a result, we can conclude that P is the most suitable dopant for the source formation of Ge p-channel TFETs. Using this P diffusion, we fabricate Ge p-channel TFETs with high-P-concentration and steep-P-profile source junctions and demonstrate their operation. A high ON current of ˜1.7 µA/µm is obtained at room temperature. However, the subthreshold swing and ON current/OFF current ratio are degraded by any generation-recombination-related current component. At 150 K, SSmin of ˜108 mV/dec and ON/OFF ratio of ˜3.5 × 105 are obtained.
Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity
Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.
2010-01-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183
Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.
Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L
2010-02-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.
Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng
2011-01-01
In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999
Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs
NASA Astrophysics Data System (ADS)
Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.
Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.
Confined Doping for Control of Transport Properties in Nanowires and Nanofilms
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2006-03-01
Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in one-dimensional and two-dimensional systems leads to carrier localization, limiting practical applications due to poor carrier mobility. Here, a novel concept is proposed that offers the possibility to significantly increase carrier mobility by confining the distribution of dopants within a particular region [1]. Thus, the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in such a dopped nanowire or a nanofilm exhibits counterintuitive behavior in the regime of heavy doping. In particular, the larger the dopant concentration the higher the carrier mobility; we trace this transition to the existence of quasi-mobility-edges in the nanowires and mobility edges in nanofilms. *J.X. Zhong and G.M. Stocks, Nano Lett., in press, (2005)
Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders
NASA Astrophysics Data System (ADS)
Gong, Yanjun; Wang, Mingjun; Gong, Lei
2015-10-01
Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.
Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E
2013-11-01
Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Staller, Corey M.; Robinson, Zachary L.; Agrawal, Ankit; Gibbs, Stephen L.; Greenberg, Benjamin L.; Lounis, Sebastien D.; Kortshagen, Uwe R.; Milliron, Delia J.
2018-05-01
Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.
Staller, Corey M; Robinson, Zachary L; Agrawal, Ankit; Gibbs, Stephen L; Greenberg, Benjamin L; Lounis, Sebastien D; Kortshagen, Uwe R; Milliron, Delia J
2018-05-09
Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data show electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and in agreement with variable temperature conductivity fits find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.
Process for forming retrograde profiles in silicon
Weiner, K.H.; Sigmon, T.W.
1996-10-15
A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.
Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers
Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt
2014-01-01
All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process. PMID:28788219
Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers.
Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt
2014-09-25
All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Leiming; Huang, Wei; Wang, Lai S.
The structure and electronic properties of the Al 8N - and Al 8N clusters were investigated by combined photoelectron spectroscopy and ab initio studies. Congested photoelectron spectra were observed and experimental evidence was obtained for the presence of multiple isomers for Al 8N - Global minimum searches revealed several structures for Al 8N - with close energies. The calculated vertical detachment energies of the two lowest-lying isomers, which are of C 2v and C s symmetry, respectively, were shown to agree well with the experimental data. Unlike the three-dimensional structures of Al 6N - and Al 7N -, in whichmore » the dopant N atom has a high coordination number of 6,the dopant N atom in the two low-lying isomers of Al 8N - has a lower coordination number of 4 and 5, respectively. The competition between the Al–Al and Al–N interactions are shown to determine the global minimum structures of the doped aluminum clusters and results in the structural diversity for both Al 8N - and Al8N. © 2009 American Institute of Physics« less
Comparison of Boron diffused emitters from BN, BSoD and H3BO3 dopants
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-12-01
In this work, we are comparing different limited boron dopant sources for the emitter formation in n-type c-Si solar cells. High purity boric acid solution, commercially available boron spin on dopant and boron nitride solid source are used for comparison of emitter doping profiles for the same time and temperature conditions of diffusion. The characterizations done for the similar sheet resistance values for all the dopant sources show different surface morphologies and different device parameters. The measured emitter saturation current densities (Joe) are more than 20 fA cm-2 for all the dopant sources. The bulk carrier lifetimes measured for different diffusion conditions and different solar cell parameters for the similar sheet resistance values show the best result for boric acid diffusion and the least for BN solid source. So, different dopant sources result in different emitter and cell performances.
Spatial luminescence imaging of dopant incorporation in CdTe Films
Guthrey, Harvey; Moseley, John; Colegrove, Eric; ...
2017-01-25
State-of-the-art cathodoluminescence (CL) spectrum imaging with spectrum-per-pixel CL emission mapping is applied to spatially profile how dopant elements are incorporated into Cadmium telluride (CdTe). Emission spectra and intensity monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on computational modeling. Our results show that grain boundaries play a role in incorporating dopants in CdTe exposed to copper, phosphorus, and intrinsic point defects in CdTe. Furthermore, the image analysis provides critical, unique feedback to understand dopant incorporation and activation in the inhomogeneous CdTe material, which has struggled to reach high levels of hole density.
Extended OLED operational lifetime through phosphorescent dopant profile management
Forrest, Stephen R.; Zhang, Yifan
2017-05-30
This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2001-01-01
A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s).
Bottom-up assembly of metallic germanium.
Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R
2015-08-10
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trigg, M.A.; Tubby, G.R.; Sheard, A.G.
1999-01-01
In this paper a systematic approach to the optimization of two-dimensional blade profiles is presented. A genetic optimizer has been developed that modifies the blade profile and calculates its profile loss. This process is automatic, producing profile designs significantly faster and with significantly lower loss than has previously been possible. The optimizer developed uses a genetic algorithm to optimize a two-dimensional profile, defined using 17 parameters, for minimum loss with a given flow condition. The optimizer works with a population of two-dimensional profiles with varied parameters. A CFD mesh is generated for each profile, and the result is analyzed usingmore » a two-dimensional blade-to-blade solver, written for steady viscous compressible flow, to determine profile loss. The loss is used as the measure of a profile`s fitness. The optimizer uses this information to select the members of the next population, applying crossovers, mutations, and elitism in the process. Using this method, the optimizer tends toward the best values for the parameters defining the profile with minimum loss.« less
NASA Astrophysics Data System (ADS)
Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.
2015-12-01
The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.
Distribution of dopant ions around poly(3,4-ethylenedioxythiophene) chains: a theoretical study.
Casanovas, Jordi; Zanuy, David; Alemán, Carlos
2017-04-12
The effect of counterions and multiple polymer chains on the properties and structure of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with ClO 4 - has been examined using density functional theory (DFT) calculations with periodic boundary conditions (PBCs). Calculations on a one-dimensional periodic model with four explicit polymer repeat units and two ClO 4 - molecules indicate that the latter are separated as much as possible, with the salt structure and band gap obtained from such ClO 4 - distribution being in excellent agreement with those determined experimentally. On the other hand, DFT calculations on periodic models that include two chains indicate that neighboring PEDOT chains are shifted along the molecular axis by a half of the repeat unit length, with dopant ions intercalated between the polymer molecules acting as cement. In order to support these structural features, classical molecular dynamics (MD) simulations have been performed on a multiphasic system consisting of 69 explicit PEDOT chains anchored onto a steel surface, explicit ClO 4 - anions embedded in the polymer matrix, and an acetonitrile phase layer onto the polymer matrix. Analyses of the radial distribution functions indicate that the all-anti conformation, the relative disposition of adjacent PEDOT chains and the distribution of ClO 4 - dopant ions are fully consistent with periodic DFT predictions. The agreement between two such different methodologies allows reinforcing the microscopic understanding of the PEDOT film structure.
Thermal stability of implanted dopants in GaN
NASA Astrophysics Data System (ADS)
Wilson, R. G.; Pearton, S. J.; Abernathy, C. R.; Zavada, J. M.
1995-04-01
Results are reported of measurements of depth profiles and stability against redistribution with annealing up to 800 or 900 °C, for implanted Be, C, Mg, Si, S, Zn, Ge, and Se as dopants in GaN. The results confirm the high-temperature stability of dopants in this material up to temperatures that vary from 600 to 900 °C. S redistributes for temperatures above 600 °C, and Zn and Se, for temperatures above 800 °C. All of the other elements are stable to 900 °C. These results indicate that direct implantation of dopants rather than masked diffusion will probably be necessary to define selective area doping of III-V nitride device structures based on these results for GaN.
Plasma Doping—Enabling Technology for High Dose Logic and Memory Applications
NASA Astrophysics Data System (ADS)
Miller, T.; Godet, L.; Papasouliotis, G. D.; Singh, V.
2008-11-01
As logic and memory device dimensions shrink with each generation, there are more high dose implants at lower energies. Examples include dual poly gate (also referred to as counter-doped poly), elevated source drain and contact plug implants. Plasma Doping technology throughput and dopant profile benefits at these ultra high dose and lower energy conditions have been well established [1,2,3]. For the first time a production-worthy plasma doping implanter, the VIISta PLAD tool, has been developed with unique architecture suited for precise and repeatable dopant placement. Critical elements of the architecture include pulsed DC wafer bias, closed-loop dosimetry and a uniform low energy, high density plasma source. In this paper key performance metrics such as dose uniformity, dose repeatability and dopant profile control will be presented that demonstrate the production-worthiness of the VIISta PLAD tool for several high dose applications.
The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.
Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y
2015-07-28
Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.
Self-Limiting Oxides on WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts.
Yamamoto, Mahito; Nakaharai, Shu; Ueno, Keiji; Tsukagoshi, Kazuhito
2016-04-13
Transition metal oxides show much promise as effective p-type contacts and dopants in electronics based on transition metal dichalcogenides. Here we report that atomically thin films of under-stoichiometric tungsten oxides (WOx with x < 3) grown on tungsten diselenide (WSe2) can be used as both controlled charge transfer dopants and low-barrier contacts for p-type WSe2 transistors. Exposure of atomically thin WSe2 transistors to ozone (O3) at 100 °C results in self-limiting oxidation of the WSe2 surfaces to conducting WOx films. WOx-covered WSe2 is highly hole-doped due to surface electron transfer from the underlying WSe2 to the high electron affinity WOx. The dopant concentration can be reduced by suppressing the electron affinity of WOx by air exposure, but exposure to O3 at room temperature leads to the recovery of the electron affinity. Hence, surface transfer doping with WOx is virtually controllable. Transistors based on WSe2 covered with WOx show only p-type conductions with orders of magnitude better on-current, on/off current ratio, and carrier mobility than without WOx, suggesting that the surface WOx serves as a p-type contact with a low hole Schottky barrier. Our findings point to a simple and effective strategy for creating p-type devices based on two-dimensional transition metal dichalcogenides with controlled dopant concentrations.
NASA Astrophysics Data System (ADS)
Köster, K. W.; Klocke, T.; Wieland, F.; Böhmer, R.
2017-10-01
Protonic defects on ice lattices induced by doping with acids such as HCl and HF or bases such as KOH can facilitate order-disorder transitions. In laboratory experiments KOH doping is efficient in promoting the ordering transition from hexagonal ice I to ice XI, but it is ineffective for other known ice phases, for which HCl can trigger hydrogen ordering. Aiming at understanding these differences, random-walk simulations of the defect diffusion are performed on two- and three-dimensional ice lattices under the constraints imposed by the Bernal-Fowler ice rules. Effective defect diffusion coefficients are calculated for a range of dopants, concentrations, and ice phases. The interaction of different defects, incorporated by different dopants, is investigated to clarify the particular motion-enhancing role played by complementary defect pairs.
Nondestructive imaging of atomically thin nanostructures buried in silicon
Gramse, Georg; Kölker, Alexander; Lim, Tingbin; Stock, Taylor J. Z.; Solanki, Hari; Schofield, Steven R.; Brinciotti, Enrico; Aeppli, Gabriel; Kienberger, Ferry; Curson, Neil J.
2017-01-01
It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers. PMID:28782006
Photonic doping of epsilon-near-zero media
NASA Astrophysics Data System (ADS)
Liberal, Iñigo; Mahmoud, Ahmed M.; Li, Yue; Edwards, Brian; Engheta, Nader
2017-03-01
Doping a semiconductor with foreign atoms enables the control of its electrical and optical properties. We transplant the concept of doping to macroscopic photonics, demonstrating that two-dimensional dielectric particles immersed in a two-dimensional epsilon-near-zero medium act as dopants that modify the medium’s effective permeability while keeping its effective permittivity near zero, independently of their positions within the host. The response of a large body can be tuned with a single impurity, including cases such as engineering perfect magnetic conductor and epsilon-and-mu-near-zero media with nonmagnetic constituents. This effect is experimentally demonstrated at microwave frequencies via the observation of geometry-independent tunneling. This methodology might provide a new pathway for engineering electromagnetic metamaterials and reconfigurable optical systems.
Two-dimensional beam profiles and one-dimensional projections
NASA Astrophysics Data System (ADS)
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
NASA Astrophysics Data System (ADS)
Zhang, X.; Connelly, D.; Takeuchi, H.; Hytha, M.; Mears, R. J.; Rubin, L. M.; Liu, T.-J. K.
2018-03-01
The effects of oxygen-inserted (OI) layers on the diffusion of boron (B), phosphorus (P), and arsenic (As) in silicon (Si) are investigated, for ultra-shallow junction formation by high-dose ion implantation followed by rapid thermal annealing. The projected range (Rp) of the implanted dopants is shallower than the depth of the OI layers. Secondary ion mass spectrometry is used to compare the dopant profiles in silicon samples that have OI layers against the dopant profiles in control samples that do not have OI layers. Diffusion is found to be substantially retarded by the OI layers for B and P, and less for As, providing shallower junction depth. The experimental results suggest that the OI layers serve to block the diffusion of Si self-interstitials and thereby effectively reduce interstitial-aided diffusion beyond the depth of the OI layers. The OI layers also help to retain more dopants within the Si, which technology computer-aided design simulations indicate to be beneficial for achieving shallower junctions with lower sheet resistance to enable further miniaturization of planar metal-oxide-semiconductor field-effect transistors for improved integrated-circuit performance and cost per function.
Irfanullah, Mir; Bhardwaj, Navneet; Chowdhury, Arindam
2016-08-02
Water dispersible citrate-capped LaF3:Eu(5%) nanocrystals (NCs) have been partially surface-functionalized by 1,10-phenanthroline (phen) via a ligand exchange method to produce novel water dispersed citrate/phen-capped LaF3:Eu(5%) NCs in which citrate ligands preserve the water dispersibility of the NCs and phen ligands act as sensitizers of surface Eu(3+)-dopant sites. The partial ligand exchange and the formation of water dispersed NCs have been monitored by (1)H NMR spectroscopy, as well as luminescence measurements at different time intervals during the reaction. These NCs display a distinct phen-sensitized Eu(3+)-emission profile with enhanced intensity in water as compared to the emission profile and intensity obtained upon direct excitation. Time-resolved (or time-gated) emission spectroscopy (TRES) has been used to probe PL dynamics of Eu(3+)-sites of LaF3:Eu(5%) NCs by taking advantage of selectively sensitizing surface Eu(3+)-dopant sites by phen ligands as well as by exciting all the Eu(3+)-sites in the NCs upon direct excitation. TRES upon direct excitation of the citrate-capped LaF3:Eu(5%) NCs reveals that Eu(3+)-dopants occupy at least three different sites, each with a different emission profile and lifetime, and emission from purely interior Eu(3+)-sites has been resolved due to their long lifetime as compared to the lifetime of purely surface and near surface Eu(3+)-sites. In contrast, the phen-sensitized emission from citrate/phen-capped LaF3:Eu(5%) NCs displays similar emission profiles and lifetimes in TRES measurements, which reveal that phen truly sensitizes purely surface dopant sites of the NCs in water, all of which have nearly the same local environment. The phen-sensitized Eu(3+)-emission of the NCs in water remains stable even upon addition of various buffer solutions at physiological pH, as well as upon addition of water-miscible organic solvents. Furthermore, the two-photon excitation (λex. = 720 nm) of these water-soluble phen-capped NCs produces bright red Eu(3+) emission, which reveals that these NCs are promising for potential applications in biological imaging.
NASA Astrophysics Data System (ADS)
Kyrala, George; Zylstra, A.; Yi, S. A.; Klline, J. L.; Shah, R. C.; Lopez, F. E.; Batha, S. A.; Doppner, T.; Thorn, D. B.; MacLaren, S.; Masters, N.; Callahan, D.; Hurricane, O.; Rice, N.; Huang, H.; Krauland, C. M.; MacDonald, M.
2017-10-01
Using beryllium, as an ablator material for indirectly driven inertial fusion, requires the use of a Copper dopant to block preheat from the hohlraum M-band radiation. However, due to the microstructure and imperfections of the capsule, some of the copper may be injected into the core of the implosion, affecting the yield and performance. Alternatively, the copper dopant may blow into the ablated plasma affecting the hohlraum performance as well. We will present some of data on time integrated imaging of the copper dopant into the core of the capsule using either the 2-dimensional multiple monochromatic imaging of the implosion, as well as the 1D spectrally resolved imaging of the copper dopant emission. In either case we found that the copper did migrate to the hot core, while fewer copper ions ablated into the hohlraum. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396, and by LLNL under Contract DE-AC52-07NA27344.
Exploration of dynamic dipole polarizability of impurity doped quantum dots in presence of noise
NASA Astrophysics Data System (ADS)
Ghosh, Anuja; Bera, Aindrila; Saha, Surajit; Arif, Sk. Md.; Ghosh, Manas
2018-02-01
Present study strives to perform a rigorous exploration of dynamic dipole polarizability (DDP) of GaAs quantum dot (QD) containing dopant with special reference to influence of Gaussian white noise. Several physical quantities have been varied over a range to observe the modulations of the DDP profiles. Aforesaid physical quantities include magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The DDP profiles reveal noticeable characteristics governed by the particular physical quantity involved, presence/absence of noise, the manner (additive/multiplicative) noise is applied to the system and the incoming photon frequency. As a general observation we have found that additive noise causing greater deviation of the DDP profile from noise-free state than its multiplicative neighbor. The study highlights viable means of harnessing DDP of doped QD under the governance of noise by appropriate adjustment of several relevant factors. The study merits importance in the light of technological applications of QD-based devices where noise appears as an integral component.
Impurity and defect interactions during laser thermal annealing in Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milazzo, R., E-mail: ruggero.milazzo@unipd.it; De Salvador, D.; Carnera, A.
2016-01-28
The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron ismore » shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.« less
NASA Technical Reports Server (NTRS)
Ettouney, H. M.; Brown, R. A.
1982-01-01
The effects of the heat transfer environment in Edge-Defined Film-Fed Growth on melt-solid interface shape and lateral dopant segregation are studied by finite-element analysis of two-dimensional models for heat and mass transfer. Heat transfer configurations are studied that correspond to the uniform surroundings assumed in previous models and to lowand high-speed growth systems. The maximum growth rate for a silicon sheet is calculated and the range of validity of one-dimensional heat transfer models is established. The lateral segregation that results from curvature of the solidification interface is calculated for two solutes, boron and aluminum. In this way, heat transfer is linked directly to the uniformity of the product crystal.
Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion
NASA Astrophysics Data System (ADS)
Nguyen, V. Hung; Charlier, J.-C.
2018-06-01
The transport properties of relativisticlike fermions have been extensively studied in solid-state systems with isotropic energy dispersions. Recently, several two-dimensional and three-dimensional Dirac-Weyl (DW) materials exhibiting tilted energy dispersions around their DW cones have been explored. Here, we demonstrate that such a tilt character could induce drastically different transport phenomena, compared to the isotropic-dispersion cases. Indeed, the Klein tunneling of DW fermions of opposite chiralities is predicted to appear along two separated oblique directions. In addition, valley filtering and beam splitting effects are easily tailored by dopant engineering techniques whereas the refraction of electron waves at a (p -n )-doped interface is dramatically modified by the tilt, thus paving the way for emerging applications in electron optics and valleytronics.
Dopant incorporation in Al0.9Ga0.1As0.06Sb0.94 grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Patra, Saroj Kumar; Tran, Thanh-Nam; Vines, Lasse; Kolevatov, Ilia; Monakhov, Edouard; Fimland, Bjørn-Ove
2017-04-01
Incorporation of beryllium (Be) and tellurium (Te) dopants in epitaxially grown Al0.9Ga0.1As0.06Sb0.94 layers was investigated. Carrier concentrations and mobilities of the doped layers were obtained from room temperature Hall effect measurements, and dopant densities from secondary ion mass spectrometry depth profiling. An undoped Al0.3Ga0.7As cap layer and side wall passivation were used to reduce oxidation and improve accuracy in Hall effect measurements. The measurements on Be-doped samples revealed high doping efficiency and the carrier concentration varied linearly with dopant density up to the highest Be dopant density of 2.9 × 1019 cm-3, whereas for Te doped samples the doping efficiency was in general low and the carrier concentration saturated for Te-dopant densities above 8.0 × 1018 cm-3. The low doping efficiency in Te-doped Al0.9Ga0.1As0.06Sb0.94 layer was studied by deep-level transient spectroscopy, revealing existence of deep trap levels and related DX-centers which explains the low doping efficiency.
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-07-01
We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
NASA Astrophysics Data System (ADS)
Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen
2015-10-01
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Haiqing; Moronta, Dominic; Li, Luyao
In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less
Liu, Haiqing; Moronta, Dominic; Li, Luyao; ...
2018-03-28
In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less
Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.
Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong
2017-11-08
Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.
NASA Astrophysics Data System (ADS)
Quevedo Lopez, Manuel Angel
Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050°C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixO y are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford Backscattering Spectroscopy (RBS), Heavy Ion RBS (HI-RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), and Time of Flight and Dynamic Secondary Ion Mass Spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixO y films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSi xOyNz films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kaoru, E-mail: n-kaoru@criepi.denken.or.jp; Higuchi, Sadao; Ohnuma, Toshiharu
2016-03-21
Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhancemore » the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.« less
Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less
NASA Astrophysics Data System (ADS)
García, I.; Rey-Stolle, I.; Galiana, B.; Algora, C.
2007-01-01
The use of tellurium as n-type dopant for GaAs and InP has several advantages, including a high incorporation efficiency, the very high doping levels achievable and a low diffusion coefficient. However, its use to dope Ga xIn 1-xP is not straightforward, since it shows several problems like a remarkable memory effect and an acute inertia of the material to become Te-doped, which gives rise to gradual doping profiles. In this paper, all these phenomena are studied and quantified using secondary ion mass spectroscopy (SIMS) and electrochemical CV profiling (ECV) measurements. Concerning the gradual doping profiles, their origin is linked to the interaction of Te and In in the gas phase and on the growth surface. A phenomenological explanation is given for this effect although the exact physical processes behind remain to be defined.
Stark shift of impurity doped quantum dots: Role of noise
NASA Astrophysics Data System (ADS)
Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2018-02-01
Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.
Temperature in subsonic and supersonic radiation fronts measured at OMEGA
NASA Astrophysics Data System (ADS)
Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John
2017-10-01
Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.
NASA Astrophysics Data System (ADS)
Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna
2012-12-01
Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe3+ resulted in a relatively lower anatase to rutile phase transformation temperature, while La3+ addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe3+ ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La3+ addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects.
Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms
Furrer, A.; Podlesnyak, A.; Krämer, K. W.; ...
2014-10-29
Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn xMg 1-xBr 3, K 2Mn xZn 1-xF 4, and KMn xZn 1-xF 3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r 2, 1/r, and constant (for three-,more » two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. In conclusion, the observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.« less
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
NASA Astrophysics Data System (ADS)
Xiong, Fei; Zhang, Hui; Yang, Sheng'an; Li, Dongqi; Zhang, Zheng; Chen, Qingming
2015-08-01
Large laser-induced thermoelectric voltages (LITVs) are measured in the electron-doped Nd2- x Ce x CuO4 thin films grown on the vicinal-cut SrTiO3 substrates by pulsed laser deposition. The dependence of LITV signals upon the doping carrier density is investigated by changing the Ce content of the films. The optimum Ce dopant corresponding to the largest voltage is found and is attributed to the two-dimensional transport behaviors of the localized electrons. The shorter laser irradiation always induces the larger voltage signals in samples with richer Ce content, suggesting the optimum dopant level is sensitive to the wavelength of excitation source. Thus, the behaviors of LITV signals are resulted from both effects of the anisotropic thermoelectric transport and the optical properties of the thin films. The doping dependence related with an anisotropic charge transport may come from the change in carrier density and the modification in energy band configuration.
Modeling Studies of PVT Growth of ZnSe: Current Status and Future Course
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Su, Ching-Hua
1999-01-01
Bulk growth of wide band gap II-VI semiconductors by physical vapor transport (PVT) has been developed and refined over the past several years at NASA Marshall Space Flight Center. Results from a modeling study of PVT crystal growth of ZnSe are reported in this paper. The PVT process is numerically investigated using a two-dimensional formulation of the governing equations and associated boundary conditions. Both the incompressible Boussinesq approximation and a compressible model are tested to determine the influence of gravity on the process and to discern the differences between the two approaches. The influence of a residual gas is included in the models. The results show that both the incompressible and compressible approximations provide comparable results and the presence of a residual gas tends to measurably reduce the mass flux in the system. Detailed flow, thermal and concentration profiles are provided. The simulations show that the Stefan flux dominates the system flow field and the subtle gravitational effects can be gauged by subtracting this flux from the calculated profiles. Shear flows, due to solutal buoyancy, of the order of 50 microns/s for the liorizont,-d growth orientation and 10 microns/s for the vertical orientation are predicted. Whether these flows can fully account for the observed gravity related growth morphological effects and inhomogeneous solute and dopant distributions is a matter of conjecture. A template for future modeling efforts in this area is suggested which incorporates a mathematical approach to the tracking of the growth front based on energy of formation concepts.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa
2014-06-01
Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ferromagnetism in two-dimensional hole-doped SnO
NASA Astrophysics Data System (ADS)
Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.
2018-05-01
Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.
Fielding, Gary; Bose, Susmita
2013-11-01
Calcium phosphate (CaP) scaffolds with three-dimensionally-interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (able to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (able to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated into three-dimensional printed β-tricalcium phosphate (β-TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common in bone and have also been shown to have many beneficial properties, from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. The addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introducing osteoinductive properties to CaPs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Neophytou, Neophytos
2015-04-01
Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as κ l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations.
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
NASA Astrophysics Data System (ADS)
Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu
2017-05-01
Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.
Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon.
Lill, Patrick C; Dahlinger, Morris; Köhler, Jürgen R
2017-02-16
Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient k p above unity with k p = 1 . 25 ± 0 . 05 and thermally-activated diffusivity D B , with a value D B ( 1687 K ) = ( 3 . 53 ± 0 . 44 ) × 10 - 4 cm 2 ·s - 1 of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment.
NASA Astrophysics Data System (ADS)
Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer
2014-11-01
We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.
Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer
2014-11-10
We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, David L.; Lee, Benjamin G.; Fogel, Derek
Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less
Method of making self-aligned lightly-doped-drain structure for MOS transistors
Weiner, Kurt H.; Carey, Paul G.
2001-01-01
A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.
NASA Astrophysics Data System (ADS)
Betancourt, J.; Paudel, T. R.; Tsymbal, E. Y.; Velev, J. P.
2017-07-01
Two-dimensional electron gases (2DEGs) at oxide interfaces have been a topic of intensive research due to their high carrier mobility and strong confinement. Additionally, strong correlations in the oxide materials can give rise to new and interesting physics, such as magnetism and metal-insulator transitions at the interface. Using first-principles calculations based on density functional theory, we demonstrate the presence of a highly spin-polarized 2DEG at the interface between the Mott insulator GdTi O3 and a band insulator SrTi O3 . The strong correlations in the dopant cause ferromagnetic alignment of the interface Ti atoms and result in a fully spin-polarized 2DEG. The 2DEG consists of two types of carriers distinguished by their orbital character. The majority of the interface charge is strongly localized on the Ti dx y orbitals at the interface and a smaller fraction resides on the delocalized Ti dx z ,y z states.
Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes
NASA Astrophysics Data System (ADS)
Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson
2015-03-01
Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.
Controlled electron doping into metallic atomic wires: Si(111)4×1-In
NASA Astrophysics Data System (ADS)
Morikawa, Harumo; Hwang, C. C.; Yeom, Han Woong
2010-02-01
We demonstrate the controllable electron doping into metallic atomic wires, indium wires self-assembled on the Si(111) surface, which feature one-dimensional (1D) band structure and temperature-driven metal-insulator transition. The electron filling of 1D metallic bands is systematically increased by alkali-metal adsorption, which, in turn, tunes the macroscopic property, that is, suppresses the metal-insulator transition. On the other hand, the dopant atoms induce a local lattice distortion without a band-gap opening, leading to a microscopic phase separation on the surface. The distinct bifunctional, electronic and structural, roles of dopants in different length scales are thus disclosed.
Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes
Hartmann, Nicolai F.; Yalcin, Sibel Ebru; Adamska, Lyudmyla; ...
2015-11-11
Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E 11 exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. Wemore » introduce a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E 11 emission allows confirmation of dopants as trapping sites for localization of E 11 excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Furthermore, theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.« less
Process research on non-CZ silicon material
NASA Technical Reports Server (NTRS)
1982-01-01
High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.
Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
Kim, Ki Kang; Kim, Soo Min; Lee, Young Hee
2016-03-15
Nanocarbons such as fullerene and carbon nanotubes (CNT) in late 20th century have blossomed nanoscience and nanotechnology in 21st century, which have been further proliferated by the new finding of graphene and have indeed opened a new carbon era. Several new branches of research, for example, zero-dimensional nanoparticles, one-dimensional nanowires, and two-dimensional insulating hexagonal boron nitride, and semiconducting and metallic transition metal dichalcogenides including the recently emerging black phosphorus, have been explored and numerous unprecedented quantum mechanical features have been revealed, that have been hardly accessible otherwise. Extensive research has been done on devices and applications related to such materials. Many experimental instruments have been developed with high sensitivity and improved spatial and temporal resolution to detect such tiny objects. The need for multidisciplinary research has been growing stronger than ever, which will be the tradition in the next few decades. In this Account, we will demonstrate an example of multidisciplinary effort of utilizing CNTs and graphene for electronics by modulating electronic structures. While there are several methods of modifying electronic structures of nanocarbons such as gate bias, contact metal, and conventional substitutional doping, we focus on chemical doping approaches here. We first introduce the concept of chemical doping on CNTs and graphene in terms of electronegativity of molecules and electrochemical potential of CNTs and graphene. To understand the relationship of electrochemical potential of CNTs and graphene to electronegativity of molecules, we propose a simple water bucket model: how to fill or drain water (electrons in CNTs or graphene) in the bucket (density of states) by the chemical dopants. The doping concept is then demonstrated experimentally by tracking the absorption spectroscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Raman spectroscopy, transmittance, and transport measurements and by relating them to the reduction potential of molecules relative to that of CNTs or graphene. Two effects of chemical doping in electronics, transparent conducting films, and field effect transistors are extensively discussed. One critical issue, the stability of chemical dopants under ambient conditions, is further discussed. We believe that the presented doping concept will be useful tools for other low dimensional materials such as recently emerging transition metal dichalcogenides and black phosphorus.
Lin, Chih-Kai
2018-03-05
As nitrogen-doped graphene has been widely applied in optoelectronic devices and catalytic reactions, in this work we have investigated where the nitrogen atoms tend to reside in the material and how they affect the electron density and spectroscopic properties from a theoretical point of view. DFT calculations on N-doped hexagonal and rectangular graphene nanoflakes (GNFs) showed that nitrogen atoms locating on zigzag edges are obviously more stable than those on armchair edges or inside flakes, and interestingly, the N-hydrogenated pyridine moiety could be preferable to pure pyridine moiety in large models. The UV-vis absorption spectra of these nitrogen-doped GNFs display strong dependence on flake sizes, where the larger flakes have their major peaks in lower energy ranges. Moreover, the spectra exhibit different connections to various dopant types and positions: the graphitic-type dopant species present large variety in absorption profiles, while the pyridinic-type ones show extraordinary uniform stability and spectra independent of dopant positions/numbers and hence are hardly distinguishable from each other. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tulsyan, Gaurav
Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin film are invisible to the terahertz probe this anodization step very effectively removes a 'thin slice' from the doping profile to be mapped. By iterating between anodization and terahertz measurements that detect only the 'remaining' non-oxidized portion of the doping profile one can re-construct the doping profile with significantly higher precision compared to what is possible by only a single non-destructive measurement of the un-anodized profile as used in the non-destructive version of our technique. In this MS thesis we explore all aspects of this anodization based variation of doping profile mapping using free space terahertz pulses. This includes a study of silicon dioxide thin film growth using a room temperature electrochemical oxidation process. Etching procedures providing the option to remove between successive anodization and terahertz measurement steps. THz-TDS measurements of successively anodized profiles will be compared with sheet resistance and SIMS measurements to benchmark and improve the new technique.
Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Fonash, S. J.; Singh, R.
1985-01-01
This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.
NASA Astrophysics Data System (ADS)
Luo, M.; Yin, H. H.; Chu, J. H.
2018-04-01
The magnetic properties of the h-BN monolayer with nonmetal atoms are studied by ab initio methods. Different dopants (C, Cl, F, and O) and doping sites are considered. Magnetic behavior is observed in the two-dimensional (2D) BN system with C, Cl, and O atoms. On the other hand, the O adsorbed system shows a more stable formed structure among above three magnetic materials, we study the ferromagnetic (FM) interaction in 2D-BN system with two O adatoms. Interestingly, as the O-O distance increases, the interaction between two O adatoms prefers to a long-range FM coupling. This phenomenon could be well described by a simple Heisenberg model.
Defect-mediated magnetism of transition metal doped zinc oxide thin films
NASA Astrophysics Data System (ADS)
Roberts, Bradley Kirk
Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which is may be magnetically active as mediator. Measurements suggest that this defect contribution is strongest (or concentration higher) near the surface too. This study concerns the wide-gap oxide ZnO when doped with the transition metal Cr, below the percolation threshold, and subject to defects that mediate ferromagnetism independent of polarized free carriers. Ultimately, by adjusting the volumetric concentration of certain defects, ferromagnetic ordering in ZnO:Cr can be controlled. The potential applicability of novel theories of defect-mediated magnetism to this system is discussed.
Semiconductor technology program. Progress briefs
NASA Technical Reports Server (NTRS)
Bullis, W. M.
1980-01-01
Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.
Tu, Zhengyuan; Wu, Menghao; Zeng, Xiao Cheng
2017-05-04
Coexistence of ferromagnetism and ferroelectricity in a single 2D material is highly desirable for integration of multifunctional units in 2D material-based circuits. We report theoretical evidence of C 6 N 8 H organic network as being the first 2D organic multiferroic material with coexisting ferromagnetic and ferroelectric properties. The ferroelectricity stems from multimode proton-transfer within the 2D C 6 N 8 H network, in which a long-range proton-transfer mode is enabled by the facilitation of oxygen molecule when the network is exposed to the air. Such oxygen-assisted ferroelectricity also leads to a high Curie temperature and coupling between ferroelectricity and ferromagnetism. We also find that hydrogenation and carbon doping can transform the 2D g-C 3 N 4 network from an insulator to an n-type/p-type magnetic semiconductor with modest bandgap. Akin to the dopant induced n/p channels in silicon wafer, a variety of dopant created functional units can be integrated into the g-C 3 N 4 wafer by design for nanoelectronic applications.
Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise
NASA Astrophysics Data System (ADS)
Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas
2018-02-01
Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.
N-Type delta Doping of High-Purity Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh
2005-01-01
A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.
[Hydrothermal synthesis and luminescence of one-dimensional Mn(2+)-doped CdS nanocrystals].
Yuan, Qiu-Li; Zhao, Jin-Tao; Nie, Qiu-Lin
2007-06-01
One-dimensional Mn(2+)-doped CdS nanocrystals were synthesized by the hydrothermal route. The products were characterized by SEM, EDS, XRD, TEM, HRTEM and PL, respectively. The results revealed that dopant Mn2+ completely substitutes Cd2+ in CdS nanocrystals, and the product was of good crystallite. Further more, a complete suppression of the emission from surface states at room temperature when doping with ions Mn2+ has been observed.
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
Kapitza resistance at segregated boundaries in β-SiC
NASA Astrophysics Data System (ADS)
Goel, Nipun; Webb, Edmund, III; Oztekin, Alparslan; Rickman, Jeffrey; Neti, Sudhakar
Silicon Carbide is a candidate material for high-temperature thermoelectric applications for harvesting waste heat associated with exhaust from automotive and furnaces as well hot surfaces in solar towers and power electronics. However, for SiC to be a viable thermoelectric material, its thermoelectric figure of merit must be improved significantly. In this talk we examine the role of grain-boundary segregation on phononic thermal transport, an important factor in determining the figure of merit, via non-equilibrium molecular dynamics simulations. In particular, we consider the role of dopant concentration and dopant/matrix interactions on the enhancement of the Kapitza resistance of symmetric tilt grain boundaries. We find that the calculated resistance depends on the segregation profile, with increases of more than a factor of 50 (relative to an unsegregated boundary) at the highest dopant concentrations. Finally, we relate the calculated phonon density of states to changes in the Kapitza resistance.
Gallium-Doped Poly-Si:Ga/SiO 2 Passivated Emitters to n-Cz Wafers With iV oc >730 mV
Young, David L.; Lee, Benjamin G.; Fogel, Derek; ...
2017-09-26
Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaonan; Schreiber, Daniel K.; Neeway, James J.
Atom probe tomography (APT) is a novel analytical microscopy method that provides three dimensional elemental mapping with sub-nanometer spatial resolution and has only recently been applied to insulating glass and ceramic samples. In this paper, we have studied the influence of the optical absorption in glass samples on APT characterization by introducing different transition metal optical dopants to a model borosilicate nuclear waste glass (international simple glass). A systematic comparison is presented of the glass optical properties and the resulting APT data quality in terms of compositional accuracy and the mass spectra quality for two APT systems: one with amore » green laser (532 nm, LEAP 3000X HR) and one with a UV laser (355 nm, LEAP 4000X HR). These data were also compared to the study of a more complex borosilicate glass (SON68). The results show that the analysis data quality such as compositional accuracy and total ions collected, was clearly linked to optical absorption when using a green laser, while for the UV laser optical doping aided in improving data yield but did not have a significant effect on compositional accuracy. Comparisons of data between the LEAP systems suggest that the smaller laser spot size of the LEAP 4000X HR played a more critical role for optimum performance than the optical dopants themselves. The smaller spot size resulted in more accurate composition measurements due to a reduced background level independent of the material’s optical properties.« less
New Layered Materials and Functional Nanoelectronic Devices
NASA Astrophysics Data System (ADS)
Yu, Jaeeun
This thesis introduces functional nanomaterials including superatoms and carbon nanotubes (CNTs) for new layered solids and molecular devices. Chapters 1-3 present how we incorporate superatoms into two-dimensional (2D) materials. Chapter 1 describes a new and simple approach to dope transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Doping is an effective method to modulate the electrical properties of materials, and we demonstrate an electron-rich cluster can be used as a tunable and controllable surface dopant for semiconducting TMDCs via charge transfer. As a demonstration of the concept, we make a p-n junction by patterning on specific areas of TMDC films. Chapter 2 and Chapter 3 introduce new 2D materials by molecular design of superatoms. Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and TMDCs have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Chapter 2 describes a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. Chapter 3 describes a new method to functionalize electroactive superatoms with groups that can direct their assembly into covalent and non-covalent multi-dimensional frameworks. We synthesized Co6Se8[PEt2(4-C6H4COOH)]6 and found that it forms two types of crystalline assemblies with Zn(NO3)2, one is a three-dimensional solid and the other consists of stacked layers of two-dimensional sheets. The dimensionality is controlled by subtle changes in reaction conditions. CNT-based field-effect transistor (FETs), in which a single molecule spans an oxidatively cut gap in the CNT, provide a versatile, ground-state platform with well-defined electrical contacts. For statistical studies of a variety of small molecule bridges, Chapter 4 presents a novel fabrication method to produce hundreds of FETs on one single carbon nanotube. A large number of devices allows us to study the stability and uniformity of CNT FET properties. Moreover, the new platform also enables a quantitative analysis of molecular devices. In particular, we used CNT FETs for studying DNA-mediated charge transport. DNA conductance was measured by connecting DNA molecules of varying lengths to lithographically cut CNT FETs.
Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers.
Sidiroglou, F; Roberts, A; Baxter, G
2016-04-01
Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.
Random dopant fluctuations and statistical variability in n-channel junctionless FETs
NASA Astrophysics Data System (ADS)
Akhavan, N. D.; Umana-Membreno, G. A.; Gu, R.; Antoszewski, J.; Faraone, L.
2018-01-01
The influence of random dopant fluctuations on the statistical variability of the electrical characteristics of n-channel silicon junctionless nanowire transistor (JNT) has been studied using three dimensional quantum simulations based on the non-equilibrium Green’s function (NEGF) formalism. Average randomly distributed body doping densities of 2 × 1019, 6 × 1019 and 1 × 1020 cm-3 have been considered employing an atomistic model for JNTs with gate lengths of 5, 10 and 15 nm. We demonstrate that by properly adjusting the doping density in the JNT, a near ideal statistical variability and electrical performance can be achieved, which can pave the way for the continuation of scaling in silicon CMOS technology.
Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabe, Michiharu, E-mail: tabe.michiharu@shizuoka.ac.jp; Tan, Hoang Nhat; Mizuno, Takeshi
We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of amore » donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.« less
Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou
2017-11-20
Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-02-01
We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.
NASA Astrophysics Data System (ADS)
Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.
2018-03-01
With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
2000-01-01
In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFET's with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3-D) "atomistic" simulation technique described else-where. MOSFET's with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled-in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide-thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect or the polysilicon grain boundaries on the threshold voltage variation are also presented.
NASA Astrophysics Data System (ADS)
Liday, Jozef; Vogrinčič, Peter; Vincze, Andrej; Breza, Juraj; Hotový, Ivan
2012-12-01
The work investigates an increase of the density of free charge carriers in the sub-surface region of p-GaN by adding p-type dopants into the Ni-O layer of an Au/Ni-O metallization structure. We have examined electrical properties and concentration depth profiles of contact structures Au/Ni-Mg-O/p-GaN and Au/Ni-Zn-O/p-GaN, thus with magnesium and zinc as p-type dopants. The metallization layers were deposited on p-GaN by DC reactive magnetron sputtering in an atmosphere with a low concentration of oxygen (0.2 at%). The contacts were annealed in N2 . We have found that the structures containing magnesium or zinc exhibit lower values of contact resistivity in comparison with otherwise identical contacts without Mg or Zn dopants. In our opinion, the lower values of contact resistivity of the structures containing of Mg or Zn are caused by an increased density of holes in the sub-surface region of p-GaN due to diffusion of Mg or Zn from the deposited doped contact layers.
Fresch, Barbara; Bocquel, Juanita; Hiluf, Dawit; Rogge, Sven; Levine, Raphael D; Remacle, Françoise
2017-07-05
To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kawai, Hiroki; Nakasaki, Yasushi; Kanemura, Takahisa; Ishihara, Takamitsu
2018-04-01
Dopant segregation at Si/SiO2 interface has been a serious problem in silicon device technology. This paper reports a comprehensive density-functional study on the segregation mechanisms of boron, phosphorous, and arsenic at the Si/SiO2 interface. We found that three kinds of interfacial defects, namely, interstitial oxygen, oxygen vacancy, and silicon vacancy with two oxygen atoms, are stable in the possible chemical potential range. Thus, we consider these defects as trap sites for the dopants. For these defects, the dopant segregation energies, the electrical activities of the trapped dopants, and the kinetic energy barriers of the trapping/detrapping processes are calculated. As a result, trapping at the interstitial oxygen site is indicated to be the most plausible mechanism of the dopant segregation. The interstitial oxygen works as a major trap site since it has a high areal density at the Si/SiO2 interface due to the low formation energy.
Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma
2018-06-01
The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extended Hubbard model for mesoscopic transport in donor arrays in silicon
NASA Astrophysics Data System (ADS)
Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran
2017-12-01
Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.
Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, W.; Cheng, Chingyun; Arakelyan, I.; Thomas, J. E.
2015-03-01
We measure the density profiles for a Fermi gas of
NASA Astrophysics Data System (ADS)
Lu, Xin-Ming
Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation in combination with two-step annealing is effective in fabricating ultra-shallow junctions.
Materials, properties, and applications of nitrogen-doped organic semiconductors
NASA Astrophysics Data System (ADS)
Chan, Calvin Kar-Fai
As organic semiconducting materials draw increasing attention for many promising applications, including efficient organic light-emitting diodes (OLEDs), large-area organic photovoltaic (OPV) cells, and flexible organic thin-film transistors (OTFTs), chemical doping of organic materials is emerging as an important technique for overcoming performance deficiencies and material limitations of intrinsic organic films. Although p-doping has been amply demonstrated, molecular n-type doping has been difficult to study because of the inherent instability of easily oxidized n-dopants. In this work, the facile use of two low ionization energy (IE) small molecules that are suitable for n-doping a wide range of organic electronic materials is demonstrated. Cobaltocene (CoCp2) and its derivative, decamethylcobaltocene ( CoCp*2 ), were found to have fairly low IEs for organic compounds. Co-deposition of the n-dopants with different host molecules results in pronounced shifts of the Fermi-level towards unoccupied molecular states, indicating a significant increase in electron concentration. The Fermi-level shifts, measured with ultra-violet photoemission spectroscopy (UPS), are correlated with excess carrier densities using a model based on Fermi-Dirac (F-D) statistics and a Gaussian distributed density of states. The calculated electron densities suggest full dopant ionization at low concentrations, and diminished efficiency at high donor concentrations. The concentration of incorporated dopants is examined by chemical composition analysis of doped films using X-ray photoemission spectroscopy (XPS). Atomic concentration depth profiling determined by Rutherford backscattering (RBS) suggests that the incorporation of CoCp2 and CoCp*2 is well-controlled and the dopants are minimally diffusive. Organic films n-doped using CoCp2 and CoCp*2 show several orders of magnitude increase in current density resulting from both enhanced electron injection and increased electron conductivity in the bulk. Increases in the bulk conductivity suggest both improved electron mobility and higher electron concentrations. These findings are applied with previous work on p-doping to fabricate organic p-i-n homojunction devices that exhibit strong rectification and large built-in potentials. Heterojunction OPVs using undoped CuPc and n-doped C60 display significant increases in open-circuit voltage (Voc), short-circuit current (Isc), fill-factor (FF), and efficiency.
NASA Astrophysics Data System (ADS)
Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf
2018-01-01
In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.
Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A
2017-07-14
Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.
Static Magnetic Fields in Semiconductor Floating-Zone Growth
NASA Technical Reports Server (NTRS)
Croll, Arne; Benz, K. W.
1999-01-01
Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ - crystals, fields up to O.STesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) SI-FZ crystals, fields of 0.2 - 0.5 Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, are possible with axial static fields in excess of 1 Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.
Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling
2017-02-28
Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.
Divalent fluoride doped cerium fluoride scintillator
Anderson, David F.; Sparrow, Robert W.
1991-01-01
The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).
Wu, Yizhi; Giddings, A Devin; Verheijen, Marcel A; Macco, Bart; Prosa, Ty J; Larson, David J; Roozeboom, Fred; Kessels, Wilhelmus M M
2018-02-27
The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called "ALD supercycles" is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width-half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm -3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors.
2018-01-01
The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called “ALD supercycles” is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width–half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm–3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors. PMID:29515290
Gate-controlled-diodes in silicon-on-sapphire: A computer simulation
NASA Technical Reports Server (NTRS)
Gassaway, J. D.
1974-01-01
The computer simulation of the electrical behavior of a Gate-Controlled Diode (GCD) fabricated in Silicon-On-Sapphire (SOS) was described. A procedure for determining lifetime profiles from capacitance and reverse current measurements on the GCD was established. Chapter 1 discusses the SOS structure and points out the need of lifetime profiles to assist in device design for GCD's and bipolar transistors. Chapter 2 presents the one-dimensional analytical formula for electrostatic analysis of the SOS-GCD which are useful for data interpretation and setting boundary conditions on a simplified two-dimensional analysis. Chapter 3 gives the results of a two-dimensional analysis which treats the field as one-dimensional until the silicon film is depleted and the field penetrates the sapphire substrate. Chapter 4 describes a more complete two-dimensional model and gives results of programs implementing the model.
Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study
NASA Astrophysics Data System (ADS)
Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.
2016-12-01
Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et al., Top Catal 2016, 59, 591-604. 2. Huthwelker, T.; Malmstrom, M. E.; Helleis, F.; Moortgat, G. K.; Peter, T., J Phys Chem A 2004, 108, 6302-6318.
NASA Astrophysics Data System (ADS)
Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv
2017-09-01
The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.
NASA Astrophysics Data System (ADS)
Cheng, Yongfa; Meng, Ruishen; Tan, Chunjian; Chen, Xianping; Xiao, Jing
2018-01-01
Two-dimensional (2D) materials have gained tremendous research interests for gas sensing applications because of their ultrahigh theoretical specific surface areas and unique electronic properties. Here, we investigate the adsorption of CO, SO2, NH3, O2, NO and NO2 gas molecules on pure and doped boron phosphide (BP) systems using first-principles calculations to exploit their potential in gas sensing. Our results predict that all six gas molecules show stronger adsorption interactions on impurities-doped BP over the pristine monolayer BP. Al-doped BP shows the highest sensitivity to all gas molecules, but N-doped BP is more suitable as a sensing material for SO2, NO and NO2 due to the feasibility of desorption. We further calculated the current-voltage (I-V) relation by mean of nonequilibrium Green's function (NEGF) formalism. The I-V curves indicate that the electronic properties of the doping systems change significantly with gas adsorption by studying the nonparamagnetic molecules NH3 and the paramagnetic molecules NO, which can be more likely to be measured experimentally compared to graphene and phosphorene. This work explores the possibility of BP as a superior sensor through introducing the appropriate dopants.
Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.
Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J
2011-11-01
Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.
Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidiroglou, F.; Baxter, G.; Roberts, A.
Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developingmore » the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.« less
Design optimization of piezoresistive cantilevers for force sensing in air and water
Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.
2009-01-01
Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512
Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong
2004-10-01
Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.
Wagner, Chad R.
2007-01-01
The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.
Spectral Engineering of Slow Light, Cavity Line Narrowing, and Pulse Compression
NASA Astrophysics Data System (ADS)
Sabooni, Mahmood; Li, Qian; Rippe, Lars; Mohan, R. Krishna; Kröll, Stefan
2013-11-01
More than 4 orders of magnitude of cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, emanating from strong intracavity dispersion caused by off-resonant interaction with dopant ions, is demonstrated. The dispersion profiles are engineered using optical pumping techniques creating significant semipermanent but reprogrammable changes of the rare-earth absorption profiles. Several cavity modes are shown within the spectral transmission window. Several possible applications of this phenomenon are discussed.
Codoped direct-gap semiconductor scintillators
Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA
2008-07-29
Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
Codoped direct-gap semiconductor scintillators
Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.
2006-05-23
Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.
Calculation of nanodrop profile from fluid density distribution.
Berim, Gersh O; Ruckenstein, Eli
2016-05-01
Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is calculated like in procedure P1. It is shown, that procedure P3 provides a drop profile which is more reasonable than the other ones. Relationship of the discussed procedures to those used in image analysis is briefly discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.
2011-01-01
A noncontacting, two-dimensional (2-D) laser inspection system has been designed and implemented to dimensionally profile thermal barriers being developed for space vehicle applications. In a vehicle as-installed state, thermal barriers are commonly compressed between load sensitive thermal protection system (TPS) panels to prevent hot gas ingestion through the panel interface during flight. Loads required to compress the thermal barriers are functions of their construction, as well as their dimensional characteristics relative to the gaps in which they are installed. Excessive loads during a mission could damage surrounding TPS panels and have catastrophic consequences. As such, accurate dimensional profiling of thermal barriers prior to use is important. Due to the compliant nature of the thermal barriers, traditional contact measurement techniques (e.g., calipers and micrometers) are subjective and introduce significant error and variability into collected dimensional data. Implementation of a laser inspection system significantly enhanced the method by which thermal barriers are dimensionally profiled, and improved the accuracy and repeatability of collected data. A statistical design of experiments study comparing laser inspection and manual caliper measurement techniques verified these findings.
Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.
Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank
2017-03-15
High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.
Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz
2011-01-01
The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B2H6 and SiH4 fluxes (B2H6 from 12 sccm to 20 sccm and SiH4 from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples. PMID:21731436
Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin
2014-06-28
Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.
Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; ...
2016-01-01
Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less
Low conductivity and sintering-resistant thermal barrier coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)
2007-01-01
A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.
Low conductivity and sintering-resistant thermal barrier coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)
2006-01-01
A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.
Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge
NASA Technical Reports Server (NTRS)
Sheeley, Joseph
1997-01-01
The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.
NASA Astrophysics Data System (ADS)
Zawada, Daniel J.; Rieger, Landon A.; Bourassa, Adam E.; Degenstein, Douglas A.
2018-04-01
Measurements of limb-scattered sunlight from the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) can be used to obtain vertical profiles of ozone in the stratosphere. In this paper we describe a two-dimensional, or tomographic, retrieval algorithm for OMPS-LP where variations are retrieved simultaneously in altitude and the along-orbital-track dimension. The algorithm has been applied to measurements from the center slit for the full OMPS-LP mission to create the publicly available University of Saskatchewan (USask) OMPS-LP 2D v1.0.2 dataset. Tropical ozone anomalies are compared with measurements from the Microwave Limb Sounder (MLS), where differences are less than 5 % of the mean ozone value for the majority of the stratosphere. Examples of near-coincident measurements with MLS are also shown, and agreement at the 5 % level is observed for the majority of the stratosphere. Both simulated retrievals and coincident comparisons with MLS are shown at the edge of the polar vortex, comparing the results to a traditional one-dimensional retrieval. The one-dimensional retrieval is shown to consistently overestimate the amount of ozone in areas of large horizontal gradients relative to both MLS and the two-dimensional retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yuan; Zuo, Xu, E-mail: xzuo@nankai.edu.cn; Feng, Min
Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promisingmore » route for engineering Dirac physics in condensed matters.« less
Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO 2-δ Films
Cortie, David L.; Khaydukov, Yury; Keller, Thomas; ...
2017-02-23
High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming themore » pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0, with a minor fraction of Co 2+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co 0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.« less
Method for enhancing the solubility of dopants in silicon
Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz
2003-09-30
A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.
Surface Passivation by Quantum Exclusion Using Multiple Layers
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor)
2015-01-01
A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.
Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; ...
2017-08-28
Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less
NASA Astrophysics Data System (ADS)
Kiyohara, Shin; Mizoguchi, Teruyasu
2018-03-01
Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan
Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less
Two-dimensional and three-dimensional evaluation of the deformation relief
NASA Astrophysics Data System (ADS)
Alfyorova, E. A.; Lychagin, D. V.
