Strauss, Charlie E.
1997-01-01
Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.
Strauss, C.E.
1997-11-18
Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.
Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J
2017-03-07
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Astrophysics Data System (ADS)
Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.
2017-03-01
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
Vibration Measurement Method of a String in Transversal Motion by Using a PSD.
Yang, Che-Hua; Wu, Tai-Chieh
2017-07-17
A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string's natural frequency, increase while the speed of motion increases.
Method and apparatus for coherent imaging of infrared energy
Hutchinson, Donald P.
1998-01-01
A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera's two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera's integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting.
Method and apparatus for coherent imaging of infrared energy
Hutchinson, D.P.
1998-05-12
A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera`s two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera`s integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhii, V.; Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 117105; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005
2016-07-28
We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”)more » and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.« less
Vibration Measurement Method of a String in Transversal Motion by Using a PSD
Yang, Che-Hua; Wu, Tai-Chieh
2017-01-01
A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string’s natural frequency, increase while the speed of motion increases. PMID:28714915
Noise power spectra of images from digital mammography detectors.
Williams, M B; Mangiafico, P A; Simoni, P U
1999-07-01
Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. We begin with a brief review of the fundamentals of NPS theory and measurement, derive explicit expressions for calculation of the one- and two-dimensional (1D and 2D) NPS, and discuss some of the considerations and tradeoffs when these concepts are applied to digital systems. Measurements of the NPS of two detectors for digital mammography are presented to illustrate some of the implications of the choices available. For both systems, two-dimensional noise power spectra obtained over a range of input fluence exhibit pronounced asymmetry between the orthogonal frequency dimensions. The 2D spectra of both systems also demonstrate dominant structures both on and off the primary frequency axes indicative of periodic noise components. Although the two systems share many common noise characteristics, there are significant differences, including markedly different dark-noise magnitudes, differences in NPS shape as a function of both spatial frequency and exposure, and differences in the natures of the residual fixed pattern noise following flat fielding corrections. For low x-ray exposures, quantum noise-limited operation may be possible only at low spatial frequency. Depending on the method of obtaining the 1D NPS (i.e., synthetic slit scanning or slice extraction from the 2D NPS), on-axis periodic structures can be misleadingly smoothed or missed entirely. Our measurements indicate that for these systems, 1D spectra useful for the purpose of detective quantum efficiency calculation may be obtained from thin cuts through the central portion of the calculated 2D NPS. On the other hand, low-frequency spectral values do not converge to an asymptotic value with increasing slit length when 1D spectra are generated using the scanned synthetic slit method. Aliasing can contribute significantly to the digital NPS, especially near the Nyquist frequency. Calculation of the theoretical presampling NPS and explicit inclusion of aliased noise power shows good agreement with measured values.
NASA Astrophysics Data System (ADS)
Ramaswamy, Rahul
Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro watt range. Our studies suggest that such room temperature detectors from GaN semiconductor, with reasonable bandwidth, low LO power requirements and high sensitivity have numerous applications, ranging from precise identification of complex molecules, environmental monitoring of critical substances, remote detection of various pollutants in the atmosphere, and noninvasive medical imaging as well as a variety of applications for defense and homeland security.
NASA Astrophysics Data System (ADS)
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
NASA Astrophysics Data System (ADS)
Grün, H.; Paltauf, G.; Haltmeier, M.; Burgholzer, P.
2007-07-01
Photoacoustic imaging is based on the generation of acoustic waves in a semitransparent sample (e.g. soft tissue) after illumination with short pulses of light or radio waves. The goal is to recover the spatial distribution of absorbed energy density inside the sample from acoustic pressure signals measured outside the sample (photoacoustic inverse problem). If the acoustic pressure outside the illuminated sample is measured with a large-aperture detector, the signal at a certain time is given by an integral of the generated acoustic pressure distribution over an area that is determined by the shape of the detector. For example a planar detector measures the projections of the initial pressure distribution over planes parallel to the detector plane, which is the Radon transform of the initial pressure distribution. Stable and exact three-dimensional imaging with planar integrating detector requires measurements in all directions of space and so the receiver plane has to be rotated to cover the entire detection surface. We have recently presented a simpler set-up for exact imaging which requires only a single rotation axis and therefor the fragmentation of the area detector into line detectors perpendicular to the rotation axis. Using a two-dimensional reconstruction method and applying the inverse two-dimensional Radon transform afterwards gives an exact reconstruction of the three-dimensional sample with this set-up. In order to achieve high resolution, a fiber based Fabry-Perot interferometer is used. It is a single mode fiber with two fiber bragg gratings on both ends of the line detector. Thermal shifts and vibrations are compensated by frequency locking of the laser. The high resolution and the good performance of this integrating line detector has been demonstrated by photoacoustic measurements with line grid samples and phantoms using a model-based time reversal method for image reconstruction. The time reversed pressure field can be calculated directly by retransmitting the measured pressure on the detector positions in a reversed temporal order.
In situ two-dimensional imaging quick-scanning XAFS with pixel array detector.
Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi
2011-11-01
Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.
Kippenhan, D.O.
1959-09-01
A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.
Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)
2010-01-01
The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength Sample Analysis.
Liu, Changsheng; Li, Qingbo
2000-09-12
A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.
Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength.
Liu, Changsheng; Li, Qingbo (State College, PA
1999-12-07
A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes
NASA Astrophysics Data System (ADS)
Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.
2006-05-01
Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.
NASA Astrophysics Data System (ADS)
Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław
2017-08-01
The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.
Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.
2012-01-01
High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.
Multi-dynamic range compressional wave detection using optical-frequency comb
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Masuoka, Takashi; Oe, Ryo; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi
2018-02-01
Compressional wave detection is useful means for health monitoring of building, detection of abnormal vibration of moving objects, defect evaluation, and biomedical imaging such as echography and photoacoustic imaging. The frequency of the compressional wave is varied from quasi-static to a few tens of megahertz depending on applications. Since the dynamic range of general compressional wave detectors is limited, we need to choose a proper compressional wave detector depending on applications. For the compressional wave detection with wide dynamic range, two or more detectors with different detection ranges is required. However, these detectors with different detection ranges generally has different accuracy and precision, disabling the seamless detection over these detection ranges. In this study, we proposed a compressional wave detector employing optical frequency comb (OFC). The compressional wave was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The compressional wave-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. To enhance the dynamic range of the compressional wave detection, we developed a cavityfeedback-based system and a phase-sensitive detection system, both of which the accuracy and precision are coherently linked to these of the OFC. We provided a proof-of-principle demonstration of the detection of compressional wave from quasi-static to ultrasound wave by using the OFC-based compressional wave sensor. Our proposed approach will serve as a unique and powerful tool for detecting compressional wave versatile applications in the future.
Temperature-dependent layer breathing modes in two-dimensional materials
NASA Astrophysics Data System (ADS)
Maity, Indrajit; Maiti, Prabal K.; Jain, Manish
2018-04-01
Relative out-of-plane displacements of the constituent layers of two-dimensional materials give rise to unique low-frequency breathing modes. By computing the height-height correlation functions from molecular dynamics simulations, we show that the layer breathing modes (LBMs) can be mapped consistently to vibrations of a simple linear chain model. Our calculated thickness dependence of LBM frequencies for few-layer (FL) graphene and molybdenum disulfide (MoS2) are in excellent agreement with available experiments. Our results show a redshift of LBM frequency with an increase in temperature, which is a direct consequence of anharmonicities present in the interlayer interaction. We also predict the thickness and temperature dependence of LBM frequencies for FL hexagonal boron nitride. Our Rapid Communication provides a simple and efficient way to probe the interlayer interaction for layered materials and their heterostructures with the inclusion of anharmonic effects.
A Detector Scenario for a Muon Cooling Demonstration Experiment
NASA Astrophysics Data System (ADS)
McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.
1998-04-01
As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.
Data processing and analysis for 2D imaging GEM detector system
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Linczuk, M.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.
2014-11-01
The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas [1]. Multi-channel measurement system and essential data processing for X-ray energy and position recognition is consider. Several modes of data acquisition are introduced depending on processing division for hardware and software components. Typical measuring issues aredeliberated for enhancement of data quality. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference X-ray source and tokamak plasma are demonstrated.
NASA Astrophysics Data System (ADS)
Korb, J.-P.; Xu, Shu; Jonas, J.
1993-02-01
A theory of dipolar relaxation by translational diffusion of a nonwetting liquid confined in model porous media is presented. We obtain expressions of the rates of spin-lattice relaxation 1/T1, spin-spin relaxation 1/T2, and spin-lattice relaxation in the rotating frame 1/T1ρ, which depend on the average pore size d. The frequency variations of these rates are intermediate between the two-dimensional and three-dimensional results. At small frequency they vary logarithmically for small d and tend progressively to a constant with increasing d. For small pore sizes we obtain quadratic confinement dependences of these rates (∝1/d2), at variance with the linear (∝1/d) relation coming from the biphasic fast exchange model usually applied for a wetting liquid in porous media. We apply such a theory to the 1H NMR relaxation of methylcyclohexane liquid in sol-gel porous silica glasses with a narrow pore-size distribution. The experiments confirm the theoretical predictions for very weak interacting solvent in porous silica glasses of pore sizes varying in the range of 18.4-87.2 Å and in the bulk. At the limit of small pores, the logarithmic frequency dependencies of 1/T1ρ and 1/T1 observed over several decades of frequency are interpreted with a model of unbounded two-dimensional diffusion in a layered geometry. The leveling off of the 1/T1ρ low-frequency dependence is interpreted in terms of the bounded two-dimensional diffusion due to the finite length L of the pores. An estimate of a finite size of L=100 Å is in excellent agreement with the experimental results of the transmission electron microscopy study of platinium-carbon replicated xerogels.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
Low-frequency 1/f noise in graphene devices
NASA Astrophysics Data System (ADS)
Balandin, Alexander A.
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Low-frequency 1/f noise in graphene devices.
Balandin, Alexander A
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
1.5- μm single photon counting using polarization-independent up-conversion detector
NASA Astrophysics Data System (ADS)
Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa
2006-12-01
We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.
Resistive-strips micromegas detectors with two-dimensional readout
NASA Astrophysics Data System (ADS)
Byszewski, M.; Wotschack, J.
2012-02-01
Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.
Frequency discriminator/phase detector
NASA Technical Reports Server (NTRS)
Crow, R. B.
1974-01-01
Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.
Frequency mode excitations in two-dimensional Hindmarsh-Rose neural networks
NASA Astrophysics Data System (ADS)
Tabi, Conrad Bertrand; Etémé, Armand Sylvin; Mohamadou, Alidou
2017-05-01
In this work, we explicitly show the existence of two frequency regimes in a two-dimensional Hindmarsh-Rose neural network. Each of the regimes, through the semi-discrete approximation, is shown to be described by a two-dimensional complex Ginzburg-Landau equation. The modulational instability phenomenon for the two regimes is studied, with consideration given to the coupling intensities among neighboring neurons. Analytical solutions are also investigated, along with their propagation in the two frequency regimes. These waves, depending on the coupling strength, are identified as breathers, impulses and trains of soliton-like structures. Although the waves in two regimes appear in some common regions of parameters, some phase differences are noticed and the global dynamics of the system is highly influenced by the values of the coupling terms. For some values of such parameters, the high-frequency regime displays modulated trains of waves, while the low-frequency dynamics keeps the original asymmetric character of action potentials. We argue that in a wide range of pathological situations, strong interactions among neurons can be responsible for some pathological states, including schizophrenia and epilepsy.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J. J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martini, G.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2015-01-01
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω (f )<7.7 ×1 0-4(f /900 Hz )3 , which improves on the previous upper limit by a factor of ˜180 . In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.;
2014-01-01
Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a nonco- located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460 - 1000Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f) < 7.7 × 10(exp -4)(f/900Hz)(sup 3), which improves on the previous upper limit by a factor of approx. 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.
Detection and Classification of Whale Acoustic Signals
NASA Astrophysics Data System (ADS)
Xian, Yin
This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale vocalization data set. The word error rate of the DCTNet feature is similar to the MFSC in speech recognition tasks, suggesting that the convolutional network is able to reveal acoustic content of speech signals.
NASA Astrophysics Data System (ADS)
Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.
2018-06-01
This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.
NASA Astrophysics Data System (ADS)
Chai, S.; Lim, S.; Kim, C.-Y.; Hong, S.
2018-04-01
This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna's impedance to have high responsivity.
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
Method and apparatus for two-dimensional spectroscopy
DeCamp, Matthew F.; Tokmakoff, Andrei
2010-10-12
Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.
Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices
Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad
2015-03-10
We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplifiedmore » model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.« less
NASA Astrophysics Data System (ADS)
Posnansky, Oleg P.
2018-05-01
The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less
Directional detection of dark matter with two-dimensional targets
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Directional detection of dark matter with two-dimensional targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less
Noise effect on performance of IR PVDF pyroelectric detector
NASA Astrophysics Data System (ADS)
Abdullah, K. Al; Batal, M. Anwar; Hamdan, Rawad; Khalil, Toni; Salame, Chafic
2018-05-01
The spin-casting and casting technology were used to make IR pyroelectric PVDF detectors, where the operational amplifier, TC75S63TU, is used to amplify pyroelectrical signal. The pyroelectric coefficient is measured by charge integration method, which is 23 µC/m2K. The voltage responsivity and noise equivalent power depending on the dielectric constant, specific conductivity and loss tangent, which are measured at various frequencies, is estimated where changing of detector capacitance and resistor with frequency is taken into account. Maximum voltage responsivity was for detector thickness d=116.05 µm at chopping frequency (f=0.8Hz). Influence of thermal, Johnson and amplifier noises on output voltage are studied. At frequencies (<1kHz), Johnson noise dominates whereas at frequencies (>1kHz), amplifier voltage noise dominates. The thinner detector, the lower noise affects on output voltage. The optimal signal to noise ratio (SNR) of pyroelectrical detector is for thickness d=30.1 µm at frequency f=20Hz. The reducing electrode area decreases slightly total noise at low frequency and enhances slightly SNR of pyroelectrical detector.
Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.
Stierstorfer, Karl
2018-01-01
To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Savin, A. V.; Zubova, E. A.; Manevitch, L. I.
2005-06-01
We investigate a two-dimensional (2D) strongly anisotropic crystal (2D SAC) on substrate: 2D system of coupled linear chains of particles with strong intrachain and weak interchain interactions, each chain being subjected to the sine background potential. Nonlinear dynamics of one of these chains when the rest of them are fixed is reduced to the well known Frenkel-Kontorova (FK) model. Depending on strengh of the substrate, the 2D SAC models a variety of physical systems: polymer crystals with identical chains having light side groups, an array of inductively coupled long Josephson junctions, anisotropic crystals having light and heavy sublattices. Continuum limit of the FK model, the sine-Gordon (sG) equation, allows two types of soliton solutions: topological solitons and breathers. It is known that the quasi-one-dimensional topological solitons can propagate also in a chain of 2D system of coupled chains and even in a helix chain in a three-dimensional model of polymer crystal. In contrast to this, numerical simulation shows that the long-living breathers inherent to the FK model do not exist in the 2D SAC with weak background potential. The effect changes scenario of kink-antikink collision with small relative velocity: at weak background potential the collision always results only in intensive phonon radiation while kink-antikink recombination in the FK model results in long-living low-frequency sG breather creation. We found the survival condition for breathers in the 2D SAC on substrate depending on breather frequency and strength of the background potential. The survival condition bears no relation to resonances between breather frequency and frequencies of phonon band—contrary to the case of the FK model.
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen
2016-01-01
Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377
Franchina, Flavio A; Maimone, Mariarosa; Sciarrone, Danilo; Purcaro, Giorgia; Tranchida, Peter Q; Mondello, Luigi
2015-07-10
The present research is focused on the use and evaluation of a novel helium ionization detector, defined as barrier discharge ionization detector (BID), within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography (FM GC×GC). The performance of the BID device was compared to that of a flame ionization detector (FID), under similar FM GC×GC conditions. Following development and optimization of the FM GC×GC method, the BID was subjected to fine tuning in relation to acquisition frequency and discharge flow. Moreover, the BID performance was measured and compared to that of the FID, in terms of extra-column band broadening, sensitivity and dynamic range. The comparative study was carried out by using standard compounds belonging to different chemical classes, along with a sample of diesel fuel. Advantages and disadvantages of the BID system, also within the context of FM GC×GC, are critically discussed. In general, the BID system was characterized by a more limited dynamic range and increased sensitivity, compared to the FID. Additionally, BID and FID contribution to band broadening was found to be similar under the operational conditions applied. Particular attention was devoted to the behaviour of the FM GC×GC-BID system toward saturated and aromatic hydrocarbons, for a possible future use in the field of mineral-oil food contamination research. Copyright © 2015 Elsevier B.V. All rights reserved.
Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies
NASA Astrophysics Data System (ADS)
Hang, N. Tran Thi; Lüdtke, U.
2018-05-01
The foundry industry worldwide commonly uses induction channel furnaces to heat and melt alloys. The operating frequency is one of the main issues when constructing an efficient channel furnace. It is possible to choose operating frequencies lower than 50 Hz using a modern IGBT power converter. This work shows the simulation results using ANSYS with the goal of finding the best electrical frequency necessary to operate the induction furnace. First, a two-dimensional model is used to calculate the efficiency depending on frequency. Then, the channel model is extended to a more realistic three-dimensional model. Finally, the influence of frequency, inductor profile, and several components of the induction channel furnace are discussed.
Ultra-broadband near-field antenna for terahertz plasmonic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Knap, W.
A new type of ultra-broadband near-field antenna for terahertz frequencies is proposed. This antenna is a short-period planar metal array. It is theoretically shown that irradiation of the short-period array antenna by a plane homogeneous terahertz waves excite a highly inhomogeneous near electric field near the metal array. In this case, the amplitude of the excited inhomogeneous near electric field is almost independent of frequency in the entire terahertz frequency range. The excitation of plasma oscillations in a two-dimensional electron system using the antenna under study is numerically simulated in the resonant and non-resonant plasmonic response modes. This type ofmore » antenna can be used for developing ultra-broadband plasmonic detectors of terahertz radiation.« less
Ultra-wideband three-dimensional optoacoustic tomography.
Gateau, Jérôme; Chekkoury, Andrei; Ntziachristos, Vasilis
2013-11-15
Broadband optoacoustic waves generated by biological tissues excited with nanosecond laser pulses carry information corresponding to a wide range of geometrical scales. Typically, the frequency content present in the signals generated during optoacoustic imaging is much larger compared to the frequency band captured by common ultrasonic detectors, the latter typically acting as bandpass filters. To image optical absorption within structures ranging from entire organs to microvasculature in three dimensions, we implemented optoacoustic tomography with two ultrasound linear arrays featuring a center frequency of 6 and 24 MHz, respectively. In the present work, we show that complementary information on anatomical features could be retrieved and provide a better understanding on the localization of structures in the general anatomy by analyzing multi-bandwidth datasets acquired on a freshly excised kidney.
Two-Dimensional Optical Processing Of One-Dimensional Acoustic Data
NASA Astrophysics Data System (ADS)
Szu, Harold H.
1982-10-01
The concept of carrier-mean-frequency-selective convolution is introduced to solve the undersea problem of passive acoustic surveillance (PAS) and compared with the conventional notion of difference-frequency Doppler-corrected correlation. The former results in the cross-Wigner distribution function (WD), and the latter results in the cross-ambiguity function (AF). When the persistent time of a sound emitter is more important than the characteristic tone of the sound emitter, WD will be more useful than AF for PAS activity detection, and vice versa. Their mutual relationships with the instantaneous power spectrum (IPS) show the importance of the phase information that must be kept in any 2-D representation of a 1 -D signal. If a square-law detector is used, or an unsymmetric version of WD or AF is gener-ated, then one must produce the other 2-D representations directly, rather than transform one to the other.
Note: Silicon Carbide Telescope Dimensional Stability for Space-based Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Sanjuah, J.; Korytov, D.; Mueller, G.; Spannagel, R.; Braxmaier, C.; Preston, A.; Livas, J.
2012-01-01
Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(exp -1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 C are also shown although the requirements are not met due to temperature fluctuations in the setup.
Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors.
Sanjuán, J; Korytov, D; Mueller, G; Spannagel, R; Braxmaier, C; Preston, A; Livas, J
2012-11-01
Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(-1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 °C are also shown although the requirements are not met due to temperature fluctuations in the setup.
A two-dimensional intensified photodiode array for imaging spectroscopy
NASA Technical Reports Server (NTRS)
Tennyson, P. D.; Dymond, K.; Moos, H. W.; Feldman, P. D.; Mackey, E. F.
1986-01-01
The Johns Hopkins University is currently developing an instrument to fly aboard NASA's Space Shuttle as a Spartan payload in the late 1980s. This Spartan free flyer will obtain spatially resolved spectra of faint extended emission line objects in the wavelength range 750-1150 A at about 2-A resolution. The use of two-dimensional photon counting detectors will give simultaneous coverage of the 400 A spectral range and the 9 arc-minute spatial resolution along the spectrometer slit. The progress towards the flight detector is reported here with preliminary results from a laboratory breadboard detector, and a comparison with the one-dimensional detector developed for the Hopkins Ultraviolet Telescope. A hardware digital centroiding algorithm has been successfully implemented. The system is ultimately capable of 15-micron resolution in two dimensions at the image plane and can handle continuous counting rates of up to 8000 counts/s.
NASA Technical Reports Server (NTRS)
Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)
2012-01-01
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.
Optical conductivity of three and two dimensional topological nodal-line semimetals
NASA Astrophysics Data System (ADS)
Barati, Shahin; Abedinpour, Saeed H.
2017-10-01
The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.
James F. Selgrade; James H. Roberds
2005-01-01
A 4-dimensional system of nonlinear difference equations tracking allele frequencies and population sizes for a two-patch metapopulation model is studied. This system describes intergenerational changes brought about by density-dependent selection within patches and moderated by the effects of migration between patches. To determine conditions which result in similar...
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Gapped fermionic spectrum from a domain wall in seven dimension
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subir; Rai, Nishal
2018-05-01
We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions of supergravity in the background of this domain wall and compute holographic spectral function of the operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero expectation value lead to gapped spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, M; Ionita, C; Bednarek, D
Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors withoutmore » changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Thermal Properties of Whispering Gallery Mode Resonators
2014-12-22
in a vacuum chamber, to lower the noise floor and increase the SNR. To study the frequency response of the IR detector , we varied the modulation...performance at a fixed IR modulation (chopping) frequency. Finally, we estimated the noise equivalent power (NEP) of our IR detector . Note that the...the thennal relaxation time of the resonator to estimate the response time of the resonator based infrared (IR) detector . We found that, depending on
Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee
2014-01-01
Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution measured with the 22 keV photons from a 109Cd source was less than 9%. A reduction of image noise was shown in all the spatial frequencies in 1D NPS as a result of the elimination of the electronic noise. The spatial resolution was measured just above 5 line pairs per mm (lp/mm) where 10% of MTF corresponded to 5.4 mm−1. The 2D NPS and NEQ shows a low noise floor and a linear dependence on dose. The reconstruction filter choice affected both of the MTF and NPS results, but had a weak effect on the NEQ. Conclusions: The prototype energy resolved photon counting Si strip detector can offer superior imaging performance for dedicated breast CT as compared to a conventional energy-integrating detector due to its high output count rate, high spatial and energy resolution, and low noise characteristics, which are essential characteristics for spectral breast CT imaging. PMID:25186390
New shielding configurations for a simultaneous PET/MRI scanner at 7T
Peng, Bo J.; Wu, Yibao; Cherry, Simon R.; Walton, Jeffrey H.
2014-01-01
Understanding sources of electromagnetic interference are important in designing any electronic system. This is especially true when combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in a multimodality system as coupling between the subsystems can degrade the performance of either modality. For this reason, eliminating radio frequency (RF) interference and gradient-induced eddy currents have been major challenges in building simultaneous hybrid PET/MRI systems. MRI requires negligible RF interference at the Larmor resonance frequency, while RF interference at almost any frequency may corrupt PET data. Moreover, any scheme that minimizes these interactions would, ideally, not compromise the performance of either subsystem. This paper lays out a plan to resolve these problems. A carbon fiber composite material is found to be a good RF shield at the Larmor frequency (300 MHz in this work) while introducing negligible gradient eddy currents. This carbon fiber composite also provides excellent structural support for the PET detector components. Low frequency electromagnetic radiation (81 kHz here) from the switching power supplies of the gradient amplifiers was also found to interfere with the PET detector. Placing the PET detector module between two carbon fiber tubes and grounding the inner carbon fiber tube to the PET detector module ground reduced this interference. Further reductions were achieved by adding thin copper (Cu) foil on the outer carbon fiber case and electrically grounding the PET detector module so that all 3 components had a common ground, i.e. with the PET detector in an electrostatic cage. Finally, gradient switching typical in MRI sequences can result in count losses in the particular PET detector design studied. Moreover, the magnitude of this effect depends on the location of the detector within the magnet bore and which MRI gradient is being switched. These findings have a bearing on future designs of PET/MRI systems. PMID:24380812
High frequency estimation of 2-dimensional cavity scattering
NASA Astrophysics Data System (ADS)
Dering, R. S.
1984-12-01
This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.
Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B
2012-05-01
Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.
Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusev, G.; Jandel, M.; Arnold, C. W.
2015-05-28
The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF 2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications.more » The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. As a result, applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.« less
Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera
NASA Astrophysics Data System (ADS)
Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto
2017-02-01
Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.