2017-12-01
This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.
Thickness dependences of solar cell performance
NASA Technical Reports Server (NTRS)
Sah, C. T.
1982-01-01
The significance of including factors such as the base resistivity loss for solar cells thicker than 100 microns and emitter and BSF layer recombination for thin cells in predicting the fill factor and efficiency of solar cells is demonstrated analytically. A model for a solar cell is devised with the inclusion of the dopant impurity concentration profile, variation of the electron and hole mobility with dopant concentration, the concentration and thermal capture and emission rates of the recombination center, device temperature, the AM1 spectra and the Si absorption coefficient. Device equations were solved by means of the transmission line technique. The analytical results were compared with those of low-level theory for cell performance. Significant differences in predictions of the fill factor resulted, and inaccuracies in the low-level approximations are discussed.
Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-09-01
Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.
Chowdhury, Chandra; Jahiruddin, Sheik; Datta, Ayan
2016-04-07
Phosphorene (Pn) is stabilized as a layered material like graphite, yet it possess a natural direct band gap (Eg = 2.0 eV). Interestingly, unlike graphene, Pn exhibits a much richer phase diagram which includes distorted forms like the stapler-clip (black Pn, α form) and chairlike (blue Pn, β form) structures. The existence of these phases is attributed to pseudo-Jahn-Teller (PJT) instability of planar hexagonal P6(6-) rings. In both cases, the condition for vibronic instability of the planar P6(6-) rings is satisfied. Doping with electron donors like tetrathiafulvalene and tetraamino-tetrathiafulvalene and electron acceptors like tetracyanoquinodimethane and tetracyanoethylene convert blue Pn into N-type and black Pn into efficient P-type semiconductors, respectively. Interestingly, pristine blue Pn, an indirect gap semiconductor, gets converted into a direct gap semiconductor on electron or hole doping. Because of comparatively smaller undulation in blue Pn (with respect to black Pn), the van der Waals interactions between the dopants and blue Pn is stronger. PJT distortions for two-dimensional phosphorus provides a unified understanding of structural features and chemical reactivity in its different phases.
Dopant ink composition and method of fabricating a solar cell there from
Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward
2017-10-25
Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.
Dopant ink composition and method of fabricating a solar cell there from
Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward
2015-03-31
Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.
Piriz, Sebastián; Fernández-Werner, Luciana; Pardo, Helena; Jasen, Paula; Faccio, Ricardo; Mombrú, Álvaro W
2017-08-16
In this study, we present the structural, electronic, and mechanical properties of edge-doped zigzag graphene nanoribbons (ZGNRs) doped with fluorine, oxygen, and chlorine atoms. To the best of our knowledge, to date, no experimental results concerning the mechanical properties of graphene-derived nanoribbons have been reported in the literature. Simulations indicate that Cl- and F-doped ZGNRs present an equivalent 2-dimensional Young's modulus E 2D , which seems to be higher than those of graphene and H-doped ZGNRs. This is a consequence of the electronic structure of the system, particularly originating from strong interactions between the dopant atoms localized at the edges. The interaction between dopant atoms located at the edges is higher for Cl and lower for F and O atoms. This is the origin of the observed trend, in which E > E > E for all the analyzed ZGNRs.
NASA Astrophysics Data System (ADS)
Wang, Yijiao; Huang, Peng; Xin, Zheng; Zeng, Lang; Liu, Xiaoyan; Du, Gang; Kang, Jinfeng
2014-01-01
In this work, three dimensional technology computer-aided design (TCAD) simulations are performed to investigate the impact of random discrete dopant (RDD) including extension induced fluctuation in 14 nm silicon-on-insulator (SOI) gate-source/drain (G-S/D) underlap fin field effect transistor (FinFET). To fully understand the RDD impact in extension, RDD effect is evaluated in channel and extension separately and together. The statistical variability of FinFET performance parameters including threshold voltage (Vth), subthreshold slope (SS), drain induced barrier lowering (DIBL), drive current (Ion), and leakage current (Ioff) are analyzed. The results indicate that RDD in extension can lead to substantial variability, especially for SS, DIBL, and Ion and should be taken into account together with that in channel to get an accurate estimation on RDF. Meanwhile, higher doping concentration of extension region is suggested from the perspective of overall variability control.
Spatial Data Transfer Standard (SDTS), part 5 : SDTS raster profile and extensions
DOT National Transportation Integrated Search
1998-01-01
The SRPE contains specifications for a profile for use with georeferenced two-dimensional raster data. Both raster image and raster grid data are included within the scope of this profile. The transfer of indirectly referenced images is permitted, i....
Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Laurie, Jason; Boffetta, Guido; Falkovich, Gregory; Kolokolov, Igor; Lebedev, Vladimir
2014-12-01
An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.
Turbine blade profile design method based on Bezier curves
NASA Astrophysics Data System (ADS)
Alexeev, R. A.; Tishchenko, V. A.; Gribin, V. G.; Gavrilov, I. Yu.
2017-11-01
In this paper, the technique of two-dimensional parametric blade profile design is presented. Bezier curves are used to create the profile geometry. The main feature of the proposed method is an adaptive approach of curve fitting to given geometric conditions. Calculation of the profile shape is produced by multi-dimensional minimization method with a number of restrictions imposed on the blade geometry.The proposed method has been used to describe parametric geometry of known blade profile. Then the baseline geometry was modified by varying some parameters of the blade. The numerical calculation of obtained designs has been carried out. The results of calculations have shown the efficiency of chosen approach.
Two-dimensional molecular line transfer for a cometary coma
NASA Astrophysics Data System (ADS)
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
Huang, Yuhua; Zhou, Ying; Doyle, Charlie; Wu, Shin-Tson
2006-02-06
We have investigated the physical and optical properties of the left-handed chiral dopant ZLI-811 mixed in a nematic liquid crystal (LC) host BL006. The solubility of ZLI-811 in BL006 at room temperature is ~24 wt%, but can be enhanced by increasing the temperature. Consequently, the photonic band gap of the cholesteric liquid crystal (CLC) mixed with more than 24 wt% chiral dopant ZLI-811 is blue shifted as the temperature increases. Based on this property, we demonstrate two applications in thermally tunable band-pass filters and dye-doped CLC lasers.
Effects of SiO2 and ZnO doping on mechanical and biological properties of 3D printed TCP scaffolds
Fielding, Gary A.; Bandyopadhyay, Amit; Bose, Susmita
2011-01-01
Objectives To evaluate the effects of SiO2 (0.5 wt %) and ZnO (0.25 wt %) dopants on the mechanical and biological properties of tricalcium phosphate (TCP) scaffolds with three dimensionally (3D) interconnected pores. Methods Scaffolds were created with a commercial 3D printer. Post sintering phase analysis was determined by x-ray diffraction. Surface morphology of the scaffolds was examined by field emission electron microscopy. Mechanical strength was evaluated with a screw driven universal testing machine. MTT assay was used for cellular proliferation characteristics and cellular morphology was examined by field emission electron microscopy. Results Addition of dopants into TCP increased the average density of pure TCP from 90.8 ± 0.8% to 94.1 ± 1.6% and retarded the β to α phase transformation at high sintering temperatures, which resulted in up to 2.5 fold increase in compressive strength. In vitro cell-materials interaction studies, carried out using hFOB cells, confirmed that the addition of SiO2 and ZnO to the scaffolds facilitates faster cell proliferation when compared to pure TCP scaffolds. Significance Addition of SiO2 and ZnO dopants to the TCP scaffolds showed increased mechanical strength as well as increased cellular proliferation. PMID:22047943
NASA Technical Reports Server (NTRS)
Ziemann, J.
1982-01-01
The NACA 0012 profile at Mach 0.5 was investigated in a wind tunnel with adaptive walls. It is found that adaptation of the flexible walls is possible in the high angle of attack range on both sides of maximum lift. Oil film photographs of the flow at the profile surface show three dimensional effects in the region of the corners between the profile and the sidewall. It is concluded that pure two dimensional separated flow is not possible.
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
1999-01-01
Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.
Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan
2017-09-29
Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Temperature maxima in stable two-dimensional shock waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-07-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}
López-Pedrouso, María; Bernal, Javier; Franco, Daniel; Zapata, Carlos
2014-07-23
High-resolution two-dimensional electrophoresis (2-DE) profiles of the protein phaseolin, the major seed storage protein of common bean, display great number of spots with differentially glycosylated and phosphorylated α- and β-type polypeptides. This work aims to test whether these complex profiles can be useful markers of genetic differentiation and seed protein quality in bean populations. The 2-DE phaseolin profile and the amino acid composition were examined in bean seeds from 18 domesticated and wild accessions belonging to the Mesoamerican and Andean gene pools. We found that proteomic distances based on 2-DE profiles were successful in identifying the accessions belonging to each gene pool and outliers distantly related. In addition, accessions identified as outliers from proteomic distances showed the highest levels of methionine content, an essential amino acid deficient in bean seeds. These findings suggest that 2-DE phaseolin profiles provide valuable information with potential of being used in common bean genetic improvement.
Stabilization of MgAl 2O 4 spinel surfaces via doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.
Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less
Stabilization of MgAl2O4 spinel surfaces via doping
NASA Astrophysics Data System (ADS)
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.
2016-07-01
Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.
Stabilization of MgAl 2O 4 spinel surfaces via doping
Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...
2016-02-06
Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less
A Glimpse in the Third Dimension for Electrical Resistivity Profiles
NASA Astrophysics Data System (ADS)
Robbins, A. R.; Plattner, A.
2017-12-01
We present an electrode layout strategy designed to enhance the popular two-dimensional electrical resistivity profile. Offsetting electrodes from the traditional linear layout and using 3-D inversion software allows for mapping the three-dimensional electrical resistivity close to the profile plane. We established a series of synthetic tests using simulated data generated from chosen resistivity distributions with a three-dimensional target feature. All inversions and simulations were conducted using freely-available ERT software, BERT and E4D. Synthetic results demonstrate the effectiveness of the offset electrode approach, whereas the linear layout failed to resolve the three-dimensional character of our subsurface feature. A field survey using trench backfill as a known resistivity contrast confirmed our synthetic tests. As we show, 3-D inversions of linear layouts for starting models without previously known structure are futile ventures because they generate symmetric resistivity solutions with respect to the profile plane. This is a consequence of the layout's inherent symmetrical sensitivity patterns. An offset electrode layout is not subject to the same limitation, as the collective measurements do not share a common sensitivity symmetry. For practitioners, this approach presents a low-cost improvement of a traditional geophysical method which is simple to use yet may provide critical information about the three dimensional structure of the subsurface close to the profile.
Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene
2012-06-29
dopant forms one σ-bond with its C neighbor, forms σ-bonds to two H (or one N-lone-pair orbital in the unhydrogenated case). Two electrons go into the...pyridinic groups (Table 1), the additional charge from nitrogen is forced to go to the extended carbon π-network, essentially neutralizing the p-doping...T.; Bouchet-Fabre, B.; Granier, A.; Turban, G. XPS and NEXAFS characterisation of plasma deposited vertically aligned N-doped MWCNT . Diamond Relat
Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels
NASA Astrophysics Data System (ADS)
Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu
2014-05-01
Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.
NASA Astrophysics Data System (ADS)
Kleinböhl, Armin; Friedson, A. James; Schofield, John T.
2017-01-01
The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.
Depth profiling of hydrogen passivation of boron in Si(100)
NASA Astrophysics Data System (ADS)
Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.
1992-08-01
The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
NASA Technical Reports Server (NTRS)
Asenov, Asen; Saini, Subhash
1999-01-01
A detailed three-dimensional (3-D) statistical 'atomistic' simulation study of fluctuation-resistant sub-0.1-(micron)meter MOSFET architectures with epitaxial channels and delta doping is presented. The need for enhancing the fluctuation resistance of the sub-0.1-(micron)meter generation transistors is highlighted by presenting summarized results from atomistic simulations of a wide range of conventional devices with uniformly doped channel. According to our atomistic results, the doping concentration dependence of the random dopant-induced threshold voltage fluctuations in conventional devices is stronger than the analytically predicted fourth-root dependence. As a result of this, the scaling of such devices will be restricted by the "intrinsic" random dopant-induced fluctuations earlier than anticipated. Our atomistic simulations confirm that the introduction of a thin epitaxial layer in the MOSFET's channel can efficiently suppress the random dopant-induced threshold voltage fluctuations in sub-0.1-(micron)meter devices. For the first time, we observe an "anomalous" reduction in the threshold voltage fluctuations with an increase in the doping concentration behind the epitaxial channel, which we attribute to screening effects. Also, for the first time we study the effect of a delta-doping, positioned behind the epitaxial layer, on the intrinsic threshold voltage fluctuations. Above a certain thickness of epitaxial layer, we observe a pronounced anomalous decrease in the threshold voltage fluctuation with the increase of the delta doping. This phenomenon, which is also associated with screening, enhances the importance of the delta doping in the design of properly scaled fluctuation-resistant sub-0.1-(micron)meter MOSFET's. Index Terms-Doping, fluctuations, MOSFET, semiconductor device simulation, silicon devices, threshold.
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines
Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.
2010-01-01
While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516
Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2013-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.
Profile formation of academic self-concept in elementary school students in grades 1 to 4.
Schmidt, Isabelle; Brunner, Martin; Keller, Lena; Scherrer, Vsevolod; Wollschläger, Rachel; Baudson, Tanja Gabriele; Preckel, Franzis
2017-01-01
Academic self-concept (ASC) is comprised of individual perceptions of one's own academic ability. In a cross-sectional quasi-representative sample of 3,779 German elementary school children in grades 1 to 4, we investigated (a) the structure of ASC, (b) ASC profile formation, an aspect of differentiation that is reflected in lower correlations between domain-specific ASCs with increasing grade level, (c) the impact of (internal) dimensional comparisons of one's own ability in different school subjects for profile formation of ASC, and (d) the role played by differences in school grades between subjects for these dimensional comparisons. The nested Marsh/Shavelson model, with general ASC at the apex and math, writing, and reading ASC as specific factors nested under general ASC fitted the data at all grade levels. A first-order factor model with math, writing, reading, and general ASCs as correlated factors provided a good fit, too. ASC profile formation became apparent during the first two to three years of school. Dimensional comparisons across subjects contributed to ASC profile formation. School grades enhanced these comparisons, especially when achievement profiles were uneven. In part, findings depended on the assumed structural model of ASCs. Implications for further research are discussed with special regard to factors influencing and moderating dimensional comparisons.
Profile formation of academic self-concept in elementary school students in grades 1 to 4
Schmidt, Isabelle; Brunner, Martin; Keller, Lena; Scherrer, Vsevolod; Wollschläger, Rachel; Baudson, Tanja Gabriele; Preckel, Franzis
2017-01-01
Academic self-concept (ASC) is comprised of individual perceptions of one’s own academic ability. In a cross-sectional quasi-representative sample of 3,779 German elementary school children in grades 1 to 4, we investigated (a) the structure of ASC, (b) ASC profile formation, an aspect of differentiation that is reflected in lower correlations between domain-specific ASCs with increasing grade level, (c) the impact of (internal) dimensional comparisons of one’s own ability in different school subjects for profile formation of ASC, and (d) the role played by differences in school grades between subjects for these dimensional comparisons. The nested Marsh/Shavelson model, with general ASC at the apex and math, writing, and reading ASC as specific factors nested under general ASC fitted the data at all grade levels. A first-order factor model with math, writing, reading, and general ASCs as correlated factors provided a good fit, too. ASC profile formation became apparent during the first two to three years of school. Dimensional comparisons across subjects contributed to ASC profile formation. School grades enhanced these comparisons, especially when achievement profiles were uneven. In part, findings depended on the assumed structural model of ASCs. Implications for further research are discussed with special regard to factors influencing and moderating dimensional comparisons. PMID:28542384
Continuum modelling of silicon diffusion in indium gallium arsenide
NASA Astrophysics Data System (ADS)
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point defect diffusion model and activation limit model were subsequently developed in FLOOPS with outputs in good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Shakerzadeh, Ehsan; Barazesh, Neda; Talebi, Sima Zargar
2014-12-01
The structural, electronic and nonlinear optical properties of the two important fullerene-like cages of B12N12 and Al12N12 nanostructures with the groups III, IV and V dopants are investigated through density functional theory (DFT) calculations. It has been found that doping process induces local deformation at bond lengths near the doping site. Natural bond orbital (NBO) analyses are also performed for scrutinizing the structural properties of the considered nanoclusters. The results indicate that the groups III, IV and V dopants remarkably narrow the energy gap of the B12N12 nanocluster. On the other hand, although the energy gap of Al12N12 nanocluster is insensitive to groups III and V dopants; the carbon, silicon and germanium dopants extremely reduce the energy gap of this cluster. It seems that the electronic character of the B12N12 and Al12N12 nanocluster is sensitive to the dopants and it could be adjusted by particular impurity. Moreover the considered dopants induce hyperpolarizability in both of the considered nanoclusters. Interestingly, the replacing aluminum atom by carbon one in Al12N12 nanocluster (CAl11N12) leads to an extremely large hyperpolarizability value of 4358.77 a.u., which is the largest one among the considered doped clusters. It shows that the doping process plays an important role in enhancing the first hyperpolarizability of the B12N12 and Al12N12 nanoclusters.
HEATPLOT: a temperature distribution plotting program for heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1977-07-01
HEATPLOT is a temperature distribution plotting program that may be used with HEATING5, a generalized heat conduction code. HEATPLOT is capable of drawing temperature contours (isotherms), temperature-time profiles, and temperature-distance profiles from the current HEATING5 temperature distribution or from temperature changes relative to the initial temperature distribution. Contour plots may be made for two- or three-dimensional models. Temperature-time profiles and temperature-distance profiles may be made for one-, two-, and three-dimensional models. HEATPLOT is an IBM 360/370 computer code which uses the DISSPLA plotting package. Plots may be created on the CALCOMP pen-and-ink, and CALCOMP cathode ray tube (CRT), or themore » EAI pen-and-ink plotters. Printer plots may be produced or a compressed data set that may be routed to any of the available plotters may be made.« less
Two-dimensional analytical modeling of a linear variable filter for spectral order sorting.
Ko, Cheng-Hao; Wu, Yueh-Hsun; Tsai, Jih-Run; Wang, Bang-Ji; Chakraborty, Symphony
2016-06-10
A two-dimensional thin film thickness model based on the geometry of a commercial coater which can calculate more effectively the profiles of linear variable filters (LVFs) has been developed. This is done by isolating the substrate plane as an independent coordinate (local coordinate), while the rotation and translation matrices are used to establish the coordinate transformation and combine the characteristic vector with the step function to build a borderline which can conclude whether the local mask will block the deposition or not. The height of the local mask has been increased up to 40 mm in the proposed model, and two-dimensional simulations are developed to obtain a thin film profile deposition on the substrate inside the evaporation chamber to achieve the specific request of producing a LVF zone width in a more economical way than previously reported [Opt. Express23, 5102 (2015)OPEXFF1094-408710.1364/OE.23.005102].
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol–gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, includingmore » anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor. - Graphical abstract: Pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. - Highlights: • Silica-doped boehmites were prepared by sol–gel method with supercritical drying. • Ultrathin two-dimensional crystallites of pseudoboehmite were obtained. • Changes in structure and morphology upon calcination were studied. • Simulation of XRD patterns was performed with use of the Debye Scattering Equation. • Thermal stability of alumina depended on morphology inherited from pseudoboehmite.« less
Two solvable problems of planar geometrical optics.
Borghero, Francesco; Bozis, George
2006-12-01
In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.
Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra
2016-01-01
Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951
NASA Astrophysics Data System (ADS)
Mao, Barerem-Melgueba; Zhou, Bin
2011-12-01
Two liquid level sensors based on different long-period fiber gratings are proposed and compared. The long-period gratings have the same characteristics (length, grating period) but are fabricated in different optical fibers (photosensitive B-Ge codoped optical fibers with different dopants concentrations). The principle of this type of sensor is based on the refractive index sensitivity of long-period fiber gratings. By monitoring the resonant wavelength shifts of a given attenuation band, one can measure the immersed lengths of long-period fiber gratings and then the liquid level. The levels of two different solutions are measured. The maximum shift (7.69 nm) of the investigated resonance wavelength was observed in LPG1 (fabricated in Fibercore PS1250/1500). By controlling the fiber dopants concentrations one can improve the readouts of a fiber-optic liquid level sensor based on long-period fiber gratings.
Fielding, Gary A; Bandyopadhyay, Amit; Bose, Susmita
2012-02-01
To evaluate the effects of silica (SiO(2)) (0.5 wt%) and zinc oxide (ZnO) (0.25 wt%) dopants on the mechanical and biological properties of tricalcium phosphate (TCP) scaffolds with three dimensionally (3D) interconnected pores. Scaffolds were created with a commercial 3D printer. Post sintering phase analysis was determined by X-ray diffraction. Surface morphology of the scaffolds was examined by field emission scanning electron microscopy (FESEM). Mechanical strength was evaluated with a screw driven universal testing machine. MTT assay was used for cellular proliferation characteristics and cellular morphology was examined by FESEM. Addition of dopants into TCP increased the average density of pure TCP from 90.8 ± 0.8% to 94.1 ± 1.6% and retarded the β to α phase transformation at high sintering temperatures, which resulted in up to 2.5 fold increase in compressive strength. In vitro cell-materials interaction studies, carried out using hFOB cells, confirmed that the addition of SiO(2) and ZnO to the scaffolds facilitated faster cell proliferation when compared to pure TCP scaffolds. Addition of SiO(2) and ZnO dopants to the TCP scaffolds showed increased mechanical strength as well as increased cellular proliferation. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Electronically cloaked nanoparticles
NASA Astrophysics Data System (ADS)
Shen, Wenqing
The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.
Three-dimensional flow in radial turbomachinery and its impact on design
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Hawthorne, William
1993-01-01
In the two papers on the 'Theory of Blade Design for Large Deflections' published in 1984, a new inverse design technique was presented for designing the shape of turbomachinery blades in three-dimensional flow. The technique involves the determination of the blade profile from the specification of a distribution of the product of the radius and the pitched averaged tangential velocity (i.e., r bar-V(sub theta), the mean swirl schedule) within the bladed region. This is in contrast to the conventional inverse design technique for turbomachinery blading in two dimensional flow in which the blade surface pressure or velocity distribution is specified and the blade profile determined as a result; this is feasible in two-dimensional flow because the streamlines along the blade surfaces are known a priori. However, in three-dimensional flow, the stream surface is free to deform within the blade passage so that the streamlines on the blade surfaces are not known a priori; thus it is difficult and not so useful to prescribe the blade surface pressure or velocity distribution and determine the resulting blade profile. It therefore seems logical to prescribe the swirl schedule within the bladed region for designing a turbomachinery blade profile in three-dimensional flow. Furthermore, specifying r bar-V(sub theta) has the following advantages: (1) it is related to the circulation around the blade (i.e., it is an aerodynamic quantity); (2) the work done or extracted is approximately proportional to the overall change in r bar-V(sub theta) across a given blade row (Euler turbine equation); and (3) the rate of change of r bar-V(sub theta) along the mean streamline at the blade is related to the pressure jump across the blade and therefore the blade loading. Since the publications of those two papers, the technique has been applied to the design of a low speed as well as a high speed radial inflow turbine (for turbocharger applications) both of which showed definite improvements in performance over that of wheels of conventional designs, the design study of a high pressure ratio radial inflow turbine with and without splitter blades.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Large thermoelectric efficiency of doped polythiophene junction: A density functional study
NASA Astrophysics Data System (ADS)
Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid
2018-06-01
The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.
Four-dimensional characterization of a sheet-forming web
Sari-Sarraf, Hamed; Goddard, James S.
2003-04-22
A method and apparatus are provided by which a sheet-forming web may be characterized in four dimensions. Light images of the web are recorded at a point adjacent the initial stage of the web, for example, near the headbox in a paperforming operation. The images are digitized, and the resulting data is processed by novel algorithms to provide a four-dimensional measurement of the web. The measurements include two-dimensional spatial information, the intensity profile of the web, and the depth profile of the web. These measurements can be used to characterize the web, predict its properties and monitor production events, and to analyze and quantify headbox flow dynamics.
NASA Technical Reports Server (NTRS)
Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.
1991-01-01
Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.
NASA Astrophysics Data System (ADS)
Ducariu, A.; Constantin, G. C.; Puscas, N. N.
2005-08-01
In the small gain approximation and the unsaturated regime in this paper we report some original results concerning the evaluation of the Fano factor, statistical fluctuation and spontaneous emission factor which characterize the photon statistics on the number of excited modes, dopant concentration and power pumping in the single and double pass Er3+ - doped LiNbO, straight waveguide amplifiers pumped near 1484 nm using erfc, Gaussian and constant profile of the Er3+ ions in LiNbO, crystal. We demonstrated that for 50 mW input pump power the Poisson photon statistics are maintained in the above mentioned amplifiers for concentrations of the Er ions smaller than l026 m-3 and also high gains and low noise figures are achievable. The obtained results can be used for the design of optoelectronic integrated circuits.
Influence of damping on the frequency-dependent polarizabilities of doped quantum dot
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-09-01
We investigate the profiles of diagonal components of frequency-dependent linear (αxx and αyy), and first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally focuses on investigating the role of damping on the polarizability components. In view of this the dopant is considered to be propagating under damped condition which is otherwise linear inherently. The frequency-dependent polarizabilities are then analyzed by placing the doped dot to a periodically oscillating external electric field of given intensity. The damping strength, in conjunction with external oscillation frequency and confinement potentials, fabricate the polarizability components in a fascinating manner which is adorned with emergence of maximization, minimization, and saturation. The discrimination in the values of the polarizability components in x and y-directions has also been addressed in the present context.
Nanoscale doping of compound semiconductors by solid phase dopant diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam
2016-03-21
Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less
NASA Astrophysics Data System (ADS)
Chen, M. X.; Chen, Wei; Zhang, Zhenyu; Weinert, M.
2017-12-01
The effects of Fe dopants on the electronic bands structure of (Li0.8Fe0.2OH )FeSe are investigated by a band unfolding (k -projection) technique and first-principles supercell calculations. Doping 20% Fe into the LiOH layers causes electron donation to the FeSe layers, significantly changing the profile of bands around the Fermi level. Because of the weak bonding between the LiOH and FeSe layers the magnetic configuration of the dopants has only minor effects on the band structure. The electronic bands for the surface FeSe layer of (Li0.8Fe0.2OH )FeSe show noticeable differences compared to those of the inner layers, both in the location of the Fermi level and in details of the bands near the high symmetry points, resulting from different effective doping levels and the broken symmetry at the surface. The band structure for the surface FeSe layer with checkerboard antiferromagnetic order is reasonably consistent with angle-resolved photoemission results. The 3 d transition metals Mn and Co have similar doping effects on the band structure of (LiOH)FeSe.
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
NASA Astrophysics Data System (ADS)
Lee, Daeyeong; Jang, Young Dae; Kweon, Jaehwan; Ryu, Jungjin; Hwang, Euyheon; Yoo, Won Jong; Samsung-SKKU Graphene/2D Center (SSGC) Collaboration
A vertical p+-n+ homojunction was fabricated by using black phosphorus (BP) as a van der Waals two-dimensional (2D) material. The top and bottom layers of the materials were doped by chemical dopants of gold chloride (AuCl3) for p-type doping and benzyl viologen (BV) for n-type doping. The negative differential resistance (NDR) effect was clearly observed from the output curves of the fabricated BP vertical devices. The thickness range of the 2D material showing NDR and the peak to valley current ratio of NDR are found to be strongly dependent on doping condition, gate voltage, and BP's degradation level. Furthermore, the carrier transport of the p+-n+ junction was simulated by using density functional theory (DFT) and non-equilibrium Green's function (NEGF). Both the experimental and simulation results confirmed that the NDR is attributed to the band-to-band tunneling (BTBT) across the 2D BP p+-n+ junction, and further quantitative details on the carrier transport in the vertical p+-n+ junction devices were explored, according to the analyses of the measured transfer curves and the DFT simulation results. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2013R1A2A2A01015516).