Negative refraction in one- and two-dimensional lossless plasma dielectric photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.
2013-07-15
Negative refraction in one- and two-dimensional lossless plasma dielectric photonic crystals consisting of plasma and background materials is theoretically investigated and the necessary conditions for negative refraction in these two structures are obtained. The critical frequency ω{sub 0} and the bandwidth Δω for negative refraction are explored, and the parameter dependence of effects such as plasma filling factor and the dielectric constant of background materials is also examined and discussed.
Characterization of photon-counting multislit breast tomosynthesis.
Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik
2018-02-01
It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the total detected spectrum. Scantimes ranged from 4 s to 16.5 s depending on voltage and current settings. The characterized system generates spectral tomosynthesis images with a dual-energy photon-counting detector. Measurements show a high DQE, enabling high image quality at a low dose, which is beneficial for low-dose applications such as screening. The single-scan spectral images open up for applications such as quantitative material decomposition and contrast-enhanced tomosynthesis. © 2017 American Association of Physicists in Medicine.
Thermopile Detector Arrays for Space Science Applications
NASA Technical Reports Server (NTRS)
Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.
2004-01-01
Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.
A new kind of metal detector based on chaotic oscillator
NASA Astrophysics Data System (ADS)
Hu, Wenjing
2017-12-01
The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.
The Physics of Superconducting Microwave Resonators
NASA Astrophysics Data System (ADS)
Gao, Jiansong
Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.
NASA Technical Reports Server (NTRS)
George, P. K.; Oeffinger, T. R.; Chen, T. T.
1976-01-01
Experiments were devised to study the angular variation of the resistance and noise properties of one- and two-level chevron stretcher magnetoresistive detectors for use in field access bubble memory devices. All measurements, made with an electronic system, were performed on glass or garnet samples upon which 1 micron of SiO2 was sputter-deposited, followed by 4000 A of Permalloy for the 28-micron-period devices and 0.8 microns of SiO2, followed by 3000 A of Permalloy for the 20-micron-period devices. The geometrical and drive-state dependence of the zero-state noise were studied, as was its frequency dependence. It is found that both types of detectors operate primarily in the amplitude-shift mode for drive fields of interest and that the presence of a bubble in a detector causes a magnetoresistance change equal to that produced by increasing the in-plane drive field about 8 Oe in the absence of a bubble.
The Airborne Optical Systems Testbed (AOSTB)
2017-05-31
appropriate color to each pixel in and displayed in a two -dimensional array. Another method is to render a 3D model from the data and display the model as if...USA Distribution A: Public Release ALBOTA@LL.MIT.EDU ABSTRACT Over the last two decades MIT Lincoln Laboratory (MITLL) has pioneered the development... two -dimensional (2D) grid of detectors. Rather than measuring intensity, as in a conventional camera, these detectors measure the photon time-of
Breathing is different in the quantum world
NASA Astrophysics Data System (ADS)
Bonitz, Michael; Bauch, Sebastian; Balzer, Karsten; Henning, Christian; Hochstuhl, David
2009-11-01
Interacting classicle particles in a harmonic trap are known to possess a radial collective oscillation -- the breathing mode (BM). In case of Coulomb interaction its frequency is universal -- it is independent of the particle number and system dimensionality [1]. Here we study strongly correlated quantum systems. We report a qualitatively different breathing behavior: a quantum system has two BMs one of which is universal whereas the frequency of the other varies with system dimensionality, the particle spin and the strength of the pair interaction. The results are based on exact solutions of the time-dependent Schr"odinger equation for two particles and on time-dependent many-body results for larger particle numbers. Finally, we discuss experimental ways to excite and measure the breathing frequencies which should give direct access to key properties of trapped particles, including their many-body effects [2]. [4pt] [1] C. Henning et al., Phys. Rev. Lett. 101, 045002 (2008) [0pt] [2] S. Bauch, K. Balzer, C. Henning, and M. Bonitz, submitted to Phys. Rev. Lett., arXiv:0903.1993
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława
2016-03-20
In this study the application of two-dimensional LC (2D LC) for qualitative analysis of polyphenols and simple phenols in the shoots of Rubus idaeus 'Glen Ample' variety is presented. In the preliminary analysis, the methanol extract of the shoots was analyzed by one-dimensional LC. One-dimensional LC separation profiles of phenolics from R. idaeus 'Glen Ample' shoots were dependent on column type, mobile phase composition and gradient program used. Two-dimensional LC system was built from connecting an octadecyl C-18 silica column in the first dimension and pentafluorophenyl column in the second dimension, coupled with DAD and MS (ESI, APCI, DUIS ionization) detectors. A total of 34 phenolic compounds belonging to the groups of phenolic acids, ellagitannins, flavan-3-ols, flavonols and ellagic acid conjugates were identified in the shoots of R. idaeus 'Glen Ample'. The established 2D LC method offers an effective tool for analysis of phenolics present in Rubus species. Copyright © 2015 Elsevier B.V. All rights reserved.
Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments
NASA Astrophysics Data System (ADS)
Suzuki, Aritoki
Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our measurements show beams with percent level ellipticity, percent level cross-polarization leakage, and partitioned bands using banks of two and three filters. We will also describe the development of broadband anti-reflection coatings for the high dielectric constant lens. The broadband anti-reflection coating has approximately 100% bandwidth and no detectable loss at cryogenic temperature. We will describe a next generation CMB polarimetry experiment, the POLARBEAR-2, in detail. The POLARBEAR-2 would have focal planes with kilo-pixel of these detectors to achieve high sensitivity. We'll also introduce proposed experiments that would use multi-chroic detector array we developed in this work. We'll conclude by listing out suggestions for future multichroic detector development.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors
NASA Technical Reports Server (NTRS)
Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.
1994-01-01
Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.
Using the Graphing Calculator--in Two-Dimensional Motion Plots.
ERIC Educational Resources Information Center
Brueningsen, Chris; Bower, William
1995-01-01
Presents a series of simple activities involving generalized two-dimensional motion topics to prepare students to study projectile motion. Uses a pair of motion detectors, each connected to a calculator-based-laboratory (CBL) unit interfaced with a standard graphics calculator, to explore two-dimensional motion. (JRH)
Comparison of morphological and conventional edge detectors in medical imaging applications
NASA Astrophysics Data System (ADS)
Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.
1991-06-01
Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.
Analytical solutions for the dynamics of two trapped interacting ultracold atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Calarco, Tommaso; CNR-INFM BEC Center, I-38050 Povo
2006-08-15
We discuss exact solutions of the Schroedinger equation for the system of two ultracold atoms confined in an axially symmetric harmonic potential. We investigate different geometries of the trapping potential, in particular we study the properties of eigenenergies and eigenfunctions for quasi-one-dimensional and quasi-two-dimensional traps. We show that the quasi-one-dimensional and the quasi-two-dimensional regimes for two atoms can be already realized in the traps with moderately large (or small) ratios of the trapping frequencies in the axial and the transverse directions. Finally, we apply our theory to Feshbach resonances for trapped atoms. Introducing in our description an energy-dependent scattering lengthmore » we calculate analytically the eigenenergies for two trapped atoms in the presence of a Feshbach resonance.« less
Flow and bose-einstein correlations in Au-Au collisions at RHIC
NASA Astrophysics Data System (ADS)
Phobos Collaboration; Manly, Steven; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hofman, D.; Hollis, R. S.; Hołyinski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2003-03-01
Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S=130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.
NASA Astrophysics Data System (ADS)
Baselt, Tobias; Popp, Tobias; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter
2017-05-01
Endlessly single-mode fibers, which enable single mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode guidance. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion GVD based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array and compare the calculation with two methods to measure the wavelength-dependent time delay. We measure the time delay on a three hundred meter test fiber with a homemade supercontinuum light source, a set of bandpass filters and a fast detector and compare the results with a white light interferometric setup. To measure the dispersion of optical fibers with high accuracy, a time-frequency-domain setup based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelength dependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the endlessly single-mode fiber.
Collective modes of a two-dimensional Fermi gas at finite temperature
NASA Astrophysics Data System (ADS)
Mulkerin, Brendan C.; Liu, Xia-Ji; Hu, Hui
2018-05-01
We examine the breathing mode of a strongly interacting two-dimensional Fermi gas and the role of temperature on the anomalous breaking of scale invariance. By calculating the equation of state with different many-body T -matrix theories and the virial expansion, we obtain a hydrodynamic equation of the harmonically trapped Fermi gas (with trapping frequency ω0) through the local density approximation. By solving the hydrodynamic equations, we determine the breathing mode frequencies as a function of interaction strength and temperature. We find that the breathing mode anomaly depends sensitively on both interaction strength and temperature. In particular, in the strongly interacting regime, we predict a significant downshift of the breathing mode frequency, below the scale invariant value of 2 ω0 , for temperatures of the order of the Fermi temperature.
Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K
2011-11-01
A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America
Direct detector for terahertz radiation
Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Shaner, Eric A [Albuquerque, NM; Allen, S James [Santa Barbara, CA
2008-09-02
A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.
Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K
2007-11-26
We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.
Linear perturbations of black holes: stability, quasi-normal modes and tails
NASA Astrophysics Data System (ADS)
Zhidenko, Alexander
2009-03-01
Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
2D dosimetry in a proton beam with a scintillating GEM detector
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.
2009-06-01
A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.
A cometary ion mass spectrometer
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Simpson, D. A.
1984-01-01
The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.
Constraints on frequency-dependent violations of Shapiro delay from GW150914
NASA Astrophysics Data System (ADS)
Kahya, Emre O.; Desai, Shantanu
2016-05-01
On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 200 Hz within a 0.2 s window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of O (10-9).
Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator
Skoff, David R.; Laaser, Jennifer E.; Mukherjee, Sudipta S.; Middleton, Chris T.; Zanni, Martin T.
2012-01-01
Over the last decade two-dimensional infrared (2D IR) spectroscopy has proven to be a very useful extension of infrared spectroscopy, yet the technique remains restricted to a small group of specialized researchers because of its experimental complexity and high equipment cost. We report on a spectrometer that is compact, mechanically robust, and is much less expensive than previous designs because it uses a single pixel MCT detector rather than an array detector. Moreover, each axis of the spectrum can be collected in either the time or frequency domain via computer programming. We discuss pulse sequences for scanning the probe axis, which were not previously possible. We present spectra on metal carbonyl compounds at 5 µm and a model peptide at 6 µm. Data collection with a single pixel MCT takes longer than using an array detector, but publishable quality data are still achieved with only a few minutes of averaging. PMID:24659850
Freely Suspended Two-Dimensional Electron Gases.
NASA Astrophysics Data System (ADS)
Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank
1998-03-01
We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.
National Defense Center of Excellence for Industrial Metrology and 3D Imaging
2012-10-18
validation rather than mundane data-reduction/analysis tasks. Indeed, the new financial and technical resources being brought to bear by integrating CT...of extremely fast axial scanners. By replacing the single-spot detector by a detector array, a three-dimensional image is acquired by one depth scan...the number of acquired voxels per complete two-dimensional or three-dimensional image, the axial and lateral resolution, the depth range, the
Corrected Implicit Monte Carlo
Cleveland, Mathew Allen; Wollaber, Allan Benton
2018-01-02
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
Corrected implicit Monte Carlo
NASA Astrophysics Data System (ADS)
Cleveland, M. A.; Wollaber, A. B.
2018-04-01
In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew Allen; Wollaber, Allan Benton
Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less
3D-measurement using a scanning electron microscope with four Everhart-Thornley detectors
NASA Astrophysics Data System (ADS)
Vynnyk, Taras; Scheuer, Renke; Reithmeier, Eduard
2011-06-01
Due to the emerging degree of miniaturization in microstructures, Scanning-Electron-Microscopes (SEM) have become important instruments in the quality assurance of chip manufacturing. With a two- or multiple detector system for secondary electrons, a SEM can be used for the reconstruction of three dimensional surface profiles. Although there are several projects dealing with the reconstruction of three dimensional surfaces using electron microscopes with multiple Everhart-Thornley detectors (ETD), there is no profound knowledge of the behaviour of emitted electrons. Hence, several values, which are used for reconstruction algorithms, such as the photometric method, are only estimates; for instance, the exact collection efficiency of the ETD, which is still unknown. This paper deals with the simulation of electron trajectories in a one-, two- and four-detector system with varying working distances and varying grid currents. For each detector, the collection efficiency is determined by taking the working distance and grid current into account. Based on the gathered information, a new collection grid, which provides a homogenous emission signal for each detector of a multiple detector system, is developed. Finally, the results of the preceding tests are utilized for a reconstruction of a three dimensional surface using the photometric method with a non-lambert intensity distribution.
Depth of interaction decoding of a continuous crystal detector module.
Ling, T; Lewellen, T K; Miyaoka, R S
2007-04-21
We present a clustering method to extract the depth of interaction (DOI) information from an 8 mm thick crystal version of our continuous miniature crystal element (cMiCE) small animal PET detector. This clustering method, based on the maximum-likelihood (ML) method, can effectively build look-up tables (LUT) for different DOI regions. Combined with our statistics-based positioning (SBP) method, which uses a LUT searching algorithm based on the ML method and two-dimensional mean-variance LUTs of light responses from each photomultiplier channel with respect to different gamma ray interaction positions, the position of interaction and DOI can be estimated simultaneously. Data simulated using DETECT2000 were used to help validate our approach. An experiment using our cMiCE detector was designed to evaluate the performance. Two and four DOI region clustering were applied to the simulated data. Two DOI regions were used for the experimental data. The misclassification rate for simulated data is about 3.5% for two DOI regions and 10.2% for four DOI regions. For the experimental data, the rate is estimated to be approximately 25%. By using multi-DOI LUTs, we also observed improvement of the detector spatial resolution, especially for the corner region of the crystal. These results show that our ML clustering method is a consistent and reliable way to characterize DOI in a continuous crystal detector without requiring any modifications to the crystal or detector front end electronics. The ability to characterize the depth-dependent light response function from measured data is a major step forward in developing practical detectors with DOI positioning capability.
On line separation of overlapped signals from multi-time photons for the GEM-based detection system
NASA Astrophysics Data System (ADS)
Czarski, T.; Pozniak, K. T.; Chernyshova, M.; Malinowski, K.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.
2015-09-01
The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas. Multi-channel measurement system and serial data acquisition for X-ray energy and position recognition is described. Fundamental characteristics are presented for two dimensional detector structure. Typical signals of ADC - Analog to Digital Converter are considered for charge value and position estimation. Coinciding signals for high flux radiation cause the problem for cluster charge identification. The amplifier with shaper determines time characteristics and limits the pulses frequency. Separation of coincided signals was introduced and verified for simulation experiments. On line separation of overlapped signals was implemented applying the FPGA technology with relatively simple firmware procedure. Representative results for reconstruction of coinciding signals are demonstrated.
MCNP Output Data Analysis with ROOT (MODAR)
NASA Astrophysics Data System (ADS)
Carasco, C.
2010-06-01
MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two-step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two-dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two-dimensional data. Running time: The CPU time needed to smear a two-dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two-dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.
Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.
Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong
2018-05-01
In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.
2017-07-01
Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, M; Aldoohan, S; Sonnad, J
2015-06-15
Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less
Belle II SVD ladder assembly procedure and electrical qualification
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, Varghese; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration
2016-07-01
The Belle II experiment at the SuperKEKB asymmetric e+e- collider in Japan will operate at a luminosity approximately 50 times larger than its predecessor (Belle). At its heart lies a six-layer vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is time-dependent CP violation asymmetry, which hinges on a precise charged-track vertex determination. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision three dimensional coordinate measurements of the jigs used in assembly as well as of the final SVD modules.
Gravitational wave asteroseismology with protoneutron stars
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Takiwaki, Tomoya
2016-08-01
We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.
Multi-channel infrared thermometer
Ulrickson, Michael A.
1986-01-01
A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.
Rotating field mass and velocity analyzer
NASA Technical Reports Server (NTRS)
Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)
1998-01-01
A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.
Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source
Chandler, David W; Strecker, Kevin E
2014-04-01
In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.
Interferometric Quantum-Nondemolition Single-Photon Detectors
NASA Technical Reports Server (NTRS)
Kok, Peter; Lee, Hwang; Dowling, Jonathan
2007-01-01
Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.
Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence
NASA Astrophysics Data System (ADS)
Ryoo, H.; Jeon, W.
2018-03-01
We investigate theoretically an acoustic metasurface with a high absorption coefficient at two frequencies and design it from subwavelength structures. We propose the use of a two-dimensional periodic array of four Helmholtz resonators in two types to obtain a metasurface with nearly perfect sound absorption at given target frequencies via interactions between waves emanating from different resonators. By considering how fluid viscosity affects acoustic energy dissipation in the narrow necks of the Helmholtz resonators, we obtain effective complex-valued material properties that depend on frequency and on the geometrical parameters of the resonators. We furthermore derive the effective acoustic impedance of the metasurface from the effective material properties and calculate the absorption spectra from the theoretical model, which we compare with the spectra obtained from a finite-element simulation. As a practical application of the theoretical model, we derive empirical formulas for the geometrical parameters of a metasurface which would yield perfect absorption at a given frequency. While previous works on metasurfaces based on Helmholtz resonators aimed to absorb sound at single frequencies, we use optimization to design a metasurface composed of four different Helmholtz resonators to absorb sound at two distinct frequencies.
Self-similar gravity wave spectra resulting from the modulation of bound waves
NASA Astrophysics Data System (ADS)
Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric
2018-05-01
We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.
Resonance interaction energy between two entangled atoms in a photonic bandgap environment.
Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia
2018-03-26
We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Makoto; Hiromoto, Norihisa, E-mail: dnhirom@ipc.shizuoka.ac
2015-10-15
We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power onmore » the order of 10{sup −14} W/Hz{sup 1/2} in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.« less
Aoki, Makoto; Hiromoto, Norihisa
2015-10-01
We describe a 4-K-cryocooled dual-band terahertz (THz) photoconductive detector system with background-limited performance. The detector system comprises two THz photoconductive detectors covering a response in a wide frequency range from 1.5 to 4 THz, low noise amplifiers, optical low-pass filters to eliminate input radiation of higher frequencies, and a mechanical 4 K Gifford-McMahon refrigerator that provides practical and convenient operation without a liquid He container. The electrical and optical performances of the THz detector system were evaluated at a detector temperature of 4 K under 300 K background radiation. We proved that the detector system can achieve background-limited noise-equivalent-power on the order of 10(-14) W/Hz(1/2) in the frequency range from 1.5 to 4 THz even if the vibration noise of the mechanical refrigerator is present.
Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing
NASA Astrophysics Data System (ADS)
Adachi, Seiji; Yu, Jason
2005-05-01
Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency. .
Lumped element kinetic inductance detectors based on two-gap MgB2 thin films
NASA Astrophysics Data System (ADS)
Yang, C.; Niu, R. R.; Guo, Z. S.; Cai, X. W.; Chu, H. M.; Yang, K.; Wang, Y.; Feng, Q. R.; Gan, Z. Z.
2018-01-01
Lumped element kinetic inductance detectors (LEKIDs) are made from a single layer superconducting thin film. Because of their low noise and highly multiplexibility, LEKIDs provide a sensitive technology for the detection of millimeter and submillimeter waves. In this work, a 5-pixel 50-nm-thick MgB2 array is made. The microwave properties of the array are measured under dark conditions. We show that the loaded quality factor Q of the resonant circuit is 30 000 at 7.5 K, which is comparable to that of lower-operating-temperature (usually several hundred mK) LEKIDs made from superconductors such as Al and Nb. Moreover, the temperature dependence of resonance frequency gives the two-gap character of MgB2, Δπ (0) = 2.58 meV and Δσ (0) = 8.26 meV. The gap frequency (f = 2Δ/h) indicates that MgB2 LEKIDs have a promising application on terahertz detection.
Accuracy of parameter estimates for closely spaced optical targets using multiple detectors
NASA Astrophysics Data System (ADS)
Dunn, K. P.
1981-10-01
In order to obtain the cross-scan position of an optical target, more than one scanning detector is used. As expected, the cross-scan position estimation performance degrades when two nearby optical targets interfere with each other. Theoretical bounds on the two-dimensional parameter estimation performance for two closely spaced optical targets are found. Two particular classes of scanning detector arrays, namely, the crow's foot and the brickwall (or mosaic) patterns, are considered.
Shubnikov-de Haas Oscillations in LaTiO3/SrTiO3 Heterostructures
NASA Astrophysics Data System (ADS)
Veit, Michael; Ramshaw, Brad; Chan, Mun; Suzuki, Yuri
Emergent metallic behavior in heterostructures of the Mott insulator LaTiO3 and the band insulator SrTiO3 was observed for the first time more than a decade ago. It has often been compared to other oxide systems which have a two-dimensional Fermi surface, but there have been few studies probing the dimensionality of the metallicity in this system. We have studied the transport properties of thin films of LaTiO3 on SrTiO3 substrates. Our measurements have indicated that the entirety of the LaTiO3 film is conductive with an additional contribution near the interface. When the film thickness is on the order of 3-4 unit cells, we observe two sets of Shubnikov-de Haas oscillations - low frequency oscillations with a frequency of 2T and high frequency of 36T. We attribute the observation of these two sets of oscillations to a Rashba splitting which creates a smaller inner Fermi pocket and a larger outer Fermi pocket. These results are consistent with our measurements of in plane anisotropic magnetoresistance and a weak antilocalization correction to the magnetoconductance Further measurements on the angular dependence of the oscillations indicate that their frequency does not change, thus indicating that the Fermi surface is more three-dimensional.
Stelljes, Tenzin Sonam; Looe, Hui Khee; Harder, Dietrich; Poppe, Björn
2017-03-01
Two-dimensional detector arrays are routinely used for constancy checks and treatment plan verification in photon-beam radiotherapy. In addition to the spatial resolution of the dose profiles, the "coverage" of the radiation field with respect to the detection of any beam collimation deficiency appears as the second characteristic feature of a detector array. The here proposed "collimator monitoring fill factor" (CM fill factor) has been conceived to serve as a quantitative characteristic of this "coverage". The CM fill factor is defined as the probability of a 2D array to detect any collimator position error. Therefore, it is represented by the ratio of the "sensitive area" of a single detector, in which collimator position errors are detectable, and the geometrical "cell area" associated with this detector within the array. Numerical values of the CM fill factor have been Monte Carlo simulated for 2D detector arrays equipped with air-vented ionization chambers, liquid-filled ionization chambers and diode detectors and were compared with the "FWHM fill factor" defined by Gago-Arias et al. (2012). For arrays with vented ionization chambers, the differences between the CM fill factor and the FWHM fill factor are moderate, but occasionally the latter exceeds unity. For narrower detectors such as liquid-filled ionization chambers and Si diodes and for small sampling distances, large differences between the FWHM fill factor and the CM fill factor have been observed. These differences can be explained by the shapes of the fluence response functions of these narrow detectors. A new parameter "collimator monitoring fill factor" (CM fill factor), applicable to quantitate the collimator position error detection probability of a 2D detector array, has been proposed. It is designed as a help in classifying the clinical performance of two-dimensional detector arrays in photon-beam radiotherapy. © 2017 American Association of Physicists in Medicine.
Radiograph and passive data analysis using mixed variable optimization
Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.
2015-06-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.
Multi-channel infrared thermometer
Ulrickson, M.A.
A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.
NASA Astrophysics Data System (ADS)
Brill, J. W.; Shahi, Maryam; Payne, Marcia M.; Edberg, Jesper; Yao, Y.; Crispin, Xavier; Anthony, J. E.
2015-12-01
We have used a photothermal technique, in which chopped light heats the front surface of a small (˜1 mm2) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn) and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.
NASA Astrophysics Data System (ADS)
Upadhyay, Bhanu B.; Jha, Jaya; Takhar, Kuldeep; Ganguly, Swaroop; Saha, Dipankar
2018-05-01
We have observed that the estimation of two-dimensional electron gas density is dependent on the device geometry. The geometric contribution leads to the anomalous estimation of the GaN based heterostructure properties. The observed discrepancy is found to originate from the anomalous area dependent capacitance of GaN based Schottky diodes, which is an integral part of the high electron mobility transistors. The areal capacitance density is found to increase for smaller radii Schottky diodes, contrary to a constant as expected intuitively. The capacitance is found to follow a second order polynomial on the radius of all the bias voltages and frequencies considered here. In addition to the quadratic dependency corresponding to the areal component, the linear dependency indicates a peripheral component. It is further observed that the peripheral to areal contribution is inversely proportional to the radius confirming the periphery as the location of the additional capacitance. The peripheral component is found to be frequency dependent and tends to saturate to a lower value for measurements at a high frequency. In addition, the peripheral component is found to vanish when the surface is passivated by a combination of N2 and O2 plasma treatments. The cumulative surface state density per unit length of the perimeter of the Schottky diodes as obtained by the integrated response over the distance between the ohmic and Schottky contacts is found to be 2.75 × 1010 cm-1.
Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.
Song, Juntao; Liu, Haiwen; Jiang, Hua
2012-05-30
A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.
NASA Astrophysics Data System (ADS)
Ramanayaka, Aruna N.