Electrical and Optical Characteristics of Undoped and Se-Doped Bi2S3 Transistors
NASA Astrophysics Data System (ADS)
Kilcoyne, Colin; Alsaqqa, Ali; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, G.
Semiconducting chalcogenides have been drawing increased attention due to their interesting physical properties, especially in low dimensional structures. Bi2S3 has demonstrated a high optical absorption coefficient, a large bulk mobility, small bandgap, high Seebeck coefficient, and low thermal conductivity. These properties make it a good candidate for optical, electric and thermoelectric applications. However, control over the electrical properties for enhanced thermoelectric performance and optical applications is desired. We present electrical transport and optical properties from individual nanowire and few-layer transistors of single crystalline undoped and Se-doped Bi2S3-xSex. All devices exhibit n-type semiconducting behavior and the ON/OFF ratio, mobility, and conductivity noise behavior are studied as functions of dopant concentration, temperature, and charge carrier density in different conduction regimes. The roles of dopant driven scattering mechanisms and mobility/carrier density fluctuations will be discussed. The potential for this series of materials as optical and electrical switches will be presented. NSF DMR.
NASA Astrophysics Data System (ADS)
Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kiriya, D.
2018-05-01
Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2) is a semiconducting material composed of atomically thin (˜0.7 nm thickness) layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV) which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4) is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N'-dimethylformamide (DMF), by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature) and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.
Graphical classification of DNA sequences of HLA alleles by deep learning.
Miyake, Jun; Kaneshita, Yuhei; Asatani, Satoshi; Tagawa, Seiichi; Niioka, Hirohiko; Hirano, Takashi
2018-04-01
Alleles of human leukocyte antigen (HLA)-A DNAs are classified and expressed graphically by using artificial intelligence "Deep Learning (Stacked autoencoder)". Nucleotide sequence data corresponding to the length of 822 bp, collected from the Immuno Polymorphism Database, were compressed to 2-dimensional representation and were plotted. Profiles of the two-dimensional plots indicate that the alleles can be classified as clusters are formed. The two-dimensional plot of HLA-A DNAs gives a clear outlook for characterizing the various alleles.
Current sheet in plasma as a system with a controlling parameter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridman, Yu. A., E-mail: yulya-fridman@yandex.ru; Chukbar, K. V., E-mail: Chukbar-KV@nrcki.ru
2015-08-15
A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.
NASA Astrophysics Data System (ADS)
Armigliato, A.
2008-07-01
In the present and future CMOS technology, due to the ever shrinking geometries of the electronic devices, the availability of techniques capable of performing quantitative analyses of the relevant parameters (structural, chemical, mechanical) at a nanoscale is of a paramount importance. The influence of these features on the electrical performances of the nanodevices is a key issue for the nanoelectronics industry. In the recent years, a significant progress has been made in this field by a number of techniques, such as X-ray diffraction, in particular with the advent of synchrotron sources, ion-microbeam based Rutherford backscattering and channeling spectrometry, and micro Raman spectrometry. In addition, secondary ion mass spectrometry (SIMS) has achieved an important role in the determination of the dopant depth profile in ultra-shallow junctions (USJs) in silicon. However, the technique which features the ultimate spatial resolution (at the nanometer scale) is scanning transmission electron microscopy (STEM). In this presentation it will be reported on the nanoanalysis by STEM of two very important physical quantities which need to be controlled in the fabrication processes of nanodevices: the dopant profile in the USJs and the lattice strain that is generated in the Si electrically active regions of isolation structures by the different technological steps. The former quantity is investigated by the so-called Z-contrast high-angle annular dark field (HAADF-STEM) method, whereas the mechanical strain can be two-dimensionally mapped by the convergent beam electron diffraction (CBED-STEM) method. A spatial resolution lower than one nanometer and of a few nanometers can be achieved in the two cases, respectively. To keep the pace with the scientific and technological progress an increasingly wide array of analytical techniques is necessary; their complementary role in the solution of present and future characterization problems must be exploited. Presently, however, European laboratories with high-level expertise in materials characterization still operate in a largely independent way; this adversely affects the competitivity of European science and industry at the international level. For this reason the European Commission has started an Integrated Infrastructure Initiative (I3) in the sixth Framework Programme (now continuing in FP7) and funded a project called ANNA (2006-2010). This acronym stands for European Integrated Activity of Excellence and Networking for Nano and Micro- Electronics Analysis. The consortium includes 12 partners from 7 European countries and is coordinated by the Fondazione B.Kessler (FBK) in Trento (Italy); CNR-IMM is one of the 12 partners. Aim of ANNA is the onset of strong, long-term collaboration among the partners, so to form an integrated multi-site analytical facility, able to offer to the European community a wide variety of top-level analytical expertise and services in the field of micro- and nano-electronics. They include X-ray diffraction and scattering, SIMS, electron microscopy, medium-energy ion scattering, optical and electrical techniques. The project will be focused on three main activities: Networking (standardization of samples and methodologies, establishment of accredited reference laboratories), Transnational Access to laboratories located in the partners' premises to perform specific analytical experiments (an example is given by the two STEM methodologies discussed above) and Joint Research activity, which is targeted at the improvement and extension of the methodologies through a continuous instrumental and technical development. It is planned that the European joint analytical laboratory will continue its activity beyond the end of the project in 2010.
Katagiri, Fumiaki; Glazebrook, Jane
2003-01-01
A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373
A thermal analysis of a spirally wound battery using a simple mathematical model
NASA Technical Reports Server (NTRS)
Evans, T. I.; White, R. E.
1989-01-01
A two-dimensional thermal model for spirally wound batteries has been developed. The governing equation of the model is the energy balance. Convective and insulated boundary conditions are used, and the equations are solved using a finite element code called TOPAZ2D. The finite element mesh is generated using a preprocessor to TOPAZ2D called MAZE. The model is used to estimate temperature profiles within a spirally wound D-size cell. The model is applied to the lithium/thionyl chloride cell because of the thermal management problems that this cell exhibits. Simplified one-dimensional models are presented that can be used to predict best and worst temperature profiles. The two-dimensional model is used to predict the regions of maximum temperature within the spirally wound cell. Normal discharge as well as thermal runaway conditions are investigated.
Structural origins of broadband emission from layered Pb-Br hybrid perovskites.
Smith, Matthew D; Jaffe, Adam; Dohner, Emma R; Lindenberg, Aaron M; Karunadasa, Hemamala I
2017-06-01
Through structural and optical studies of a series of two-dimensional hybrid perovskites, we show that broadband emission upon near-ultraviolet excitation is common to (001) lead-bromide perovskites. Importantly, we find that the relative intensity of the broad emission correlates with increasing out-of-plane distortion of the Pb-(μ-Br)-Pb angle in the inorganic sheets. Temperature- and power-dependent photoluminescence data obtained on a representative (001) perovskite support an intrinsic origin to the broad emission from the bulk material, where photogenerated carriers cause excited-state lattice distortions mediated through electron-lattice coupling. In contrast, most inorganic phosphors contain extrinsic emissive dopants or emissive surface sites. The design rules established here could allow us to systematically optimize white-light emission from layered hybrid perovskites by fine-tuning the bulk crystal structure.
The Intrinsic Ferromagnetism in a MnO2 Monolayer.
Kan, M; Zhou, J; Sun, Q; Kawazoe, Y; Jena, P
2013-10-17
The Mn atom, because of its special electronic configuration of 3d(5)4s(2), has been widely used as a dopant in various two-dimensional (2D) monolayers such as graphene, BN, silicene and transition metal dichalcogenides (TMDs). The distributions of doped Mn atoms in these systems are highly sensitive to the synthesis process and conditions, thus suffering from problems of low solubility and surface clustering. Here we show for the first time that the MnO2 monolayer, synthetized 10 years ago, where Mn ions are individually held at specific sites, exhibits intrinsic ferromagnetism with a Curie temperature of 140 K, comparable to the highest TC value achieved experimentally for Mn-doped GaAs. The well-defined atomic configuration and the intrinsic ferromagnetism of the MnO2 monolayer suggest that it is superior to other magnetic monolayer materials.
NASA Astrophysics Data System (ADS)
Pamungkas, Mauludi Ariesto; Sobirin, Kafi; Abdurrouf
2018-04-01
Silicene is a material in which silicon atoms are packed in two-dimensional hexagonal lattice, similar to that of graphene. Compared to graphene, silicene has promising potential to be applied in microelectronic technology because of its compatibility with silicon comonly used in semiconducting devices. Natrium and chlorine are easy to extract and can be used as dopants in FET (Field Effect Transistor). In this work, the effects of adsorption energy and electronic structure of silicene to both natrium and chlorine atoms are calculated with Density Functional Theory (DFT). The results show that dopings of Na transform silicene which is initially semimetal into a metal. Then dopings of Cl Top-site transform silicene into a semiconducting material and doping of Na and Cl simultaneously transfoms silicene into a conducting material.
Measurement of gradient index profiles by Babinet fringe analysis.
Pandya, T P; Saxena, A K
1979-03-01
A theory for determining one-dimensional ray deflections with the help of distorted Babinet fringes has been developed. An approach for investigating two-dimensional ray deflections has been presented. Applications of the techniques for the study of gradient index glass have been described.
Quantum simulation of the Hubbard model with dopant atoms in silicon
Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.
2016-01-01
In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Lokendra P.; Richert, Ranko, E-mail: ranko@asu.edu; Raihane, Ahmed
2015-01-07
A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreasedmore » amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.« less
NASA Astrophysics Data System (ADS)
Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.
2017-06-01
We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.
NASA Astrophysics Data System (ADS)
Sendi, Rabab Khalid
2018-03-01
In the current study, 20 nm zinc oxide (ZnO) nanoparticles were used to manufacture high-density ZnO discs doped with Mn and Sn via the conventional ceramic processing method, and their properties were characterized. Results show that the dopants were found to have significant effects on the ZnO varistors, especially on the shape and size of grains, which are significantly different for both dopants. The strong solid-state reaction in the varistor from the 20 nm ZnO powder during the sintering process may be attributed to the high surface area of the 20 nm ZnO nanoparticles. Although Mn and Sn do not affect the well-known peaks related to the wurtzite structure of ZnO ceramics, a few of the additional peaks could be formed at high doping content (≥2.0) due to the formation of other unknown phases during the sintering process. Both additives also significantly affect the electrical properties of the varistor, with a marked changed in the breakdown voltage from 415 V to 460 V for Sn and from 400 V to 950 V for Mn. Interestingly, the electrical behaviors of the varistors, such as breakdown voltage, nonlinear coefficient, and barrier height, are higher for Mn- than Sn-doping samples, and the opposite behaviors hold for hardness, leakage currents, and electrical conductivities. Results show that the magnetic moment and valence state of the two additive dopants are responsible for all demonstrated differences in the electrical characteristics between the two dopants.
NASA Astrophysics Data System (ADS)
Park, Byung Ho; Han, Yong Oun
2018-04-01
Steady variations in aerodynamic forces and flow behaviors of two-dimensional NACA0012 airfoil were investigated using a numerical method for One Revolution Angle of Attack (AOA) at Reynolds number of 105 . The profiles of lift coefficients, drag coefficients, and pressure coefficients were compared with those of the experimental data. The AERODAS model was used to analyze the profiles of lift and drag coefficients. Wake characteristics were given along with the deficit profiles of incoming velocity components. Both the characteristics of normal and reverse airfoil models were compared with the basic aerodynamic data for the same range of AOA. The results show that two peaks of the lift coefficients appeared at 11.5{°} and 42{°} and are in good agreement with the pre-stall and post-stall models, respectively. Counter-rotating vortex flows originated from the leading and trailing edges at a high AOA, which formed an impermeable zone over the suction surface and made reattachments in the wake. Moreover, the acceleration of inflow along the boundary of the vortex wrap appeared in the profile of the wake velocity. The drag profile was found to be independent of the airfoil mode, but the lift profile was quite sensitive to the airfoil mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, Steven, E-mail: steve.consiglio@us.tel.com; Clark, Robert D.; O'Meara, David
2016-01-15
In this study, the authors investigated atomic layer deposition (ALD) of B{sub 2}O{sub 3} and BN for conformal, ultrashallow B doping applications and compared the effect of dopant-containing overlayers on sheet resistance (R{sub s}) and B profiles for both types of films subjected to a drive-in thermal anneal. For the deposition of B{sub 2}O{sub 3}, tris(dimethylamido)borane and O{sub 3} were used as coreactants and for the deposition of BN, BCl{sub 3} and NH{sub 3} were used as coreactants. Due to the extreme air instability of B{sub 2}O{sub 3} films, physical analysis was performed on B{sub 2}O{sub 3} films, which weremore » capped in-situ with ∼30 Å ALD grown Al{sub 2}O{sub 3} layers. For the BN films, in-situ ALD grown Si{sub 3}N{sub 4} capping layers (∼30 Å) were used for comparison. From spectroscopic ellipsometry, a thickness decrease was observed after 1000 °C, 30 s anneal for the B{sub 2}O{sub 3} containing stack with 60 ALD cycles of B{sub 2}O{sub 3}, whereas the BN containing stacks showed negligible thickness decrease after the annealing step, regardless of the number of BN cycles tested. The postanneal reduction in film thickness as well as decrease in R{sub s} for the B{sub 2}O{sub 3} containing stack suggests that the solid state diffusion dopant mechanism is effective, whereas for the BN containing stacks this phenomenon seems to be suppressed. Further clarification of the effectiveness of the B{sub 2}O{sub 3} containing layer compared to the film stacks with BN was evidenced in backside secondary ion mass spectrometry profiling of B atoms. Thus, B{sub 2}O{sub 3} formed by an ALD process and subsequently capped in-situ followed by a drive-in anneal offers promise as a dopant source for ultrashallow doping, whereas the same method using BN seems ineffective. An integrated approach for B{sub 2}O{sub 3} deposition and annealing on a clustered tool also demonstrated controllable R{sub s} reduction without the use of a capping layer.« less
Amplitudes of doping striations: comparison of numerical calculations and analytical approaches
NASA Astrophysics Data System (ADS)
Jung, T.; Müller, G.
1997-02-01
Transient, axisymmetric numerical calculations of the heat and species transport including convection were performed for a simplified vertical gradient freeze (Bridgman) process with bottom seeding for GaAs. Periodical oscillations were superimposed onto the transient heater temperature profile. The amplitudes of the resulting oscillations of the growth rate and the dopant concentration (striations) in the growing crystals are compared with the predictions of analytical models.
Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing
2017-01-01
Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651
Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing
2017-01-01
As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.
Male Fathead Minnow Urine-Based Metabolomics for Assessing Impacts of Chemical Stressors
We have developed the potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures, using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy was us...
Method of fabricating a back-contact solar cell and device thereof
Li, Bo; Smith, David; Cousins, Peter
2014-07-29
Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.
Method of fabricating a back-contact solar cell and device thereof
Li, Bo; Smith, David; Cousins, Peter
2016-08-02
Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.
Dopant atoms as quantum components in silicon nanoscale devices
NASA Astrophysics Data System (ADS)
Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua
2018-06-01
Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).
Awad, H; Stoudemayer, M J; Usher, L; Amster, I J; Cohen, A; Das, U; Whittal, R M; Dimmock, J; El-Aneed, A
2014-11-01
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix-assisted laser desorption ionization (MALDI) and dopant-free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M - H](+) ion along with the expected [M + H](+) species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant-mediated APPI (dopant-APPI) showed only the expected [M + H](+) peak. The [M - H](+) ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M - H](+) and [M + H](+) ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M - H](+) were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H](+) species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.
High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.
2004-01-01
SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.
Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua
2017-12-06
A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.
Enhanced charge ordering transition in doped CaFeO3 through steric templating
NASA Astrophysics Data System (ADS)
Jiang, Lai; Saldana-Greco, Diomedes; Schick, Joseph T.; Rappe, Andrew M.
2014-06-01
We report a density functional theory investigation of B-site doped CaFeO3, a prototypical charge ordered perovskite. At 290 K, CaFeO3 undergoes a metal-insulator transition and a charge disproportionation reaction 2Fe4+→Fe5++Fe3+. We observe that when Zr dopants occupy a (001) layer, the band gap of the resulting solid solution increases to 0.93 eV due to a two-dimensional Jahn-Teller-type distortion, where FeO6 cages on the xy plane elongate along x and y alternatively between neighboring Fe sites. Furthermore, we show that the rock-salt ordering of the Fe5+ and Fe3+ cations can be enhanced when the B-site dopants are arranged in a (111) plane due to a collective steric effect that facilitates the size discrepancy between the Fe5+O6 and Fe3+O6 octahedra and therefore gives rise to a larger band gap. The enhanced charge disproportionation in these solid solutions is verified by rigorously calculating the oxidation states of the Fe cations with different octahedral cage sizes. We therefore predict that the corresponding transition temperature will increase due to the enhanced charge ordering and larger band gap. The compositional, structural, and electrical relationships exploited in this paper can be extended to a variety of perovskites and nonperovskite oxides, providing guidance in the structural manipulation of electrical properties of functional materials.
Light metal decorated graphdiyne nanosheets for reversible hydrogen storage.
Panigrahi, P; Dhinakaran, A K; Naqvi, S R; Gollu, S R; Ahuja, R; Hussain, T
2018-05-29
The sensitive nature of molecular hydrogen (H 2 ) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials, has been a subject of debate for a while now. An accurate approximation of the H 2 adsorption mechanism has vital significance for fields such as H 2 storage applications. Owing to the importance of this issue, we have performed a comprehensive density functional theory (DFT) study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nanosheets. The dopants considered here include the light metals Li, Na, K, Ca, Sc and Ti, which have a uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into a metallic state from being a small band-gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H 2 molecules. The adsorption mechanism of H 2 on GDY has been studied and compared by different methods like generalized gradient approximation, van der Waals density functional and DFT-D3 functionals. It has been established that each functionalized system anchors multiple H 2 molecules with adsorption energies that fall into a suitable range regardless of the functional used for approximations. A significantly high H 2 storage capacity would guarantee that light metal-doped GDY nanosheets could serve as efficient and reversible H 2 storage materials.
Polarity dependence of Mn incorporation in (Ga,Mn)N superlattices
NASA Astrophysics Data System (ADS)
Tropf, L.; Kunert, G.; Jakieła, R.; Wilhelm, R. A.; Figge, S.; Grenzer, J.; Hommel, D.
2016-03-01
In the context of recent efforts to combine high Mn concentrations in (Ga,Mn)N with a pronounced p-type carrier density, (Ga,Mn)N/GaN:Mg-superlattices have been fabricated using plasma-assisted molecular beam epitaxy. Profiles of the dopant atomic densities in the heterostructures are obtained by secondary ion mass spectroscopy. They show an abrupt drop of two to three orders of magnitude in both Mn and Mg concentrations after the first GaN:Mg layer above a critical Mg-flux. Scanning electron microscopy before and after selective etching reveals a polarity inversion from originally Ga-face to N-face GaN in samples in which high Mg fluxes were applied. From our observations, we are able to draw an analogy between the impurity incorporation laws of Mg and Mn.
NASA Astrophysics Data System (ADS)
Alves, A. D. C.; Newnham, J.; van Donkelaar, J. A.; Rubanov, S.; McCallum, J. C.; Jamieson, D. N.
2013-04-01
Solid state electronic devices fabricated in silicon employ many ion implantation steps in their fabrication. In nanoscale devices deterministic implants of dopant atoms with high spatial precision will be needed to overcome problems with statistical variations in device characteristics and to open new functionalities based on controlled quantum states of single atoms. However, to deterministically place a dopant atom with the required precision is a significant technological challenge. Here we address this challenge with a strategy based on stepped nanostencil lithography for the construction of arrays of single implanted atoms. We address the limit on spatial precision imposed by ion straggling in the nanostencil—fabricated with the readily available focused ion beam milling technique followed by Pt deposition. Two nanostencils have been fabricated; a 60 nm wide aperture in a 3 μm thick Si cantilever and a 30 nm wide aperture in a 200 nm thick Si3N4 membrane. The 30 nm wide aperture demonstrates the fabricating process for sub-50 nm apertures while the 60 nm aperture was characterized with 500 keV He+ ion forward scattering to measure the effect of ion straggling in the collimator and deduce a model for its internal structure using the GEANT4 ion transport code. This model is then applied to simulate collimation of a 14 keV P+ ion beam in a 200 nm thick Si3N4 membrane nanostencil suitable for the implantation of donors in silicon. We simulate collimating apertures with widths in the range of 10-50 nm because we expect the onset of J-coupling in a device with 30 nm donor spacing. We find that straggling in the nanostencil produces mis-located implanted ions with a probability between 0.001 and 0.08 depending on the internal collimator profile and the alignment with the beam direction. This result is favourable for the rapid prototyping of a proof-of-principle device containing multiple deterministically implanted dopants.
Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.
Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi
2016-01-01
Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...
NASA Technical Reports Server (NTRS)
Yavuzkurt, S.; Moffat, R. J.; Kays, W. M.
1979-01-01
Hydrodynamic measurements were made with a triaxial hot-wire in the full-coverage region and the recovery region following an array of injection holes inclined downstream, at 30 degrees to the surface. The data were taken under isothermal conditions at ambient temperature and pressure for two blowing ratios: M = 0.9 and M = 0.4. Profiles of the three main velocity components and the six Reynolds stresses were obtained at several spanwise positions at each of the five locations down the test plate. A one-equation model of turbulence (using turbulent kinetic energy with an algebraic mixing length) was used in a two-dimensional computer program to predict the mean velocity and turbulent kinetic energy profiles in the recovery region. A new real-time hotwire scheme was developed to make measurements in the three-dimensional turbulent boundary layer over the full-coverage surface.
Improved Tandem Measurement Techniques for Aerosol Particle Analysis
NASA Astrophysics Data System (ADS)
Rawat, Vivek Kumar
Non-spherical, chemically inhomogeneous (complex) nanoparticles are encountered in a number of natural and engineered environments, including combustion systems (which produces highly non-spherical aggregates), reactors used in gas-phase materials synthesis of doped or multicomponent materials, and in ambient air. These nanoparticles are often highly diverse in size, composition and shape, and hence require determination of property distribution functions for accurate characterization. This thesis focuses on development of tandem mobility-mass measurement techniques coupled with appropriate data inversion routines to facilitate measurement of two dimensional size-mass distribution functions while correcting for the non-idealities of the instruments. Chapter 1 provides the detailed background and motivation for the studies performed in this thesis. In chapter 2, the development of an inversion routine is described which is employed to determine two dimensional size-mass distribution functions from Differential Mobility Analyzer-Aerosol Particle Mass analyzer tandem measurements. Chapter 3 demonstrates the application of the two dimensional distribution function to compute cumulative mass distribution function and also evaluates the validity of this technique by comparing the calculated total mass concentrations to measured values for a variety of aerosols. In Chapter 4, this tandem measurement technique with the inversion routine is employed to analyze colloidal suspensions. Chapter 5 focuses on application of a transverse modulation ion mobility spectrometer coupled with a mass spectrometer to study the effect of vapor dopants on the mobility shifts of sub 2 nm peptide ion clusters. These mobility shifts are then compared to models based on vapor uptake theories. Finally, in Chapter 6, a conclusion of all the studies performed in this thesis is provided and future avenues of research are discussed.
Organic light emitting device structure for obtaining chromaticity stability
Tung, Yeh-Jiun [Princeton, NJ; Ngo, Tan [Levittown, PA
2007-05-01
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
Organic light emitting device structures for obtaining chromaticity stability
Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.
2005-04-26
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Mullen, R. L.; Hendricks, R. C.
1984-01-01
The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.
Segregation control in vertical Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Tao, Y.; Kou, S.
1996-11-01
To help the crystal grow at a constant dopant concentration in vertical Bridgman crystal growth, the dopant concentration of the growth melt, i.e. the melt from which the crystal grows, was kept constant. To achieve this, three different methods were used to replenish the growth melt at a controlled rate and suppress dopant diffusion between the growth melt and the replenishing melt. In method one, a replenishing crucible having a long melt passageway was immersed in the growth melt. In method two, a replenishing crucible having an independent feed-rate control mechanism was held above the growth melt. In method three, a submerged diffusion baffle was used to form a long melt passageway between the growth melt and the replenishing melt. NaNO 3 was used as a model material for crystal growth. Single crystals were grown by these three methods with effective segregation control. Method two was applied to InSb and single crystals were also grown with effective segregation control.
Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.
2017-06-01
Here, we apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σ o) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta 2O 5, where each reference contains a single, neutral O vacancy center (V O 0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at loweringmore » Ta 2O x σ o, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta 2O x σ o, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO 3 group formation, especially in the low σ o reference. While N applications to dope and passivate oxides are prevalent, we also found that N exacerbates the stochasticity of σ o we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. Finally, we use direct first-principles predictions of σ o to explore feasible Ta 2O 5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.« less
High resolution three-dimensional doping profiler
Thundat, Thomas G.; Warmack, Robert J.
1999-01-01
A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.
Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment
Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng
2018-01-01
Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo
Fielding, Gary; Bose, Susmita
2013-01-01
Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941
Scaling of near-wall flows in quasi-two-dimensional turbulent channels.
Samanta, D; Ingremeau, F; Cerbus, R; Tran, T; Goldburg, W I; Chakraborty, P; Kellay, H
2014-07-11
The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite the differences with three-dimensional flows, the laws prevail, albeit with notable distinctions: the two parameters of the log law are markedly distinct from their three-dimensional counterpart; further, one parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall-bounded turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.
NASA Astrophysics Data System (ADS)
Carey, John J.; Nolan, Michael
2017-10-01
Modification of metal oxides with dopants that have a stable oxidation in their parent oxides which is higher than the host system is expected to introduce extra electrons into the material to improve carrier mobility. This is essential for applications in catalysis, SOFCs and solar energy materials. Density functional theory calculations are used to investigate the change in electronic and geometric structure of chromium (III) oxide by higher valence dopants, namely; Ce, Ti, V and Zr. For single metal doping, we find that the dopants with variable oxidation states, Ce, Ti and V, adopt a valence state of +3, while Zr dopant has a +4 oxidation state and reduces a neighbouring Cr cation. Chromium vacancy formation is greatly enhanced for all dopants, and favoured over oxygen vacancy formation. The Cr vacancies generate holes which oxidise Ce, Ti and V from +3 to +4, while also oxidising lattice oxygen sites. For Zr doping, the generated holes oxidise the reduced Cr2+ cation back to Cr3+ and also two lattice oxygen atoms. Three metal atoms in the bulk lattice facilitate spontaneous Cr vacancy from charge compensation. A non-classical compensation mechanism is observed for Ce, Ti and V; all three metals are oxidised from +3 to +4, which explains experimental observations that these metals have a +4 oxidation state in Cr2O3. Charge compensation of the three Zr metals proceeds by a classical higher valence doping mechanism; the three dopants reduce three Cr cations, which are subsequently charge compensated by a Cr vacancy oxidising three Cr2+ to Cr3+. The compensated structures are the correct ground state electronic structure for these doped systems, and used as a platform to investigate cation/anion vacancy formation. Unlike the single metal doped bulks, preference is now given for oxygen vacancy formation over Cr vacancy formation, indicating that the dopants increase the reducibility of Cr2O3 with Ce doping showing the strongest enhancement. The importance of the correct ground state in determining the formation of defects is emphasised.