This thesis consists of two parts. The first part considers the effect of microwave radiation on magnetotransport in high quality GaAs/AlGaAs heterostructure two dimensional electron systems. The effect of microwave (MW) radiation on electron temperature was studied by investigating the amplitude of the Shubnikov de Haas (SdH) oscillations in a regime where the cyclotron frequency o c and the MW angular frequency o satisfy 2o ≤ o c ≤ 3.5o. The results indicate negligible electron heating under modest MW photoexcitation, in agreement with theoretical predictions. Next, the effect of the polarization direction of the linearly polarized MWs on the MW induced magnetoresistance oscillation amplitude was investigated. The results demonstrate the first indications of polarization dependence of MW induced magnetoresistance oscillations. In the second part, experiments on the magnetotransport of three dimensional highly oriented pyrolytic graphite (HOPG) reveal a non-zero Berry phase for HOPG. Furthermore, a novel phase relation between oscillatory magneto- and Hall- resistances was discovered from the studies of the HOPG specimen. INDEX WORDS: Two dimensional electron systems, Magnetoresistance, Microwave induced magnetoresistance oscillations, Graphite, Quantum Hall effect, Hall effect, Resistivity rule, Shubnikov de Haas effect, Shubnikov de Haas oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.
X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less
NASA Technical Reports Server (NTRS)
Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John
1991-01-01
We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.
Method and apparatus for two-dimensional absolute optical encoding
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2004-01-01
This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.
Self-assembly of metal nanowires induced by alternating current electric fields
NASA Astrophysics Data System (ADS)
García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio
2015-01-01
We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.
NASA Astrophysics Data System (ADS)
Liu, L. Z.; Wu, X. L.; Li, T. H.; Xiong, S. J.; Chen, H. T.; Chu, Paul K.
2011-12-01
Nanoscale spherical, cubic, and cuboid SnO2 nanocrystals (NCs) are used to investigate morphology-dependent low-frequency Raman scattering. A double-peak structure in which the linewidths and energy separation between two subpeaks decrease with increasing sizes of cuboid NCs is observed and attributed to the surface acoustic phonon modes confined in three dimensional directions and determined by the surface/interface compositions. The decrease in energy separation is due to weaker coupling between the acoustic modes in different vibration directions. Our experimental and theoretical studies clearly disclose the morphology-dependent surface vibrational behavior in self-assembled NCs.
Two-dimensional electronic spectroscopy signatures of the glass transition
Lewis, K. L. .. M.; Myers, J. A.; Fuller, F.; ...
2010-01-01
Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longer waitingmore » times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less
The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.
Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George
2013-06-01
The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.
Modulation transfer function of a triangular pixel array detector.
Karimzadeh, Ayatollah
2014-07-01
The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.
Determination of the Potential Benefit of Time-Frequency Gain Manipulation
Anzalone, Michael C.; Calandruccio, Lauren; Doherty, Karen A.; Carney, Laurel H.
2008-01-01
Objective The purpose of this study was to determine the maximum benefit provided by a time-frequency gain-manipulation algorithm for noise-reduction (NR) based on an ideal detector of speech energy. The amount of detected energy necessary to show benefit using this type of NR algorithm was examined, as well as the necessary speed and frequency resolution of the gain manipulation. Design NR was performed using time-frequency gain manipulation, wherein the gains of individual frequency bands depended on the absence or presence of speech energy within each band. Three different experiments were performed: (1) NR using ideal detectors, (2) NR with nonideal detectors, and (3) NR with ideal detectors and different processing speeds and frequency resolutions. All experiments were performed using the Hearing-in-Noise test (HINT). A total of 6 listeners with normal hearing and 14 listeners with hearing loss were tested. Results HINT thresholds improved for all listeners with NR based on the ideal detectors used in Experiment I. The nonideal detectors of Experiment II required detection of at least 90% of the speech energy before an improvement was seen in HINT thresholds. The results of Experiment III demonstrated that relatively high temporal resolution (<100 msec) was required by the NR algorithm to improve HINT thresholds. Conclusions The results indicated that a single-microphone NR system based on time-frequency gain manipulation improved the HINT thresholds of listeners. However, to obtain benefit in speech intelligibility, the detectors used in such a strategy were required to detect an unrealistically high percentage of the speech energy and to perform the gain manipulations on a fast temporal basis. PMID:16957499
Morris, Michael D.; Treado, Patrick J.
1991-01-01
An imaging system for providing spectrographically resolved images. The system incorporates a one-dimensional spatial encoding mask which enables an image to be projected onto a two-dimensional image detector after spectral dispersion of the image. The dimension of the image which is lost due to spectral dispersion on the two-dimensional detector is recovered through employing a reverse transform based on presenting a multiplicity of different spatial encoding patterns to the image. The system is especially adapted for detecting Raman scattering of monochromatic light transmitted through or reflected from physical samples. Preferably, spatial encoding is achieved through the use of Hadamard mask which selectively transmits or blocks portions of the image from the sample being evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, K.; Pletschen, W.; Godejohann, B.
2015-11-28
Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation betweenmore » frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.« less
Small Scale Response and Modeling of Periodically Forced Turbulence
NASA Technical Reports Server (NTRS)
Bos, Wouter; Clark, Timothy T.; Rubinstein, Robert
2007-01-01
The response of the small scales of isotropic turbulence to periodic large scale forcing is studied using two-point closures. The frequency response of the turbulent kinetic energy and dissipation rate, and the phase shifts between production, energy and dissipation are determined as functions of Reynolds number. It is observed that the amplitude and phase of the dissipation exhibit nontrivial frequency and Reynolds number dependence that reveals a filtering effect of the energy cascade. Perturbation analysis is applied to understand this behavior which is shown to depend on distant interactions between widely separated scales of motion. Finally, the extent to which finite dimensional models (standard two-equation models and various generalizations) can reproduce the observed behavior is discussed.
NASA Astrophysics Data System (ADS)
Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.
2015-12-01
The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Marrewijk, N.; Mirzaei, B.; Hayton, D.
2015-10-07
In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the applicationmore » of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.« less
Doebeli, Michael; Ispolatov, Iaroslav
2010-04-23
The mechanisms for the origin and maintenance of biological diversity are not fully understood. It is known that frequency-dependent selection, generating advantages for rare types, can maintain genetic variation and lead to speciation, but in models with simple phenotypes (that is, low-dimensional phenotype spaces), frequency dependence needs to be strong to generate diversity. However, we show that if the ecological properties of an organism are determined by multiple traits with complex interactions, the conditions needed for frequency-dependent selection to generate diversity are relaxed to the point where they are easily satisfied in high-dimensional phenotype spaces. Mathematically, this phenomenon is reflected in properties of eigenvalues of quadratic forms. Because all living organisms have at least hundreds of phenotypes, this casts the potential importance of frequency dependence for the origin and maintenance of diversity in a new light.
Scaling ansatz for the ac magnetic response in two-dimensional spin ice
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi; Takatsu, Hiroshi; Goto, Kazuki; Kadowaki, Hiroaki
2014-10-01
A theory for frequency-dependent magnetic susceptibility χ (ω ) is developed for thermally activated magnetic monopoles in a two-dimensional (2D) spin ice. By modeling the system in the vicinity of the ground-state manifold as a 2D Coulomb gas with an entropic interaction, and then as a 2D sine-Gordon model, we have shown that the susceptibility has a scaling form χ (ω ) /χ (0 ) =F (ω /ω1) , where the characteristic frequency ω1 is related to a charge correlation length between diffusively moving monopoles, and to the principal-breather excitation. The dynamical scaling is universal and applicable not only for kagome ice, but also for superfluid and superconducting films and generic 2D ices possibly including the artificial spin ice.
Hart, Michael L.; Drakopoulos, Michael; Reinhard, Christina; Connolley, Thomas
2013-01-01
A complete calibration method to characterize a static planar two-dimensional detector for use in X-ray diffraction at an arbitrary wavelength is described. This method is based upon geometry describing the point of intersection between a cone’s axis and its elliptical conic section. This point of intersection is neither the ellipse centre nor one of the ellipse focal points, but some other point which lies in between. The presented solution is closed form, algebraic and non-iterative in its application, and gives values for the X-ray beam energy, the sample-to-detector distance, the location of the beam centre on the detector surface and the detector tilt relative to the incident beam. Previous techniques have tended to require prior knowledge of either the X-ray beam energy or the sample-to-detector distance, whilst other techniques have been iterative. The new calibration procedure is performed by collecting diffraction data, in the form of diffraction rings from a powder standard, at known displacements of the detector along the beam path. PMID:24068840
Photoinduced High-Frequency Charge Oscillations in Dimerized Systems
NASA Astrophysics Data System (ADS)
Yonemitsu, Kenji
2018-04-01
Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.
Three-dimensional cross point readout detector design for including depth information
NASA Astrophysics Data System (ADS)
Lee, Seung-Jae; Baek, Cheol-Ha
2018-04-01
We designed a depth-encoding positron emission tomography (PET) detector using a cross point readout method with wavelength-shifting (WLS) fibers. To evaluate the characteristics of the novel detector module and the PET system, we used the DETECT2000 to perform optical photon transport in the crystal array. The GATE was also used. The detector module is made up of four layers of scintillator arrays, the five layers of WLS fiber arrays, and two sensor arrays. The WLS fiber arrays in each layer cross each other to transport light to each sensor array. The two sensor arrays are coupled to the forward and left sides of the WLS fiber array, respectively. The identification of three-dimensional pixels was determined using a digital positioning algorithm. All pixels were well decoded, with the system resolution ranging from 2.11 mm to 2.29 mm at full width at half maximum (FWHM).
A frequency-based window width optimized two-dimensional S-Transform profilometry
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao
2017-11-01
A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.
Dey, B.; Ratcliff, B.; Va’vra, J.
2017-02-16
In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, B.; Ratcliff, B.; Va’vra, J.
In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less
Constraining neutron-star tidal Love numbers with gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanagan, Eanna E.; Hinderer, Tanja
Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star-neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter {lambda} of the star related to its tidal Love number, namely, the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structuremore » signal are less than 10%. For an inspiral of two nonspinning 1.4M{sub {center_dot}} neutron stars at a distance of 50 Megaparsecs, LIGO II detectors will be able to constrain {lambda} to {lambda}{<=}2.0x10{sup 37} g cm{sup 2} s{sup 2} with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4M{sub {center_dot}} neutron stars would be R{<=}13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope with equation of state p{proportional_to}{rho}{sup 1+1/n}.« less
Shioiri, Satoshi; Matsumiya, Kazumichi
2009-05-29
We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.
Directed search for continuous gravitational waves from the Galactic center
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-11-01
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
Zhang, Yuxuan; Yan, Han; Baghaei, Hossain; Wong, Wai-Hoi
2016-02-21
Conventionally, a dual-end depth-of-interaction (DOI) block detector readout requires two two-dimensional silicon photomultiplier (SiPM) arrays, one on top and one on the bottom, to define the XYZ positions. However, because both the top and bottom SiPM arrays are reading the same pixels, this creates information redundancy. We propose a dichotomous orthogonal symmetric (DOS) dual-end readout block detector design, which removes this redundancy by reducing the number of SiPMs and still achieves XY and DOI (Z) decoding for positron emission tomography (PET) block detector. Reflecting films are used within the block detector to channel photons going to the top of the block to go only in the X direction, and photons going to the bottom are channeled along the Y direction. Despite the unidirectional channeling on each end, the top readout provides both X and Y information using two one-dimensional SiPM arrays instead of a two-dimensional SiPM array; similarly, the bottom readout also provides both X and Y information with just two one-dimensional SiPM arrays. Thus, a total of four one-dimensional SiPM arrays (4 × N SiPMs) are used to decode the XYZ positions of the firing pixels instead of two two-dimensional SiPM arrays (2 × N × N SiPMs), reducing the number of SiPM arrays per block from 2N(2) to 4 N for PET/MR or PET/CT systems. Moreover, the SiPM arrays on one end can be replaced by two regular photomultiplier tubes (PMTs), so that a block needs only 2 N SiPMs + 2 half-PMTs; this hybrid-DOS DOI block detector can be used in PET/CT systems. Monte Carlo simulations were carried out to study the performance of our DOS DOI block detector design, including the XY-decoding quality, energy resolution, and DOI resolution. Both BGO and LSO scintillators were studied. We found that 4 mm pixels were well decoded for 5 × 5 BGO and 9 × 9 LSO arrays with 4 to 5 mm DOI resolution and 16-20% energy resolution. By adding light-channel decoding, we modified the DOS design to a high-resolution design, which resolved scintillator pixels smaller than the SiPM dimensions. Detector pixels of 2.4 mm were decoded for 8 × 8 BGO and 15 × 15 LSO arrays with 5 mm DOI resolution and 20-23% energy resolution. Time performance was also studied for the 8 × 8 BGO and 15 × 15 LSO HR-DOS arrays. The timing resolution for the corner and central crystals is 986 ± 122 ps and 1.89 ± 0.17 μs respectively with BGO, 137 ± 42 ps and 458 ± 67 ps respectively with LSO. Monte Carlo simulations with GATE/Geant4 demonstrated the feasibility of our DOS DOI block detector design. In conclusion, our novel design achieved good performance except the time performance while using fewer SiPMs and supporting electronic channels than the current non-DOI PET detectors. This novel design can significantly reduce the cost, heat, and readout complexity of DOI block detectors for PET/MR/CT systems that don't require the time-of-flight capability.
Performance parameters of a liquid filled ionization chamber array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppe, B.; Stelljes, T. S.; Looe, H. K.
2013-08-15
Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluatedmore » using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 ± 0.25) mm at 6 MV and (0.74 ± 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup −1}, respectively. For the inner 5 × 5 cm{sup 2} region and the outer 11 × 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup −1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.« less
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Xi; Liang, Liangbo; Huang, Shengxi
2015-05-08
As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both themore » crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.« less
Quadratic band touching points and flat bands in two-dimensional topological Floquet systems
NASA Astrophysics Data System (ADS)
Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.
2017-01-01
In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.
Time-dependent photon migration imaging
NASA Astrophysics Data System (ADS)
Sevick, Eva M.; Wang, NaiGuang; Chance, Britton
1992-02-01
Recently, the application of both time- and frequency-resolved fluorescence techniques for the determination of photon migration characteristics in strongly scattering media has been used to characterize the optical properties in strongly scattering media. Specifically, Chance and coworkers have utilized measurement of photon migration characteristics to determine tissue hemoglobin absorbance and ultimately oxygenation status in homogeneous tissues. In this study, we present simulation results and experimental measurements for both techniques to show the capacity of time-dependent photon migration characteristics to image optically obscure absorbers located in strongly scattering media. The applications of time-dependent photon imaging in the biomedical community include imaging of light absorbing hematomas, tumors, hypoxic tissue volumes, and other tissue abnormalities. Herein, we show that the time-resolved parameter of mean photon path length, , and the frequency- resolved parameter of phase-shift, (theta) , can be used similarly to obtain three dimensional information of absorber position from two-dimensional measurements. Finally, we show that unlike imaging techniques that monitor the intensity of light without regard to the migration characteristics, the resolution of time-dependent photon migration measurements is enhanced by tissue scattering, further potentiating their use for biomedical imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brill, J. W.; Shahi, Maryam; Yao, Y.
2015-12-21
We have used a photothermal technique, in which chopped light heats the front surface of a small (∼1 mm{sup 2}) sample and the chopping frequency dependence of thermal radiation from the back surface is measured with a liquid-nitrogen-cooled infrared detector. In our system, the sample is placed directly in front of the detector within its dewar. Because the detector is also sensitive to some of the incident light, which leaks around or through the sample, measurements are made for the detector signal that is in quadrature with the chopped light. Results are presented for layered crystals of semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pn)more » and for papers of cellulose nanofibrils coated with semiconducting poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (NFC-PEDOT). For NFC-PEDOT, we have found that the transverse diffusivity, smaller than the in-plane value, varies inversely with thickness, suggesting that texturing of the papers varies with thickness. For TIPS-pn, we have found that the interlayer diffusivity is an order of magnitude larger than the in-plane value, consistent with previous estimates, suggesting that low-frequency optical phonons, presumably associated with librations in the TIPS side groups, carry most of the heat.« less
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki
2011-06-01
Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. Copyright © 2010 Elsevier B.V. All rights reserved.
Wang, Lei; Zhai, Shen-Qiang; Wang, Feng-Jiao; Liu, Jun-Qi; Liu, Shu-Man; Zhuo, Ning; Zhang, Chuan-Jin; Wang, Li-Jun; Liu, Feng-Qi; Wang, Zhan-Guo
2016-12-01
The design, fabrication, and characterization of a polarization-dependent normal incident quantum cascade detector coupled via complementary split-ring metamaterial resonators in the infrared regime are presented. The metamaterial structure is designed through three-dimensional finite-difference time-domain method and fabricated on the top metal contact, which forms a double-metal waveguide together with the metallic ground plane. With normal incidence, significant enhancements of photocurrent response are obtained at the metamaterial resonances compared with the 45° polished edge coupling device. The photocurrent response enhancements exhibit clearly polarization dependence, and the largest response enhancement factor of 165% is gained for the incident light polarized parallel to the split-ring gap.
Photoacoustic diagnosis of burns in rats: two-dimensional photo-acoustic imaging of burned tissue
NASA Astrophysics Data System (ADS)
Yamazaki, Mutsuo; Sato, Shunichi; Saito, Daizo; Okada, Yoshiaki; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru
2003-06-01
We previously reported that for rat burn models, deep dermal burns and deep burns can be well differentiated by measuring the propagation time of the photoacoustic signals originated from the blood in the healthy skin tissue under the damaged tissue layer. However, the diagnosis was based on point measurement in the wound, and therefore site-dependent information on the injuries was not obtained; such information is very important for diagnosis of extended burns. In the present study, we scanned a photoacoustic detector on the wound and constructed two-dimensional (2-D) images of the blood-originated photoacoustic signals for superficial dermal burns (SDB), deep dermal burns (DDB), deep burns (DB), and healthy skins (control) in rats. For each burn model, site-dependent variation of the signal was observed; the variation probably reflects the distribution of blood vessels in the skin tissue. In spite of the variation, clear differentiation was obtained between SDB, DDB, and DB from the 2D images. The images were constructed as a function of post burn time. Temporal signal variation will be also presented.
Schulze, H Georg; Turner, Robin F B
2014-01-01
Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.
Detecting vanishing dimensions via primordial gravitational wave astronomy.
Mureika, Jonas; Stojkovic, Dejan
2011-03-11
Lower dimensionality at higher energies has manifold theoretical advantages as recently pointed out by Anchordoqui et al. [arXiv:1003.5914]. Moreover, it appears that experimental evidence may already exist for it: A statistically significant planar alignment of events with energies higher than TeV has been observed in some earlier cosmic ray experiments. We propose a robust and independent test for this new paradigm. Since (2+1)-dimensional spacetimes have no gravitational degrees of freedom, gravity waves cannot be produced in that epoch. This places a universal maximum frequency at which primordial waves can propagate, marked by the transition between dimensions. We show that this cutoff frequency may be accessible to future gravitational wave detectors such as the Laser Interferometer Space Antenna.
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1988-01-01
Results of transient eddy current calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species
Titze, Ingo; Riede, Tobias; Mau, Ted
2016-01-01
Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations. PMID:27309543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Nasim; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir; Mirzaie, Reza
2015-11-15
The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.
Detector power linearity requirements and verification techniques for TMI direct detection receivers
NASA Technical Reports Server (NTRS)
Reinhardt, Victor S. (Inventor); Shih, Yi-Chi (Inventor); Toth, Paul A. (Inventor); Reynolds, Samuel C. (Inventor)
1997-01-01
A system (36, 98) for determining the linearity of an RF detector (46, 106). A first technique involves combining two RF signals from two stable local oscillators (38, 40) to form a modulated RF signal having a beat frequency, and applying the modulated RF signal to a detector (46) being tested. The output of the detector (46) is applied to a low frequency spectrum analyzer (48) such that a relationship between the power levels of the first and second harmonics generated by the detector (46) of the beat frequency of the modulated RF signal are measured by the spectrum analyzer (48) to determine the linearity of the detector (46). In a second technique, an RF signal from a local oscillator (100) is applied to a detector (106) being tested through a first attenuator (102) and a second attenuator (104). The output voltage of the detector (106) is measured when the first attenuator (102) is set to a particular attenuation value and the second attenuator (104) is switched between first and second attenuation values. Further, the output voltage of the detector (106) is measured when the first attenuator (102) is set to another attenuation value, and the second attenuator (104) is again switched between the first and second attenuation values. A relationship between the voltage outputs determines the linearity of the detector (106).
High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.
1993-01-01
Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.
Two-dimensional radiative transfer. I - Planar geometry. [in stellar atmospheres
NASA Technical Reports Server (NTRS)
Mihalas, D.; Auer, L. H.; Mihalas, B. R.
1978-01-01
Differential-equation methods for solving the transfer equation in two-dimensional planar geometries are developed. One method, which uses a Hermitian integration formula on ray segments through grid points, proves to be extremely well suited to velocity-dependent problems. An efficient elimination scheme is developed for which the computing time scales linearly with the number of angles and frequencies; problems with large velocity amplitudes can thus be treated accurately. A very accurate and efficient method for performing a formal solution is also presented. A discussion is given of several examples of periodic media and free-standing slabs, both in static cases and with velocity fields. For the free-standing slabs, two-dimensional transport effects are significant near boundaries, but no important effects were found in any of the periodic cases studied.
A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data.
Song, Hongchao; Jiang, Zhuqing; Men, Aidong; Yang, Bo
2017-01-01
Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k -nearest neighbor graphs- ( K -NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.
A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data
Jiang, Zhuqing; Men, Aidong; Yang, Bo
2017-01-01
Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k-nearest neighbor graphs- (K-NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity. PMID:29270197
Optical sample-position sensing for electrostatic levitation
NASA Technical Reports Server (NTRS)
Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.
1989-01-01
A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Z.; Lawson, B.; Asaba, T.
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Bulk Rotational Symmetry Breaking in Kondo Insulator SmB 6
Xiang, Z.; Lawson, B.; Asaba, T.; ...
2017-09-25
The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less
Song, Hajun; Hwang, Sejin; An, Hongsung; Song, Ho-Jin; Song, Jong-In
2017-08-21
We propose and demonstrate a continuous-wave vector THz imaging system utilizing a photonic generation of two-tone THz signals and self-mixing detection. The proposed system measures amplitude and phase information simultaneously without the local oscillator reference or phase rotation scheme that is required for heterodyne or homodyne detection. In addition, 2π phase ambiguity that occurs when the sample is thicker than the wavelength of THz radiation can be avoided. In this work, THz signal having two frequency components was generated with a uni-traveling-carrier photodiode and electro-optic modulator on the emitter side and detected with a Schottky barrier diode detector used as a self-mixer on the receiver side. The proposed THz vector imaging system exhibited a 50-dB signal to noise ratio and 0.012-rad phase fluctuation with 100-μs integration time at 325-GHz. With the system, we demonstrate two-dimensional THz phase contrast imaging. Considering the recent use of two-dimensional arrays of Schottky barrier diodes as a THz image sensor, the proposed system is greatly advantageous for realizing a real-time THz vector imaging system due to its simple receiver configuration.
Tunable quantum well infrared detector
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.
Stressed detector arrays for airborne astronomy
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.
1989-01-01
The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.
Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures
NASA Astrophysics Data System (ADS)
Luo, Benbiao; Gao, Sha; Liu, Jiehui; Mao, Yiwei; Li, Yifeng; Liu, Xiaozhou
2018-01-01
We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass), including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD) without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.
Three-dimensional magnetic cloak working from d.c. to 250 kHz
Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui
2015-01-01
Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways. PMID:26596641
Three-dimensional magnetic cloak working from d.c. to 250 kHz
NASA Astrophysics Data System (ADS)
Zhu, Jianfei; Jiang, Wei; Liu, Yichao; Yin, Ge; Yuan, Jun; He, Sailing; Ma, Yungui
2015-11-01
Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low frequencies where electromagnetic components are favourably uncoupled. In this work, we vastly develop the bilayer approach to create a three-dimensional magnetic cloak able to work in both static and dynamic fields. Under the quasi-static approximation, we demonstrate a perfect magnetic cloaking device with a large frequency band from 0 to 250 kHz. The practical potential of our device is experimentally verified by using a commercial metal detector, which may lead us to having a real cloaking application where the dynamic magnetic field can be manipulated in desired ways.
Xiong, Lian; Bai, Wenyu; Chen, Feifei; Zhao, Xian; Yu, Fapeng; Diebold, Gerald J
2017-07-11
The amplitude of the photoacoustic effect for an optical source moving at the sound speed in a one-dimensional geometry increases linearly in time without bound in the linear acoustic regime. Here, use of this principle is described for trace detection of gases, using two frequency-shifted beams from a CO 2 laser directed at an angle to each other to give optical fringes that move at the sound speed in a cavity with a longitudinal resonance. The photoacoustic signal is detected with a high-[Formula: see text], piezoelectric crystal with a resonance on the order of [Formula: see text] kHz. The photoacoustic cell has a design analogous to a hemispherical laser resonator and can be adjusted to have a longitudinal resonance to match that of the detector crystal. The grating frequency, the length of the resonator, and the crystal must all have matched frequencies; thus, three resonances are used to advantage to produce sensitivity that extends to the parts-per-quadrillion level.
NASA Astrophysics Data System (ADS)
Gulin, O. E.; Yaroshchuk, I. O.
2017-03-01
The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.
Nonlocal electrodynamics in Weyl semimetals
NASA Astrophysics Data System (ADS)
Rosenstein, B.; Kao, H. C.; Lewkowicz, M.
2017-02-01
Recently synthesized three-dimensional materials with Dirac spectrum exhibit peculiar electric transport qualitatively different from its two-dimensional analog, graphene. By neglecting impurity scattering, the real part of the conductivity is strongly frequency dependent, while the imaginary part is nonzero unlike in undoped, clean graphene. The Coulomb interaction between electrons is unscreened as in a dielectric and hence is long range. We demonstrate that the interaction correction renders the electrodynamics nonlocal on a mesoscopic scale. The longitudinal conductivity σL and the transverse conductivity σT are different in the long-wavelength limit and consequently the standard local Ohm's law description does not apply. This leads to several remarkable effects in optical response. The p -polarized light generates in these materials bulk plasmons as well as the transversal waves. At a specific frequency the two modes coincide, a phenomenon impossible in a local medium. For any frequency there is a Brewster angle where total absorption occurs, turning the Weyl semimetals opaque. The effect of the surface, including the Fermi arcs, is discussed.
Coherence and frequency spectrum of a Nd:YAG laser: generation and observation devices
NASA Astrophysics Data System (ADS)
Fernández-Guasti, M.; Palafox, H.; Roychoudhuri, C.
2011-09-01
The coherence of a Nd:YAG CW laser is analyzed using a Michelson interferometer. Fringe contrast is measured as the path difference is varied by changing the length of one arm. The fringe contrast, as expected, is maximum when there is no path difference between arms. However, the fringe contrast does not decrease monotonically. It decreases and then increases several times before fading away. This behaviour is reminiscent of the fringe contrast depending on aperture and the uncovering of the Fresnel zones. In order to evaluate the mode structure it is necessary to consider the geometric parameters and Q factor of the cavity, the medium gain curve and the type of broadening. The non interference of waves principle requires that two (or more) modes competition or their interference can only take place though matter non linear interaction. Therefore, and in addition, it is important to consider the setup and type of detectors employed to monitor the frequency and/or time dependence. In as much as speckle is recognized as an interference phenomenon taking place at the detector plane, say the retina, the role of the sensing element in the detection of mode beats should also be decisive.
Outdoor Education Support System with Location Awareness Using RFID and Symbology Tags
ERIC Educational Resources Information Center
Osawa, Noritaka; Noda, Katsuji; Tsukagoshi, Satoru; Noma, Yutaka; Ando, Akikazu; Shibuya, Tomoharu; Kondo, Kimio
2007-01-01
A support system for outdoor learning using exploratory observation was developed. The system uses radio frequency identification (RFID) tags and two-dimensional (2D) symbology tags to locate positions on a horticultural farm and its surrounding forests. Students were able to get a location-dependent description and an educational hint for…
Investigation of the quantum efficiency of optical heterodyne detectors
NASA Technical Reports Server (NTRS)
Batchman, T. E.
1984-01-01
The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.
Finite state modeling of aeroelastic systems
NASA Technical Reports Server (NTRS)
Vepa, R.
1977-01-01
A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.
Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
Santa Maria, Odilyn L.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-02-19
ReS 2 , a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS 2 for the first time. Few-layer ReS 2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement
NASA Astrophysics Data System (ADS)
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-04-01
ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G.; Johnson, B. R.; Abitbol, M. H.
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less
Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...
2017-05-29
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less
Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock
NASA Astrophysics Data System (ADS)
Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie
2013-09-01
Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.
Fundamentals of image acquisition and processing in the digital era.
Farman, A G
2003-01-01
To review the historic context for digital imaging in dentistry and to outline the fundamental issues related to digital imaging modalities. Digital dental X-ray images can be achieved by scanning analog film radiographs (secondary capture), with photostimulable phosphors, or using solid-state detectors (e.g. charge-coupled device and complementary metal oxide semiconductor). There are four characteristics that are basic to all digital image detectors; namely, size of active area, signal-to-noise ratio, contrast resolution and the spatial resolution. To perceive structure in a radiographic image, there needs to be sufficient difference between contrasting densities. This primarily depends on the differences in the attenuation of the X-ray beam by adjacent tissues. It is also depends on the signal received; therefore, contrast tends to increase with increased exposure. Given adequate signal and sufficient differences in radiodensity, contrast will be sufficient to differentiate between adjacent structures, irrespective of the recording modality and processing used. Where contrast is not sufficient, digital images can sometimes be post-processed to disclose details that would otherwise go undetected. For example, cephalogram isodensity mapping can improve soft tissue detail. It is concluded that it could be a further decade or two before three-dimensional digital imaging systems entirely replace two-dimensional analog films. Such systems need not only to produce prettier images, but also to provide a demonstrable evidence-based higher standard of care at a cost that is not economically prohibitive for the practitioner or society, and which allows efficient and effective workflow within the business of dental practice.
Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A
2016-05-07
Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.
Decoherence and Determinism in a One-Dimensional Cloud-Chamber Model
NASA Astrophysics Data System (ADS)
Sparenberg, Jean-Marc; Gaspard, David
2018-03-01
The hypothesis (Sparenberg et al. in EPJ Web Conf 58:01016, [1]. https://doi.org/10.1051/epjconf/20135801016) that the particular linear tracks appearing in the measurement of a spherically-emitting radioactive source in a cloud chamber are determined by the (random) positions of atoms or molecules inside the chamber is further explored in the framework of a recently established one-dimensional model (Carlone et al. Comm Comput Phys 18:247, [2]. https://doi.org/10.4208/cicp.270814.311214a). In this model, meshes of localized spins 1/2 play the role of the cloud-chamber atoms and the spherical wave is replaced by a linear superposition of two wave packets moving from the origin to the left and to the right, evolving deterministically according to the Schrödinger equation. We first revisit these results using a time-dependent approach, where the wave packets impinge on a symmetric two-sided detector. We discuss the evolution of the wave function in the configuration space and stress the interest of a non-symmetric detector in a quantum-measurement perspective. Next we use a time-independent approach to study the scattering of a plane wave on a single-sided detector. Preliminary results are obtained, analytically for the single-spin case and numerically for up to 8 spins. They show that the spin-excitation probabilities are sometimes very sensitive to the parameters of the model, which corroborates the idea that the measurement result could be determined by the atom positions. The possible origin of decoherence and entropy increase in future models is finally discussed.
A three-dimensional study of 30- to 300-MeV atmospheric gamma rays
NASA Technical Reports Server (NTRS)
Thompson, D. J.
1974-01-01
A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. A knowledge of these atmospheric secondaries has significant applications to the study of cosmic gamma rays. For detectors carried on balloons, atmospherically produced gamma rays are the major source of background. For satellite detectors, atmospheric secondaries provide a calibration source. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. A new model of atmospheric secondary production has calculated the depth, the energy, and the zenith angle dependence of gamma rays above 30 MeV, using a comprehensive three-dimensional Monte Carlo model of the nucleon-meson-electromagnetic cascade.
Laser fabrication of perfect absorbers
NASA Astrophysics Data System (ADS)
Mizeikis, V.; Faniayeu, I.
2018-01-01
We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.
Measuring earthquakes from optical satellite images.
Van Puymbroeck, N; Michel, R; Binet, R; Avouac, J P; Taboury, J
2000-07-10
Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations (offsets) induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides two-dimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise (0.125 m(-1)) is approximately 0.01 pixels. Low-frequency noise (lower than 0.001 m(-1)) exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.
Fabrication of Pop-up Detector Arrays on Si Wafers
NASA Technical Reports Server (NTRS)
Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.
1999-01-01
High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.
Diagnostic-management system and test pulse acquisition for WEST plasma measurement system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Juszczyk, B.; Zabolotny, W.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.; Mazon, D.; Malard, P.
2014-11-01
This paper describes current status of electronics, firmware and software development for new plasma measurement system for use in WEST facility. The system allows to perform two dimensional plasma visualization (in time) with spectrum measurement. The analog front-end is connected to Gas Electron Multiplier detector (GEM detector). The system architecture have high data throughput due to use of PCI-Express interface, Gigabit Transceivers and sampling frequency of ADC integrated circuits. The hardware is based on several years of experience in building X-ray spectrometer system for Joint European Torus (JET) facility. Data streaming is done using Artix7 FPGA devices. The system in basic configuration can work with up to 256 channels, while the maximum number of measurement channels is 2048. Advanced firmware for the FPGA is required in order to perform high speed data streaming and analog signal sampling. Diagnostic system management has been developed in order to configure measurement system, perform necessary calibration and prepare hardware for data acquisition.
NASA Astrophysics Data System (ADS)
Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.
2016-05-01
We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.
A superconducting nanowire can be modeled by using SPICE
NASA Astrophysics Data System (ADS)
Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.
2018-05-01
Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.
NASA Technical Reports Server (NTRS)
Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.
Surface-Micromachined Planar Arrays of Thermopiles
NASA Technical Reports Server (NTRS)
Foote, Marc C.
2003-01-01
Planar two-dimensional arrays of thermopiles intended for use as thermal-imaging detectors are to be fabricated by a process that includes surface micromachining. These thermopile arrays are designed to perform better than do prior two-dimensional thermopile arrays. The lower performance of prior two-dimensional thermopile arrays is attributed to the following causes: The thermopiles are made from low-performance thermoelectric materials. The devices contain dielectric supporting structures, the thermal conductances of which give rise to parasitic losses of heat from detectors to substrates. The bulk-micromachining processes sometimes used to remove substrate material under the pixels, making it difficult to incorporate low-noise readout electronic circuitry. The thermoelectric lines are on the same level as the infrared absorbers, thereby reducing fill factor. The improved pixel design of a thermopile array of the type under development is expected to afford enhanced performance by virtue of the following combination of features: Surface-micromachined detectors are thermally isolated through suspension above readout circuitry. The thermopiles are made of such high-performance thermoelectric materials as Bi-Te and Bi-Sb-Te alloys. Pixel structures are supported only by the thermoelectric materials: there are no supporting dielectric structures that could leak heat by conduction to the substrate.
Engel, Erwan; Ratel, Jérémy; Blinet, Patrick; Chin, Sung-Tong; Rose, Gavin; Marriott, Philip J
2013-10-11
The present study discusses the relevance, performance and complementarities of flame photometric detector in phosphorus (FPD/P) and sulfur (FPD/S) modes, micro electron capture detector (μECD), nitrogen phosphorus detector (NPD), flame ionization detector (FID) and time-of-flight mass spectrometer (TOF/MS) for the comprehensive two-dimensional gas chromatography (GC×GC) analysis of pesticides. A mix of 41 pesticides including organophosphorus pesticides, synthetic pyrethroids and fungicides was investigated in order to benchmark GC×GC systems in terms of linearity (R(2)), limits of detection (LOD), and peak shape measures (widths and asymmetries). A mixture of pesticides which contained the heteroatoms phosphorus, sulfur, nitrogen and one or several halogens, was used to acquire a comparative data set to monitor relative detector performances. GC×GC datasets were systematically compared to their GC counterpart acquired with an optimized one-dimensional GC configuration. Compared with FID, considered the most appropriate detector in terms of suitability for GC×GC, the element-selective detector FPD/P and μECD best met the peak widths (0.13-0.27s for FPD/P; 0.22-0.26s for μECD) and tailing factors (0.99-1.66 for FPD/P; 1.32-1.52 for μECD); NPD exhibited similar peak widths (0.23-0.30s), but exceeded those of the above detectors for tailing factors (1.97-2.13). These three detectors had improved detection limits of 3-7 times and 4-20 times lower LODs in GC×GC mode compared with FID and TOF-MS, respectively. In contrast FPD/S had poor peak shape (tailing factor 3.36-5.12) and much lower sensitivity (10-20 fold lower compared to FPD/P). In general, element-selective detectors with favorable detection metrics can be considered viable alternatives for pesticide determination using GC×GC in complex matrices. The controversial issue of sensitivity enhancement in GC×GC was considered for optimized GC and GC×GC operation. For all detectors, we found no significant LOD enhancement in GC×GC. Copyright © 2013 Elsevier B.V. All rights reserved.
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
Visualization of nuclear particle trajectories in nuclear oil-well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, C.R.; Chiaramonte, J.M.
Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less
Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.
Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua
2010-01-01
A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.
Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector
Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua
2010-01-01
A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
SCAPS, a two-dimensional ion detector for mass spectrometer
NASA Astrophysics Data System (ADS)
Yurimoto, Hisayoshi
2014-05-01
Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40, 82-85. [2] Takayanagi et al. (1999) Proc. 1999 IEEE workshop on Charge-Coupled Devices and Advanced Image Sensors, 159-162. [3] Kunihiro et al. (2001) Nucl. Instrum. Methods Phys. Res. Sec. A 470, 512-519. [4] Nagashima et al. (2001) Surface Interface Anal. 31, 131-137. [5] Takayanagi et al. (2003) IEEE Trans. Electron Dev. 50, 70- 76. [6] Sakamoto and Yurimoto (2006) Surface Interface Anal. 38, 1760-1762. [7] Yamamoto et al. (2010) Surface Interface Anal. 42, 1603-1605. [8] Sakamoto et al. (2012) Jpn. J. Appl. Phys. 51, 076701. [9] Yurimoto et al. (2003) Appl. Surf. Sci. 203-204, 793-797. [10] Nagashima et al. (2004) Nature 428, 921-924. [11] Kunihiro et al. (2005) Geochim. Cosmochim. Acta 69, 763-773. [12] Nakamura et al. (2005) Geology 33, 829-832. [13] Sakamoto et al. (2007) Science 317, 231-233. [14] Greenwood et al. (2008) Geophys. Res. Lett., 35, L05203. [15] Greenwood et al. (2011) Nature Geoscience 4, 79-82. [16] Park et al. (2012) Meteorit. Planet. Sci. 47, 2070-2083. [17] Hashiguchi et al. (2013) Geochim. Cosmochim. Acta. 122, 306-323.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russ, M; Nagesh, S Setlur; Ionita, C
2015-06-15
Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken ofmore » the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors
NASA Technical Reports Server (NTRS)
Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.
1981-01-01
The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.
One dimensional wavefront distortion sensor comprising a lens array system
Neal, Daniel R.; Michie, Robert B.
1996-01-01
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.
One dimensional wavefront distortion sensor comprising a lens array system
Neal, D.R.; Michie, R.B.
1996-02-20
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.
Time and Frequency Dependent Behavior of a Two Dimensional Electron Gas at Long Wavelengths.
1985-11-05
lated by techniques which are basically similar to those employed 5-10 T y c e sfor the three dimensional case. The dynamic properties have also received...2m, Vk 2re 2/k, where m and e are, respectively, the electron mass and charge, 1 = . Our system is imposed under an external perturbing potential of...the following form: H = 3’ Pk(t) Pk e i’t (2) where -. is the Fourier comp6nent of the external electric field sufficiently small as to permit the use
A diamond detector in the dosimetry of high-energy electron and photon beams.
Laub, W U; Kaulich, T W; Nüsslin, F
1999-09-01
A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.
Review of GaN-based devices for terahertz operation
NASA Astrophysics Data System (ADS)
Ahi, Kiarash
2017-09-01
GaN provides the highest electron saturation velocity, breakdown voltage, operation temperature, and thus the highest combined frequency-power performance among commonly used semiconductors. The industrial need for compact, economical, high-resolution, and high-power terahertz (THz) imaging and spectroscopy systems are promoting the utilization of GaN for implementing the next generation of THz systems. As it is reviewed, the mentioned characteristics of GaN together with its capabilities of providing high two-dimensional election densities and large longitudinal optical phonon of ˜90 meV make it one of the most promising semiconductor materials for the future of the THz emitters, detectors, mixers, and frequency multiplicators. GaN-based devices have shown capabilities of operation in the upper THz frequency band of 5 to 12 THz with relatively high photon densities in room temperature. As a result, THz imaging and spectroscopy systems with high resolution and deep depth of penetration can be realized through utilizing GaN-based devices. A comprehensive review of the history and the state of the art of GaN-based electronic devices, including plasma heterostructure field-effect transistors, negative differential resistances, hetero-dimensional Schottky diodes, impact avalanche transit times, quantum-cascade lasers, high electron mobility transistors, Gunn diodes, and tera field-effect transistors together with their impact on the future of THz imaging and spectroscopy systems is provided.
NASA Astrophysics Data System (ADS)
Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong
2015-10-01
This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.
A multislice gradient echo pulse sequence for CEST imaging.
Dixon, W Thomas; Hancu, Ileana; Ratnakar, S James; Sherry, A Dean; Lenkinski, Robert E; Alsop, David C
2010-01-01
Chemical exchange-dependent saturation transfer and paramagnetic chemical exchange-dependent saturation transfer are agent-mediated contrast mechanisms that depend on saturating spins at the resonant frequency of the exchangeable protons on the agent, thereby indirectly saturating the bulk water. In general, longer saturating pulses produce stronger chemical and paramagnetic exchange-dependent saturation transfer effects, with returns diminishing for pulses longer than T1. This could make imaging slow, so one approach to chemical exchange-dependent saturation transfer imaging has been to follow a long, frequency-selective saturation period by a fast imaging method. A new approach is to insert a short frequency-selective saturation pulse before each spatially selective observation pulse in a standard, two-dimensional, gradient-echo pulse sequence. Being much less than T1 apart, the saturation pulses have a cumulative effect. Interleaved, multislice imaging is straightforward. Observation pulses directed at one slice did not produce observable, unintended chemical exchange-dependent saturation transfer effects in another slice. Pulse repetition time and signal-to noise ratio increase in the normal way as more slices are imaged simultaneously. Copyright (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji
2004-06-01
Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.
Design and implementation of a low-cost multiple-range digital phase detector
NASA Astrophysics Data System (ADS)
Omran, Hesham; Albasha, Lutfi; Al-Ali, A. R.
2012-06-01
This article describes the design, simulation, implementation and testing of a novel low-cost multiple-range programmable digital phase detector. The detector receives two periodic signals and calculates the ratio of the time difference to the time period to measure and display the phase difference. The resulting output values are in integer form ranging from -180° to 180°. Users can select the detector pre-set operation frequency ranges using a three-bit pre-scalar. This enables to use the detector for various applications. The proposed detector can be programmed over a frequency range of 10 Hz to 25 kHz by configuring its clock divider circuit. Detector simulations were conducted and verified using ModelSim and the design was implemented and tested using an Altera Cyclone II field-programmable gate array board. Both the simulation and actual circuit testing results showed that the phase detector has a magnitude of error of only 1°. The detector is ideal for applications such as power factor measurement and correction, self-tuning resonant circuits and in metal detection systems. Unlike other stand-alone phase detection systems, the reported system has the ability to be programmed to several frequency ranges, hence expanding its bandwidth.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.
1998-01-01
The three-dimensional (3-D) properties of the translational vestibulo-ocular reflexes (translational VORs) during lateral and fore-aft oscillations in complete darkness were studied in rhesus monkeys at frequencies between 0.16 and 25 Hz. In addition, constant velocity off-vertical axis rotations extended the frequency range to 0.02 Hz. During lateral motion, horizontal responses were in phase with linear velocity in the frequency range of 2-10 Hz. At both lower and higher frequencies, phase lags were introduced. Torsional response phase changed more than 180 degrees in the tested frequency range such that torsional eye movements, which could be regarded as compensatory to "an apparent roll tilt" at the lowest frequencies, became anticompensatory at all frequencies above approximately 1 Hz. These results suggest two functionally different frequency bandwidths for the translational VORs. In the low-frequency spectrum (<<0.5 Hz), horizontal responses compensatory to translation are small and high-pass-filtered whereas torsional response sensitivity is relatively frequency independent. At higher frequencies however, both horizontal and torsional response sensitivity and phase exhibit a similar frequency dependence, suggesting a common role during head translation. During up-down motion, vertical responses were in phase with translational velocity at 3-5 Hz but phase leads progressively increased for lower frequencies (>90 degrees at frequencies <0.2 Hz). No consistent dependence on static head orientation was observed for the vertical response components during up-down motion and the horizontal and torsional response components during lateral translation. The frequency response characteristics of the translational VORs were fitted by "periphery/brain stem" functions that related the linear acceleration input, transduced by primary otolith afferents, to the velocity signals providing the input to the velocity-to-position neural integrator and the oculomotor plant. The lowest-order, best-fit periphery/brain stem model that approximated the frequency dependence of the data consisted of a second order transfer function with two alternating poles (at 0.4 and 7.2 Hz) and zeros (at 0.035 and 3.4 Hz). In addition to clearly differentiator dynamics at low frequencies (less than approximately 0.5 Hz), there was no frequency bandwidth where the periphery/brain stem function could be approximated by an integrator, as previously suggested. In this scheme, the oculomotor plant dynamics are assumed to perform the necessary high-frequency integration as required by the reflex. The detailed frequency dependence of the data could only be precisely described by higher order functions with nonminimum phase characteristics that preclude simple filtering of afferent inputs and might be suggestive of distributed spatiotemporal processing of otolith signals in the translational VORs.
Data analysis of the COMPTEL instrument on the NASA gamma ray observatory
NASA Technical Reports Server (NTRS)
Diehl, R.; Bennett, K.; Collmar, W.; Connors, A.; Denherder, J. W.; Hermsen, W.; Lichti, G. G.; Lockwood, J. A.; Macri, J.; Mcconnell, M.
1992-01-01
The Compton imaging telescope (COMPTEL) on the Gamma Ray Observatory (GRO) is a wide field of view instrument. The coincidence measurement technique in two scintillation detector layers requires specific analysis methods. Straightforward event projection into the sky is impossible. Therefore, detector events are analyzed in a multi-dimensional dataspace using a gamma ray sky hypothesis convolved with the point spread function of the instrument in this dataspace. Background suppression and analysis techniques have important implications on the gamma ray source results for this background limited telescope. The COMPTEL collaboration applies a software system of analysis utilities, organized around a database management system. The use of this system for the assistance of guest investigators at the various collaboration sites and external sites is foreseen and allows different detail levels of cooperation with the COMPTEL institutes, dependent on the type of data to be studied.
A computer controlled television detector for light, X-rays and particles
NASA Technical Reports Server (NTRS)
Kalata, K.
1981-01-01
A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.
An automated two-dimensional optical force clamp for single molecule studies.
Lang, Matthew J; Asbury, Charles L; Shaevitz, Joshua W; Block, Steven M
2002-01-01
We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads. PMID:12080136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot
2014-03-31
We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
CCD sensors in synchrotron X-ray detectors
NASA Astrophysics Data System (ADS)
Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.
1988-04-01
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.
De Angelis, C; Onori, S; Pacilio, M; Cirrone, G A P; Cuttone, G; Raffaele, L; Bucciolini, M; Mazzocchi, S
2002-02-01
The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.
EGRAM- ECHELLE SPECTROGRAPH DESIGN AID
NASA Technical Reports Server (NTRS)
Dantzler, A. A.
1994-01-01
EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.
Tane, Shinya; Ohno, Yoshiharu; Hokka, Daisuke; Ogawa, Hiroyuki; Tauchi, Shunsuke; Nishio, Wataru; Yoshimura, Masahiro; Okita, Yutaka; Maniwa, Yoshimasa
2013-12-01
The purpose of this study was to compare the efficacy of 320-detector row computed tomography (CT) with that of 64-detector row CT for three-dimensional assessment of pulmonary vasculature of candidates for pulmonary segmentectomy. We included 32 patients who underwent both 320- and 64-detector CT before pulmonary segmentectomy, which was performed by cutting the pulmonary artery and bronchi of the affected segment followed by dissection of the intersegmental plane along the intersegmental vein. Before the operation, three-dimensional pulmonary vasculature images were obtained for each patient, and the arteries and intersegmental veins of the affected segments were identified. Two thoracic surgeons independently assessed the vessels with visual scoring systems, and kappa analysis was used to determine interobserver agreement. The Wilcoxon signed-rank test was used to compare the visual scores for the assessment of the visualization capabilities of the two methods. In addition, the final determination of pulmonary vasculature at a given site was made by consensus from thoracic surgeons during operation, and receiver operating characteristic analysis was performed to compare their efficacy of pulmonary vasculature assessment. Sensitivity, specificity and accuracy of either method were also compared by means of McNemar's test. Of the 32 cases, there were no operative complications, but 1 patient died of postoperative idiopathic interstitial pneumonia. Visualization scores for the pulmonary vessels were significantly higher for 320- than those for 64-detector CT (P < 0.0001 for the affected arteries and P < 0.0001 for the intersegmental veins). As for pulmonary vasculature assessment, the areas under the curve showed no statistically significant differences in between the two methods, while the specificity and accuracy of intersegemental vein assessment were significantly better for 320- than those for 64-detector row CT (P < 0.05). Interobserver agreement for the assessment yielded by either method was almost perfect for all cases. Three hundred and twenty-detector row CT is more useful than conventional 64-detector row CT for preoperative three-dimensional assessment of pulmonary vasculature, especially when we identify the intersegmental veins, in candidates for pulmonary segmentectomy.
Large-format high resolution microchannel plate detectors for ultraviolet astronomy
NASA Technical Reports Server (NTRS)
Martin, Christopher
1995-01-01
This report includes work on two types of two-dimensional position-sensitive detectors that were developed in this lab under this award. We worked to develop and optimize the wire-wound helical delay line detector (HDL) in the first and second years. Some early work on the HDL is contained in a paper included as Appendix A. In the second and third years we developed the concept for, then successfully designed and tested, both a lab prototype, and a flight prototype of the first, crossed delay line detector based on two orthogonal serpentine delay lines (SDL). Some of the work on the SDL is contained in a paper included as Appendix B. Appendix C contains copies of the invention report and record.
A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.
Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
NASA Astrophysics Data System (ADS)
Manurkar, Paritosh
Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.
Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Xu, Guowang; De Vos, Paul; Sandra, Pat
2010-06-25
Comprehensive two-dimensional gas chromatography (GCxGC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GCxGC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GCxGC system. The data show that flow modulated GCxGC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.
Terahertz magneto-optical spectroscopy of a two-dimensional hole gas
Kamaraju, N.; Pan, W.; Ekenberg, U.; ...
2015-01-21
Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is also shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG,more » in contrast with the dominance of superradiant damping in two-dimensional electron gases. Furthermore, these results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.« less
Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique
NASA Astrophysics Data System (ADS)
Savostianova, N. A.; Mikhailov, S. A.
2018-04-01
Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.
Terahertz magneto-optical spectroscopy of a two-dimensional hole gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov
2015-01-19
Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, inmore » contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.« less
Wahlstrand, J K; Zhang, H; Choi, S B; Sipe, J E; Cundiff, S T
2011-11-07
A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.
Si-H bond dynamics in hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Scharff, R. Jason; McGrane, Shawn D.
2007-08-01
The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.
Dielectric response of branched copper phthalocyanine
NASA Astrophysics Data System (ADS)
Hamam, Khalil J.; Al-Amar, Mohammad M.; Mezei, Gellert; Guda, Ramakrishna; Burns, Clement A.
2017-09-01
The dielectric constant of pressed pellets and thin films of branched copper phthalocyanine (CuPc) was investigated as a function of frequency from 0.1 kHz to 1 MHz and temperature from 20 °C to 100 °C. Surface morphology was studied using a scanning electron microscope. The high-frequency values of the dielectric constant of pellets and thin films are ~3.5 and ~5.8, respectively. The response was only weakly dependent on frequency and temperature. The branched structure of the CuPc molecules helped to cancel out the effects of low-frequency polarization mechanisms. A planar delocalized charge system with two-dimensional localization was found using time-resolved photoluminescence measurements.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.
NASA Astrophysics Data System (ADS)
Tzanis, Andreas
2013-02-01
The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale. In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien
2009-01-01
This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…
Quadratic band touching points and flat bands in two-dimensional topological Floquet systems
NASA Astrophysics Data System (ADS)
Du, Liang; Zhou, Xiaoting; Fiete, Gregory; The CenterComplex Quantum Systems Team
In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this 3-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems. We gratefully acknowledge funding from ARO Grant W911NF-14-1-0579 and NSF DMR-1507621.
Probing in-plane anisotropy in fewlayer ReS2 using low frequency noise measurement.
Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya
2018-01-31
ReS<sub>2</sub>, a layered two-dimensional material popular for its in-plane anisotropic properties is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of fewlayer ReS<sub>2</sub> for the first time. Fewlayer ReS<sub>2</sub> FET devices show 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also direction dependent. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low noise transistor in future. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Borkowski, K.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J. P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J. D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C. J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y. M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Lowry, C. M. Mow; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; vanden Brand, J. F. J.; VanDen Broeck, C.; vander Putten, S.; vander Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Finley, R. Vincent; Vinet, J. Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L. W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J. P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.
2014-08-01
We present an implementation of the F-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency f0 range from 100 Hz to 1 kHz and the frequency dependent spindown f1 range from -1.6({{f}_{0}}/100\\;Hz)\\times {{10}^{-9}} Hz s-1 to zero. A large part of this frequency-spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the ℱ-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the fast Fourier transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the F-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than 5\\times {{10}^{-24}}.
Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations
NASA Astrophysics Data System (ADS)
Rino, C. L.; Carrano, C. S.; Yokoyama, T.
2017-12-01
In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently, the propagated signal phase can be comparted to path-integrated phase for evaluating TEC extraction. Only the frequency dependence of phase scintillation distinguishes phase scintillation. The simulations allow scale-dependent exploration of remote-sensing diagnostics.
Controlling the spectrum of photons generated on a silicon nanophotonic chip
Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan
2014-01-01
Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792
Photoacoustic projection imaging using an all-optical detector array
NASA Astrophysics Data System (ADS)
Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.
2018-02-01
We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.
NASA Astrophysics Data System (ADS)
Mitic, Jelena; Anhut, Tiemo; Serov, Alexandre; Lasser, Theo; Bourquin, Stephane
2003-07-01
Real-time optically sectioned microscopy is demonstrated using an AC-sensitive detection concept realized with smart CMOS image sensor and structured light illumination by a continuously moving periodic pattern. We describe two different detection systems based on CMOS image sensors for the detection and on-chip processing of the sectioned images in real time. A region-of-interest is sampled at high frame rate. The demodulated signal delivered by the detector corresponds to the depth discriminated image of the sample. The measured FWHM of the axial response depends on the spatial frequency of the projected grid illumination and is in the μm-range. The effect of using broadband incoherent illumination is discussed. The performance of these systems is demonstrated by imaging technical as well as biological samples.
Hajdok, G; Battista, J J; Cunningham, I A
2008-07-01
A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.
Large angle solid state position sensitive x-ray detector system
Kurtz, David S.; Ruud, Clay O.
1998-01-01
A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.
Four-dimensional positron age-momentum correlation
NASA Astrophysics Data System (ADS)
Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther
2016-11-01
We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.
Thermal stiffening of clamped elastic ribbons
NASA Astrophysics Data System (ADS)
Wan, Duanduan; Nelson, David R.; Bowick, Mark J.
2017-07-01
We use molecular dynamics to study the vibrations of a thermally fluctuating two-dimensional elastic membrane clamped at both ends. We directly extract the eigenmodes from resonant peaks in the frequency domain of the time-dependent height and measure the dependence of the corresponding eigenfrequencies on the microscopic bending rigidity of the membrane, taking care also of the subtle role of thermal contraction in generating a tension when the projected area is fixed. At finite temperatures we show that the effective (macroscopic) bending rigidity tends to a constant as the bare bending rigidity vanishes, consistent with theoretical arguments that the large-scale bending rigidity of the membrane arises from a strong thermal renormalization of the microscopic bending rigidity. Experimental realizations include covalently bonded two-dimensional atomically thin membranes such as graphene and molybdenum disulfide or soft matter systems such as the spectrin skeleton of red blood cells or diblock copolymers.
Two-dimensional photon detector
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1976-01-01
Device incorporates set of cascaded microchannel-array plates in proximity focus with two sets of mutually-orthogonal linear anodes. Technique allows data from N x M picture elements to be recorded with only N + M amplifiers.
Second-generation detector work in Israel
NASA Astrophysics Data System (ADS)
Rosenfeld, David
2001-10-01
A tremendous developmental effort in the field of infrared detectors during the last decade in Israel has resulted in a variety of InSb and HgCdTe infrared detectors. Additional and significant R&D effort associated with other IR components, have also been done in Israel, in order to integrate the detectors into advanced Detector-Dewar-Cooler assemblies (DDCs). This R&D effort included notable activities in the field of materials, signal processors, dewars and cryocoolers. These activities are presented together with the status of infrared detector work in Israel. Several two-dimensional InSb staring detectors and DDCs are demonstrated. This includes two versions of the classical 256 X 256 detectors and DDCs, improved 640 X 480 InSb detectors and DDC, and a 2000- element detector with high TDI level. SADA II type HgCdTe detectors are also presented. Considerations regarding the course of future detector work are also described. The classical DDC requirement list which traditionally included demands for high D*, low NETD and high resolution is widened to include cost related issues such as higher reliability, lower maintenance, smaller volume, lower power consumption and higher operation temperature.
Highly directional thermal emitter
Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W
2015-03-24
A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.
NASA Astrophysics Data System (ADS)
Studenikin, S. A.; Sachrajda, A. S.; Gupta, J. A.; Wasilewski, Z. R.; Fedorych, O. M.; Byszewski, M.; Maude, D. K.; Potemski, M.; Hilke, M.; West, K. W.; Pfeiffer, L. N.
2007-10-01
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc transport experiments at frequencies above 120GHz , MIROs start to quench, while above 230GHz , they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.
Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.; Zheng, C.; Pong, Philip W. T.
Spin-torque diodes based on nanosized magnetic tunnel junctions are novel microwave detectors with high sensitivity and wide frequency bandwidth. While previous reports mainly focus on improving the sensitivity, the approaches to extend the bandwidth are limited. This work experimentally demonstrates that through optimizing the orientation of the external magnetic field, wide bandwidth can be achieved while maintaining high sensitivity. The mechanism of the frequency- and sensitivity-tuning is investigated through analyzing the dependence of resonant frequency and DC voltage on the magnitude and the tilt angle of hard-plane magnetic field. The frequency dependence is qualitatively explicated by Kittel's ferromagnetic resonance model.more » The asymmetric resonant frequency at positive and negative magnetic field is verified by the numerical simulation considering the in-plane anisotropy. The DC voltage dependence is interpreted through evaluating the misalignment angle between the magnetization of the free layer and the reference layer. The tunability of the detector performance by the magnetic field angle is evaluated through characterizing the sensitivity and bandwidth under 3D magnetic field. The frequency bandwidth up to 9.8 GHz or maximum sensitivity up to 154 mV/mW (after impedance mismatch correction) can be achieved by tuning the angle of the applied magnetic field. The results show that the bandwidth and sensitivity can be controlled and adjusted through optimizing the orientation of the magnetic field for various applications and requirements.« less
(1 +1 )D Calculation Provides Evidence that Quantum Entanglement Survives a Firewall
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; Louko, Jorma
2015-07-01
We analyze how preexisting entanglement between two Unruh-DeWitt particle detectors evolves when one of the detectors falls through a Rindler firewall in (1 +1 )-dimensional Minkowski space. The firewall effect is minor and does not wash out the detector-detector entanglement, in some regimes even preserving the entanglement better than Minkowski vacuum. The absence of cataclysmic events should continue to hold for young black hole firewalls. A firewall's prospective ability to resolve the information paradox must hence hinge on its detailed gravitational structure, presently poorly understood.
Low material budget floating strip Micromegas for ion transmission radiography
NASA Astrophysics Data System (ADS)
Bortfeldt, J.; Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph.; Magallanes, L.; Müller, R.; Parodi, K.; Schlüter, T.; Voss, B.; Zibell, A.
2017-02-01
Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm2 with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X0. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF4 gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.
Investigations of a bearing fault detector for railroad bearings
NASA Technical Reports Server (NTRS)
Wilson, D. S.; Frarey, J. L.
1975-01-01
The laboratory tests are described which were conducted on new and damaged bearings to determine the feasibility of using high-frequency vibration as a diagnostic tool. A high-frequency band pass filter and demodulator was assembled to permit field measurements of the high-frequency vibrations. Field tests were conducted on an actual truck and on an axle assembly run in a grease test rig. These field tests were directed toward demonstration of the suitability and capabilities of the high-frequency technique for field application. Two specific areas of field application were identified as being cost effective for railroad use. One area is the examination of railroad roller bearings at a derailment site, and the second is as a wayside detector to supplement present hot box detectors for defective roller bearings.
2016-07-06
The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the...metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple...prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are
Coloured computational imaging with single-pixel detectors based on a 2D discrete cosine transform
NASA Astrophysics Data System (ADS)
Liu, Bao-Lei; Yang, Zhao-Hua; Liu, Xia; Wu, Ling-An
2017-02-01
We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily cancelled to give excellent image quality. Moreover, the experimental set-up is very simple.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less
Electronic transport in two-dimensional high dielectric constant nanosystems.
Ortuño, M; Somoza, A M; Vinokur, V M; Baturina, T I
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.
2016-02-29
We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.
Novel eye-safe line scanning 3D laser-radar
NASA Astrophysics Data System (ADS)
Eberle, B.; Kern, Tobias; Hammer, Marcus; Schwanke, Ullrich; Nowak, Heinrich
2014-10-01
Today, the civil market provides quite a number of different 3D-Sensors covering ranges up to 1 km. Typically these sensors are based on single element detectors which suffer from the drawback of spatial resolution at larger distances. Tasks demanding reliable object classification at long ranges can be fulfilled only by sensors consisting of detector arrays. They ensure sufficient frame rates and high spatial resolution. Worldwide there are many efforts in developing 3D-detectors, based on two-dimensional arrays. This paper presents first results on the performance of a recently developed 3D imaging laser radar sensor, working in the short wave infrared (SWIR) at 1.5 μm. It consists of a novel Cadmium Mercury Telluride (CMT) linear array APD detector with 384x1 elements at a pitch of 25 μm, developed by AIM Infrarot Module GmbH. The APD elements are designed to work in the linear (non-Geiger) mode. Each pixel will provide the time of flight measurement, and, due to the linear detection mode, allowing the detection of three successive echoes. The resolution in depth is 15 cm, the maximum repetition rate is 4 kHz. We discuss various sensor concepts regarding possible applications and their dependence on system parameters like field of view, frame rate, spatial resolution and range of operation.
Optical pressure/density measuring means
Veligdan, James T.
1995-05-09
An apparatus and method for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature.
Optical pressure/density measuring means
Veligdan, J.T.
1995-05-09
An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.
Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M
2015-09-11
Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.
Dielectric modelling of cell division for budding and fission yeast
NASA Astrophysics Data System (ADS)
Asami, Koji; Sekine, Katsuhisa
2007-02-01
The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.
2000-01-01
The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.
Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout
NASA Astrophysics Data System (ADS)
Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali
2017-09-01
Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.
Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.
Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D
2017-01-01
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
Acoustic frequency filter based on anisotropic topological phononic crystals.
Chen, Ze-Guo; Zhao, Jiajun; Mei, Jun; Wu, Ying
2017-11-08
We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.
NASA Astrophysics Data System (ADS)
Raichev, O. E.
2015-06-01
The response of two-dimensional electron gas to a temperature gradient in perpendicular magnetic field under steady-state microwave irradiation is studied theoretically. The electric currents induced by the temperature gradient and the thermopower coefficients are calculated taking into account both diffusive and phonon-drag mechanisms. The modification of thermopower by microwaves takes place because of Landau quantization of the electron energy spectrum and is governed by the microscopic mechanisms which are similar to those responsible for microwave-induced oscillations of electrical resistivity. The magnetic-field dependence of microwave-induced corrections to phonon-drag thermopower is determined by mixing of phonon resonance frequencies with radiation frequency, which leads to interference oscillations. The transverse thermopower is modified by microwave irradiation much stronger than the longitudinal one. Apart from showing prominent microwave-induced oscillations as a function of magnetic field, the transverse thermopower appears to be highly sensitive to the direction of linear polarization of microwave radiation.
NASA Astrophysics Data System (ADS)
Le Gros, M.; Kotlicld, A.; Turrell, B. G.
1990-08-01
The measurement of the field dependence of the nuclear spin-lattice relaxation time of 54Mn in the two manganese sites in the quasi-2 dimensional ferromagnet Mn(COOCH 3) 2·4H 20 obtained by the pulsed NMRON technique is reported. This technique allows the observation in low fields of the higher frequency resonance which previously could not be measured by CW methods. The anomaly in the 54Mn relaxation time observed in the 55Mn level crossing regime is discussed, and the thermometric observation of the field dependence and lice width of the resonance lines from the abundant 55Mn spin systems is reported and related to the 54Mn spin-lattice relaxation behavior.
Optical stereo video signal processor
NASA Technical Reports Server (NTRS)
Craig, G. D. (Inventor)
1985-01-01
An otpical video signal processor is described which produces a two-dimensional cross-correlation in real time of images received by a stereo camera system. The optical image of each camera is projected on respective liquid crystal light valves. The images on the liquid crystal valves modulate light produced by an extended light source. This modulated light output becomes the two-dimensional cross-correlation when focused onto a video detector and is a function of the range of a target with respect to the stereo camera. Alternate embodiments utilize the two-dimensional cross-correlation to determine target movement and target identification.
NASA Astrophysics Data System (ADS)
Rose, F.; Dupuis, N.
2018-05-01
We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.
Lee, Dong-Chang; Olson, John V; Szuberla, Curt A L
2013-07-01
This work reports on a performance study of two numerical detectors that are particularly useful for infrasound arrays operating under windy conditions. The sum of squares of variance ratios (SSVR1)-proposed for detecting signals with frequency ranging from 1 to 10 Hz-is computed by taking the ratio of the squared sum of eigenvalues to the square of largest eigenvalue of the covariance matrix of the power spectrum. For signals with lower frequency between 0.015 and 0.1 Hz, SSVR2 is developed to reduce the detector's sensitivity to noise. The detectors' performances are graphically compared against the current method, the mean of cross correlation maxima (MCCM), using the receiver operating characteristics curves and three types of atmospheric infrasound, corrupted by Gaussian and Pink noise. The MCCM and SSVR2 detectors were also used to detect microbaroms from the 24 h-long infrasound data. It was found that the two detectors outperform the MCCM detector in both sensitivity and computational efficiency. For mine blasts corrupted by Pink noise (signal-to-noise ratio = -7 dB), the MCCM and SSVR1 detectors yield 62 and 88 % true positives when accepting 20% false positives. For an eight-sensor array, the speed gain is approximately eleven-fold for a 50 s long signal.
Multi-dimensional position sensor using range detectors
Vann, Charles S.
2000-01-01
A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.
NASA Astrophysics Data System (ADS)
Quintal, Beatriz; Steeb, Holger; Frehner, Marcel; Schmalholz, Stefan M.
2011-01-01
The finite element method is used to solve Biot's equations of consolidation in the displacement-pressure (u - p) formulation. We compute one-dimensional (1-D) and two-dimensional (2-D) numerical quasi-static creep tests with poroelastic media exhibiting mesoscopic-scale heterogeneities to calculate the complex and frequency-dependent P wave moduli from the modeled stress-strain relations. The P wave modulus is used to calculate the frequency-dependent attenuation (i.e., inverse of quality factor) and phase velocity of the medium. Attenuation and velocity dispersion are due to fluid flow induced by pressure differences between regions of different compressibilities, e.g., regions (or patches) saturated with different fluids (i.e., so-called patchy saturation). Comparison of our numerical results with analytical solutions demonstrates the accuracy and stability of the algorithm for a wide range of frequencies (six orders of magnitude). The algorithm employs variable time stepping and an unstructured mesh which make it efficient and accurate for 2-D simulations in media with heterogeneities of arbitrary geometries (e.g., curved shapes). We further numerically calculate the quality factor and phase velocity for 1-D layered patchy saturated porous media exhibiting random distributions of patch sizes. We show that the numerical results for the random distributions can be approximated using a volume average of White's analytical solution and the proposed averaging method is, therefore, suitable for a fast and transparent prediction of both quality factor and phase velocity. Application of our results to frequency-dependent reflection coefficients of hydrocarbon reservoirs indicates that attenuation due to wave-induced flow can increase the reflection coefficient at low frequencies, as is observed at some reservoirs.
Infrared Speckle Interferometry with 2-D Arrays
NASA Technical Reports Server (NTRS)
Harvey, P. M.; Balkum, S. L.; Monin, J. L.
1994-01-01
We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry.
Abia, Jude A; Putnam, Joel; Mriziq, Khaled; Guiochon, Georges A
2010-03-05
Simultaneous two-dimensional liquid chromatography (2D-LC) is an implementation of two-dimensional liquid chromatography which has the potential to provide very fast, yet highly efficient separations. It is based on the use of time x space and space x space separation systems. The basic principle of this instrument has been validated long ago by the success of two-dimensional thin layer chromatography. The construction of a pressurized wide and flat column (100 mm x 100 mm x 1 mm) operated under an inlet pressure of up to 50 bar was described previously. However, to become a modern analytical method, simultaneous 2D-LC requires the development of detectors suitable for the monitoring of the composition of the eluent of this pressurized planar, wide column. An array of five equidistant micro-electrochemical sensors was built for this purpose and tested. Each sensor is a three-electrode system, with the working electrode being a 25 microm polished platinum micro-electrode. The auxiliary electrode is a thin platinum wire and the reference electrode an Ag/AgCl (3M sat. KCl) electrode. In this first implementation, proof of principle is demonstrated, but the final instrument will require a much larger array. 2010 Elsevier B.V. All rights reserved.
A real negative selection algorithm with evolutionary preference for anomaly detection
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Wen; Li, Tao
2017-04-01
Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.
Microwave Kinetic Inductance Detector with Selective Polarization Coupling
NASA Technical Reports Server (NTRS)
Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting
2013-01-01
A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to couple to the detector equally. A stepped impedance resonator was used that allows the incident power absorbed in the detecting membrane area to be uniformly distributed in the detector's transmission line at the RF readout frequency. This maximizes the sensitivity of the detector. The signal is read out via a frequency multiplexing technique that requires a minimum number of interface transmission lines for readout. This reduces the packaging complexity and coupling to the device's thermal environment.
NASA Astrophysics Data System (ADS)
Ward, Jonathan; Advanced ACT Collaboration, NASA Space Technology Research Fellowship
2017-06-01
The Atacama Cosmology Telescope is a six-meter diameter telescope located at 17,000 feet (5,200 meters) on Cerro Toco in the Andes Mountains of northern Chile. The next generation Advanced ACT (AdvACT) experiment is currently underway and will consist of three multichroic TES bolometer arrays operating together, totaling 5800 detectors on the sky. Each array will be sensitive to two frequency bands: a high frequency (HF) array at 150 and 230 GHz, two middle frequency (MF) arrays at 90 and 150 GHz, and a low frequency (LF) array at 28 and 41 GHz. The AdACT detector arrays will feature a revamped design when compared to ACTPol, including a transition to 150mm wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors consists of a feedhorn array of stacked silicon wafers which form a corrugated profile leading to each pixel. This is then followed by a four-piece detector stack assembly of silicon wafers which includes a waveguide interface plate, detector wafer, backshort cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured out of gold-plated, high purity copper. In addition to the detector array assembly, the array package also encloses the majority of our readout electronics. We present the full mechanical design of the AdvACT HF and MF detector array packages along with a detailed look at the detector array assemblies. We also highlight the use of continuously rotating warm half-wave plates (HWPs) at the front of the AdvACT receiver. We review the design of the rotation system and also early pipeline data analysis results. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT instruments with pre-existing ACTPol infrastructure.
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei
2018-03-01
We present analysis on neutrino and GW signals based on three-dimensional (3D) core-collapse supernova simulations of a rapidly rotating 27 M⊙ star. We find a new neutrino signature that is produced by a lighthouse effect where the spinning of strong neutrino emission regions around the rotational axis leads to quasi-periodic modulation in the neutrino signal. Depending on the observer's viewing angle, the time modulation will be clearly detectable in IceCube and the future Hyper-Kamiokande. The GW emission is also anisotropic where the GW signal is emitted, as previously identified, most strongly towards the equator at rotating core-collapse and bounce, and the non-axisymmetric instabilities in the postbounce phase lead to stronger GW emission towards the spin axis. We show that these GW signals can be a target of LIGO-class detectors for a Galactic event. The origin of the postbounce GW emission naturally explains why the peak GW frequency is about twice of the neutrino modulation frequency. We point out that the simultaneous detection of the rotation-induced neutrino and GW signatures could provide a smoking-gun signature of a rapidly rotating proto-neutron star at the birth.
A reflective-type, quasi-optical metasurface filter
NASA Astrophysics Data System (ADS)
Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader
2017-08-01
We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.
Acoustic near-field characteristics of a conical, premixed flame
NASA Astrophysics Data System (ADS)
Lee, Doh-Hyoung; Lieuwen, Tim C.
2003-01-01
The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.
Acoustic near-field characteristics of a conical, premixed flame.
Lee, Doh-Hyoung; Lieuwen, Tim C
2003-01-01
The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.
Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.
2015-08-01
We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.
Neutron position-sensitive scintillation detector
Strauss, Michael G.; Brenner, Raul
1984-01-01
A device is provided for mapping one- and two-dimensional distributions of neutron-positions in a scintillation detector. The device consists of a lithium glass scintillator coupled by an air gap and a light coupler to an array of photomultipliers. The air gap concentrates light flashes from the scintillator, whereas the light coupler disperses this concentrated light to a predetermined fraction of the photomultiplier tube array.
NASA Technical Reports Server (NTRS)
Paquette, Beth; Samuels, Margaret; Chen, Peng
2017-01-01
Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Optical activity in chiral stacks of 2D semiconductors
NASA Astrophysics Data System (ADS)
Poshakinskiy, Alexander V.; Kazanov, Dmitrii R.; Shubina, Tatiana V.; Tarasenko, Sergey A.
2018-03-01
We show that the stacks of two-dimensional semiconductor crystals with the chiral packing exhibit optical activity and circular dichroism. We develop a microscopic theory of these phenomena in the spectral range of exciton transitions that takes into account the spin-dependent hopping of excitons between the layers in the stack and the interlayer coupling of excitons via electromagnetic field. For the stacks of realistic two-dimensional semiconductors such as transition metal dichalcogenides, we calculate the rotation and ellipticity angles of radiation transmitted through such structures. The angles are resonantly enhanced at the frequencies of both bright and dark exciton modes in the stack. We also study the photoluminescence of chiral stacks and show that it is circularly polarized.
A scintillating gas detector for 2D dose measurements in clinical carbon beams.
Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B
2008-09-07
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
A scintillating gas detector for 2D dose measurements in clinical carbon beams
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.
2008-09-01
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
Empirical parameterization of setup, swash, and runup
Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.
2006-01-01
Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi, S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta, S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Doctor, Z.; Doi, K.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fujii, Y.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Ioka, K.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita, T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.; Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka, Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim, J.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; Kimura, N.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.; Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano, S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio, M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.; Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Ni, W.-T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi, K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai, K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato, T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.; Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.; Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto, Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki, T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.; Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder, D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki, T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba, T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu, T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.; Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu, Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zeidler, S.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.