Substrate doping: A strategy for enhancing reactivity on gold nanocatalysts by tuning sp bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mammen, Nisha; Narasimhan, Shobhana; Gironcoli, Stefano de
2015-10-14
We suggest that the reactivity of Au nanocatalysts can be greatly increased by doping the oxide substrate on which they are placed with an electron donor. To demonstrate this, we perform density functional theory calculations on a model system consisting of a 20-atom gold cluster placed on a MgO substrate doped with Al atoms. We show that not only does such substrate doping switch the morphology of the nanoparticles from the three-dimensional tetrahedral form to the two-dimensional planar form, but it also significantly lowers the barrier for oxygen dissociation by an amount proportional to the dopant concentration. At a dopingmore » level of 2.78%, the dissociation barrier is reduced by more than half, which corresponds to a speeding up of the oxygen dissociation rate by five orders of magnitude at room temperature. This arises from a lowering in energy of the s and p states of Au. The d states are also lowered in energy, however, this by itself would have tended to reduce reactivity. We propose that a suitable measure of the reactivity of Au nanoparticles is the difference in energy of sp and d states.« less
The structure of a three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Degani, A. T.; Smith, F. T.; Walker, J. D. A.
1993-01-01
The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.
Kress, Wade H.; Ball, Lyndsay B.; Teeple, Andrew; Turco, Michael J.
2006-01-01
The former Blaine Naval Ammunition Depot located immediately southeast of Hastings, Nebraska, was an ammunition facility during World War II and the Korean Conflict. Waste-management practices during operation and decommissioning of the former Depot resulted in soil and ground-water contamination. Ground-water models have been used by the U.S. Army Corps of Engineers to provide information on the fate and transport of contaminants on the former Depot site. During September 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Kansas City District, conducted a pilot study to collect two-dimensional direct-current resistivity data on the site along six profiles near existing monitoring wells. The inversion results of field data from five of the six two-dimensional direct-current resistivity profiles display distinct electrical stratigraphy consistent with three resistivity units (low resistivity, high resistivity, and low resistivity). These three resistivity units correlate with rock-stratigraphic or hydrogeologic units described prior to this study. To interpret the resistivity profiles, additional data extending through the lower confining unit into the underlying Niobrara Formation could be used with the existing data to construct forward models for data analysis and interpretation.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing
2016-10-24
Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yoon, Jun-Sik; Rim, Taiuk; Kim, Jungsik; Kim, Kihyun; Baek, Chang-Ki; Jeong, Yoon-Ha
2015-03-01
Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents.
Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A
2015-02-09
In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...
2017-04-17
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots
NASA Astrophysics Data System (ADS)
Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew
2011-03-01
We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.
P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations
NASA Astrophysics Data System (ADS)
Liu, Yonggang; Liu, Peitao; Sun, Changqi; Wang, Tongtong; Tao, Kun; Gao, Daqiang
2017-05-01
Outstanding magnetic properties are highly desired for two-dimensional (2D) semiconductor nanosheets due to their potential applications in spintronics. Metal-free ferromagnetic 2D materials whose magnetism originated from the pure s/p electron configuration could give a long spin relaxation time, which plays the vital role in spin information transfer. Here, we synthesize 2D g-C3N4 nanosheets with room temperature ferromagnetism induced by P doping. In our case, the Curie temperature of P doped g-C3N4 nanosheets reaches as high as 911 K and the precise control of the P concentration can further adjust the saturation magnetization of the samples. First principles calculation results indicate that the magnetic moment is primarily due to strong hybridization between p bonds of P, N, and C atoms, giving the theoretical evidence of the ferromagnetism. This work opens another door to engineer a future generation of spintronic devices.
Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures.
Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi
2011-12-20
Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modelling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO(3) bilayers have a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in e(g) systems are also discussed.
Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth
NASA Astrophysics Data System (ADS)
Lew, Kok-Keong
There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for the design of Si, Ge, and SiGe nanostructures that will be of importance in nanoscale device applications.
Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles
NASA Technical Reports Server (NTRS)
Stephens, Craig A.; Hanna, Gregory J.
1991-01-01
A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
Aoki, Michio
2018-01-01
Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894
Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling
NASA Astrophysics Data System (ADS)
Aoki, Michio; Juang, Jia-Yang
2018-02-01
Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.
Cobalt dopant with deep redox potential for organometal halide hybrid solar cells.
Koh, Teck Ming; Dharani, Sabba; Li, Hairong; Prabhakar, Rajiv Ramanujam; Mathews, Nripan; Grimsdale, Andrew C; Mhaisalkar, Subodh G
2014-07-01
In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all cobalt-based dopants used in solar cell applications, allowing it to dope a wide range of hole-conductors. We demonstrate the tuning of redox potential of the Co dopant by incorporating pyrimidine moiety in the ligand. We characterize the optical and electrochemical properties of the newly synthesized dopant and show impressive spiro-to-spiro(+) conversion. Lastly, we fabricate high efficiency perovskite-based solar cells using MY11 as dopant for molecular hole-conductor, spiro-OMeTAD, to reveal the impact of this dopant in photovoltaic performance. An overall power conversion efficiency of 12% is achieved using MY11 as p-type dopant to spiro-OMeTAD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging
Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; ...
2014-11-26
To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less
Two-dimensional analytic weighting functions for limb scattering
NASA Astrophysics Data System (ADS)
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Offset-electrode profile acquisition strategy for electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Robbins, Austin R.; Plattner, Alain
2018-04-01
We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.
Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF
NASA Astrophysics Data System (ADS)
MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.
2017-10-01
Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.
Coilable single crystal fibers of doped-YAG for high power laser applications
NASA Astrophysics Data System (ADS)
Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet
2013-05-01
Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.
Two dimensional thermal and charge mapping of power thyristors
NASA Technical Reports Server (NTRS)
Hu, S. P.; Rabinovici, B. M.
1975-01-01
The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.
Piston flow in a two-dimensional channel
NASA Astrophysics Data System (ADS)
Katopodes, Fotini V.; Davis, A. M. J.; Stone, H. A.
2000-05-01
A solution using biorthogonal eigenfunctions is presented for viscous flow caused by a piston in a two-dimensional channel. The resulting infinite set of linear equations is solved using Spence's optimal weighting function method [IMA J. Appl. Math. 30, 107 (1983)]. The solution is compared to that with a shear-free piston surface; in the latter configuration the fluid more rapidly approaches the Poiseuille flow profile established away from the face of the piston.
Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landmann, S.; Kählert, H.; Thomsen, H.
2015-09-15
We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility ofmore » the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas.« less
Uncertainty relations for angular momentum eigenstates in two and three spatial dimensions
NASA Astrophysics Data System (ADS)
Bracher, Christian
2011-03-01
I reexamine Heisenberg's uncertainty relation for two- and three-dimensional wave packets with fixed angular momentum quantum numbers m or ℓ. A simple proof shows that the product of the average extent Δr and Δp of a two-dimensional wave packet in position and momentum space is bounded from below by ΔrΔp ≥ℏ(|m|+1). The minimum uncertainty is attained by modified Gaussian wave packets that are special eigenstates of the two-dimensional isotropic harmonic oscillator, which include the ground states of electrons in a uniform magnetic field. Similarly, the inequality ΔrΔp ≥ℏ(ℓ +3/2) holds for three-dimensional wave packets with fixed total angular momentum ℓ and the equality holds for a Gaussian radial profile. I also discuss some applications of these uncertainty relations.
Pressurized rf cavities in ionizing beams
Freemire, B.; Tollestrup, A. âV.; Yonehara, K.; ...
2016-06-20
A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less
Ab-Initio Calculation of the Magnetic Properties of Metal-Doped Boron-Nitrogen Nanoribbon
NASA Astrophysics Data System (ADS)
Rufinus, J.
2017-10-01
The field of spintronics has been continuously attracting researchers. Tremendous efforts have been made in the quest to find good candidates for future spintronic devices. One particular type of material called graphene is under extensive theoretical study as a feasible component for practical applications. However, pristine graphene is diamagnetic. Thus, a lot of research has been performed to modify the graphene-based structure to achieve meaningful magnetic properties. Recently, a new type of graphene-based one-dimensional material called Boron Nitrogen nanoribbon (BNNR) has been of interest, due to the theoretical predictions that this type of material shows half-metallic property. Here we present the results of the theoretical and computational study of M-doped (M = Cr, Mn) Zigzag BNNR (ZBNNR), the objective of which is to determine whether the presence of these dopants will give rise to ferromagnetism. We have found that the concentration and the atomic distance among the dopants affect the magnetic ordering of this type of material. These results provide a meaningful theoretical prediction of M-doped ZBNNR as a basic candidate of future spintronic devices.
Chen, Duan; Wei, Guo-Wei
2010-01-01
The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work. PMID:20396650
Lemieux, Robert P
2004-01-01
By virtue of its spontaneous polarization (PS), a ferroelectric SmC* liquid crystal can be switched between two states corresponding to opposite molecular tilt orientations using an electric field, thus producing an ON-OFF light shutter between crossed polarizers. Considerable efforts have been made over the past decade to develop photonic FLC light shutters because of their potential uses in dynamic holography and optical data storage. The ON-OFF switching of a FLC light shutter can be triggered by light via a photoinversion of PS using a photochromic dopant. The spontaneous polarization is a chiral bulk property that can be left-handed (negative) or right-handed (positive), depending on the absolute configuration of the chiral component of the SmC* phase. In the approach described herein, the magnitude of PS is modulated via the photoisomerization of a chiral thioindigo dopant that undergoes a large increase in transverse dipole moment upon trans-cis photoisomerization. The sign of PS is photoinverted using an "ambidextrous" thioindigo dopant containing a chiral 2-octyloxy side chain that is coupled to the thioindigo core and induces a positive PS, and a chiral 2,3-difluorooctyloxy side chain that is decoupled from the core and induces a negative PS. In the trans form, the 2,3-difluorooctyloxy side chain predominates and the net PS induced by the dopant is negative. However, upon trans-cis-photoisomerization, the increase in transverse dipole moment of the 2-octyloxy/thioindigo unit raises its induced PS over that of the decoupled 2,3-difluorooctyloxy side chain, and thus inverts the net sign of PS induced by the dopant from negative to positive. Copyright 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Variation of thermophysical parameters of PCM CaCl2.6H2O with dopant from T-history data analysis
NASA Astrophysics Data System (ADS)
Sutjahja, I. M.; Silalahi, Alfriska O.; Sukmawati, Nissa; Kurnia, D.; Wonorahardjo, S.
2018-03-01
T-history is a powerful method for deriving the thermophysical parameters of a phase change material (PCM), which consists of solid and liquid specific heats as well as latent heat enthalpy. The performance of a PCM for thermal energy storage could be altered by chemical dopants added directly to the PCM in order to form a stable suspension. We described in this paper the role of chemical dopants in the variation of thermophysical parameters for CaCl2 · 6H2O inorganic PCM with 1 wt% and 2 wt% dopant concentration and BaSO4 (1 wt%) as a nucleator using the T-history method. The dopant consists graphite and CuO nanoparticles. The data analysis follows the original method proposed by (Zhang et al 1999 Meas. Sci. Technol. 10 201–205) and its modification by (Hong et al 2004 Int. J. Refrig. 27 360–366). In addition, the enthalpy-temperature curve is obtained by adopting a method proposed by (Marín et al 2003 Meas. Sci. Technol. 14 184–189). We found that the solid specific heat tends to increase non-linearly with increased dopant concentration for all dopants. The increased liquid specific heat, however, indicates the optimum value for 1 wt% graphite dopant. In contrast, the CuO dopant shows a smaller increase in dopant concentration. The specific heat data are analyzed based on the interacting mesolayer model for a nanofluid. The heat of fusion show strong variation with dopant type, in agreement with other experimental data for various PCMs and dopant particles.
Preform For Producing An Optical Fiber And Method Therefor
Kliner, Dahv A. V.; Koplow, Jeffery P.
2004-08-10
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Preform For Producing An Optical Fiber And Method Therefor
Kliner, Dahv A. V.; Koplow, Jeffery P.
2005-04-19
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Bulk dimensional nanocomposites for thermoelectric applications
Nolas, George S
2014-06-24
Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.
NASA Astrophysics Data System (ADS)
Tower, Joshua P.; Kamieniecki, Emil; Nguyen, M. C.; Danel, Adrien
1999-08-01
The Surface Charge Profiler (SCP) has been introduced for monitoring and development of silicon epitaxial processes. The SCP measures the near-surface doping concentration and offers advantages that lead to yield enhancement in several ways. First, non-destructive measurement technology enables in-line process monitoring, eliminating the need to sacrifice production wafers for resistivity measurements. Additionally, the full-wafer mapping capability helps in development of improved epitaxial growth processes and early detection of reactor problems. As examples, we present the use of SCP to study the effects of susceptor degradation in barrel reactors and to study autodoping for development of improved dopant uniformity.
Scanning capacitance microscope as a tool for the characterization of integrated circuits
NASA Astrophysics Data System (ADS)
Born, A.; Wiesendanger, R.
With the decreasing size of integrated circuits (ICs), there is an increasing demand for the measurement of doping profiles with high spatial resolution. The scanning capacitance microscope (SCM) offers the possibility of measuring 2D dopant profiles with spatial resolution of less than 20 nm. A great problem of the SCM technique is the influence of previous measurements on subsequent ones. We have observed hysteresis in the SCM images and measured low-frequency C-V curves with high-frequency equipment. A theoretical model was developed to understand this phenomenon. We are now undertaking the first steps using the SCM as a standard device for the characterization of ICs.
Anomalous dynamics of interstitial dopants in soft crystals
Tauber, Justin; Higler, Ruben; Sprakel, Joris
2016-01-01
The dynamics of interstitial dopants govern the properties of a wide variety of doped crystalline materials. To describe the hopping dynamics of such interstitial impurities, classical approaches often assume that dopant particles do not interact and travel through a static potential energy landscape. Here we show, using computer simulations, how these assumptions and the resulting predictions from classical Eyring-type theories break down in entropically stabilized body-centered cubic (BCC) crystals due to the thermal excitations of the crystalline matrix. Deviations are particularly severe close to melting where the lattice becomes weak and dopant dynamics exhibit strongly localized and heterogeneous dynamics. We attribute these anomalies to the failure of both assumptions underlying the classical description: (i) The instantaneous potential field experienced by dopants becomes largely disordered due to thermal fluctuations and (ii) elastic interactions cause strong dopant–dopant interactions even at low doping fractions. These results illustrate how describing nonclassical dopant dynamics requires taking the effective disordered potential energy landscape of strongly excited crystals and dopant–dopant interactions into account. PMID:27856751
The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs
NASA Astrophysics Data System (ADS)
Hallam, P. D.; Paardekooper, S.-J.
2017-08-01
It is known that an embedded massive planet will open a gap in a protoplanetary disc via angular momentum exchange with the disc material. The resulting surface density profile of the disc is investigated for one-dimensional and two-dimensional disc models and, in agreement with previous work, it is found that one-dimensional gaps are significantly deeper than their two-dimensional counterparts for the same initial conditions. We find, by applying one-dimensional torque density distributions to two-dimensional discs containing no planet, that the excitement of the Rossby wave instability and the formation of Rossby vortices play a critical role in setting the equilibrium depth of the gap. Being a two-dimensional instability, this is absent from one-dimensional simulations and does not limit the equilibrium gap depth there. We find similar gap depths between two-dimensional gaps formed by torque density distributions, in which the Rossby wave instability is present, and two-dimensional planet gaps, in which no Rossby wave instability is present. This can be understood if the planet gap is maintained at marginal stability, even when there is no obvious Rossby wave instability present. Further investigation shows the final equilibrium gap depth is very sensitive to the form of the applied torque density distribution, and using improved one-dimensional approximations from three-dimensional simulations can go even further towards reducing the discrepancy between one- and two-dimensional models, especially for lower mass planets. This behaviour is found to be consistent across discs with varying parameters.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
2008-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.
1999-01-01
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.
Deposition of dopant impurities and pulsed energy drive-in
Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.
1999-06-29
A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.
The three-dimensional turbulent boundary layer near a plane of symmetry
NASA Technical Reports Server (NTRS)
Degani, A. T.; Smith, F. T.; Walker, J. D. A.
1992-01-01
The asymptotic structure of the three-dimensional turbulent boundary layer near a plane of symmetry is considered in the limit of large Reynolds number. A self-consistent two-layer structure is shown to exist wherein the streamwise velocity is brought to rest through an outer defect layer and an inner wall layer in a manner similar to that in two-dimensional boundary layers. The cross-stream velocity distribution is more complex and two terms in the asymptotic expansion are required to yield a complete profile which is shown to exhibit a logarithmic region. The flow in the inner wall layer is demonstrated to be collateral to leading order; pressure-gradient effects are formally of higher order but can cause the velocity profile to skew substantially near the wall at the large but finite Reynolds numbers encountered in practice. The governing set of ordinary differential equations describing a self-similar flow is derived. The calculated numerical solutions of these equations are matched asymptotically to an inner wall-layer solution and the results show trends that are consistent with experimental observations.
Zhu, S; Yang, Y; Khambay, B
2017-03-01
Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Bandana; Solanki, Chetan Singh
Use of a suitable dopant source for emitter formation is an essential requirement in n-type crystalline silicon solar cells. Boron spin on dopant source, used as alternative to mostly used BBr{sub 3} liquid source, can yield an emitter with less diffusion induced defects under controlled conditions. Different concentrations of commercially available spin on dopant source is used and optimized in this work for sheet resistance values of the emitter ranging from 30 Ω/□ to 70 Ω/□ with emitter doping concentrations suitable for ohmic contacts. The dopant concentrations diluted with different ratios improves the carrier lifetime and thus improves the emittermore » performance. Hence use of suitable dopant source is essential in forming emitters in n-type crystalline silicon solar cells.« less
A Fast Humidity Sensor Based on Li+-Doped SnO2 One-Dimensional Porous Nanofibers
Yin, Min; Yang, Fang; Wang, Zhaojie; Zhu, Miao; Liu, Ming; Xu, Xiuru; Li, Zhenyu
2017-01-01
One-dimensional SnO2- and Li+-doped SnO2 porous nanofibers were easily fabricated via electrospinning and a subsequent calcination procedure for ultrafast humidity sensing. Different Li dopant concentrations were introduced to investigate the dopant’s role in sensing performance. The response properties were studied under different relative humidity levels by both statistic and dynamic tests. The best response was obtained with respect to the optimal doping of Li+ into SnO2 porous nanofibers with a maximum 15 times higher response than that of pristine SnO2 porous nanofibers, at a relative humidity level of 85%. Most importantly, the ultrafast response and recovery time within 1 s was also obtained with the 1.0 wt % doping of Li+ into SnO2 porous nanofibers at 5 V and at room temperature, benefiting from the co-contributions of Li-doping and the one-dimensional porous structure. This work provides an effective method of developing ultrafast sensors for practical applications—especially fast breathing sensors. PMID:28772895
NASA Astrophysics Data System (ADS)
Wu, Zhenkun; Gu, Yuzong
2016-12-01
The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.
Saravanan, Adhimoorthy; Huang, Bohr-Ran; Kathiravan, Deepa
2018-06-01
High performance UV/visible photodetectors are successfully fabricated from ZnO/fibroin protein-carbon nanotube (ZFPCNT) composites using a simple hydrothermal method. The as-fabricated ZnO nanorods (ZnO NRs) and ZFPCNT nanostructures were measured under different light illuminations. The measurements showed the UV-light photoresponse of the as-fabricated ZFPCNT nanostructures (55,555) to be approximately 26454% higher than that of the as-prepared ZnO NRs (210). This photodetector can sense photons with energies considerably smaller (2.75 eV) than the band gap of ZnO (3.22 eV). It was observed that the finest distribution of fibroin and CNT into 1D ZnO resulted in rapid electron transportation and hole recombination via carbon/nitrogen dopants from the ZFPCNT. Carbon dopants create new energy levels on the conduction band of the ZFPCNT, which reduces the barrier height to allow for charge carrier transportation under light illumination. Moreover, the nitrogen dopants increase the adsorptivity and amount of oxygen vacancies in the ZFPCNT so that it exhibits fast response/recovery times both in the dark and under light illumination. The selectivity of UV light among the other types of illumination can be ascribed to the deep-level energy traps (ET) of the ZFPCNT. These significant features of ZFPCNT lead to the excellent optical properties and creation of new pathways for the production of low-cost semiconductors and bio-waste protein based UV/visible photodetectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik
2015-01-20
We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independentmore » of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.« less
NASA Astrophysics Data System (ADS)
Danilenko, I.; Lasko, G.; Brykhanova, I.; Burkhovetski, V.; Ahkhozov, L.
2017-02-01
The present study is devoted to the problem of enhancing fracture toughness of ZrO2 ceramic materials through the formation of composite structure by addition of Al2O3 and NiO particles. In this paper, we analyzed the general and distinguished features of microstructure of both composite materials and its effect on fracture toughness of materials. In this paper, we used the XRD, SEM, and EDS methods for determination of granulometric, phase, and chemical composition of sintered materials. The peculiarities of dependence of fracture toughness values from dopant concentration and changing the Y3+ amount in zirconia grains allow us to assume that at least two mechanisms can affect the fracture toughness of ZrO2 ceramics. Crack bridging/deflection processes with the "transformation toughening" affect the K1C values depending on the dopant concentration. Crack deflection mechanism affects the K1C values when the dopant concentrations are low, and transformation toughening affects the K1C values when the dopant concentrations begin to have an impact on microstructure reorganization-redistribution of Y3+ ions and formation of Y3+-depleted grains with high ability to phase transformation.
Tuning the gas sensing performance of single PEDOT nanowire devices.
Hangarter, Carlos M; Hernandez, Sandra C; He, Xueing; Chartuprayoon, Nicha; Choa, Yong Ho; Myung, Nosang V
2011-06-07
This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.
Arrangement, Dopant Source, And Method For Making Solar Cells
Rohatgi, Ajeet; Krygowski, Thomas W.
1999-10-26
Disclosed is an arrangement, dopant source and method used in the fabrication of photocells that minimize handling of cell wafers and involve a single furnace step. First, dopant sources are created by depositing selected dopants onto both surfaces of source wafers. The concentration of dopant that is placed on the surface is relatively low so that the sources are starved sources. These sources are stacked with photocell wafers in alternating orientation in a furnace. Next, the temperature is raised and thermal diffusion takes place whereby the dopant leaves the source wafers and becomes diffused in a cell wafer creating the junctions necessary for photocells to operate. The concentration of dopant diffused into a single side of the cell wafer is proportional to the concentration placed on the respective dopant source facing the side of the cell wafer. Then, in the same thermal cycle, a layer of oxide is created by introducing oxygen into the furnace environment after sufficient diffusion has taken place. Finally, the cell wafers receive an anti-reflective coating and electrical contacts for the purpose of gathering electrical charge.
On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2018-03-01
The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
2000-01-01
Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.
Electron Tunneling in Junctions Doped with Semiconductors and Metals.
NASA Astrophysics Data System (ADS)
Bell, Lloyd Douglas, II
In this study, tunnel junctions incorporating thin layers of semiconductors and metals have been analyzed. Inelastic electron tunneling spectroscopy (IETS) was employed to yield high-resolution vibrational spectra of surface species deposited at the oxide-M_2 interface of M_1-M_1O _{rm x}-M _2 tunneling samples. Analysis was also performed on the elastic component of the tunneling current, yielding information on the tunnel barrier shape. The samples in this research exhibit a wide range of behavior. The IETS for Si, SiO_2, and Ge doped samples show direct evidence of SiH _{rm x} and GeH_ {rm x} formation. The particular species formed is shown to depend on the form of the evaporated dopant. Samples were also made with organic dopants deposited over the evaporated dopants. Many such samples show marked effects of the evaporated dopants on the inelastic peak intensities of the organic dopants. These alterations are correlated with the changed reactivity of the oxide surface coupled with a change in the OH dipole layer density on the oxide. Thicker organic dopant layers cause large changes in the elastic tunneling barrier due to OH layer alterations or the low barrier attributes of the evaporated dopant. In the cases of the thicker layers an extra current-carrying mechanism is shown to be contributing. Electron ejection from charge traps is proposed as an explanation for this extra current. The trend of barrier shape with dopant thickness is examined. Many of these dopants also produce a voltage-induced shift in the barrier shape which is stable at low temperature but relaxes at high temperature. This effect is similar to that produced by certain organic dopants and is explained by metastable bond formation between the surface OH and dopant. Other dopants, such as Al, Mg, and Fe, produce different effects. These dopants cause large I-V nonlinearity at low voltages. This nonlinearity is modeled as a giant zero-bias anomaly (ZBA) and fits are presented which show good agreement with theory. For some samples, poor fits result due to additional nonlinearity at higher voltages. This is explained in terms of a barrier lowering due to disruption of the OH layer or the small bandgap of the dopant.
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.
2013-01-01
In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.
Generation of a frequency comb and applications thereof
Hagmann, Mark J; Yarotski, Dmitry A
2013-12-03
Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.
Method of bundling rods so as to form an optical fiber preform
Kliner, Dahv A. V. [San Ramon, CA; Koplow, Jeffery P [Washington, DC
2004-03-30
The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
Energy transport in a shear flow of particles in a two-dimensional dusty plasma.
Feng, Yan; Goree, J; Liu, Bin
2012-11-01
A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.
McPhee, D.K.; Pellerin, L.
2008-01-01
Audiomagnetotelluric (AMT) data and resulting models are analyzed with respect to geophysical and geological borehole logs in order to clarify the relationship between the two methodologies of investigation of a hydrological environment. Several profiles of AMT data collected in basins in southwestern United States are being used for groundwater exploration and hydrogeological framework studies. In a systematic manner, the AMT data and models are compared to borehole data by computing the equivalent one-dimensional AMT model and comparing with the two-dimensional (2-D) inverse AMT model. The spatial length is used to determine if the well is near enough to the AMT profile to quantify the relationship between the two datasets, and determine the required resolution of the AMT data and models. The significance of the quality of the borehole data when compared to the AMT data is also examined.
Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity.