2018-04-01
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg^2 requires at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Akutsu, T; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Ando, M; Appert, S; Arai, K; Araya, A; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Asada, H; Ascenzi, S; Ashton, G; Aso, Y; Ast, M; Aston, S M; Astone, P; Atsuta, S; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Awai, K; Babak, S; Bacon, P; Bader, M K M; Baiotti, L; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Fiore, L Di; Giovanni, M Di; Girolamo, T Di; Lieto, A Di; Pace, S Di; Palma, I Di; Virgilio, A Di; Doctor, Z; Doi, K; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Eda, K; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fujii, Y; Fujimoto, M-K; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hagiwara, A; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Hayama, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hirose, E; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Ioka, K; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Itoh, Y; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kagawa, T; Kajita, T; Kakizaki, M; Kalaghatgi, C V; Kalogera, V; Kamiizumi, M; Kanda, N; Kandhasamy, S; Kanemura, S; Kaneyama, M; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Kataoka, Y; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawai, N; Kawamura, S; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, H; Kim, J C; Kim, J; Kim, W; Kim, Y-M; Kimbrell, S J; Kimura, N; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Kojima, Y; Kokeyama, K; Koley, S; Komori, K; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kotake, K; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, Rahul; Kumar, Rakesh; Kuo, L; Kuroda, K; Kutynia, A; Kuwahara, Y; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mano, S; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marchio, M; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Matsumoto, N; Matsushima, F; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Michimura, Y; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyamoto, A; Miyamoto, T; Miyoki, S; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morii, W; Morisaki, S; Moriwaki, Y; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Nagano, S; Nakamura, K; Nakamura, T; Nakano, H; Nakano, Masaya; Nakano, Masayuki; Nakao, K; Napier, K; Nardecchia, I; Narikawa, T; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Ni, W-T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohashi, M; Ohishi, N; Ohkawa, M; Ohme, F; Okutomi, K; Oliver, M; Ono, K; Ono, Y; Oohara, K; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Peña Arellano, F E; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sago, N; Saijo, M; Saito, Y; Sakai, K; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sasaki, Y; Sassolas, B; Sathyaprakash, B S; Sato, S; Sato, T; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sekiguchi, T; Sekiguchi, Y; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shibata, M; Shikano, Y; Shimoda, T; Shoda, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somiya, K; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Sugimoto, Y; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Suzuki, T; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tagoshi, H; Takada, S; Takahashi, H; Takahashi, R; Takamori, A; Talukder, D; Tanaka, H; Tanaka, K; Tanaka, T; Tanner, D B; Tápai, M; Taracchini, A; Tatsumi, D; Taylor, R; Telada, S; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomaru, T; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Tsubono, K; Tsuzuki, T; Turconi, M; Tuyenbayev, D; Uchiyama, T; Uehara, T; Ueki, S; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Ushiba, T; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Putten, M H P M; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wakamatsu, T; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yamamoto, K; Yamamoto, T; Yancey, C C; Yano, K; Yap, M J; Yokoyama, J; Yokozawa, T; Yoon, T H; Yu, Hang; Yu, Haocun; Yuzurihara, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zeidler, S; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-01-01
We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Calculation of Energetic Ion Tail from Ion Cyclotron Resonance Frequency Heating
NASA Astrophysics Data System (ADS)
Wang, Jianguo; Li, Youyi; Li, Jiangang
1994-04-01
The second harmonic frequency of hydrogen ion cyclotron resonance heating experiment on HT-6M tokamak was studied by adding the quasi-linear wave-ion interaction term in the two-dimensional (velocity space), time-dependent, nonlinear and multispecies Fokker-Planck equation. The temporal evolution of ion distribution function and relevant parameters were calculated and compared with experiment data. The calculation shows that the ion temperature increases, high-energy ion tail (above 5 keV) and anisotropy appear when the wave is injected to plasma. The simulations are in reasonable agreement with experiment data.
Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Bera, Jayanta; Roy, Utpal
2018-05-01
Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.
Electron gas grid semiconductor radiation detectors
Lee, Edwin Y.; James, Ralph B.
2002-01-01
An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.
Finding the Secret of Image Saliency in the Frequency Domain.
Li, Jia; Duan, Ling-Yu; Chen, Xiaowu; Huang, Tiejun; Tian, Yonghong
2015-12-01
There are two sides to every story of visual saliency modeling in the frequency domain. On the one hand, image saliency can be effectively estimated by applying simple operations to the frequency spectrum. On the other hand, it is still unclear which part of the frequency spectrum contributes the most to popping-out targets and suppressing distractors. Toward this end, this paper tentatively explores the secret of image saliency in the frequency domain. From the results obtained in several qualitative and quantitative experiments, we find that the secret of visual saliency may mainly hide in the phases of intermediate frequencies. To explain this finding, we reinterpret the concept of discrete Fourier transform from the perspective of template-based contrast computation and thus develop several principles for designing the saliency detector in the frequency domain. Following these principles, we propose a novel approach to design the saliency detector under the assistance of prior knowledge obtained through both unsupervised and supervised learning processes. Experimental results on a public image benchmark show that the learned saliency detector outperforms 18 state-of-the-art approaches in predicting human fixations.
Plasma-laser ion discrimination by TOF technique applied to coupled SiC detectors.
NASA Astrophysics Data System (ADS)
Cavallaro, Salvatore
2018-01-01
The rate estimation of nuclear reactions induced in high intensity laser-target interaction (≥1016 W/cm2), is strongly depending on the neutron detection efficiency and ion charge discrimination, according to particles involved in exit open-channels. Ion discrimination is basically performed by means of analysis of pits observed on track detector, which is critically dependent on calibration and/or fast TOF devices based on SiC and diamond detectors. Last setup is used to determine the ion energy and to obtain a rough estimation of yields. However, for each TOF interval, the dependence of yield from the energy deposited in the detector sensitive region, introduces a distortion in the ion spectra. Moreover, if two ion species are present in the same spectrum, the discrimination of their contribution is not attainable. In this paper a new method is described which allows to discriminate the contribution of two ion species in the wide energy range of nuclear reactions induced in laser-target interactions. The method is based on charge response of two TOF-SiC detectors, of suitable thicknesses, placed in adjacent positions. In presence of two ion species, the response of the detectors, associated with different energy losses, can determine the ion specific contribution to each TOF interval.
NASA Technical Reports Server (NTRS)
Scott, James R.
1991-01-01
A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a significant decrease for the high reduced frequencies.
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Large angle solid state position sensitive x-ray detector system
Kurtz, D.S.; Ruud, C.O.
1998-03-03
A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.
Large angle solid state position sensitive x-ray detector system
Kurtz, D.S.; Ruud, C.O.
1998-07-21
A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.
Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale
Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki
2014-01-01
A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910
NASA Astrophysics Data System (ADS)
Himemoto, Yoshiaki; Taruya, Atsushi
2017-07-01
After the first direct detection of gravitational waves (GW), detection of the stochastic background of GWs is an important next step, and the first GW event suggests that it is within the reach of the second-generation ground-based GW detectors. Such a GW signal is typically tiny and can be detected by cross-correlating the data from two spatially separated detectors if the detector noise is uncorrelated. It has been advocated, however, that the global magnetic fields in the Earth-ionosphere cavity produce the environmental disturbances at low-frequency bands, known as Schumann resonances, which potentially couple with GW detectors. In this paper, we present a simple analytical model to estimate its impact on the detection of stochastic GWs. The model crucially depends on the geometry of the detector pair through the directional coupling, and we investigate the basic properties of the correlated magnetic noise based on the analytic expressions. The model reproduces the major trend of the recently measured global correlation between the GW detectors via magnetometer. The estimated values of the impact of correlated noise also match those obtained from the measurement. Finally, we give an implication to the detection of stochastic GWs including upcoming detectors, KAGRA and LIGO India. The model suggests that LIGO Hanford-Virgo and Virgo-KAGRA pairs are possibly less sensitive to the correlated noise and can achieve a better sensitivity to the stochastic GW signal in the most pessimistic case.
Three-dimensional laser velocimeter simultaneity detector
NASA Technical Reports Server (NTRS)
Brown, James L. (Inventor)
1990-01-01
A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.
Radio frequency detection assembly and method for detecting radio frequencies
Cown, Steven H.; Derr, Kurt Warren
2010-03-16
A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.
Towards Thermal Reading of Magnetic States in Hall Crosses
NASA Astrophysics Data System (ADS)
Xu, Y.; Petit-Watelot, S.; Polewczyk, V.; Parent, G.; Montaigne, F.; Wegrowe, J.-E.; Mangin, S.; Lacroix, D.; Hehn, M.; Lacour, D.
2018-03-01
The 3 ω method is a standard way to measure the thermal conductivity of thin films. In this study, we apply the method to read the magnetic state of a perpendicularly magnetized CoTb ferrimagnetic Hall cross using a thermal excitation. In order to generate the thermal excitation, an oscillating current at an ω frequency is applied to the Hall cross using different geometries. The magnetic signals oscillating at ω , 2 ω , and 3 ω are probed using a lock-in technique. From the analysis of the power dependence, we can attribute the 3 ω response to the temperature oscillation and the 2 ω to the temperature-gradient oscillation. Finally, the frequency dependence of the magnetic signals can be understood by considering the heat diffusion in a two-dimensional model.
Bolnick, Daniel I; Hendrix, Kimberly; Jordan, Lyndon Alexander; Veen, Thor; Brock, Chad D
2016-08-01
Variation in male nuptial colour signals might be maintained by negative frequency-dependent selection. This can occur if males are more aggressive towards rivals with locally common colour phenotypes. To test this hypothesis, we introduced red or melanic three-dimensional printed-model males into the territories of nesting male stickleback from two optically distinct lakes with different coloured residents. Red-throated models were attacked more in the population with red males, while melanic models were attacked more in the melanic male lake. Aggression against red versus melanic models also varied across a depth gradient within each lake, implying that the local light environment also modulated the strength of negative frequency dependence acting on male nuptial colour. © 2016 The Author(s).
Infrared fiber optic focal plane dispersers
NASA Technical Reports Server (NTRS)
Goebel, J. H.
1981-01-01
Far infrared transmissive fiber optics as a component in the design of integrated far infrared focal plane array utilization is discussed. A tightly packed bundle of fibers is placed at the focal plane, where an array of infrared detectors would normally reside, and then fanned out in two or three dimensions to individual detectors. Subsequently, the detectors are multiplexed by cryogenic electronics for relay of the data. A second possible application is frequency up-conversion (v sub 1 + v sub 2 = v sub 3), which takes advantage of the nonlinear optical index of refraction of certain infrared transmissive materials in fiber form. Again, a fiber bundle is utilized as above, but now a laser of frequency v sub 1 is mixed with the incoming radiation of frequency v sub 1 within the nonlinear fiber material. The sum, v sub 2 is then detected by near infrared or visible detectors which are more sensitive than those available at v sub 2. Due to the geometrical size limitations of detectors such as photomultipliers, the focal plane dispersal technique is advantageous for imaging up-conversion.
Apparatus for detecting the presence of a liquid
Kronberg, James W.
1995-01-01
An apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current.
NASA Astrophysics Data System (ADS)
Hiryu, Shizuko; Katsura, Koji; Lin, Liang-Kong; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2005-12-01
Biosonar behavior was examined in Taiwanese leaf-nosed bats (Hipposideros terasensis; CF-FM bats) during flight. Echolocation sounds were recorded using a telemetry microphone mounted on the bat's head. Flight speed and three-dimensional trajectory of the bat were reconstructed from images taken with a dual high-speed video camera system. Bats were observed to change the intensity and emission rate of pulses depending on the distance from the landing site. Frequencies of the dominant second harmonic constant frequency component (CF2) of calls estimated from the bats' flight speed agreed strongly with observed values. Taiwanese leaf-nosed bats changed CF2 frequencies depending on flight speed, which caused the CF2 frequencies of the Doppler-shifted echoes to remain constant. Pulse frequencies were also estimated using echoes returning directly ahead of the bat and from its sides for two different flight conditions: landing and U-turn. Bats in flight may periodically alter their attended angles from the front to the side when emitting echolocation pulses.
Single-crystal diffraction instrument TriCS at SINQ
NASA Astrophysics Data System (ADS)
Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.
2000-03-01
The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
Kim, Junsuk; Chung, Yoon Gi; Chung, Soon-Cheol; Bulthoff, Heinrich H; Kim, Sung-Phil
2016-01-01
As the use of wearable haptic devices with vibrating alert features is commonplace, an understanding of the perceptual categorization of vibrotactile frequencies has become important. This understanding can be substantially enhanced by unveiling how neural activity represents vibrotactile frequency information. Using functional magnetic resonance imaging (fMRI), this study investigated categorical clustering patterns of the frequency-dependent neural activity evoked by vibrotactile stimuli with gradually changing frequencies from 20 to 200 Hz. First, a searchlight multi-voxel pattern analysis (MVPA) was used to find brain regions exhibiting neural activities associated with frequency information. We found that the contralateral postcentral gyrus (S1) and the supramarginal gyrus (SMG) carried frequency-dependent information. Next, we applied multidimensional scaling (MDS) to find low-dimensional neural representations of different frequencies obtained from the multi-voxel activity patterns within these regions. The clustering analysis on the MDS results showed that neural activity patterns of 20-100 Hz and 120-200 Hz were divided into two distinct groups. Interestingly, this neural grouping conformed to the perceptual frequency categories found in the previous behavioral studies. Our findings therefore suggest that neural activity patterns in the somatosensory cortical regions may provide a neural basis for the perceptual categorization of vibrotactile frequency.
Thermal response of large area high temperature superconducting YBaCuO infrared bolometers
NASA Technical Reports Server (NTRS)
Khalil, Ali E.
1991-01-01
Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.
High-Frequency X-ray Variability Detection in A Black Hole Transient with USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabad, Gayane
2000-10-16
Studies of high-frequency variability (above {approx}100 Hz) in X-ray binaries provide a unique opportunity to explore the fundamental physics of spacetime and matter, since the orbital timescale on the order of several milliseconds is a timescale of the motion of matter through the region located in close proximity to a compact stellar object. The detection of weak high-frequency signals in X-ray binaries depends on how well we understand the level of Poisson noise due to the photon counting statistics, i.e. how well we can understand and model the detector deadtime and other instrumental systematic effects. We describe the preflight timingmore » calibration work performed on the Unconventional Stellar Aspect (USA) X-ray detector to study deadtime and timing issues. We developed a Monte Carlo deadtime model and deadtime correction methods for the USA experiment. The instrumental noise power spectrum can be estimated within {approx}0.1% accuracy in the case when no energy-dependent instrumental effect is present. We also developed correction techniques to account for an energy-dependent instrumental effect. The developed methods were successfully tested on USA Cas A and Cygnus X-1 data. This work allowed us to make a detection of a weak signal in a black hole candidate (BHC) transient.« less
NASA Astrophysics Data System (ADS)
Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.
2002-11-01
A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.
Image intensifier-based volume tomographic angiography imaging system: system evaluation
NASA Astrophysics Data System (ADS)
Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.
1995-05-01
An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.
TPC status for MPD experiment of NICA project
NASA Astrophysics Data System (ADS)
Averyanov, A.; Bazhazhin, A.; Chepurnov, V. F.; Chepurnov, V. V.; Cheremukhina, G.; Chernenko, S.; Fateev, O.; Kiriushin, Yu.; Kolesnikov, A.; Korotkova, A.; Levchanovsky, F.; Lukstins, J.; Movchan, S.; Pilyar, A.; Razin, S.; Ribakov, A.; Samsonov, V.; Vereschagin, S.; Zanevsky, Yu.; Zaporozhets, S.; Zruev, V.
2017-06-01
In a frame of the JINR scientific program on study of hot and dense baryonic matter a new accelerator complex Ion Collider fAcility (NICA) based on the Nuclotron-M is under realization. It will operate at luminosity up to 1027 cm-2s-1 for Au79+ ions. Two interaction points are foreseen at NICA for two detectors which will operate simultaneously. One of these detectors, the Multi-Purpose Detector (MPD), is optimized for investigations of heavy-ion collisions. The Time-Projection Chamber (TPC) is the main tracking detector of the MPD central barrel. It is a well-known detector for 3-dimensional tracking and particle identification for high multiplicity events. The conceptual layout of MPD and detailed description of the design and main working parameters of TPC, the readout system based on MWPC and readout electronics as well as the TPC subsystems and tooling for assembling and integration TPC into MPD are presented.
Broadband All-angle Negative Refraction by Optimized Phononic Crystals.
Li, Yang Fan; Meng, Fei; Zhou, Shiwei; Lu, Ming-Hui; Huang, Xiaodong
2017-08-07
All-angle negative refraction (AANR) of phononic crystals and its frequency range are dependent on mechanical properties of constituent materials and their spatial distribution. So far, it is impossible to achieve the maximum operation frequency range of AANR theoretically. In this paper, we will present a numerical approach for designing a two-dimensional phononic crystal with broadband AANR without negative index. Through analyzing the mechanism of AANR, a topology optimization problem aiming at broadband AANR is established and solved by bi-directional evolutionary structural optimization method. The optimal steel/air phononic crystal exhibits a record AANR range over 20% and its refractive properties and focusing effects are further investigated. The results demonstrate the multifunctionality of a flat phononic slab including superlensing effect near upper AANR frequencies and self-collimation at lower AANR frequencies.
Bassinet, Céline; Huet, Christelle; Baumann, Marion; Etard, Cécile; Réhel, Jean-Luc; Boisserie, Gilbert; Debroas, Jacques; Aubert, Bernard; Clairand, Isabelle
2013-04-01
As MOSFET (Metal Oxide Semiconductor Field Effect Transistor) detectors allow dose measurements in real time, the interest in these dosimeters is growing. The aim of this study was to investigate the dosimetric properties of commercially available TN-502RD-H MOSFET silicon detectors (Best Medical Canada, Ottawa, Canada) in order to use them for in vivo dosimetry in interventional radiology and for dose reconstruction in case of overexposure. Reproducibility of the measurements, dose rate dependence, and dose response of the MOSFET detectors have been studied with a Co source. Influence of the dose rate, frequency, and pulse duration on MOSFET responses has also been studied in pulsed x-ray fields. Finally, in order to validate the integrated dose given by MOSFET detectors, MOSFETs and TLDs (LiF:Mg,Cu,P) were fixed on an Alderson-Rando phantom in the conditions of an interventional neuroradiology procedure, and their responses have been compared. The results of this study show the suitability of MOSFET detectors for in vivo dosimetry in interventional radiology and for dose reconstruction in case of accident, provided a well-corrected energy dependence, a pulse duration equal to or higher than 10 ms, and an optimized contact between the detector and the skin of the patient are achieved.
A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector
2002-01-01
Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple
A high-sensitive static vector magnetometer based on two vibrating coils
NASA Astrophysics Data System (ADS)
Yin, Jing; Pan, Cheng Liang; Wang, Hong Bo; Feng, Zhi Hua
2011-12-01
A static vector magnetometer based on two-dimensional (2D) vibrating coils actuated by a piezoelectric cantilever is presented. Two individual sensing coils are orthogonally fastened at the tip of cantilever and piezoelectric sheets are used to excite the cantilever bending. Due to off-axis coupler on the tip, the cantilever generates bending and twisting vibrations simultaneously on their corresponding resonant frequencies, realizing the 2D rotating vibrations of the coils. According to Faraday-Lenz Law, output voltages are induced from the coils. They are amplified by a pre-amplifier circuit, decoupled by a phase-sensitive detector, and finally used to calculate the vector of magnetic field at the coil location. The coil head of a prototype magnetometer possesses a dc sensitivity of around 10 μV/Gs with a good linearity in the measuring range from 0 to 16 μT. The corresponding noise level is about 13.1 nT in the bandwidth from 0.01 Hz to 1 Hz.
NASA Astrophysics Data System (ADS)
Mitin, V.; Ramaswamy, R.; Wang, K.; Choi, J. K.; Pakmehr, M.; Muraviev, A.; Shur, M.; Gaska, R.; Pogrebnyak, V.; Sergeev, A.
2012-05-01
We present the results of design, fabrication, and characterization of the room-temperature, low electron heat capacity hot-electron THz microbolometers based on two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. The 2DEG sensor is integrated with a broadband THz antenna and a coplanar waveguide. Devices with various patterning of 2DEG have been fabricated and tested. Optimizing the material properties, geometrical parameters of the 2DEG, and antenna design, we match the impedances of the sensor and antenna to reach strong coupling of THz radiation to 2DEG via the Drude absorption. Testing the detectors, we found that the THz-induced photocurrent, ΔI, is proportional to the bias current, I, and the temperature derivative of the resistance and inversely proportional to the area of 2DEG sensor, S. The analysis allowed us to identify the mechanism of the 2DEG response to THz radiation as electron heating. The responsivity of our sensors, normalized to the bias current and to unit area of 2DEG, R*= ΔI•S/ (I•P), is ~ 103 W-1 μm2. So, for our typical sensor with an area of 1000 μm2 and bias currents of ~ 10 mA, the responsivity is ~ 0.01 A/W. The measurements of mixing at sub-terahertz frequencies showed that the mixing bandwidth is above 2 GHz, which corresponds to a characteristic electron relaxation time to be shorter than 0.7 ps. Further decrease of the size of 2DEG sensors will increase the responsivity as well as allows for decreasing the local oscillator power in heterodyne applications.
Barnett, Patrick D; Strange, K Alicia; Angel, S Michael
2017-06-01
This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.
A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna
NASA Astrophysics Data System (ADS)
Xu, Lei-jun; Guan, Jia-ning; Bai, Xue; Li, Qin; Mao, Han-ping
2017-10-01
To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.
Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction.
Jeon, Youngeun; Jung, Sungchul; Jin, Hanbyul; Mo, Kyuhyung; Kim, Kyung Rok; Park, Wook-Ki; Han, Seong-Tae; Park, Kibog
2017-12-04
Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (~2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area.
Oblique reconstructions in tomosynthesis. II. Super-resolution
Acciavatti, Raymond J.; Maidment, Andrew D. A.
2013-01-01
Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated that super-resolution is not achievable if the pitch of the object approaches 90°, corresponding to the case in which the test frequency is perpendicular to the breast support. Only low frequency objects are detectable at pitches close to 90°. Conclusions: This work provides a platform for investigating super-resolution in oblique reconstructions for tomosynthesis. In breast imaging, this study should have applications in visualizing microcalcifications and other subtle signs of cancer. PMID:24320445
Antenna-coupled unbiased detectors for LW-IR regime
NASA Astrophysics Data System (ADS)
Tiwari, Badri Nath
At room temperature (300K), the electromagnetic (EM) radiation emitted by humans and other living beings peaks mostly in the long-wavelength infrared (LW-IR) regime. And since the atmosphere shows relatively little absorption in this band, applications such as target detection, tracking, active homing, and navigation in autonomous vehicles extensively use the LW-IR frequency range. The present research work is focused on developing antenna-based, uncooled, and unbiased detectors for the LW-IR regime. In the first part of this research, antenna-coupled metal-oxide-metal diodes (ACMOMD) are investigated. In response to the EM radiation, high-frequency antenna currents are induced in the antenna. An asymmetric-barrier Al-Al2O3-Pt MOM diode rectifies the antenna currents. Two different types of fabrication processes have been developed for ACMOMDs namely one-step lithography and two-step lithography. The major drawbacks of MOM-based devices include hard-to-control fabrication processes, generally very high zero-biased resistances, and vulnerability to electrostatic discharges, leading to unstable electrical characteristics. The second part of this research focuses on the development of unbiased LW-IR sensors based on the Seebeck effect. If two different metals are joined together at one end and their other ends are open-circuited, and if a non-zero temperature difference exists between the joined end and the open ends, then a non-zero open-circuit voltage can be measured between the open ends of the wires. Based on this effect, we have developed antenna-coupled nano-thermocouples (ACNTs) in which radiation-induced antenna currents produce polarization-dependent heating of the joined end of the two metals whereas the open ends remain at substrate temperature. This polarization-dependent heating induces polarization-dependent temperature difference between the joined end and the open ends of the metals leading to a polarization-dependent open-circuit voltage between the open ends of the metals. A CW CO2 laser tuned at 10.6 mum wavelength has been used for infrared characterization of these sensors. For these sensors, average responsivity of 22.7 mV/W, signal-to-noise (SNR) ratio of 29 dB, noise equivalent power (NEP) of 1.55 nW, and specific detectivity (D*) of 1.77x105 cm. Hz .W--1 were measured. ACNTs are expected to operate at frequencies much beyond 400 KHz. The third part of this research focuses on the effect of DC read-out interconnects on polarization characteristics of the planar dipole antennas. Different geometries of the interconnects present different electromagnetic boundary conditions to the antenna, and thus affect the far-field polarization characteristics of the antenna. Four designs of DC read-out interconnects are fabricated and their polarization-dependent IR responses are experimentally measured. The High Frequency Structure Simulator (HFSS) from ANSYS is used to simulate the polarization characteristics of the antenna with different read-out geometries.
Design and performance of a large area neutron sensitive anger camera
Visscher, Theodore; Montcalm, Christopher A.; Donahue, Jr., Cornelius; ...
2015-05-21
We describe the design and performance of a 157mm x 157mm two dimensional neutron detector. The detector uses the Anger principle to determine the position of neutrons. We have verified FWHM resolution of < 1.2mm with distortion < 0.5mm on over 50 installed Anger Cameras. The performance of the detector is limited by the light yield of the scintillator, and it is estimated that the resolution of the current detector could be doubled with a brighter scintillator. Data collected from small (<1mm 3) single crystal reference samples at the single crystal instrument TOPAZ provide results with low R w(F) values
Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes
NASA Astrophysics Data System (ADS)
Cant, John Fraser
This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector's acceleration and on the curvature of the spacetime, thereby encompassing previous results of Unruh (1976) and of Gibbons & Hawking (1977).
High precision detector robot arm system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Chu, Yong
A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.
High bit rate germanium single photon detectors for 1310nm
NASA Astrophysics Data System (ADS)
Seamons, J. A.; Carroll, M. S.
2008-04-01
There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD operated at relatively short GM hold-off times to examine whether there are potential advantages to using Ge for 1310 nm single photon detection. A weaker after-pulsing dependence on frequency is observed offering initial indications of the potential that Ge APDs might provide better high frequency performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warburton, William K.; Hennig, Wolfgang G.
A method and apparatus for measuring the concentrations of radioxenon isotopes in a gaseous sample wherein the sample cell is surrounded by N sub-detectors that are sensitive to both electrons and to photons from radioxenon decays. Signal processing electronics are provided that can detect events within the sub-detectors, measure their energies, determine whether they arise from electrons or photons, and detect coincidences between events within the same or different sub-detectors. The energies of detected two or three event coincidences are recorded as points in associated two or three-dimensional histograms. Counts within regions of interest in the histograms are then usedmore » to compute estimates of the radioxenon isotope concentrations. The method achieves lower backgrounds and lower minimum detectable concentrations by using smaller detector crystals, eliminating interference between double and triple coincidence decay branches, and segregating double coincidences within the same sub-detector from those occurring between different sub-detectors.« less
Here Be Dragons: Effective (X-ray) Timing with the Cospectrum
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela; Bachetti, Matteo
2018-01-01
In recent years, the cross spectrum has received considerable attention as a means of characterising the variability of astronomical sources as a function of wavelength. While much has been written about the statistics of time and phase lags, the cospectrum—the real part of the cross spectrum—has only recently been understood as means of mitigating instrumental effects dependent on temporal frequency in astronomical detectors, as well as a method of characterizing the coherent variability in two wavelength ranges on different time scales. In this talk, I will present recent advances made in understanding the statistical properties of cospectra, leading to much improved inferences for periodic and quasi-periodic signals. I will also present a new method to reliably mitigate instrumental effects such as dead time in X-ray detectors, and show how we can use the cospectrum to model highly variable sources such as X-ray binaries or Active Galactic Nuclei.
A micropixelated ion-imaging detector for mass resolution enhancement of a QMS instrument.
Syed, Sarfaraz U A H; Eijkel, Gert B; Maher, Simon; Kistemaker, Piet; Taylor, Stephen; Heeren, Ron M A
2015-03-01
An in-vacuum position-sensitive micropixelated detector (Timepix) is used to investigate the time-dependent spatial distribution of different charge state (and hence different mass-to-charge (m/z)) ions exiting an electrospray ionization (ESI)-based quadrupole mass spectrometer (QMS) instrument. Ion images obtained from the Timepix detector provide a detailed insight into the positions of stable and unstable ions of the mass peak as they exit the QMS. With the help of image processing algorithms and by selecting areas on the ion images where more stable ions impact the detector, an improvement in mass resolution by a factor of 5 was obtained for certain operating conditions. Moreover, our experimental approach of mass resolution enhancement was confirmed by in-house-developed novel QMS instrument simulation software. Utilizing the imaging-based mass resolution enhancement approach, the software predicts instrument mass resolution of ∼1,0000 for a single-filter QMS instrument with a 210-mm long mass filter and a low operating frequency (880 kHz) of the radio frequency (RF) voltage.
The International Linear Collider Technical Design Report - Volume 4: Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, Ties
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
Thermal stability of single-side hydrogenated graphene
NASA Astrophysics Data System (ADS)
Openov, L. A.; Podlivaev, A. I.
2012-11-01
The temperature dependence of the time of hydrogen desorption from single-side hydrogenated graphene is calculated using molecular dynamics simulation. The activation energy ( E a = 0.75 ± 0.10 eV) and the frequency factor ( A = (2.5 ± 1.0) × 1015 s-1) of the desorption are found. This quasi-two-dimensional carbon-hydrogen system is shown to have a relatively low thermal stability, which makes it difficult to use it in practice.
NASA Astrophysics Data System (ADS)
Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.
2018-02-01
Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.
Looking towards gravitational wave detection
NASA Astrophysics Data System (ADS)
Barsotti, Lisa
2009-05-01
It is an exciting time in gravitational wave research. The first generation ground detectors, which aim to detect gravitational waves in the audio-frequency region, have been successfully operated at their design sensitivity. One integrated year of coincident data from the three LIGO interferometers in United States has been collected between 2005 and 2007, in partial coincidence with the two European detectors, VIRGO and GEO. All the detectors are currently being upgraded, and they will come back on-line in the next few months with a factor 2 better sensitivity. A major upgrade of LIGO and VIRGO, scheduled to happen immediately after their upcoming science runs, will bring on-line second generation detectors 4 years from now. Their sensitivity is designed to be 10 times better than the first generation detectors, resulting in an expected event rate of at least a few per year. Looking farther into the future, space-based detectors such as LISA propose to cover a lower range of frequencies which are inaccessible on Earth, enhancing the opportunity of understanding our Universe trough gravitational waves.
TES Detector Noise Limited Readout Using SQUID Multiplexers
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.
2004-01-01
The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.
Multimessenger Predictions from 3D General-Relativistic Core-Collapse Supernovae Models
NASA Astrophysics Data System (ADS)
Kotake, Kei; Kuroda, Takami; Hayama, Kazuhiro
2017-02-01
In this contribution, we present results from fully general-relativistic three-dimensional (3D) simulations of a non-rotating 15M ⊙ star using different nuclear equations of state (EOSs). We show that the SASI (standing-accretion-shock-instability) activity occurs much more vigorously in models with softer EOS. By performing detailed analysis of the gravitational-wave (GW) emission, we find a new GW signature that is produced predominantly by the SASI-induced downflows to the proto-neutron star. We discuss the detectability of the GW signal by performing a coherent network analysis where multiple detectors including LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA are considered. We point out that the GW signal, whose typical frequency is in the best sensitivity range of the laser-interferometers, could potentially provide the live broadcast that pictures how the supernova shock is dancing in the core. The detection horizon of the signal is estimated as 2~3 kpc for the current generation detectors, which can extend up to ~100 kpc for the third generation detectors like Cosmic Explorer. We furthermore perform a correlation analysis between the SASI-modulated GW and neutrino signals. Our results show that the time correlation of the two signals becomes highest when we take into account the travel timescale of adverting material from the (average) neutrino-sphere to the proto-neutron star surface.
Photodiodes for ten micrometer laser communication systems
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1972-01-01
The performance is discussed of 10-micron mercury-cadmiumtelluride and lead-tin-telluride photodiodes in laser heterodyne communication systems. The dependence of detector quantum efficiency, resistance, frequency response, and signal-to-noise ratio on temperature, bias, and local oscillator power are examined. Included in the discussion is an analysis of the feasibility of high temperature operation, and ability of the detector to dissipate power to a heat sink is explored. Some aspects of direct detection response are considered and figures showing flux levels from a blackbody presented.
NASA Astrophysics Data System (ADS)
Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.
2013-04-01
In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.
Temperature and frequency dependence of anelasticity in a nickel oscillator
NASA Astrophysics Data System (ADS)
Berg, Robert F.
1995-09-01
The frequency dependence of the real and imaginary parts of a nickel oscillator's transfer function is described over 3 decades in frequency by the use of simple expressions. These expressions incorporate only the resonance frequency ω0, the quality factor Q, and a characteristic exponent β determined by a single measurement of creep. They are based on the ansatz φ(ω)=Q-1(ω/ω0)-β, where φ is the imaginary part of the spring constant. Over a 100 K range of temperature T, the exponent β≂0.18 was constant even though Q(T) changed by a factor of 8. These expressions are potentially useful for accurately describing a mechanical oscillator whose transfer function must be modeled at frequencies far below ω0. Examples include accelerometers based on a flexure element and suspensions for interferometric gravitational wave detectors.
Engineering Novel Detectors and Sensors for MRI
Qian, Chunqi; Zabow, Gary; Koretsky, Alan
2013-01-01
Increasing detection sensitivity and image contrast have always been major topics of research in MRI. In this perspective, we summarize two engineering approaches to make detectors and sensors that have potential to extend the capability of MRI. The first approach is to integrate miniaturized detectors with a wireless powered parametric amplifier to enhance the detection sensitivity of remotely coupled detectors. The second approach is to microfabricate contrast agents with encoded multispectral frequency shifts, whose properties can be specified and fine-tuned by geometry. These two complementary approaches will benefit from the rapid development in nanotechnology and microfabrication which should enable new opportunities for MRI. PMID:23245489
Continuous quantum measurement with independent detector cross correlations.
Jordan, Andrew N; Büttiker, Markus
2005-11-25
We investigate the advantages of using two independent, linear detectors for continuous quantum measurement. For single-shot measurement, the detection process may be quantum limited if the detectors are twins. For weak continuous measurement, cross correlations allow a violation of the Korotkov-Averin bound for the detector's signal-to-noise ratio. The joint weak measurement of noncommuting observables is also investigated, and we find the cross correlation changes sign as a function of frequency, reflecting a crossover from incoherent relaxation to coherent, out of phase oscillations. Our results are applied to a double quantum-dot charge qubit, simultaneously measured by two quantum point contacts.
Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Yamada, Hironari
2010-07-01
An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.
Improving Planck calibration by including frequency-dependent relativistic corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Notari, Alessio, E-mail: mquartin@if.ufrj.br, E-mail: notari@ffn.ub.es
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the 'orbital dipole', which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10{sup −3}, due to coupling with the 'solar dipole' (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevantmore » for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.« less
Kasugamycin-dependent mutants of Escherichia coli.
Dabbs, E R
1978-01-01
Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701
A decision-directed network for dual-polarization crosstalk cancellation
NASA Technical Reports Server (NTRS)
Weber, W. J., III
1979-01-01
Frequency reuse in the specific form of dual-polarized microwave communication systems has grown in importance in recent years as a practical means of radio spectrum conservation. Ideally the capacity of a given frequency allocation can be doubled through dual-polarization. However, hardware imperfections and propagation effects, particularly rain depolarization, prevent the achievement of this doubling without severe system performance degradation. A decision-directed cross-polarization correction network is presented whose operation depends on only simple base-band signal processing. No pilot tones or frequency offsets are required. The loop can work with any two-dimensional signal set for digital data transmission. The loop has been experimentally verified and provides a means of doubling the data capacity with little performance degradation.
NASA Astrophysics Data System (ADS)
Mi, Jian; Wang, Jianli; Pfeiffer, Loren N.; West, Ken W.; Baldwin, Kirk W.; Zhang, Chi
In our high mobility p-type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B - periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5 - 40 GHz), the period is inversely proportional to the microwave frequency (f). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS).
General n-dimensional quadrature transform and its application to interferogram demodulation.
Servin, Manuel; Quiroga, Juan Antonio; Marroquin, Jose Luis
2003-05-01
Quadrature operators are useful for obtaining the modulating phase phi in interferometry and temporal signals in electrical communications. In carrier-frequency interferometry and electrical communications, one uses the Hilbert transform to obtain the quadrature of the signal. In these cases the Hilbert transform gives the desired quadrature because the modulating phase is monotonically increasing. We propose an n-dimensional quadrature operator that transforms cos(phi) into -sin(phi) regardless of the frequency spectrum of the signal. With the quadrature of the phase-modulated signal, one can easily calculate the value of phi over all the domain of interest. Our quadrature operator is composed of two n-dimensional vector fields: One is related to the gradient of the image normalized with respect to local frequency magnitude, and the other is related to the sign of the local frequency of the signal. The inner product of these two vector fields gives us the desired quadrature signal. This quadrature operator is derived in the image space by use of differential vector calculus and in the frequency domain by use of a n-dimensional generalization of the Hilbert transform. A robust numerical algorithm is given to find the modulating phase of two-dimensional single-image closed-fringe interferograms by use of the ideas put forward.
Polarization-dependent plasmonic photocurrents in two-dimensional electron systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Saratov State University, Saratov 410012; Saratov Scientific Center of the Russian Academy of Sciences, Saratov 410028
2016-06-27
Plasmonic polarization dependent photocurrents in a homogeneous two-dimensional electron system are studied. Those effects are completely different from the photon drag and electronic photogalvanic effects as well as from the plasmonic ratchet effect in a density modulated two-dimensional electron system. Linear and helicity-dependent contributions to the photocurrent are found. The linear contribution can be interpreted as caused by the longitudinal and transverse plasmon drag effect. The helicity-dependent contribution originates from the non-linear electron convection and changes its sign with reversing the plasmonic field helicity. It is shown that the helicity-dependent component of the photocurrent can exceed the linear one bymore » several orders of magnitude in high-mobility two-dimensional electron systems. The results open possibilities for all-electronic detection of the radiation polarization states by exciting the plasmonic photocurrents in two-dimensional electron systems.« less
NASA Astrophysics Data System (ADS)
Lowell, A.; Boggs, S.; Chiu, J. L.; Kierans, C.; McBride, S.; Tseng, C. H.; Zoglauer, A.; Amman, M.; Chang, H. K.; Jean, P.; Lin, C. H.; Sleator, C.; Tomsick, J.; von Ballmoos, P.; Yang, C. Y.
2016-08-01
The Compton Spectrometer and Imager (COSI) is a medium energy gamma ray (0.2 - 10 MeV) imager designed to observe high-energy processes in the universe from a high altitude balloon platform. At its core, COSI is comprised of twelve high purity germanium double sided strip detectors which measure particle interaction energies and locations with high precision. This manuscript focuses on the positional calibrations of the COSI detectors. The interaction depth in a detector is inferred from the charge collection time difference between the two sides of the detector. We outline our previous approach to this depth calibration and also describe a new approach we have recently developed. Two dimensional localization of interactions along the faces of the detector (x and y) is straightforward, as the location of the triggering strips is simply used. However, we describe a possible technique to improve the x/y position resolution beyond the detector strip pitch of 2 mm. With the current positional calibrations, COSI achieves an angular resolution of 5.6 +/- 0.1 degrees at 662 keV, close to our expectations from simulations.
The magnetotelluric response over 2D media with resistivity frequency dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauriello, P.; Patella, D.; Siniscalchi, A.
1996-09-01
The authors investigate the magnetotelluric response of two-dimensional bodies, characterized by the presence of low-frequency dispersion phenomena of the electrical parameters. The Cole-Cole dispersion model is assumed to represent the frequency dependence of the impedivity complex function, defined as the inverse of Stoyer`s admittivity complex parameter. To simulate real geological situations, they consider three structural models, representing a sedimentary basin, a geothermal system and a magma chamber, assumed to be partially or totally dispersive. From a detailed study of the frequency and space behaviors of the magnetotelluric parameters, taking known non-dispersive results as reference, they outline the main peculiarities ofmore » the local distortion effects, caused by the presence of dispersion in the target media. Finally, they discuss the interpretive errors which can be made by neglecting the dispersion phenomena. The apparent dispersion function, which was defined in a previous paper to describe similar effects in the one-dimensional case, is again used as a reliable indicator of location, shape and spatial extent of the dispersive bodies. The general result of this study is a marked improvement in the resolution power of the magnetotelluric method.« less
ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential
NASA Astrophysics Data System (ADS)
Shklovskij, Valerij A.; Dobrovolskiy, Oleksandr V.
2008-09-01
The Langevin equation for a two-dimensional (2D) nonlinear guided vortex motion in a tilted cosine pinning potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex responses (on the frequency of an ac drive Ω ) in terms of the nonlinear impedance tensor Ẑ and the nonlinear ac response at Ω harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance tensor ẐL in the presence of a dc which depend on the angle α between the current-density vector and the guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of α anisotropy and the Hall effect on the nonlinear power absorption by vortices is discussed.
Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy
NASA Astrophysics Data System (ADS)
Ding, Junya; He, Tianbo; Zhou, Sheng; Zhang, Lei; Li, Jingsong
2018-05-01
In this paper, we report a new type of photoelectric detector based on a standard quartz crystal tuning fork (QCTF) with resonant frequency of 32 kHz for spectroscopic applications. Analogous to the photoelectric effect of traditional semiconductor detectors, we utilize the piezoelectric effect of the QCTF to gauge the light intensity. To explore the capabilities of this technique, the impact of incident light beam excitation positions with respect to QCTF on signal amplitude, resonant frequency and Q factor, as well as the dependence on incident light intensity, ambient pressure and temperature, was investigated in detail. Finally, the QCTF-based photodetector was successfully demonstrated for qualitative analysis of gasoline components by combing a broadband tunable external cavity quantum cascade laser.
Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo
2007-11-01
The stationary grid commonly used with a digital x-ray detector causes a moiré interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moiré such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moiré pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moiré pattern, particularly the line frequency and displacement. The frequency of the moiré pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moiré frequency. The frequency of the moiré pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moiré-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moiré pattern were investigated.
NASA Astrophysics Data System (ADS)
Zhao, Wen; Wen, Linqing
2018-03-01
We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational-wave (GW) detectors. Our study focuses on an individual 3G detector and a network of up to four 3G detectors at different locations including the United States, Europe, China, and Australia for the proposed Einstein Telescope (ET) and Cosmic Explorer (CE) detectors. In particular, we examine the effect of the Earth's rotation, as GW signals from BNS and low-mass NSBH systems could be hours long for 3G detectors. In this case, an individual detector can be effectively treated as a detector network with long baselines formed by the trajectory of the detector as it rotates with the Earth. Therefore, a single detector or two-detector networks could also be used to localize the GW sources effectively. We find that a time-dependent antenna beam-pattern function can help better localize BNS and NSBH sources, especially edge-on ones. The medium angular resolution for one ET-D detector is around 150 deg2 for BNSs at a redshift of z =0.1 , which improves rapidly with a decreasing low-frequency cutoff flow in sensitivity. The medium angular resolution for a network of two CE detectors in the United States and Europe, respectively, is around 20 deg2 at z =0.2 for the simulated BNS and NSBH samples. While for a network of two ET-D detectors, the similar angular resolution can be achieved at a much higher redshift of z =0.5 . The angular resolution of a network of three detectors is mainly determined by the baselines between detectors regardless of the CE or ET detector type. The medium angular resolution of BNS for a network of three detectors of the ET-D or CE type in the United States, Europe, and Australia is around 10 deg2 at z =2 . We discuss the implications of our results for multimessenger astronomy and, in particular, for using GW sources as independent tools to constrain the Hubble constant H0, the deceleration parameter q0, and the equation-of-state (EoS) of dark energy. We find that, in general, if 10 BNSs or NSBHs at z =0.1 with known redshifts are detected by 3G networks consisting of two ET-like detectors, H0 can be measured with an accuracy of 0.9%. If 1000 face-on BNSs at z <2 are detected with known redshifts, we are able to achieve Δ q0=0.002 for the deceleration parameter, or Δ w0=0.03 and Δ wa=0.2 for EoS of dark energy, respectively.
Markmann, Sergej; Nong, Hanond; Pal, Shovon; Fobbe, Tobias; Hekmat, Negar; Mohandas, Reshma A; Dean, Paul; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Wieck, Andreas D; Jukam, Nathan
2017-09-04
Two-dimensional spectroscopy is performed on a terahertz (THz) frequency quantum cascade laser (QCL) with two broadband THz pulses. Gain switching is used to amplify the first THz pulse and the second THz pulse is used to probe the system. Fourier transforms are taken with respect to the delay time between the two THz pulses and the sampling time of the THz probe pulse. The two-dimensional spectrum consists of three peaks at (ω τ = 0, ω t = ω 0 ), (ω τ = ω 0 , ω t = ω 0 ), and (ω τ = 2ω 0 , ω t = ω 0 ) where ω 0 denotes the lasing frequency. The peak at ω τ = 0 represents the response of the probe to the zero-frequency (rectified) component of the instantaneous intensity and can be used to measure the gain recovery.
SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, M; Kozuka, T; Oguchi, M
2014-06-15
Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.« less
Quantum revival for elastic waves in thin plate
NASA Astrophysics Data System (ADS)
Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick
2017-05-01
Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
2016-01-01
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Amariutei, D V; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Boschi, V; Bose, S; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, N; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; van den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-01-01
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juhasz, Z.; Sulik, B.; Racz, R.
2010-12-15
A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significantmore » oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Gruber, Matthew J; Bader, Kenneth B; Holland, Christy K
2014-02-01
Ultrasound contrast agents (UCAs) can be employed to nucleate cavitation to achieve desired bioeffects, such as thrombolysis, in therapeutic ultrasound applications. Effective methods of enhancing thrombolysis with ultrasound have been examined at low frequencies (<1 MHz) and low amplitudes (<0.5 MPa). The objective of this study was to determine cavitation thresholds for two UCAs exposed to 120-kHz ultrasound. A commercial ultrasound contrast agent (Definity(®)) and echogenic liposomes were investigated to determine the acoustic pressure threshold for ultraharmonic (UH) and broadband (BB) generation using an in vitro flow model perfused with human plasma. Cavitation emissions were detected using two passive receivers over a narrow frequency bandwidth (540-900 kHz) and a broad frequency bandwidth (0.54-1.74 MHz). UH and BB cavitation thresholds occurred at the same acoustic pressure (0.3 ± 0.1 MPa, peak to peak) and were found to depend on the sensitivity of the cavitation detector but not on the nucleating contrast agent or ultrasound duty cycle.
A two-dimensional time domain near zone to far zone transformation
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.
1991-01-01
A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.
Characterization of the polarization and frequency selective bolometric detector architecture
NASA Astrophysics Data System (ADS)
Leong, Jonathan Ryan Kyoung Ho
2009-01-01
The Cosmic Microwave Background (CMB) has been a wonderful probe of fundamental physics and cosmology. In the future, we look towards using the polarization information encoded in the CMB for investigating the gravity waves generated by inflation. This is a daunting task as it requires orders of magnitude increases in sensitivity as well as close attention to systematic rejection and astrophysical foreground removal. We have characterized a novel detector architecture which is aimed at making these leaps towards gravity wave detection in the CMB. These detectors are called the Polarization and Frequency Selective Bolometers (PFSBs). They attempt to use all the available photon information incident on a single pixel by selecting out the two orthogonal polarizations and multiple frequency bands into separately stacked detectors in a smooth-walled waveguide. This approach is inherently multimoded and thus solves problems with downlink and readout throughput by catching more photons per detector at the higher frequencies where the number of detectors required is prohibitively large. We have found that the PFSB architecture requires the use of a square cross-section waveguide. A simulation we developed has illuminated the fact that the curved field lines of the higher order modes can be eliminated by degeneracies which exist only for a square guide and not a circular one. In the square guide configuration, the PFSBs show good band selection and polarization efficiency to a level of about 90% over the beam out to at least 20° from on-axis.
MCNP output data analysis with ROOT (MODAR)
NASA Astrophysics Data System (ADS)
Carasco, C.
2010-12-01
MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Reasons for new version: For applications involving the Associate Particle Technique, a large number of gamma rays are produced by the fast neutrons interactions. To study the energy spectra, it is useful to identify the gamma-ray energy peaks in a straightforward way. Therefore, the possibility to show gamma rays corresponding to specific reactions has been added in MODAR. Summary of revisions: It is possible to use a gamma ray database to better identify in the energy spectra gamma ray peaks with their first and second escapes. Histograms can be scaled by the number of source particle to evaluate the number of counts that is expected without statistical uncertainties. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two dimensional data. Running time: The CPU time needed to smear a two dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoeberg, J; Bujila, R; Omar, A
2015-06-15
Purpose: To measure and compare the performance of X-ray imaging detectors in a clinical setting using a dedicated instrument for the quantitative determination of detector performance. Methods: The DQEPro (DQE Instruments Inc., London, Ontario Canada) was used to determine the MTF, NPS and DQE using an IEC compliant methodology for three different imaging modalities: conventional radiography (CsI-based detector), general-purpose radioscopy (CsI-based detector), and mammography (a-Se based detector). The radiation qualities (IEC) RQA-5 and RQA-M-2 were used for the CsI-based and a-Se-based detectors, respectively. The DQEPro alleviates some of the difficulties associated with DQE measurements by automatically positioning test devices overmore » the detector, guiding the user through the image acquisition process and providing software for calculations. Results: A comparison of the NPS showed that the image noise of the a-Se detector was less correlated than the CsI detectors. A consistently higher performance was observed for the a-Se detector at all spatial frequencies (MTF: 0.97@0.25 cy/mm, DQE: 0.72@0.25 cy/mm) and the DQE drops off slower than for the CsI detectors. The CsI detector used for conventional radiography displayed a higher performance at low spatial frequencies compared to the CsI detector used for radioscopy (DQE: 0.65 vs 0.60@0.25 cy/mm). However, at spatial frequencies above 1.3 cy/mm, the radioscopy detector displayed better performance than the conventional radiography detector (DQE: 0.35 vs 0.24@2.00 cy/mm). Conclusion: The difference in the MTF, NPS and DQE that was observed for the two different CsI detectors and the a-Se detector reflect the imaging tasks that the different detector types are intended for. The DQEPro has made the determination and calculation of quantitative metrics of X-ray imaging detector performance substantially more convenient and accessible to undertake in a clinical setting.« less
Akram, M Nadeem; Tong, Zhaomin; Ouyang, Guangmin; Chen, Xuyuan; Kartashov, Vladimir
2010-06-10
We utilize spatial and angular diversity to achieve speckle reduction in laser illumination. Both free-space and imaging geometry configurations are considered. A fast two-dimensional scanning micromirror is employed to steer the laser beam. A simple experimental setup is built to demonstrate the application of our technique in a two-dimensional laser picture projection. Experimental results show that the speckle contrast factor can be reduced down to 5% within the integration time of the detector.