Lei, Wen; Xiao, Weiping; Li, Jingde; Li, Gaoran; Wu, Zexing; Xuan, Cuijuan; Luo, Dan; Deng, Ya-Ping; Wang, Deli; Chen, Zhongwei
2017-08-30
Inspired by the excellent absorption capability of spongelike bacterial cellulose (BC), three-dimensional hierarchical porous carbon fibers doped with an ultrahigh content of N (21.2 atom %) (i.e., nitrogen-doped carbon fibers, NDCFs) were synthesized by an adsorption-swelling strategy using BC as the carbonaceous material. When used as anode materials for sodium-ion batteries, the NDCFs deliver a high reversible capacity of 86.2 mAh g -1 even after 2000 cycles at a high current density of 10.0 A g -1 . It is proposed that the excellent Na + storage performance is mainly due to the defective surface of the NDCFs created by the high content of N dopant. Density functional theory (DFT) calculations show that the defect sites created by N doping can strongly "host" Na + and therefore contribute to the enhanced storage capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Thi Dep, E-mail: hathidep@yahoo.com; Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City; Bao, JingFu, E-mail: baojingfu@uestc.edu.cn
Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics tomore » examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.« less
Charge-transfer crystallites as molecular electrical dopants
Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo
2015-01-01
Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403
Hu, Wang; Cao, Hui; Song, Li; Zhao, Haiyan; Li, Sijin; Yang, Zhou; Yang, Huai
2009-10-22
A cholesteric liquid crystal (Ch-LC) composite, made of a series of cholesteryl esters, a nematic LC, and a hydrogen bond (H-bond) chiral dopant (HCD), was prepared and filled into a planar treated cell. When the cell was heated, the selective reflection of the cell exhibited an unusual blue shift. One of the reasonable mechanisms was that the helical twisting power (HTP) value of cholesteryl esters increased with an increasing temperature. The other one was that the H-bonds of HCD were ruptured when the temperature was above 60.0 degrees C and HCD was split into two kinds of new chiral dopants, which made the HTP value of the chiral dopants change a lot, thus changing the pitch length of the composite greatly. On the basis of this mechanism, a novel thermally controllable reflective color paper could be achieved.
ACCEPTOR DOPANTS FOR LEAD TELLURIDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaldin, J.O.
1961-12-01
Alternative P-type dopants such as, Th, P, and As were studied. Ingots were grown from a melt containing one at.% dopant and their electrical properties evaluated. Also, sintered pellets of PbTe were doped by exposure at high temperature to gaseous dopants. In most cases, the doping concentrations obtained were insufficient for SNAP 10A requirements. In the case of As, however, doping of Te-rich PbTe, the desired heavy doping was obtained. These preliminary studies suggest that dopants other than Na might be suitable for SNAP 10A requirements. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitoma, Nobuhiko, E-mail: MITOMA.Nobuhiko@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang
The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.
Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data
NASA Technical Reports Server (NTRS)
Soderblom, Laurence A.; Kirk, Randolph L.
2003-01-01
We have extended our previous efforts to derive through controlled photoclinometry, accurate, calibrated, high-resolution topographic models of the martian surface. The process involves combining MGS MOLA topographic profiles and MGS MOC Narrow Angle images. The earlier work utilized, along with a particular MOC NA image, the MOLA topographic profile that was acquired simultaneously, in order to derive photometric and scattering properties of the surface and atmosphere so as to force the low spatial frequencies of a one-dimensional MOC photoclinometric model to match the MOLA profile. Both that work and the new results reported here depend heavily on successful efforts to: 1) refine the radiometric calibration of MOC NA; 2) register the MOC to MOLA coordinate systems and refine the pointing; and 3) provide the ability to project into a common coordinate system, simultaneously acquired MOC and MOLA with a single set of SPICE kernels utilizing the USGS ISIS cartographic image processing tools. The approach described in this paper extends the MOC-MOLA integration and cross-calibration procedures from one-dimensional profiles to full two-dimensional photoclinometry and image simulations. Included are methods to account for low-frequency albedo variations within the scene.
NASA Astrophysics Data System (ADS)
Lin, Pao Tai; Russin, William A.; Joshi-Imre, Alexandra; Ocola, Leonidas E.; Wessels, B. W.
2015-10-01
The optical properties of BaTiO3 two dimensional photonic crystal (PhC) nanocavities were investigated. Two types of nanocavities consisting of dopants and vacancies with PhC periodicities ranging from 200 to 550 nm were evaluated. The images from laser scanning confocal microscopy show the optical scattering of the PhC cavities is highly wavelength dependent. An optical intensity reversal is observed when the wavelength of probe light shifts by 29 nm. Meanwhile, intensity contrast between the nanocavity and its adjacent PhCs is enhanced as the PhC periodicity becomes shorter than the probe wavelength. To determine the photonic band structures fluorescence from dye covered PhCs were imaged and analyzed. A strong enhancement of fluorescence is observed for the PhC with a period of 200 nm. Upon comparison to the 2D finite difference time domain calculations, the enhancement is attributed to strong light localization within the PhC nanocavity. As a result, the in-plane lightwave propagation is prohibited that results in an increase in the vertical light scattering.
High Thermoelectric Performance of In4Se3-Based Materials and the Influencing Factors.
Yin, Xin; Liu, Jing-Yuan; Chen, Ling; Wu, Li-Ming
2018-02-20
Materials that can directly convert electricity into heat, i.e., thermoelectric materials, have attracted renewed attention globally for sustainable energy applications. As one of the state-of-the-art thermoelectric materials, In 4 Se 3 features an interesting crystal structure of quasi-two-dimensional sheets comprising In/Se chains that provide a platform to achieve a Peierls distortion and support a charge density wave instability. Single-crystal In 4 Se 3-δ (δ = 0.65) shows strong anisotropy in its thermoelectric properties with a very high ZT of 1.48 at 705 K in the b-c plane (one of the highest values for an n-type thermoelectric material to date) but a much lower ZT of approximately 0.5 in the a-b plane. Because of the random dispersion of grains and the grain boundary effect, the electrical transport properties of polycrystalline In 4 Se 3 are poor, which is the main impediment to improve their performance. The In4-site in the In 4 Se 3 unit cell is substitutional for dopants such as Pb, which increases the carrier concentration by 2 orders of magnitude and the electrical conductivity to 143 S/cm. Furthermore, the electrical conductivity markedly increases to approximately 160 S/cm when Cu is doped into the interstitial site but remains as low as 30 S/cm with In1/In2/In3-site dopants, e.g., Ni, Zn, Ga, and Sn. In particular, the In4-site dopant ytterbium introduces a pinning level that highly localizes the charge carriers; thus, the electrical conductivity is maintained within an order of magnitude of 30 S/cm. Meanwhile, ytterbium also creates resonance states around the Fermi level that increase the Seebeck coefficient to -350 μV/K, the highest value at the ZT peak. However, the maximum solubility of the dopant may be limited by the Se-vacancy concentration. In addition, a Se vacancy also destroys the regular lattice vibrations and weakens phonon transport. Finally, nanoinclusions can effectively scatter the middle wavelength phonons, resulting in a decrease in the lattice thermal conductivity. Because of the multiple-dopant strategy, polycrystalline materials are competitive with single crystals regarding ZT values; for instance, Pb/Sn-co-doped In 4 Pb 0.01 Sn 0.04 Se 3 has ZT = 1.4 at 733 K, whereas In 4 Se 2.95 (CuI) 0.01 has ZT = 1.34 at 723 K. These properties illustrate the promise of polycrystalline In 4 Se 3 -based materials for various applications. Finally, the ZT values of all single crystalline and polycrystalline In 4 Se 3 materials have been summarized as a function of the doping strategy applied at the different lattice sites. Additionally, the correlations between the electrical conductivity and the Seebeck coefficient of all the polycrystalline materials are presented. These insights may provide new ideas in the search for and selection of new thermoelectric compounds in the In/Se and related In/Te, Sn/Se, and Sn/Te systems.
Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices
NASA Technical Reports Server (NTRS)
Stirn, Richard J. (Inventor)
1986-01-01
A high conductivity, n-doped semiconductor film is produced from zinc, or Zn and Cd, and group VI elements selected from Se, S and Te in a reactive magnetron sputtering system having a chamber with one or two targets, a substrate holder, means for heating the substrate holder, and an electric field for ionizing gases in the chamber. Zinc or a compound of Zn and Cd is placed in the position of one of the two targets and doping material in the position of the other of the two targets. Zn and Cd may be placed in separate targets while a dopant is placed in the third target. Another possibility is to place an alloy of Zn and dopant, or Zn, Cd and dopant in one target, thus using only one target. A flow of the inert gas is ionized and directed toward said targets, while a flow of a reactant gas consisting of hydrides of the group VI elements is directed toward a substrate on the holder. The targets are biased to attract negatively ionized inert gas. The desired stochiometry for high conductivity is achieved by controlling the temperature of the substrate, and partial pressures of the gases, and the target power and total pressure of the gases in the chamber.
Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.
Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.
Jiang, Hao; Stewart, Derek A
2017-05-17
Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.
Stamplecoskie, Kevin G; Ju, Ling; Farvid, Shokouh S; Radovanovic, Pavle V
2008-09-01
We report the first synthesis and characterization of cobalt- and chromium-doped GaN nanowires (NWs), and compare them to manganese-doped GaN NWs. Samples were synthesized by chemical vapor deposition method, using cobalt(II) chloride and chromium(III) chloride as dopant precursors. For all three impurity dopants hexagonal, triangular, and rectangular NWs were observed. The fraction of NWs having a particular morphology depends on the initial concentration of the dopant precursors. While all three dopant ions have the identical effect on GaN NW growth and faceting, Co and Cr are incorporated at much lower concentrations than Mn. These findings suggest that the doping mechanism involves binding of the transition-metal intermediates to specific NW facets, inhibiting their growth and causing a change in the NW morphology. We discuss the doping concentrations of Mn, Co, and Cr in terms of differences in their crystal-field stabilization energies (DeltaCFSE) in their gas-phase intermediates and in substitutionally doped GaN NWs. Using iron(III) chloride and cobalt(II) acetate as dopant precursors we show that the doping concentration dependence on DeltaCFSE allows for the prediction of achievable doping concentrations for different dopant ions in GaN NWs, and for a rational choice of a suitable dopant-ion precursor. This work further demonstrates a general and rational control of GaN NW growth using transition-metal impurities.
Directed Atom-by-Atom Assembly of Dopants in Silicon.
Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R
2018-05-17
The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.
Perrault, Katelynn A; Stefanuto, Pierre-Hugues; Stuart, Barbara H; Rai, Tapan; Focant, Jean-François; Forbes, Shari L
2015-01-01
Challenges in decomposition odour profiling have led to variation in the documented odour profile by different research groups worldwide. Background subtraction and use of controls are important considerations given the variation introduced by decomposition studies conducted in different geographical environments. The collection of volatile organic compounds (VOCs) from soil beneath decomposing remains is challenging due to the high levels of inherent soil VOCs, further confounded by the use of highly sensitive instrumentation. This study presents a method that provides suitable chromatographic resolution for profiling decomposition odour in soil by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry using appropriate controls and field blanks. Logarithmic transformation and t-testing of compounds permitted the generation of a compound list of decomposition VOCs in soil. Principal component analysis demonstrated the improved discrimination between experimental and control soil, verifying the value of the data handling method. Data handling procedures have not been well documented in this field and standardisation would thereby reduce misidentification of VOCs present in the surrounding environment as decomposition byproducts. Uniformity of data handling and instrumental procedures will reduce analytical variation, increasing confidence in the future when investigating the effect of taphonomic variables on the decomposition VOC profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers
NASA Astrophysics Data System (ADS)
Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping
2017-10-01
Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.
Mixedness determination of rare earth-doped ceramics
NASA Astrophysics Data System (ADS)
Czerepinski, Jennifer H.
The lack of chemical uniformity in a powder mixture, such as clustering of a minor component, can lead to deterioration of materials properties. A method to determine powder mixture quality is to correlate the chemical homogeneity of a multi-component mixture with its particle size distribution and mixing method. This is applicable to rare earth-doped ceramics, which require at least 1-2 nm dopant ion spacing to optimize optical properties. Mixedness simulations were conducted for random heterogeneous mixtures of Nd-doped LaF3 mixtures using the Concentric Shell Model of Mixedness (CSMM). Results indicate that when the host to dopant particle size ratio is 100, multi-scale concentration variance is optimized. In order to verify results from the model, experimental methods that probe a mixture at the micro, meso, and macro scales are needed. To directly compare CSMM results experimentally, an image processing method was developed to calculate variance profiles from electron images. An in-lens (IL) secondary electron image is subtracted from the corresponding Everhart-Thornley (ET) secondary electron image in a Field-Emission Scanning Electron Microscope (FESEM) to produce two phases and pores that can be quantified with 50 nm spatial resolution. A macro was developed to quickly analyze multi-scale compositional variance from these images. Results for a 50:50 mixture of NdF3 and LaF3 agree with the computational model. The method has proven to be applicable only for mixtures with major components and specific particle morphologies, but the macro is useful for any type of imaging that produces excellent phase contrast, such as confocal microscopy. Fluorescence spectroscopy was used as an indirect method to confirm computational results for Nd-doped LaF3 mixtures. Fluorescence lifetime can be used as a quantitative method to indirectly measure chemical homogeneity when the limits of electron microscopy have been reached. Fluorescence lifetime represents the compositional fluctuations of a dopant on the nanoscale while accounting for billions of particles in a fast, non-destructive manner. The significance of this study will show how small-scale fluctuations in homogeneity limit the optimization of optical properties, which can be improved by the proper selection of particle size and mixing method.
Optimization of end-pumped, actively Q-switched quasi-III-level lasers.
Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar
2011-08-15
The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America
Excimer laser calibration system.
Gottsch, J D; Rencs, E V; Cambier, J L; Hall, D; Azar, D T; Stark, W J
1996-01-01
Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation profiles. The calibration system correctly predicted central islands after excimer photoablation in a treated monkey cornea and in two treated human subjects. Detection of excimer-laser-beam ablation profiles may be useful for precise calibration of excimer lasers before human photorefractive and therapeutic surgery.
Electric potential calculation in molecular simulation of electric double layer capacitors
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.
2016-11-01
For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.
Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.
1999-07-28
As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effectmore » desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.« less
Stabilized thallium bromide radiation detectors and methods of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leao, Cedric Rocha; Lordi, Vincenzo
According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.
Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants.
Lousada, Cláudio M; Korzhavyi, Pavel A
2015-01-21
Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases investigated here.
Dousty, Faezeh; O'Brien, Rob
2015-06-15
As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayner, Chhatrasal; Kar, Kamal K., E-mail: kamalkk@iitk.ac.in; Department of Mechanical Engineering, Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016
Polycrystalline lead selenide (PbSe) doped with copper (Cu) and nickel (Ni) was prepared to understand its magnetic behaviour and Raman activity. The processing conditions, influence of dopants (magnetically active and non-active) and their respective compositions on the magnetic properties and Raman active mode were studied. A surprising/anomalous room temperature ferromagnetism (hysteresis loop) is noticed in bulk diamagnetic PbSe, which is found to be natural or inherent characteristic of material, and depends on the crystallite size, dopant, and developed strain due to dopant/defects. The magnetic susceptibility (−1.71 × 10{sup −4} emu/mol Oe) and saturated magnetic susceptibility (−2.74 × 10{sup −4} emu/mol Oe) are found tomore » be higher than the earlier reported value (diamagnetic: −1.0 × 10{sup −4} emu/mol Oe) in bulk PbSe. With increase of Cu concentration (2% to 10%) in PbSe, the saturated magnetic susceptibility decreases from −1.22 × 10{sup −4} to −0.85 × 10{sup −4} emu/mol Oe. Whereas for Ni dopant, the saturated magnetic susceptibility increases to −2.96 × 10{sup −4} emu/mol Oe at 2% Ni doped PbSe. But it further decreases with dopant concentration. In these doped PbSe, the shifting of longitudinal (LO) phonon mode was also studied by the Raman spectroscopy. The shifting of LO mode is found to be dopant dependent, and the frequency shift of LO mode is associated with the induced strain that created by the dopants and vacancies. This asymmetry in LO phonon mode (peak shift and shape) may be due to the intraband electronic transition of dopants. The variation in magnetic susceptibility and Raman shifts are sensitive to crystallite size, nature of dopant, concentration of dopants, and induced strain due to dopants.« less
NASA Astrophysics Data System (ADS)
Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.
2016-05-01
Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.
Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E
2016-02-01
Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, H.
1989-12-20
From reports by the Atomic Energy Commission concerning the atmsopheric distribution of radionucleides following the nuclear bomb tests of 1958--1959 and 1961--1962, excess carbon 14 data from the period 1959--1970 and strontium 90 data from 1963--1967 are reviewed for possible use as inert tracers to test two-dimensional stratospheric-tropospheric models. Contrary to some views expressed in the literature, it is concluded that the carbon 14 data are suitable to test (1) the altitude (at 4 latitudes) of the transition region between troposphere and stratosphere with respect to transport of an inert tracer, (2) some aspects of transport between the northern andmore » southern hemispheres, (3) horizontal and vertical transport as the vertical profile between 4.5 and 33 km and at 31{degree}N evolves from a skewed Gaussian in 1963 to an almost stair-step profile in 1966, and (4) the long-term one-dimensional aspect of a two-dimensional model over the period 1966--1970. More tentatively, it is concluded that the strontium 90 data may be used as a model for the distribution and gross settling rate of the natural stratospheric aerosol layer between 15 and 25 km. Data from difficultly obtained laboratory reports and suggested initial conditions and boundary conditions are included as a microfiche supplement to this paper. {copyright} American Geophysical Union 1989« less
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector
NASA Technical Reports Server (NTRS)
Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.
1999-01-01
The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.
Solution of the one-dimensional consolidation theory equation with a pseudospectral method
Sepulveda, N.; ,
1991-01-01
The one-dimensional consolidation theory equation is solved for an aquifer system using a pseudospectral method. The spatial derivatives are computed using Fast Fourier Transforms and the time derivative is solved using a fourth-order Runge-Kutta scheme. The computer model calculates compaction based on the void ratio changes accumulated during the simulated periods of time. Compactions and expansions resulting from groundwater withdrawals and recharges are simulated for two observation wells in Santa Clara Valley and two in San Joaquin Valley, California. Field data previously published are used to obtain mean values for the soil grain density and the compression index and to generate depth-dependent profiles for hydraulic conductivity and initial void ratio. The water-level plots for the wells studied were digitized and used to obtain the time dependent profiles of effective stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dholabhai, Pratik P., E-mail: pratik.dholabhai@asu.ed; Anwar, Shahriar, E-mail: anwar@asu.ed; Adams, James B., E-mail: jim.adams@asu.ed
Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a 'traffic jam' that decreases conductivity, which is consistent with themore » experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials. -- graphical abstract: Ionic conductivity in praseodymium doped ceria as a function of dopant concentration calculated using the kinetic lattice Monte Carlo vacancy-repelling model, which predicts the optimal composition for achieving maximum conductivity. Display Omitted Research highlights: {yields} KLMC method calculates the accurate time-dependent diffusion of oxygen vacancies. {yields} KLMC-VR model predicts a dopant concentration of {approx}15-20% to be optimal in PDC. {yields} At higher dopant concentration, vacancies interfere and repel one another, and dopants trap vacancies. {yields} Activation energy for vacancy migration increases as a function of dopant content« less
NASA Astrophysics Data System (ADS)
Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali
As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.
Cheng, Shasha; Li, Haitao; Jiang, Dandan; Chen, Chuang; Zhang, Tan; Li, Yong; Wang, Haitao; Zhou, Qinghua; Li, Haiyang; Tan, Mingqian
2017-01-01
Biogenic amines are degradation products generated through enzymatic and microbial processes during food spoilage, which may pose a health hazard to consumers at elevated levels. Trimethylamine (TMA) is a good target for the detection of biogenic amines due to its volatility and fishy odor. In this study, we developed a stand-alone dopant-assisted positive photoionization ion mobility spectrometry (DAPP-IMS) for rapid and sensitive detection of TMA. Response of TMA was enhanced by the addition of dopants and characteristic product ions with reduced mobility 2.26cm 2 V -1 s -1 were formed. 2-Butaone was chosen as the dopant for better separation between reagent ion peak and TMA product ion peak as well as higher sensitivity and the limit of detections (LODs) for TMA standard sample was 1ppb. The potential application of DAAP-IMS was evaluated by the detection of TMA generated by oyster and shrimp during 4°C storage. Analysis of two kinds of seafood showed the same characteristic peak to TMA standard sample, and the intensity of TMA increased over the storage time. The results of this study testify to the potential of DAPP-IMS for qualitative and quantitative determination of TMA in real food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions
Zhang, Siyuan; Naab, Benjamin D.; Jucov, Evgheni V.; Parkin, Sean; Evans, Eric G. B.; Millhauser, Glenn L.; Timofeeva, Tatiana V.; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R.
2015-01-01
Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 {Y = cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)} have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT both indicate a longer C—C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A•– by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials – the effective reducing strengths of the dimers – vary little within the series (ca. –1.9 V vs. FeCp2+/0) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. PMID:26088609
Real-time stereo generation for surgical vision during minimal invasive robotic surgery
NASA Astrophysics Data System (ADS)
Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod
2016-03-01
This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.
Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen
2010-01-01
Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298
NASA Astrophysics Data System (ADS)
Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi
2018-04-01
The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.
Two-dimensional random surface model for asperity-contact in elastohydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Coy, J. J.; Sidik, S. M.
1979-01-01
Relations for the asperity-contact time function during elastohydrodynamic lubrication of a ball bearing are presented. The analysis is based on a two-dimensional random surface model, and actual profile traces of the bearing surfaces are used as statistical sample records. The results of the analysis show that transition from 90 percent contact to 1 percent contact occurs within a dimensionless film thickness range of approximately four to five. This thickness ratio is several times large than reported in the literature where one-dimensional random surface models were used. It is shown that low pass filtering of the statistical records will bring agreement between the present results and those in the literature.
Equation of State of the Two-Dimensional Hubbard Model
NASA Astrophysics Data System (ADS)
Cocchi, Eugenio; Miller, Luke A.; Drewes, Jan H.; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael
2016-04-01
The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0 ≲U /t ≲20 and temperatures, down to kBT /t =0.63 (2 ) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yin; Jiang, Yuanwen; Cherukara, Mathew J.
Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. Here, we perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to similarmore » to 5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.« less
Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Zhuo, R. F.; Feng, H. T.; Yan, D.; Chen, J. T.; Feng, J. J.; Liu, J. Z.; Yan, P. X.
2008-06-01
In this paper we report the synthesis of doped ZnS one-dimensional (1D) nanostructures by well-established technique of chemical vapor deposition using Zn and S powder as precursors. The ZnS 1D nanostructures were grown on the surface of Au particle-filled anodic aluminum oxide templates, catalyst-free graphite sheets and silicon substrates. ZnS 1D nanostructures with Mn, Cu and Fe as dopants were prepared via a rapid process of 15-20 min. The morphologies of ZnS nanostructures synthesized on different substrates and at different growth temperatures have distinct dissimilarities. The size of ZnS nanowires originated from the Au catalysts could be varied by altering the size of membrane nanopores as well as the embedded Au particles. Room-temperature photoluminescence measurements reveal strong blue, green and yellow-orange light emissions from the doped ZnS 1D nanostructures.
Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei
2016-01-01
Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser. PMID:26926491
Fang, Yin; Jiang, Yuanwen; Cherukara, Mathew J.; ...
2017-12-08
Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold-silicon alloy established in classical vapor-liquid-solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. Here, we perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to similarmore » to 5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.« less
Few-Layer WSe2 Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping.
Ko, Seungpil; Na, Junhong; Moon, Young-Sun; Zschieschang, Ute; Acharya, Rachana; Klauk, Hagen; Kim, Gyu-Tae; Burghard, Marko; Kern, Klaus
2017-12-13
Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe 2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al 2 O 3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W -1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.
Sabo, Martin; Matejčík, Štefan
2012-06-19
We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques.
Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Cao, Ting; Zhao, Fangzhou; Louie, Steven G.
2017-08-01
We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains.
Cao, Ting; Zhao, Fangzhou; Louie, Steven G
2017-08-18
We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1/2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.
NASA Astrophysics Data System (ADS)
Xu, Zhuo; Li, Yangping; Liu, Zhengtang; Liu, Shengzhong (Frank)
2018-04-01
The structural, electronic, and magnetic behaviors of two-dimensional GeC (2D-GeC) with single vacancy, substitutional B, N, and 3d transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are investigated based on the density functional theory. These impurities are tightly bonded to the surrounding atoms and found energetically more favorable at Ge sub-lattice site. In addition, the electronic band structures and magnetic properties of the doped systems indicate that (i) tunable electronic structures and magnetic moments of 2D-GeC can be obtained depending on different dopant species and sub-lattice sites, (ii) systems such as VC@Sc, VC@Fe, VC@Co, VGe@Fe, and VGe@Co are found to be half-metals, while the other systems all show semiconductor behavior. Simple models of the impurity-vacancy interaction is put forwards to illustrate the origin of the electronic structures and magnetic moments.
NASA Astrophysics Data System (ADS)
Ahmadi, Elaheh; Koksaldi, Onur S.; Zheng, Xun; Mates, Tom; Oshima, Yuichi; Mishra, Umesh K.; Speck, James S.
2017-07-01
β-(Al x Ga1- x )2O3/β-Ga2O3 heterostructures were grown via plasma-assisted molecular beam epitaxy. The β-(Al x Ga1- x )2O3 barrier was partially doped by Ge to achieve a two-dimensional electron gas (2DEG) in Ga2O3. The formation of the 2DEG was confirmed by capacitance-voltage measurements. The impact of Ga-polishing on both the surface morphology and the reduction of the unintentionally incorporated Si at the growth interface was investigated using atomic force microscopy and secondary-ion mass spectrometry. Modulation doped field-effect transistors were fabricated. A maximum current density of 20 mA/mm with a pinch-off voltage of -6 V was achieved on a sample with a 2DEG sheet charge density of 1.2 × 1013 cm-2.
Group III-nitride thin films grown using MBE and bismuth
Kisielowski, Christian K.; Rubin, Michael
2002-01-01
The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.
Group III-nitride thin films grown using MBE and bismuth
Kisielowski, Christian K.; Rubin, Michael
2000-01-01
The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.
NASA Astrophysics Data System (ADS)
Demir, Ilkay; Altuntas, Ismail; Bulut, Baris; Ezzedini, Maher; Ergun, Yuksel; Elagoz, Sezai
2018-05-01
We present growth and characterization studies of highly n-doped InGaAs epilayers on InP substrate by metal organic vapor phase epitaxy to use as an n-contact layer in quantum cascade laser applications. We have introduced quasi two-dimensional electrons between 10 s pulsed growth n-doped InGaAs epilayers to improve both carrier concentration and mobility of structure by applying pulsed growth and doping methods towards increasing the Si dopant concentration in InGaAs. Additionally, the V/III ratio optimization under fixed group III source flow has been investigated with this new method to understand the effects on both crystalline quality and electrical properties of n-InGaAs epilayers. Finally, we have obtained high crystalline quality of n-InGaAs epilayers grown by 10 s pulsed as a contact layer with 2.8 × 1019 cm‑3 carrier concentration and 1530 cm2 V‑1 s‑1 mobility.
Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen.
Zhang, Mingjia; Wang, Xiaoxiong; Sun, Huijuan; Wang, Ning; Lv, Qing; Cui, Weiwei; Long, Yunze; Huang, Changshui
2017-09-14
The new two-dimensional graphitic material, graphdiyne, has attracted great interest recently due to the superior intrinsic semiconductor properties. Here we investigate the magnetism of pure graphdiyne material and find it demonstrating a remarkable paramagnetic characteristic, which can be attributed to the appearance of special sp-hybridized carbon atoms. On this basis, we further introduce nitrogen with 5.29% N/C ratio into graphdiyne followed by simply annealing in a dopant source and realize a twofold enhancement of saturation moment at 2 K. Associate with the density of states calculation, we investigate the influence of the nitrogen atom doping sites on paramagnetism, and further reveal the important role of doped nitrogen atom on benzene ring in improving local magnetic moment. These results can not only help us deeply understand the intrinsic magnetism of graphdiyne, but also open an efficient way to improve magnetism of graphdiyne by hetero atom doping, like nitrogen doping, which may promote the potential application of graphdiyne in spintronics.
InP Based Ternary And Quaternary Thin Film Structures On Large Areas Grown By LP-MOVPE
NASA Astrophysics Data System (ADS)
Schmitz, D.; Strauch, , G.; Jurgensen, H.; Heyen, M.; Harde, P.
1989-11-01
Using low pressure MOVPE and higher linear flow velocities high purity GalnAs/lnP and GalnAsP heterostructures can be prepared. Excellent homogeneity in thickness, composition, and doping on a 2" InP substrate can be realized by this approach for optimized conditions. The low growth rates required for the deposition of very narrow well structures are achieved by selecting reduced pressures of the group III and group V compounds used for deposition. The method yields structures with high electron mobilities of the two dimensional electron gas in the well and narrow PL (i.e. 2.2 meV for 20 nm wells) line widths, which is indicative of low impurity incorporation and abrupt heterojunctions. The observed energy shifts (up to 528 meV) demonstrate the large range of bandgap variation attainable by this method. A study of dopant incorporation shows, that Zn yields steep transitions in InGaAs.
NASA Astrophysics Data System (ADS)
Casner, A.; Liberatore, S.; Masse, L.; Martinez, D.; Haan, S. W.; Kane, J.; Moore, A. S.; Seugling, R.; Farrell, M.; Giraldez, E.; Nikroo, A.; Smalyuk, V. A.; Remington, B. A.
2016-05-01
Under the Discovery Science program, the longer pulses and higher laser energies provided by the National Ignition Facility (NIF) have been harnessed to study, first time in indirect-drive, the highly nonlinear stage of the Rayleigh-Taylor Instability (RTI) at the ablation front. A planar plastic package with pre-imposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled gold radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil, a factor 3x larger than previously achieved on other laser facilities. As a consequence, we have measured the ablative RTI in transition from the weakly nonlinear stage up to the deep nonlinear stage for various initial conditions. A bubble merger regime has been observed and the ablative stabilization strength varied by changing the plastic dopant from iodine to germanium.
Liepins, R.; Aldissi, M.
1984-07-27
Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.
Liepins, Raimond; Aldissi, Mahmoud
1988-01-01
Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.
Limits on passivating defects in semiconductors: the case of Si edge dislocations.
Chan, Tzu-Liang; West, D; Zhang, S B
2011-07-15
By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.
Influence of Dopants in ZnO Films on Defects
NASA Astrophysics Data System (ADS)
Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao
2008-12-01
The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.
NASA Astrophysics Data System (ADS)
Kim, Sihyun; Kwon, Dae Woong; Park, Euyhwan; Lee, Junil; Lee, Roongbin; Lee, Jong-Ho; Park, Byung-Gook
2018-02-01
Numerous researches for making steep tunnel junction within tunnel field-effect transistor (TFET) have been conducted. One of the ways to make an abrupt junction is source/drain silicidation, which uses the phenomenon often called silicide-induced-dopant-segregation. It is revealed that the silicide process not only helps dopants to pile up adjacent to the metal-silicon alloy, also induces the dopant activation, thereby making it possible to avoid additional high temperature process. In this report, the availability of dopant activation induced by metal silicide process was thoroughly investigated by diode measurement and device simulation. Metal-silicon (MS) diodes having p+ and n+ silicon formed on the p- substrate exhibit the characteristics of ohmic and pn diodes respectively, for both the samples with and without high temperature annealing. The device simulation for TFETs with dopant-segregated source was also conducted, which verified enhanced DC performance.
Capacitance reduction for pillar structured devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Qinghui; Conway, Adam; Nikolic, Rebecca J.
2017-05-09
In one embodiment, an apparatus includes: a first layer including a n+ dopant or p+ dopant; an intrinsic layer formed above the first layer, the intrinsic layer including a planar portion and pillars extending above the planar portion, cavity regions being defined between the pillars; and a second layer deposited on a periphery of the pillars thereby forming coated pillars, the second layer being substantially absent on the planar portion of the intrinsic layer between the coated pillars. The second layer includes an n+ dopant when the first layer includes a p+ dopant. The second layer includes a p+ dopantmore » when the first layer includes an n+ dopant. The apparatus includes a neutron sensitive material deposited between the coated pillars and above the planar portion of the intrinsic layer. In additional embodiments, an upper portion of each of the pillars includes a same type of dopant as the second layer.« less
NASA Astrophysics Data System (ADS)
Walrath, Jenna Cherie
Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in comparison to that of the 2D alloy layer. The surface composition and band structure of ordered horizontal Sb2Te3 nanowires induced by femtosecond laser irradiation of a thin film are investigated, revealing a band gap modulation between buried Sb2Te3 nanowires and the surrounding insulating material. Finally, STM and STS are used to investigate the band structure of BiSbTe alloys at room temperature, revealing both the Fermi level and Dirac point located inside the bulk bandgap, indicating bulk-like insulating behavior with accessible surface states.
Room and low temperature luminescence properties of CaSO4: Dy , Tm codoped with Li
NASA Astrophysics Data System (ADS)
Can, N.; Karalı, T.; Wang, Y.; Townsend, P. D.; Prokic, M.; Canimoglu, A.
2009-08-01
Rare earths, especially Dy or Tm doped CaSO4 phosphors are actively studied. They have high sensitivity, a large dynamic range, thermal stability and ease of preparation. Nevertheless, they can be enhanced by inclusion of lithium and this study reports some effects of lithium co-dopant on the TL and radioluminescence (RL) emissions of two TL phosphors. Addition of Li as a co-dopant ion was made either during chemical preparation of the phosphors, or as a binder component mixed with the basic phosphors matrix during the process of pressing and sintering the TLD pellets.
NASA Technical Reports Server (NTRS)
Moskowitz, Milton E.; Bly, Jennifer M.; Matthiesen, David H.
1997-01-01
Experiments were conducted in the crystal growth furnace (CGF) during the first United States Microgravity Laboratory (USML-1), the STS-50 flight of the Space Shuttle Columbia, to determine the segregation behavior of selenium in bulk GaAs in a microgravity environment. After the flight, the selenium-doped GaAs crystals were sectioned, polished, and analyzed to determine the free carrier concentration as a function of position, One of the two crystals initially exhibited an axial concentration profile indicative of diffusion controlled growth, but this profile then changed to that predicted for a complete mixing type growth. An analytical model, proposed by Naumann [R.J. Naumann, J. Crystal Growth 142 (1994) 253], was utilized to predict the maximum allowable microgravity disturbances transverse to the growth direction during the two different translation rates used for each of the experiments. The predicted allowable acceleration levels were 4.86 microgram for the 2.5 micrometers/s furnace translation rate and 38.9 microgram for the 5.0 micrometers/s rate. These predicted values were compared to the Orbital Acceleration Research Experiment (OARE) accelerometer data recorded during the crystal growth periods for these experiments. Based on the analysis of the OARE acceleration data and utilizing the predictions from the analytical model, it is concluded that the change in segregation behavior was not caused by any acceleration events in the microgravity environment.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Paul, J.; Dey, P.; Tokumoto, T.; ...
2014-10-07
The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less
Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils
NASA Technical Reports Server (NTRS)
Lindsey, Walter F; Landrum, Emma Jean
1958-01-01
Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.
Dopant-induced ignition of helium nanoplasmas—a mechanistic study
NASA Astrophysics Data System (ADS)
Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel
2017-12-01
Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.
A three dimensional Dirichlet-to-Neumann map for surface waves over topography
NASA Astrophysics Data System (ADS)
Nachbin, Andre; Andrade, David
2016-11-01
We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.
Martins, Cátia; Brandão, Tiago; Almeida, Adelaide; Rocha, Sílvia M
2015-06-01
The aroma profile of beer is crucial for its quality and consumer acceptance, which is modu-lated by a network of variables. The main goal of this study was to optimize solid-phase microextraction experimental parameters (fiber coating, extraction temperature, and time), taking advantage of the comprehensive two-dimensional gas chromatography structured separation. As far as we know, it is the first time that this approach was used to the untargeted and comprehensive study of the beer volatile profile. Decarbonation is a critical sample preparation step, and two conditions were tested: static and under ultrasonic treatment, and the static condition was selected. Considering the conditions that promoted the highest extraction efficiency, the following parameters were selected: poly(dimethylsiloxane)/divinylbenzene fiber coating, at 40ºC, using 10 min of pre-equilibrium followed by 30 min of extraction. Around 700-800 compounds per sample were detected, corresponding to the beer volatile profile. An exploratory application was performed with commercial beers, using a set of 32 compounds with reported impact on beer aroma, in which different patterns can be observed through the structured chromatogram. In summary, the obtained results emphasize the potential of this methodology to allow an in-depth study of volatile molecular composition of beer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D
2015-06-02
An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.
The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit
2014-08-18
Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.
NASA Astrophysics Data System (ADS)
Londos, C. A.; Sgourou, E. N.; Chroneos, A.
2012-12-01
Infrared spectroscopy was used to study the production and evolution of oxygen-vacancy (VOn for n = 1, 2, 3 and VmO for m = 1, 2, 3) clusters, in electron-irradiated Czochralski silicon (Cz-Si) samples, doped with isovalent dopants. It was determined that the production of the VO pair is enhanced in Ge-doped Si but is suppressed in Sn and Pb-doped Si. The phenomenon is discussed in terms of the competition between isovalent dopants and oxygen atoms in capturing vacancies in the course of irradiation. In the case of Ge, only transient GeV pairs form, leading finally to an increase of the VO production. Conversely, for Sn and Pb the corresponding pairs with vacancies are stable, having an opposite impact on the formation of VO pairs. Regarding V2O and V3O clusters, our measurements indicate that Ge doping enhances their formation, although Sn and Pb dopants suppress it. Similar arguments as those for the VO pair could be put forward, based on the effect of isovalent impurities on the availability of vacancies. Additionally, it was found that the conversion ratio of VO to VO2 decreases as the covalent radius of the isovalent dopant increases. These results are discussed in terms of the local strains introduced by the isovalent dopants in the Si lattice. These local strains affect the balance of the intrinsic defects created as a result of irradiation, as well as the balance between the two main reactions (VO + Oi → VO2 and VO + SiI → Oi) participating in the VO annealing, leading finally to a decrease of the VO2 production. The larger the covalent radius of the isovalent dopant (rGe < rSn < rPb), the larger the introduced strains in the lattice and then the less the VO2 formation in accordance with our experimental results. Interestingly, an opposite trend was observed for the conversion ratio of VO2 to VO3. The phenomenon is attributed to the enhanced diffusivity of oxygen impurity as a result of the presence of isovalent dopants, leading to an enhanced formation of the VO3 cluster. The results indicate that isovalent doping of Si is an effective way to control the formation of the deleterious oxygen-vacancy clustering that can affect Si-based devices.
Semiconductive materials and associated uses thereof
Lynn, Kelvin [Pullman, WA; Jones, Kelly [Colfax, WA; Ciampi, Guido [Waltham, MA
2011-11-01
High rate radiation detectors are disclosed herein. The detectors include a detector material disposed inside the container, the detector material containing cadmium, tellurium, and zinc, a first dopant containing at least one of aluminum, chlorine, and indium, and a second dopant containing a rare earth metal. The first dopant has a concentration of about 500 to about 20,000 atomic parts per billion, and the second dopant has a concentration of about 200 to about 20,000 atomic parts per billion.
Semiconductive materials and associated uses thereof
Lynn, Kelvin; Jones, Kelly; Ciampi, Guido
2012-10-09
High rate radiation detectors are disclosed herein. The detectors include a detector material disposed inside the container, the detector material containing cadmium, tellurium, and zinc, a first dopant containing at least one of aluminum, chlorine, and indium, and a second dopant containing a rare earth metal. The first dopant has a concentration of about 500 to about 20,000 atomic parts per billion, and the second dopant has a concentration of about 200 to about 20,000 atomic parts per billion.
Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping
NASA Astrophysics Data System (ADS)
Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.
2014-06-01
Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.
A model of transverse fuel injection applied to the computation of supersonic combustor flow
NASA Technical Reports Server (NTRS)
Rogers, R. C.
1979-01-01
A two-dimensional, nonreacting flow model of the aerodynamic interaction of a transverse hydrogen jet within a supersonic mainstream has been developed. The model assumes profile shapes of mass flux, pressure, flow angle, and hydrogen concentration and produces downstream profiles of the other flow parameters under the constraints of the integrated conservation equations. These profiles are used as starting conditions for an existing finite difference parabolic computer code for the turbulent supersonic combustion of hydrogen. Integrated mixing and flow profile results obtained from the computer code compare favorably with existing data for the supersonic combustion of hydrogen.
Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.
Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan
2013-05-14
The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.
Dopant-Modulating Mechanism of Lithium Adsorption and Diffusion at the Graphene /Li2S Interface
NASA Astrophysics Data System (ADS)
Guo, Lichao; Li, Jiajun; Wang, Huayu; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo
2018-02-01
Graphene modification is one of the most effective routes to enhance the electrochemical properties of the transition-metal sulfide anode for Li-ion batteries and the Li2S cathode for Li-S batteries. Boron, nitrogen, oxygen, phosphorus, and sulfur doping greatly affect the electrochemical properties of Li2S /graphene . Here, we investigate the interfacial binding energy, lithium adsorption energy, interface diffusion barrier, and electronic structure by first-principles calculations to unveil the diverse effects of different dopants during interfacial lithiation reactions. The interfacial lithium storage follows the pseudocapacitylike mechanism with intercalation character. Two different mechanisms are revealed to enhance the interfacial lithium adsorption and diffusion, which are the electron-deficiency host doping and the vacancylike structure evolutions with bond breaking. The synergistic effect between different dopants with diverse doping effects is also proposed. The results give a theoretical basis for the materials design with doped graphene as advanced materials modification for energy storage.
Hakansson, Eva; Kaynak, Akif; Kouzani, Abbas
2016-01-01
Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p-toluene sulfonic acid (pTSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High pTSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties. PMID:28773729
Hakansson, Eva; Kaynak, Akif; Kouzani, Abbas
2016-07-22
Complex permittivity of conducting polypyrrole (PPy)-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1-18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p -toluene sulfonic acid ( p TSA) concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH)). The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L p TSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High p TSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties.
Computational study of pristine and titanium-doped sodium alanates for hydrogen storage applications
NASA Astrophysics Data System (ADS)
Dathar, Gopi Krishna Phani
The emphasis of this research is to study and elucidate the underlying mechanisms of reversible hydrogen storage in pristine and Ti-doped sodium aluminum hydrides using molecular modeling techniques. An early breakthrough in using complex metal hydrides as hydrogen storage materials is from the research on sodium alanates by Bogdanovic et al., in 1997 reporting reversible hydrogen storage is possible at moderate temperatures and pressures in transition metal doped sodium alanates. Anton reported titanium salts as the best catalysts compared to all other transition metal salts from his further research on transition metal doped sodium alanates. However, a few questions remained unanswered regarding the role of Ti in reversible hydrogen storage of sodium alanates with improved thermodynamics and kinetics of hydrogen desorption. The first question is about the position of transition metal dopants in the sodium aluminum hydride lattice. The position is investigated by identifying the possible sites for titanium dopants in NaAlH4 lattice and studying the structure and dynamics of possible compounds resulting from titanium doping in sodium alanates. The second question is the role of titanium dopants in improved thermodynamics of hydrogen desorption in Ti-doped NaAlH4. Though it is accepted in the literature that formation of TiAl alloys (Ti-Al and TiAl3) is favorable, reaction pathways are not clearly established. Furthermore, the source of aluminum for Ti-Al alloy formation is not clearly understood. The third question in this area is the role of titanium dopants in improved kinetics of hydrogen absorption and desorption in Ti-doped sodium alanates. This study is directed towards addressing the three longstanding questions in this area. Thermodynamic and kinetic pathways for hydrogen desorption in pristine NaAlH4 and formation of Ti-Al alloys in Ti-doped NaAlH 4, are elucidated to understand the underlying mechanisms of hydrogen desorption. Density functional theory formalism as implemented in CASTEP (Cambridge Serial Total Energy Package) is used to study the structure and energetics of pristine and Ti-doped sodium alanates. From investigations of various models of sodium alanates with Ti dopants, it is shown that the difference between the energy required for Ti→SNa (Ti-substituted Na at the lattice site on the surface) and Ti→TI (Ti placed on top of the surface interstitial SI site) is 0.003 eV atom-1, and is minimal compared to other models. Since less energy is required for Ti→S Na and Ti→TI, these two sites (SNa and T I) would be preferred by the Ti dopants. In Ti→SNa model, Ti is coordinated to two aluminum and seven hydrogen atoms resulting in the possible formation of a TiAl2H7 complex. At elevated temperatures (423 and 448 K), the number of aluminum atoms coordinating with titanium in the complex increase from two (at distances in the 2.6-2.7 A range) to five (at distances in the 2.6-2.7 A range). Besides the formation of a Ti-Al-H complex, Al-Al association (with a 2.97 A bond length) is also seen from the DFT-MD results. In the case of Ti→TI, Ti is coordinated to two aluminum and two hydrogen atoms resulting in the possible formation of a TiAl2H2 complex. TiAl2 H2 complex becomes TiAl3H6 and TiAl 3H7 at elevated temperatures of 423 and 448 K, respectively. The investigation of thermodynamics pathways in Ti-doped sodium alanates illustrates a three step reaction pathway to the formation of TiAl3 (Ti and AlH3 after the first reaction, TiAl after the second and finally TiAl3). This investigation also suggests aluminum in its +3 oxidation state present in aluminum hydride species is responsible in the formation of Ti-Al alloys. From kinetics studies, the proposed mechanism is related to transition from AlH4- to AlH6 3-. The rate limiting step is determined to be associated with hydrogen evolution from association of AlH3 species nucleating aluminum phase. This step is 15 kJ/mol higher than the nearest highest barrier in the reaction path related to transition from AlH52- to AlH63-. From the DFT-MD simulations, it is observed that the titanium dopants are present on the surface during the entire simulation time and exhibit the role in catalytic splitting of hydrogen from surrounding AlH4 groups. Besides the catalytic role, Ti dopants also form bonds with Al, and we also see that the AlH4 groups on the surface and that are present in the sub-surface layers are drawn towards the Ti dopants. This association of Al around titanium indicates the initiation of Al nucleation site facilitated by Ti dopants residing on the surface.
Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode
NASA Technical Reports Server (NTRS)
Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)
2000-01-01
Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.
Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.
2017-01-01
In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564
Verginelli, Iason; Yao, Yijun; Suuberg, Eric M
2016-01-01
In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.
Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)
NASA Astrophysics Data System (ADS)
Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.
2014-11-01
A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.
Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.
Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C
2014-11-01
A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.
Airborne and ground based lidar measurements of the atmospheric pressure profile
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.
1989-01-01
The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.
He, Chao-Ni; Huang, Wei-Qing; Xu, Liang; Yang, Yin-Cai; Zhou, Bing-Xin; Huang, Gui-Fang; Peng, P.; Liu, Wu-Ming
2016-01-01
The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, demonstrating that the band gap, near-gap electronic structure and interface charge transfer of the doped GR/Ag3PO4(100) composite can be tuned by the dopants. Interestingly, the doping atom and C atoms bonded to dopant become active sites for photocatalysis because they are positively or negatively charged due to the charge redistribution caused by interaction. The dopants can enhance the visible light absorption and photoinduced electron transfer. We propose that the N atom may be one of the most appropriate dopants for the GR/Ag3PO4 photocatalyst. This work can rationalize the available experimental results about N-doped GR-semiconductor composites, and enriches our understanding on the dopant effects in the doped GR-based composites for developing high-performance photocatalysts. PMID:26923338
Rectification induced in N2AA-doped armchair graphene nanoribbon device
NASA Astrophysics Data System (ADS)
Chen, Tong; Li, Xiao-Fei; Wang, Ling-Ling; Luo, Kai-Wu; Xu, Liang
2014-07-01
By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N2AA-doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N2AA-doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changing the width of graphene nanoribbons or the position of the N2AA dopant. The mechanisms are revealed to explain the rectifying behaviors.
NASA Astrophysics Data System (ADS)
Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei
2018-04-01
We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.
Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film
NASA Astrophysics Data System (ADS)
Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka
2011-02-01
Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of <0.27% when the dopant concentration increased to >0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was <0.10% and the volume of the TiO2 phase when the dopant concentration was >0.18%.
Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers
NASA Astrophysics Data System (ADS)
Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping
2015-07-01
This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.
NASA Astrophysics Data System (ADS)
Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus
2017-04-01
Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.
Interacting quantum walkers: two-body bosonic and fermionic bound states
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2015-11-01
We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.
Coppa, N.V.
1993-08-24
A method is described of producing superconducting microcircuits comprising the steps of: depositing a thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x](O < x < 1) onto a substrate; depositing a thin film of a dopant onto said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x]; depositing a photoresist onto said thin film of a dopant; shining light through a mask containing a pattern for a desired circuit configuration and onto said photoresist; developing said photoresist to remove portions of said photoresist shined by the light and to selectively expose said dopant film; etching said selectively exposed dopant film from said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x] to form a pattern of dopant; and heating said substrate at a temperature and for a period of time sufficient to diffuse and react said pattern of dopant with said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x].
Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas
NASA Astrophysics Data System (ADS)
Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.
2017-10-01
Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
Vortex methods for separated flows
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.
1988-01-01
The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.
NASA Astrophysics Data System (ADS)
Mukhartova, Yu. V.; Krupenko, A. S.; Mangura, P. A.; Levashova, N. T.
2018-01-01
A two-dimensional hydrodynamic model was developed and applied to describe turbulent fluxes of CO2 and H2O within the atmospheric surface layer over a heterogeneous land surface featuring mosaic vegetation and complex topography. Numerical experiments were carried out with a 4.5-km profile that crosses a hilly region in the central part of European Russia, with the diverse land-use patterns (bare soil, crop areas, grasslands, and forests). The results showed very strong variability of the vertical and horizontal turbulent CO2 and H2O fluxes. The standard deviations of the vertical fluxes were estimated for separate profile sections with uniform vegetation cover for daylight conditions in summer, and they were comparable with the mean vertical fluxes for corresponding sections. The highest horizontal turbulent fluxes occurred at the boundaries between different plant communities and at irregularities in surface profile. In some cases, these fluxes reached 10-20% of the absolute values of the mean vertical fluxes for corresponding profile sections. Significant errors in estimating the local and integrated fluxes e.g. when using the eddy covariance technique, can result from ignoring the surface topography, even in the case of relatively large plots with uniform vegetation cover.
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Polaron Thermodynamics of Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, Willie; Cheng, Chingyun; Arakelyan, Ilya; Thomas, John
2015-05-01
We present the first spatial profile measurements for spin-imbalanced mixtures of atomic 6Li fermions in a quasi-2D geometry with tunable strong interactions. The observed minority and majority profiles are not correctly predicted by BCS theory for a true 2D system, but are reasonably well fit by a 2D-polaron model of the free energy. Density difference profiles reveal a flat center with two peaks at the edges, consistent with a fully paired core of the corresponding 2D density profiles. These features are more prominent for higher interaction strengths. Not predicted by the polaron model is an observed transition from a spin-imbalanced normal fluid phase to a spin-balanced central core above a critical imbalance. Supported by ARO, DOE, AFOSR, NSF.
Transport of volatile organic compounds across the capillary fringe
McCarthy, Kathleen A.; Johnson, Richard L.
1993-01-01
Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.
NASA Technical Reports Server (NTRS)
Taylor, C. M.; Bill, R. C.
1978-01-01
A ceramic/metallic aircraft gas turbine outer gas path seal designed for improved engine performance was studied. Transient temperature and stress profiles in a test seal geometry were determined by numerical analysis. During a simulated engine deceleration cycle from sea-level takeoff to idle conditions, the maximum seal temperature occurred below the seal surface, therefore the top layer of the seal was probably subjected to tensile stresses exceeding the modulus of rupture. In the stress analysis both two- and three-dimensional finite element computer programs were used. Predicted trends of the simpler and more easily usable two-dimensional element programs were borne out by the three-dimensional finite element program results.
Measurement of the Equation of State of the Two-Dimensional Hubbard Model
NASA Astrophysics Data System (ADS)
Miller, Luke; Cocchi, Eugenio; Drewes, Jan; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael
2016-05-01
The subtle interplay between kinetic energy, interactions and dimensionality challenges our comprehension of strongly-correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions, 0 <= U / t <= 20 , and temperatures, down to kB T / t = 0 . 63(2) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities and double occupancies over the whole doping range, and hence our results constitute benchmarks for state-of-the-art theoretical approaches.
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2009-05-01
We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.
Gao, Pingqi; Yang, Zhenhai; He, Jian; Yu, Jing; Liu, Peipei; Zhu, Juye; Ge, Ziyi; Ye, Jichun
2018-03-01
By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c-Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p + - and n + -HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier-selective contacts (CSCs) can be formed directly with c-Si substrates, and thereafter form IBC cells, via a dopant-free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant-free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant-free hole-selective CSCs, i.e . , poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole-selective materials modification, interfacial passivation, contact resistivity, light-trapping structure and device architecture design, etc. By analyzing the structure-property relationships of hole-selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high-performance SCs have been highlighted.
n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions.
Zhang, Siyuan; Naab, Benjamin D; Jucov, Evgheni V; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L; Timofeeva, Tatiana V; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R
2015-07-20
Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2 , yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2 ) dissociation and of D2 -to-A electron transfer, D2 reacts with A to form D(+) and A(-) by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D(+) /0.5 D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9 V vs. FeCp2 (+/0) ) (Cp=cyclopentadienyl) due to cancelation of trends in the D(+/0) potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous fast dynamics of adsorbate overlayers near an incommensurate structural transition.
Granato, Enzo; Ying, S C; Elder, K R; Ala-Nissila, T
2013-09-20
We investigate the dynamics of a compressively strained adsorbed layer on a periodic substrate via a simple two-dimensional model that admits striped and hexagonal incommensurate phases. We show that the mass transport is superfast near the striped-hexagonal phase boundary and in the hexagonal phase. For an initial step profile separating a bare substrate region (or "hole") from the rest of a striped incommensurate phase, the superfast domain wall dynamics leads to a bifurcation of the initial step profile into two interfaces or profiles propagating in opposite directions with a hexagonal phase in between. This yields a theoretical understanding of the recent experiments for the Pb/Si(111) system.
Development of morphogen gradient: The role of dimension and discreteness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teimouri, Hamid; Kolomeisky, Anatoly B.
2014-02-28
The fundamental processes of biological development are governed by multiple signaling molecules that create non-uniform concentration profiles known as morphogen gradients. It is widely believed that the establishment of morphogen gradients is a result of complex processes that involve diffusion and degradation of locally produced signaling molecules. We developed a multi-dimensional discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It provided a full analytical description for stationary profiles and for important dynamic properties such as local accumulation times, variances, and mean first-passage times. The role of discreteness in developing of morphogen gradients is analyzed by comparing with available continuummore » descriptions. It is found that the continuum models prediction about multiple time scales near the source region in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that view the degradation process as an effective potential, the effect of dimensionality on establishment of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion processes are modified with changing the size of the source region.« less
Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert
2016-03-15
Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi-Dirac occupation of which ultimately determines the doping efficiency, thus emerges as key challenge. As a first step, the formation of charge transfer complexes is identified as being detrimental to the doping efficiency, which suggests sterically shielding the functional core of dopant molecules as an additional design rule to complement the requirement of low ionization energies or high electron affinities in efficient n-type or p-type dopants, respectively. In an extended outlook, we finally argue that, to fully meet this challenge, an improved understanding is required of just how the admixture of dopant molecules to organic semiconductors does affect the density of states: compared with their inorganic counterparts, traps for charge carriers are omnipresent in organic semiconductors due to structural and chemical imperfections, and Coulomb attraction between ionized dopants and free charge carriers is typically stronger in organic semiconductors owing to their lower dielectric constant. Nevertheless, encouraging progress is being made toward developing a unifying picture that captures the entire range of doping induced phenomena, from ion-pair to complex formation, in both conjugated polymers and molecules. Once completed, such a picture will provide viable guidelines for synthetic and supramolecular chemistry that will enable further technological advances in organic and hybrid organic/inorganic devices.
Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System
Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu; ...
2016-09-08
Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO 3/SrTiO 3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-bandmore » model. In particular, the large nonlinear dielectric response of SrTiO 3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO 3/SrTiO 3 interface.« less
Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława
2016-03-20
In this study the application of two-dimensional LC (2D LC) for qualitative analysis of polyphenols and simple phenols in the shoots of Rubus idaeus 'Glen Ample' variety is presented. In the preliminary analysis, the methanol extract of the shoots was analyzed by one-dimensional LC. One-dimensional LC separation profiles of phenolics from R. idaeus 'Glen Ample' shoots were dependent on column type, mobile phase composition and gradient program used. Two-dimensional LC system was built from connecting an octadecyl C-18 silica column in the first dimension and pentafluorophenyl column in the second dimension, coupled with DAD and MS (ESI, APCI, DUIS ionization) detectors. A total of 34 phenolic compounds belonging to the groups of phenolic acids, ellagitannins, flavan-3-ols, flavonols and ellagic acid conjugates were identified in the shoots of R. idaeus 'Glen Ample'. The established 2D LC method offers an effective tool for analysis of phenolics present in Rubus species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.
2017-09-01
It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si crystals. The expressions obtained in the present work are very useful for the numerical simulation of grown-in defect behavior, oxygen precipitation and dopant diffusion in heavily doped Si. DFT calculations also showed that Coulomb interaction reaches approximately 30 Å from p (n)-type dopant atoms to I (V) in Si.
Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco
2016-01-01
N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493
Dimensional accuracy of aluminium extrusions in mechanical calibration
NASA Astrophysics Data System (ADS)
Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode
2018-05-01
Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.
Bonhommeau, D; Lewerenz, M; Halberstadt, N
2008-02-07
We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.
Origin of poor doping efficiency in solution processed organic semiconductors.
Jha, Ajay; Duan, Hong-Guang; Tiwari, Vandana; Thorwart, Michael; Miller, R J Dwayne
2018-05-21
Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm -1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.
Identification of ultradilute dopants in ceramics.
Tanaka, Isao; Mizoguchi, Teruyasu; Matsui, Masafumi; Yoshioka, Satoru; Adachi, Hirohiko; Yamamoto, Tomoyuki; Okajima, Toshihiro; Umesaki, Masanori; Ching, Wai Yim; Inoue, Yoshiyuki; Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu
2003-08-01
The properties of ceramic materials are strongly influenced by the presence of ultradilute impurities (dopants). Near-edge X-ray absorption fine structure (NEXAFS) measurements using third-generation synchotron sources can be used to identify ultradilute dopants, provided that a good theoretical tool is available to interpret the spectra. Here, we use NEXAFS analysis and first-principles calculations to study the local environments of Ga dopants at levels of 10 p.p.m in otherwise high-purity MgO. This analysis suggests that the extra charge associated with substitutional Ga on a Mg site is compensated by the formation of a Mg vacancy. This defect model is then confirmed by positron lifetime measurements and plane-wave pseudopotential calculations. This powerful combination of techniques should provide a general method of identifying the defect states of ultradilute dopants in ceramics.
On krypton-doped capsule implosion experiments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.
2017-07-01
This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.
Isolated molecular dopants in pentacene observed by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Kahn, Antoine
2009-11-01
Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.
Using Pt Dopant and Sol Gel Technology for Sensitivity Enhancement of TiO
Chang, Wen-Yang; Ke, Wen-Wang; Hsieh, Yu-Sheng; Kuo, Nai-Hao; Lin, Yu-Cheng
2005-01-01
The sensitivity of the humidity sensor based on hybrid thin films of nanostructure TiO
Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling
NASA Astrophysics Data System (ADS)
Xiao, Xue-Zhang; Chen, Li-Xin; Wang, Xin-Hua; Li, Shou-Quan; Hang, Zhou-Ming; Chen, Chang-Pin; Wang, Qi-Dong
2007-12-01
The NaAlH4 complex is attracting great attention for its potential applications in hydrogen-powered fuel-cell vehicles due to its high hydrogen storage capacity and suitable thermodynamic properties. However, its practicable hydrogen storage capacity presently obtained is less than the theoretical capacity (5.6 wt.%). To improve the hydrogen capacity, we chose metallic Ti or/and Zr powder as catalyst dopants, and prepared the sodium aluminum hydride by hydrogenation of ball-milled NaH/Al mixture containing 10 mol% dopants with different proportions of Ti and Zr, and then investigated the effects on their hydrogen storage (dehydriding) properties. The results showed that different catalyst dopants affected the dehydriding properties greatly. The catalysis of metal Ti as a catalyst dopant alone on dehydriding kinetics for the entire dehydrogenation process of ball-milled (NaH/Al) composite was higher than that of adopting Zr alone. The synergistic catalytic effect of Ti and Zr together as co-dopants on the dehydrogenation process of (NaH/Al) composite was higher than that using only Ti or Zr as dopant individually. The composite doped with proper proportion of Ti and Zr together (8 mol% Ti+ 2 mol% Zr) as co-dopants exhibited the highest dehydriding kinetic property and desorption capacity.
System and method for monitoring water content or other dielectric influences in a medium
Cherry, Robert S.; Anderson, Allen A.
2001-01-01
A sensor system is provided that measures water content or other detectable properties in a medium along the entire length of the sensor at any point in time. The sensor system includes an electromagnetic signal generator and a transmission line disposed in a medium to be monitored. Alternatively, the transmission line can be configured for movement across a medium to be monitored, or the transmission line can be fixed relative to a moving medium being monitored. A signal is transmitted along the transmission line at predetermined frequencies, and the signal is returned back along the transmission line and/or into an optional receive line in proximity to the transmission line. The returned signal is processed to generate a one-dimensional data output profile that is a function of a detectable property of the medium. The data output profile can be mapped onto a physical system to generate a two-dimensional or three-dimensional profile if desired. The sensor system is useful in a variety of different applications such as agriculture, horticulture, biofiltration systems for industrial offgases, leak detection in landfills or drum storage facilities at buried waste sites, and in many other applications.
Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses
NASA Astrophysics Data System (ADS)
Baltisberger, Jay H.; Florian, Pierre; Keeler, Eric G.; Phyo, Pyae A.; Sanders, Kevin J.; Grandinetti, Philip J.
2016-07-01
We have examined variations in the 29Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O · 4.81 SiO2, Rb2O · 3.96 SiO2, Rb2O · 2.25 SiO2, K2O · 4.48 SiO2, Na2O · 4.74 SiO2, BaO · 2.64 SiO2, and SrO · 2.36 SiO2, using natural abundance 29Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the 29Si nuclear shielding anisotropy of Q(3) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu2+ as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of 29Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.
Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides.
Liu, Yuan; Guo, Jian; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Ding, Mengning; Shakir, Imran; Gambin, Vincent; Huang, Yu; Duan, Xiangfeng
2017-09-13
Negative transconductance (NTC) devices have been heavily investigated for their potential in low power logical circuit, memory, oscillating, and high-speed switching applications. Previous NTC devices are largely attributed to two working mechanisms: quantum mechanical tunneling, and mobility degradation at high electrical field. Herein we report a systematic investigation of charge transport in multilayer two-dimensional semiconductors (2DSCs) with optimized van der Waals contact and for the first time demonstrate NTC and antibipolar characteristics in multilayer 2DSCs (such as MoS 2 , WSe 2 ). By varying the measurement temperature, bias voltage, and body thickness, we found the NTC behavior can be attributed to a vertical potential barrier in the multilayer 2DSCs and the competing mechanisms between intralayer lateral transport and interlayer vertical transport, thus representing a new working mechanism for NTC operation. Importantly, this vertical potential barrier arises from inhomogeneous carrier distribution in 2DSC from the near-substrate region to the bulk region, which is in contrast to conventional semiconductors with homogeneous doping defined by bulk dopants. We further show that the unique NTC behavior can be explored for creating frequency doublers and phase shift keying circuits with only one transistor, greatly simplifying the circuit design compared to conventional technology.
Modifier cation effects on (29)Si nuclear shielding anisotropies in silicate glasses.
Baltisberger, Jay H; Florian, Pierre; Keeler, Eric G; Phyo, Pyae A; Sanders, Kevin J; Grandinetti, Philip J
2016-07-01
We have examined variations in the (29)Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O·4.81 SiO2, Rb2O·3.96 SiO2, Rb2O·2.25 SiO2, K2O·4.48 SiO2, Na2O·4.74 SiO2, BaO·2.64 SiO2, and SrO·2.36 SiO2, using natural abundance (29)Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the (29)Si nuclear shielding anisotropy of Q((3)) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu(2+) as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of (29)Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure. Copyright © 2016 Elsevier Inc. All rights reserved.
High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.
2003-01-01
SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.
Decay of homogeneous two-dimensional quantum turbulence
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
Bending of solitons in weak and slowly varying inhomogeneous plasma
NASA Astrophysics Data System (ADS)
Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan
2015-12-01
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Bending of solitons in weak and slowly varying inhomogeneous plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in
2015-12-15
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions
NASA Astrophysics Data System (ADS)
Henn, Philipp; Liewald, Mathias; Sindel, Manfred
2017-10-01
This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.
Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat
NASA Astrophysics Data System (ADS)
Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi
2010-07-01
Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Scullin, V. J.
1971-01-01
A FORTRAN 4 computer program for the design of two-dimensional supersonic rotor blade sections corrected for boundary-layer displacement thickness is presented. The ideal rotor is designed by the method of characteristics to produce vortex flow within the blade passage. The boundary-layer parameters are calculated by Cohen and Reshotoko's method for laminar flow and Sasman and Cresci's method for turbulent flow. The program input consists essentially of the blade surface Mach number distribution and total flow conditions. The primary output is the corrected blade profile and the boundary-layer parameters.
NASA Astrophysics Data System (ADS)
Falceta-Gonçalves, D.; Lazarian, A.; Houde, M.
2010-04-01
Theoretical and observational studies on the turbulence of the interstellar medium developed fast in the past decades. The theory of supersonic magnetized turbulence, as well as the understanding of the projection effects of observed quantities, is still in progress. In this work, we explore the characterization of the turbulent cascade and its damping from observational spectral line profiles. We address the difference of ion and neutral velocities by clarifying the nature of the turbulence damping in the partially ionized. We provide theoretical arguments in favor of the explanation of the larger Doppler broadening of lines arising from neutral species compared to ions as arising from the turbulence damping of ions at larger scales. Also, we compute a number of MHD numerical simulations for different turbulent regimes and explicit turbulent damping, and compare both the three-dimensional distributions of velocity and the synthetic line profile distributions. From the numerical simulations, we place constraints on the precision with which one can measure the three-dimensional dispersion depending on the turbulence sonic Mach number. We show that no universal correspondence between the three-dimensional velocity dispersions measured in the turbulent volume and minima of the two-dimensional velocity dispersions available through observations exist. For instance, for subsonic turbulence the correspondence is poor at scales much smaller than the turbulence injection scale, while for supersonic turbulence the correspondence is poor for the scales comparable with the injection scale. We provide a physical explanation of the existence of such a two-dimensional to three-dimensional correspondence and discuss the uncertainties in evaluating the damping scale of ions that can be obtained from observations. However, we show that the statistics of velocity dispersion from observed line profiles can provide the spectral index and the energy transfer rate of turbulence. Also, by comparing two similar simulations with different viscous coefficients, it was possible to constrain the turbulent cut-off scale. This may especially prove useful since it is believed that ambipolar diffusion may be one of the dominant dissipative mechanisms in star-forming regions. In this case, the determination of the ambipolar diffusion scale may be used as a complementary method for the determination of magnetic field intensity in collapsing cores. We discuss the implications of our findings in terms of a new approach to magnetic field measurement proposed by Li & Houde.
Two dimensional electron systems for solid state quantum computation
NASA Astrophysics Data System (ADS)
Mondal, Sumit
Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional electron systems. In an ultrapure two dimensional electron system (2DES) subjected to high magnetic field and very low temperatures, a large number of many-body ground states can emerge in a purely quantum phenomenon called the Fractional quantum Hall Effect (FQHE). The fractional state at nu=5/2 has drawn significant interest in recent times because of its predicted non-abelian excitations that can be utilized in constructing topologically protected quantum bits. In spite of having made significant advances in this direction, progress is hindered due to the fragility of this exotic state characterized by a small energy gap which puts very stringent requirements on the sample quality and the temperature scale. It is believed that the nu=5/2 activation gap is masked by disorders present in the sample which causes the experimentally observed gap to appear much smaller than the theoretically predicted intrinsic gap originating from purely electron-electron interactions in the clean-limit. Hence categorization of samples based on the strength of the nu=5/2 state hinges on the efficient quantification of disorder which is not a directly measurable quantity. Historically the zero-field transport mobility has been identified as the measure of disorder present in the sample. However careful comparison of data originating in our measurements with existing literature reveals that mobility is rather a weak indicator of the quality of FQHE in the 2nd Landau level and fails to reliably predict the nu=5/2 activation gap in a sample. In the absence of a single reliable indicator of sample quality in the 2nd Landau level, we propose a resistivity measured at nu=5/2 at T=0.3K as an alternative metric to characterize samples. Preliminary measurements involving a limited number of samples indicate that a resistivity measured at nu=5/2 might be better correlated with the nu=5/2 gap than mobility. Results also call for a more holistic approach in sample characterization by taking into consideration the heterostructure design while predicting sample quality. The possibility of quantum scattering time being an indicator of the strength of the nu=5/2 gap was investigated. The existing method of extracting quantum lifetime from the low-field Shubnikov-de Haas oscillations leads to unreliable extraction of quantum lifetime in high-mobility two dimensional electron samples potentially because an underlying assumption in the method that the amplitude of the density of states oscillations at low magnetic fields is negligible compared to the zero-field density of states might not hold true in case of high-mobility 2DES. A modified method was developed by relaxing the assumption which resulted in meaningful extraction of quantum lifetimes in all the high-mobility samples probed in the study. A correlation between the extracted quantum lifetime and the nu=5/2 activation gap was not discovered within the limited set of samples probed.
A Two-dimensional Version of the Niblett-Bostick Transformation for Magnetotelluric Interpretations
NASA Astrophysics Data System (ADS)
Esparza, F.
2005-05-01
An imaging technique for two-dimensional magnetotelluric interpretations is developed following the well known Niblett-Bostick transformation for one-dimensional profiles. The algorithm uses a Hopfield artificial neural network to process series and parallel magnetotelluric impedances along with their analytical influence functions. The adaptive, weighted average approximation preserves part of the nonlinearity of the original problem. No initial model in the usual sense is required for the recovery of a functional model. Rather, the built-in relationship between model and data considers automatically, all at the same time, many half spaces whose electrical conductivities vary according to the data. The use of series and parallel impedances, a self-contained pair of invariants of the impedance tensor, avoids the need to decide on best angles of rotation for TE and TM separations. Field data from a given profile can thus be fed directly into the algorithm without much processing. The solutions offered by the Hopfield neural network correspond to spatial averages computed through rectangular windows that can be chosen at will. Applications of the algorithm to simple synthetic models and to the COPROD2 data set illustrate the performance of the approximation.
New method of 2-dimensional metrology using mask contouring
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka
2008-10-01
We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.
Hoggard, Jamin C; Wahl, Jon H; Synovec, Robert E; Mong, Gary M; Fraga, Carlos G
2010-01-15
In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.
Nazir, Safdar; Bernal, Camille; Yang, Kesong
2015-03-11
The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.
OMFIT Tokamak Profile Data Fitting and Physics Analysis
Logan, N. C.; Grierson, B. A.; Haskey, S. R.; ...
2018-01-22
Here, One Modeling Framework for Integrated Tasks (OMFIT) has been used to develop a consistent tool for interfacing with, mapping, visualizing, and fitting tokamak profile measurements. OMFIT is used to integrate the many diverse diagnostics on multiple tokamak devices into a regular data structure, consistently applying spatial and temporal treatments to each channel of data. Tokamak data are fundamentally time dependent and are treated so from the start, with front-loaded and logic-based manipulations such as filtering based on the identification of edge-localized modes (ELMs) that commonly scatter data. Fitting is general in its approach, and tailorable in its application inmore » order to address physics constraints and handle the multiple spatial and temporal scales involved. Although community standard one-dimensional fitting is supported, including scale length–fitting and fitting polynomial-exponential blends to capture the H-mode pedestal, OMFITprofiles includes two-dimensional (2-D) fitting using bivariate splines or radial basis functions. These 2-D fits produce regular evolutions in time, removing jitter that has historically been smoothed ad hoc in transport applications. Profiles interface directly with a wide variety of models within the OMFIT framework, providing the inputs for TRANSP, kinetic-EFIT 2-D equilibrium, and GPEC three-dimensional equilibrium calculations. he OMFITprofiles tool’s rapid and comprehensive analysis of dynamic plasma profiles thus provides the critical link between raw tokamak data and simulations necessary for physics understanding.« less
OMFIT Tokamak Profile Data Fitting and Physics Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, N. C.; Grierson, B. A.; Haskey, S. R.
Here, One Modeling Framework for Integrated Tasks (OMFIT) has been used to develop a consistent tool for interfacing with, mapping, visualizing, and fitting tokamak profile measurements. OMFIT is used to integrate the many diverse diagnostics on multiple tokamak devices into a regular data structure, consistently applying spatial and temporal treatments to each channel of data. Tokamak data are fundamentally time dependent and are treated so from the start, with front-loaded and logic-based manipulations such as filtering based on the identification of edge-localized modes (ELMs) that commonly scatter data. Fitting is general in its approach, and tailorable in its application inmore » order to address physics constraints and handle the multiple spatial and temporal scales involved. Although community standard one-dimensional fitting is supported, including scale length–fitting and fitting polynomial-exponential blends to capture the H-mode pedestal, OMFITprofiles includes two-dimensional (2-D) fitting using bivariate splines or radial basis functions. These 2-D fits produce regular evolutions in time, removing jitter that has historically been smoothed ad hoc in transport applications. Profiles interface directly with a wide variety of models within the OMFIT framework, providing the inputs for TRANSP, kinetic-EFIT 2-D equilibrium, and GPEC three-dimensional equilibrium calculations. he OMFITprofiles tool’s rapid and comprehensive analysis of dynamic plasma profiles thus provides the critical link between raw tokamak data and simulations necessary for physics understanding.« less
Too Big to Be Real? No Depleted Core in Holm 15A
NASA Astrophysics Data System (ADS)
Bonfini, Paolo; Dullo, Bililign T.; Graham, Alister W.
2015-07-01
Partially depleted cores, as measured by core-Sérsic model “break radii,” are typically tens to a few hundred parsecs in size. Here we investigate the unusually large ({R}γ \\prime =0.5 = 4.57 kpc) depleted core recently reported for Holm 15A, the brightest cluster galaxy of Abell 85. We model the one-dimensional (1D) light profile, and also the two-dimensional (2D) image (using Galfit-Corsair, a tool for fitting the core-Sérsic model in 2D). We find good agreement between the 1D and 2D analyses, with minor discrepancies attributable to intrinsic ellipticity gradients. We show that a simple Sérsic profile (with a low index n and no depleted core) plus the known outer exponential “halo” provide a good description of the stellar distribution. We caution that while almost every galaxy light profile will have a radius where the negative logarithmic slope of the intensity profile γ \\prime equals 0.5, this alone does not imply the presence of a partially depleted core within this radius.
Hierarchical Approach to 'Atomistic' 3-D MOSFET Simulation
NASA Technical Reports Server (NTRS)
Asenov, Asen; Brown, Andrew R.; Davies, John H.; Saini, Subhash
1999-01-01
We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1 micron MOSFET's. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations.
In-Situ Phase Transition Control in the Supercooled State for Robust Active Glass Fiber.
Lv, Shichao; Cao, Maoqing; Li, Chaoyu; Li, Jiang; Qiu, Jianrong; Zhou, Shifeng
2017-06-21
The construction of a dopant-activated photonic composite is of great technological importance for various applications, including smart lighting, optical amplification, laser, and optical detection. The bonding arrangement around the introduced dopants largely determines the properties, yet it remains a daunting challenge to manipulate the local state of the matrix (i.e., phase) inside the transparent composite in a controllable manner. Here we demonstrate that the relaxation of the supercooled state enables in-situ phase transition control in glass. Benefiting from the unique local atom arrangement manner, the strategy offers the possibility for simultaneously tuning the chemical environment of the incorporated dopant and engineering the dopant-host interaction. This allows us to effectively activate the dopant with high efficiency (calculated as ∼100%) and profoundly enhance the dopant-host energy-exchange interaction. Our results highlight that the in-situ phase transition control in glass may provide new opportunities for fabrication of unusual photonic materials with intense broadband emission at ∼1100 nm and development of the robust optical detection unit with high compactness and broadband photon-harvesting capability (from X-ray to ultraviolet light).
Method for implantation of high dopant concentrations in wide band gap materials
Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM
2009-09-15
A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.
2013-01-01
Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content. PMID:24350904
Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency
Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei
2016-01-01
The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178
High on/off ratios in bilayer graphene field effect transistors realized by surface dopants.
Szafranek, B N; Schall, D; Otto, M; Neumaier, D; Kurz, H
2011-07-13
The unique property of bilayer graphene to show a band gap tunable by external electrical fields enables a variety of different device concepts with novel functionalities for electronic, optoelectronic, and sensor applications. So far the operation of bilayer graphene-based field effect transistors requires two individual gates to vary the channel's conductance and to create a band gap. In this paper, we report on a method to increase the on/off ratio in single gated bilayer graphene field effect transistors by adsorbate doping. The adsorbate dopants on the upper side of the graphene establish a displacement field perpendicular to the graphene surface breaking the inversion symmetry of the two graphene layers. Low-temperature measurements indicate that the increased on/off ratio is caused by the opening of a mobility gap.
Rectification induced in N{sub 2}{sup AA}-doped armchair graphene nanoribbon device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Luo, Kai-Wu
2014-07-07
By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N{sub 2}{sup AA}-doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N{sub 2}{sup AA}-doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changingmore » the width of graphene nanoribbons or the position of the N{sub 2}{sup AA} dopant. The mechanisms are revealed to explain the rectifying behaviors.« less
Partitioning of dopant cations between β-tricalcium phosphate and fluorapatite
NASA Astrophysics Data System (ADS)
Jay, E. E.; Mallinson, P. M.; Fong, S. K.; Metcalfe, B. L.; Grimes, R. W.
2011-07-01
Mixed crystalline phase composite ceramics offer the possibility of partitioning defect species between the phases as well as occupancy of specific sites within a given phase. Here we use atomic scale simulations to study the site preference of an extensive range of divalent and trivalent substitutional ions across the five cation sites in β-tricalcium phosphate ( β-TCP) and the two cations sites in fluorapatite (FAp). This study indicates that in β-TCP small dopant species occupy the smaller of the five cation sites and vice versa. Conversely, in FAp, small divalent species occupy the nominally larger Ca(1) site while larger cations occupy the Ca(2) site. Partition energies between the two phases indicate that divalent species strongly segregate to β-TCP as do Al 3+ and Ga 3+, whereas all other (larger) trivalent ions exhibit little preference.
Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin
2016-07-19
Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples.
The measurement of an aspherical mirror by three-dimensional nanoprofiler
NASA Astrophysics Data System (ADS)
Tokuta, Yusuke; Okita, Kenya; Okuda, Kohei; Kitayama, Takao; Nakano, Motohiro; Nakatani, Shun; Kudo, Ryota; Yamamura, Kazuya; Endo, Katsuyoshi
2015-09-01
Aspherical optical elements with high accuracy are important in several fields such as third-generation synchrotron radiation and extreme-ultraviolet lithography. Then the demand of measurement method for aspherical or free-form surface with nanometer resolution is rising. Our purpose is to develop a non-contact profiler to measure free-form surfaces directly with repeatability of figure error of less than 1 nm PV. To achieve this purpose we have developed three-dimensional Nanoprofiler which traces normal vectors of sample surface. The measurement principle is based on the straightness of LASER light and the accuracy of a rotational goniometer. This machine consists of four rotational stages, one translational stage and optical head which has the quadrant photodiode (QPD) and LASER head at optically equal position. In this measurement method, we conform the incident light beam to reflect the beam by controlling five stages and determine the normal vectors and the coordinates of the surface from signal of goniometers, translational stage and QPD. We can obtain three-dimensional figure from the normal vectors and the coordinates by a reconstruction algorithm. To evaluate performance of this machine we measure a concave aspherical mirror ten times. From ten results we calculate measurement repeatability, and we evaluate measurement uncertainty to compare the result with that measured by an interferometer. In consequence, the repeatability of measurement was 2.90 nm (σ) and the difference between the two profiles was +/-20 nm. We conclude that the two profiles was correspondent considering systematic errors of each machine.
Six-dimensional regularization of chiral gauge theories
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo
2017-03-01
We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surendran, Kuzhichalil P.; Sebastian, Mailadil T.; Mohanan, Pezholil
2005-11-01
The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} (BMT) is investigated. It is found that dopants such as Sb{sub 2}O{sub 5}, MnO, ZrO{sub 2}, WO{sub 3}, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is alsomore » discussed.« less
Graphene device and method of using graphene device
Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.
2015-08-11
An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.
The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up
NASA Technical Reports Server (NTRS)
Rogers, Michael M.; Moser, Robert D.
1991-01-01
The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raman, Santhanam; Xi, Xiaomei; Ye, Xiang-Rong
A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.
NASA Astrophysics Data System (ADS)
Feier, Ioan I., Jr.
The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohatgi, Ajeet; Zimbardi, Francesco; Rounsaville, Brian
The objective of the work performed within this contract is to reveal the materials and device physics that currently limit the experimental world record efficiency to 25% for single junction Si (2013), and to demonstrate 26.5% efficiency. The starting efficiency for this project was 23.9% in 2013. Four strategies are being combined throughout the project to achieve 26.5% cell efficiency: (1) passivated contacts via tunnel dielectrics, (2) emitter optimization and passivation through dopant profile engineering, (3) enhanced light trapping through development of photonic crystals and (4) base optimization.
Formation of Na2SO4 and K2SO4 in flames doped with sulfur and alkali chlorides and carbonates
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Miller, R. A.; Stearns, C. A.; Kohl, F. J.
1977-01-01
High pressure, free-jet expansion, mass spectrometric sampling was used to identify directly and to measure reaction products formed in doped methane-oxygen flames. Flames were doped with SO2 or CH3SH and sodium or potassium chlorides or carbonates. Gaseous NA2SO4 or K2S04 molecules were formed in residence times on the order of msec for each combination of dopants used. Composition profiles of combustion products were measured and compared with equilibrium thermodynamic calculations of product composition.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan
2015-01-01
Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region. PMID:28793520