NASA Technical Reports Server (NTRS)
Johnson, Dennis A. (Inventor)
1996-01-01
A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.
Chiral surface and edge plasmons in ferromagnetic conductors
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Vignale, Giovanni
2018-06-01
The recently introduced concept of "surface Berry plasmons" is studied in the concrete instance of a ferromagnetic conductor in which the Berry curvature, generated by spin-orbit (SO) interaction, has opposite signs for carrier with spins parallel or antiparallel to the magnetization. By using collisionless hydrodynamic equations with appropriate boundary conditions, we study both the surface plasmons of a three-dimensional ferromagnetic conductor and the edge plasmons of a two-dimensional one. The anomalous velocity and the broken inversion symmetry at the surface or the edge of the conductor create a "handedness" whereby the plasmon frequency depends not only on the angle between the wave vector and the magnetization, but also on the direction of propagation along a given line. In particular, we find that the frequency of the edge plasmon depends on the direction of propagation along the edge. These Berry curvature effects are compared and contrasted with similar effects on plasmon dispersions induced by an external magnetic field in the absence of Berry curvature. We argue that Berry curvature effects may be used to control the direction of propagation of the surface plasmons via coupling with the magnetization of ferromagnetic conductors, and thus create a link between plasmonics and spintronics.
A general theory of interference fringes in x-ray phase grating imaging.
Yan, Aimin; Wu, Xizeng; Liu, Hong
2015-06-01
The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.
Evolutionary branching under multi-dimensional evolutionary constraints.
Ito, Hiroshi; Sasaki, Akira
2016-10-21
The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang
2012-01-01
This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program, which turns a Wii Remote Controller into a three-dimensional object orientation detector). An ABAB design, in which A represented the baseline and B represented intervention phases, was adopted in this study. The data shows that the performance of both participants has significantly increased (i.e. they perform more simple occupational activities to activate the control system to produce environmental stimulation) during the intervention phases. The practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Three-dimensional ghost imaging using acoustic transducer
NASA Astrophysics Data System (ADS)
Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli
2016-06-01
We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.
Li, Changqing; Zhao, Hongzhi; Anderson, Bonnie; Jiang, Huabei
2006-03-01
We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.
Apparatus for detecting the presence of a liquid
Kronberg, J.W.
1995-10-31
An apparatus is described for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current. 12 figs.
Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.
Gu, Min; Fu, Ling
2006-02-06
Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.
Mihailescu, Lucian; Vetter, Kai M
2013-08-27
Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.
Enhanced numerical analysis of three-color HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-04-01
The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
Numerical analysis of three-colour HgCdTe detectors
NASA Astrophysics Data System (ADS)
Jóźwikowski, K.; Rogalski, A.
2007-12-01
The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier’s doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.
NASA Astrophysics Data System (ADS)
Gravrand, Olivier; Wlassow, J.; Bonnefond, L.
2014-07-01
Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal transfert function of the DTGS has to be qualified and taken into account. The usual way is to measure it directly by means of an optical shopper and a locking amplifier for different shopping frequencies. We present here an alternative method to estimate this DTGS transfer function, based on the fact that a FTIR continuous scan interfergram contains the different spectral frequencies of interest. Such a calibration method doesn't need a specific setup as it can be performed in standard configuration, playing only with spectrometer parameters. It allows for the precise estimation of detector spectral shapes. However, this measurement is not absolute and the peak response needs therefore to be estimated using a calibrated black body cavity. The method, its results and limits is presented and discussed for a set of different DTGS cells.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang
2012-01-01
This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program,…
Two-Dimensional, Time-Dependent Plasma Structures of a Hall Effect Thruster
2011-09-01
atmospheric pressure to 80 mtorr, is accomplished by a Leybold-Trivac rotary van vacuum pump and the second stage is completed by four 20 in CVI...Thruster”. Physics of Plasmas, 13, 2006. 3. Albarede, Luc, Vanessa Vial, Alexey Lazurenko, Andre Bouchoule, and Michel Dudeck. “Low Frequency Dynamical...Force Research Laboratory Space and Missile Division (AFRL/RZS) 5 Pollux Drive Edwards AFB, CA 93524 DSN 525-5230 AFRL/RZS Approval for public release
NASA Astrophysics Data System (ADS)
Timoshenko; Kalinchuk; Shirokov
2018-04-01
The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.
Assessing alternatives for directional detection of a halo of weakly interacting massive particles
NASA Astrophysics Data System (ADS)
Copi, Craig J.; Krauss, Lawrence M.; Simmons-Duffin, David; Stroiney, Steven R.
2007-01-01
The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can explore a large range of WIMP parameter space using well-tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.
Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2.
Lai, Jiawei; Liu, Xin; Ma, Junchao; Wang, Qinsheng; Zhang, Kenan; Ren, Xiao; Liu, Yinan; Gu, Qiangqiang; Zhuo, Xiao; Lu, Wei; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun; Chen, Jian-Hao; Sun, Dong
2018-05-01
Photodetectors based on Weyl semimetal promise extreme performance in terms of highly sensitive, broadband and self-powered operation owing to its extraordinary material properties. Layered Type-II Weyl semimetal that break Lorentz invariance can be further integrated with other two-dimensional materials to form van der Waals heterostructures and realize multiple functionalities inheriting the advantages of other two-dimensional materials. Herein, we report the realization of a broadband self-powered photodetector based on Type-II Weyl semimetal T d -MoTe 2 . The prototype metal-MoTe 2 -metal photodetector exhibits a responsivity of 0.40 mA W -1 and specific directivity of 1.07 × 10 8 Jones with 43 μs response time at 532 nm. Broadband responses from 532 nm to 10.6 μm are experimentally tested with a potential detection range extendable to far-infrared and terahertz. Furthermore, we identify the response of the detector is polarization angle sensitive due to the anisotropic response of MoTe 2 . The anisotropy is found to be wavelength dependent, and the degree of anisotropy increases as the excitation wavelength gets closer to the Weyl nodes. In addition, with power and temperature dependent photoresponse measurements, the photocurrent generation mechanisms are investigated. Our results suggest this emerging class of materials can be harnessed for broadband angle sensitive, self-powered photodetection with decent responsivities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Center for Advanced Sensors, Year One Funding (FY2005)
2006-10-30
on a plane and located near a planar wall. The box is a tank-sized box and the wall can represent a building or a tree line, depending on what...antenna is needed to geometrically couple the large spot to the small detector. As in all focal plane arrays, surface area is required to route...area at the antennae plane . Current antenna implementations for focal plane arrays emphasize frequency independent and modifications of frequency
Optical detectors based on thermoelastic effect in crystalline quartz
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.
2015-06-01
Optical detectors developed on base of thermo elastic effect In quartz crystalline (PTEK) attributed to the thermal detectors group. Such detectors occurred very effective for the registration of pulsed light energy or power of harmonically modulated laser radiation flux in a wide spectral (from UV to far IR) and dynamic ranges (from 10-6 to 300 W / cm2 with cooling) with a time constant up to10-6 seconds. When exposed to electromagnetic radiation occurs at the receiver thermal field which causes mechanical stress in the transient crystalline quartz, which in turn leads to a change in the polarization of crystalline quartz and, as a consequence, to an electric potential difference at the electrodes (the front surface with a conductive coating and damper). The capacitive characteristic of the detector, based on a thermo elastic effect in crystalline quartz, eliminates the possibility of working with constant flow of radiation, which also affects at the frequency response of the detector, since the potential difference appearance in the piezoelectric plate depends on the direction of the forces relative to the axes X, Y, Z of the crystal. Therefore, a certain choice of orientation of the receiving element is necessary in accordance with the physical properties of crystalline quartz. In this paper, a calculation of the sensitivity and frequency characteristics of optical detectors based on the thermo elastic effect in crystalline quartz at the harmonic effects of electromagnetic radiation flux are reported.
Capsize of polarization in dilute photonic crystals.
Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio
2017-11-29
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
Micropower RF material proximity sensor
McEwan, Thomas E.
1998-01-01
A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is of the sensor. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt's configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna.
Micropower RF material proximity sensor
McEwan, T.E.
1998-11-10
A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is disclosed. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt`s configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna. 5 figs.
47 CFR 90.269 - Use of frequencies for self-powered vehicle detectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... detectors. 90.269 Section 90.269 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bands § 90.269 Use of frequencies for self-powered vehicle detectors. (a) Frequencies subject to § 90.20(d)(22) may be used for the operation of self-powered vehicle detectors by licensees of base/mobile...
47 CFR 90.269 - Use of frequencies for self-powered vehicle detectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... detectors. 90.269 Section 90.269 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bands § 90.269 Use of frequencies for self-powered vehicle detectors. (a) Frequencies subject to § 90.20(d)(22) may be used for the operation of self-powered vehicle detectors by licensees of base/mobile...
47 CFR 90.269 - Use of frequencies for self-powered vehicle detectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... detectors. 90.269 Section 90.269 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bands § 90.269 Use of frequencies for self-powered vehicle detectors. (a) Frequencies subject to § 90.20(d)(22) may be used for the operation of self-powered vehicle detectors by licensees of base/mobile...
47 CFR 90.269 - Use of frequencies for self-powered vehicle detectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... detectors. 90.269 Section 90.269 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bands § 90.269 Use of frequencies for self-powered vehicle detectors. (a) Frequencies subject to § 90.20(d)(22) may be used for the operation of self-powered vehicle detectors by licensees of base/mobile...
47 CFR 90.269 - Use of frequencies for self-powered vehicle detectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... detectors. 90.269 Section 90.269 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bands § 90.269 Use of frequencies for self-powered vehicle detectors. (a) Frequencies subject to § 90.20(d)(22) may be used for the operation of self-powered vehicle detectors by licensees of base/mobile...
Transport conductivity of graphene at RF and microwave frequencies
NASA Astrophysics Data System (ADS)
Awan, S. A.; Lombardo, A.; Colli, A.; Privitera, G.; Kulmala, T. S.; Kivioja, J. M.; Koshino, M.; Ferrari, A. C.
2016-03-01
We measure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an {ω }2 dependence (where ω =2π f), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ˜0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ˜2.1 ps, highlighting the influence of AC electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.
NASA Astrophysics Data System (ADS)
Baffa, Carlo; Gennari, Sandro; Hunt, Leslie K.; Lisi, Franco; Tofani, Gianni; Vanzi, Leonardo
1995-09-01
We describe the general characteristics of the TIRGO infrared telescope, located on Gornergrat (Switzerland), and its most recent instrumentation. This telescope is specifically designed for infrared astronomical observations. Two newly designed instruments are presented: the imaging camera Arnica and the long-slit spectrometer LonGSp, both based on two-dimensional array detectors.
NASA Astrophysics Data System (ADS)
Kanti Bera, Tushar
2018-03-01
Biological tissues are developed with biological cells which exhibit complex electrical impedance called electrical bioimpedance. Under an alternating electrical excitation the bioimpedance varies with the tissue anatomy, composition and the signal frequency. The current penetration and conduction paths vary with frequency of the applied signal. Bioimpedance spectroscopy is used to study the frequency response of the electrical impedance of biological materials noninvasively. In bioimpedance spectroscopy, a low amplitude electrical signal is injected to the tissue sample or body parts to characterization the sample in terms of its bioimpedance. The electrical current conduction phenomena, which is highly influenced by the tissue impedance and the signal frequency, is an important phenomena which should be studied to understand the bioimpedance techniques like bioelectrical impedance analysis (BIA), EIS, or else. In this paper the origin of bioelectrical impedance and current conduction phenomena has been reviewed to present a brief summary of bioelectrical impedance and the frequency dependent current conduction through biological tissues. Simulation studies are conducted with alternation current injection through a two dimensional model of biological tissues containing finite number of biological cells suspended in extracellular fluid. The paper demonstrates the simulation of alternating current conduction through biological tissues conducted by COMSOL Multiphysics. Simulation studies also show the frequency response of the tissue impedance for different tissue compositions.
Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffatt, Robert
2016-03-01
In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Ourmore » measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.« less
Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer
NASA Astrophysics Data System (ADS)
Wang, Chunqi; Huang, Lixi
2008-06-01
When a segment of a rigid duct is replaced by a plate backed by a hard-walled cavity, grazing incident sound waves induce plate vibration, hence sound reflection. Based on this mechanism, a broadband plate silencer, which works effectively from low-to-medium frequencies have been developed recently. A typical plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. Such a configuration is two-dimensional in nature. In this paper, numerical study is extended to three-dimensional configurations to investigate the potential improvement in sound reflection. Finite element simulation shows that the three-dimensional configurations perform better than the corresponding two-dimensional design, especially in the relatively high frequency region. Further analysis shows that the three-dimensional design gives better plate response at higher axial modes than the simple two-dimensional design. Sound absorption mechanism is also introduced to the plate silencer by adding two dissipative chambers on the two lateral sides of a two-cavity wave reflector, hence a hybrid silencer. Numerical simulation shows that the proposed hybrid silencer is able to achieve a good moderate bandwidth with much reduced total length in comparison with pure absorption design.
Implicit versus explicit frequency comparisons: two mechanisms of auditory change detection.
Demany, Laurent; Semal, Catherine; Pressnitzer, Daniel
2011-04-01
Listeners had to compare, with respect to pitch (frequency), a pure tone (T) to a combination of pure tones presented subsequently (C). The elements of C were either synchronous, and therefore difficult to hear out individually, or asynchronous and therefore easier to hear out individually. In the "present/absent" condition, listeners had to judge if T reappeared in C or not. In the "up/down" condition, the task was to judge if the element of C most similar to T was higher or lower than T. When the elements of C were synchronous, the up/down task was found to be easier than the present/absent task; the converse result was obtained when the elements of C were asynchronous. This provides evidence for a duality of auditory comparisons between tone frequencies: (1) implicit comparisons made by automatic and direction-sensitive "frequency-shift detectors"; (2) explicit comparisons more sensitive to the magnitude of a frequency change than to its direction. Another experiment suggests that although the frequency-shift detectors cannot compare effectively two tones separated by an interfering tone, they are largely insensitive to interfering noise bursts.
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...
2018-01-01
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweppe, John E.; Ely, James H.; McConn, Ronald J.
Pacific Northwest National Laboratory has developed computer models to simulate the screening of vehicles and cargo with radiation portal monitors for the presence of illegitimate radioactive material. In addition, selected measurements have been conducted to validate the models. An important consideration in the modeling of realistic scenarios is the influence of the three-dimensional geometry of the cargo on the measured signature. This is particularly important for scenarios where the source and detector move with respect to each other. Two cases of the influence of the three-dimensional geometry of the cargo on the measured radiation signature are analyzed. In the first,more » measurements show that spectral data collected from moving sources so as to maximize the gross-counting signal-to-noise ratio has minimal spectral distortion, so that the spectral data can be summed over this time interval. In the second, modeling demonstrates that the ability to detect radioactive sources at all locations in a container full of cargo scales approximately linearly with the vertical height of the detector, suggesting that detectors should be approximately the same height as the container they scan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawrie, Alestin; Ghosh, Tarun Kanti
We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strengthmore » of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.« less
The Frequency Detuning Correction and the Asymmetry of Line Shapes: The Far Wings of H2O-H2O
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Hansen, James E. (Technical Monitor)
2002-01-01
A far-wing line shape theory which satisfies the detailed balance principle is applied to the H2O-H2O system. Within this formalism, two line shapes are introduced, corresponding to band-averages over the positive and negative resonance lines, respectively. Using the coordinate representation, the two line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a product of two factors. One depends on the interaction between the two molecules and is easy to evaluate. The other contains the density matrix of the system and is expressed as a product of two 3-dimensional distributions associated with the density matrices of the absorber and the perturber molecule, respectively. If most of the populated states are included in the averaging process, to obtain these distributions requires extensive computer CPU time, but only have to be computed once for a given temperature. The 11-dimensional integrations are evaluated using the Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such that the sensitivity of the integrands on them is clearly distinguished.
Two-dimensional sparse wavenumber recovery for guided wavefields
NASA Astrophysics Data System (ADS)
Sabeti, Soroosh; Harley, Joel B.
2018-04-01
The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.
Positron Emission Mammography with Multiple Angle Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark F. Smith; Stan Majewski; Raymond R. Raylman
2002-11-01
Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less
Wildey, R.L.
1988-01-01
A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency distribution of slope component was extracted. The algorithm recaptured the original reflectance function to the degree that, for the central 90% of the data, the discrepancy translates to a RMS slope error of 0.1 ???. For the central 99% of the data, the maximum error translates to 1 ???; at the absolute extremes of the data the error grows to 6 ???. ?? 1988 Kluwer Academic Publishers.
Helical structures in vertically aligned dust particle chains in a complex plasma
NASA Astrophysics Data System (ADS)
Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.
2013-05-01
Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].
NASA Astrophysics Data System (ADS)
Leaci, Paola; Astone, Pia; D'Antonio, Sabrina; Frasca, Sergio; Palomba, Cristiano; Piccinni, Ornella; Mastrogiovanni, Simone
2017-06-01
We describe a novel, very fast and robust, directed search incoherent method (which means that the phase information is lost) for periodic gravitational waves from neutron stars in binary systems. As a directed search, we assume the source sky position to be known with enough accuracy, but all other parameters (including orbital ones) are supposed to be unknown. We exploit the frequency modulation due to source orbital motion to unveil the signal signature by commencing from a collection of time and frequency peaks (the so-called "peakmap"). We validate our algorithm (pipeline), adding 131 artificial continuous-wave signals from pulsars in binary systems to simulated detector Gaussian noise, characterized by a power spectral density Sh=4 ×10-24 Hz-1 /2 in the frequency interval [70, 200] Hz, which is overall commensurate with the advanced detector design sensitivities. The pipeline detected 128 signals, and the weakest signal injected (added) and detected has a gravitational-wave strain amplitude of ˜10-24, assuming one month of gapless data collected by a single advanced detector. We also provide sensitivity estimations, which show that, for a single-detector data covering one month of observation time, depending on the source orbital Doppler modulation, we can detect signals with an amplitude of ˜7 ×10-25. By using three detectors, and one year of data, we would easily gain a factor 3 in sensitivity, translating into being able to detect weaker signals. We also discuss the parameter estimate proficiency of our method, as well as computational budget: sifting one month of single-detector data and 131 Hz-wide frequency range takes roughly 2.4 CPU hours. Hence, the current procedure can be readily applied in ally-sky schemes, sieving in parallel as many sky positions as permitted by the available computational power. Finally, we introduce (ongoing and future) approaches to attain sensitivity improvements and better accuracy on parameter estimates in view of the use on real advanced detector data.
NASA Astrophysics Data System (ADS)
Klein, P.; Hirth, M.; Gröber, S.; Kuhn, J.; Müller, A.
2014-07-01
Smartphones and tablets are used as experimental tools and for quantitative measurements in two traditional laboratory experiments for undergraduate physics courses. The Doppler effect is analyzed and the speed of sound is determined with an accuracy of about 5% using ultrasonic frequency and two smartphones, which serve as rotating sound emitter and stationary sound detector. Emphasis is put on the investigation of measurement errors in order to judge experimentally derived results and to sensitize undergraduate students to the methods of error estimates. The distance dependence of the illuminance of a light bulb is investigated using an ambient light sensor of a mobile device. Satisfactory results indicate that the spectrum of possible smartphone experiments goes well beyond those already published for mechanics.
NASA Astrophysics Data System (ADS)
Lin, Chaojing; Morita, Kyosuke; Muraki, Koji; Fujisawa, Toshimasa
2018-04-01
Edge magnetoplasmons (EMPs) are unidirectional charge density waves travelling in an edge channel of a two-dimensional electron gas in the quantum Hall regime. We present both generation and detection schemes with a photoconductive switch (PCS) for EMPs. Here, the conductance of the PCS is modulated by irradiation with a laser beam, whose amplitude can be modulated by an external signal. When the PCS is used as a generator, the electrical current from the PCS is injected into the edge channel to excite EMPs. When the PCS is used as a detector, the electronic potential induced by EMPs is applied to the PCS with a modulated laser beam so as to constitute a phase-sensitive measurement. For both experiments, we confirm that the time of flight for the EMPs increases with the magnetic field in agreement with the EMP characteristics. Combination of the two schemes would be useful in investigating and utilizing EMPs at higher frequencies.
Study of guided modes in three-dimensional composites
NASA Astrophysics Data System (ADS)
Baste, S.; Gerard, A.
The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).
Dynamics of a Landau-Zener non-dissipative system with fluctuating energy levels
NASA Astrophysics Data System (ADS)
Fai, L. C.; Diffo, J. T.; Ateuafack, M. E.; Tchoffo, M.; Fouokeng, G. C.
2014-12-01
This paper considers a Landau-Zener (two-level) system influenced by a three-dimensional Gaussian and non-Gaussian coloured noise and finds a general form of the time dependent diabatic quantum bit (qubit) flip transition probabilities in the fast, intermediate and slow noise limits. The qubit flip probability is observed to mimic (for low-frequencies noise) that of the standard LZ problem. The qubit flip probability is also observed to be the measure of quantum coherence of states. The transition probability is observed to be tailored by non-Gaussian low-frequency noise and otherwise by Gaussian low-frequency coloured noise. Intermediate and fast noise limits are observed to alter the memory of the system in time and found to improve and control quantum information processing.
Relating the ac complex resistivity of the pinned vortex lattice to its shear modulus
NASA Astrophysics Data System (ADS)
Ong, N. P.; Wu, Hui
1997-07-01
We propose a way to determine the shear rigidity of the pinned vortex lattice in high-purity crystals from the dependence of its complex resistivity ρ⁁ on frequency (ω). The lattice is modeled as an elastic medium pinned by a sparse, random distribution of defects. We relate ρ⁁ to the velocity of the small subset of pinned vortices via the lattice propagator G(R,ω). Measuring ρ⁁ versus ω is equivalent to determining G(R,ω) versus R. The range of G(R,ω) depends sensitively on the shear and tilt moduli. We describe the evaluation of G(R,ω) in two-dimensional (2D) and 3D lattices. The 2D analysis provides a close fit to the frequency dependence of Reρ⁁ measured in an untwinned crystal of YBa2Cu3O7 at 89 K in a field of 0.5 and 1.0 T. We compare our results with earlier models.
System design of a small OpenPET prototype with 4-layer DOI detectors.
Yoshida, Eiji; Kinouchi, Shoko; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Yamaya, Taiga
2012-01-01
We have proposed an OpenPET geometry which consists of two axially separated detector rings. The open gap is suitable for in-beam PET. We have developed the small prototype of the OpenPET especially for a proof of concept of in-beam imaging. This paper presents an overview of the main features implemented in this prototype. We also evaluated the detector performance. This prototype was designed with 2 detector rings having 8 depth-of-interaction detectors. Each detector consisted of 784 Lu(2x)Gd(2(1-x))SiO₅:Ce (LGSO) which were arranged in a 4-layer design, coupled to a position-sensitive photomultiplier tube (PS-PMT). The size of the LGSO array was smaller than the sensitive area of the PS-PMT, so that we could obtain sufficient LGSO identification. Peripheral LGSOs near the open gap directly detect the gamma rays on the side face in the OpenPET geometry. Output signals of two detectors stacked axially were projected onto one 2-dimensional position histogram for reduction of the scale of a coincidence processor. Front-end circuits were separated from the detector head by 1.2-m coaxial cables for the protection of electronic circuits from radiation damage. The detectors had sufficient crystal identification capability. Cross talk between the combined two detectors could be ignored. The timing and energy resolutions were 3.0 ns and 14%, respectively. The coincidence window was set 20 ns, because the timing histogram showed that not only the main peak, but also two small shifted peaks were caused by the coaxial cable. However, the detector offers the promise of sufficient performance, because random coincidences are at a nearly undetectable level for in-beam PET experiments.
Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope
NASA Technical Reports Server (NTRS)
Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)
2002-01-01
We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmermans, Eddy Marcel Elvire; Nisoli, Cristiano; Mozyrsky, Dima
Light radiated from a hot, opaque thermal emitter originates mostly from near the surface at which the object becomes opaque (the surface of last scattering). To be specific, we define the “optical surface” as the surface at which the optical depth, as observed from a detector, takes on the value of 1. The optical depth along a line of sight depends on the wavelength dependent. Accumulating light in different spectral bands, spectral detector then records light from different surfaces, a structure that we can picture somewhat like the layers of an onion. The theoretical framework that predicts the emitted spectralmore » signal is radioactive transfer.« less
NASA Astrophysics Data System (ADS)
Li, Jin-Lun; Cui, Shao-Hui; Xu, Jian-Xing; Cui, Xiao-Ran; Guo, Chun-Yan; Ma, Ben; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-04-01
Not Available Project supported by the Foundation for Scientific Instrument and Equipment Development, Chinese Academy of Sciences (Grant No. YJKYYQ20170032) and the National Natural Science Foundation of China (Grant No. 61435012).
Polaron-to-Polaron Transitions in the Radio-Frequency Spectrum of a Quasi-Two-Dimensional Fermi Gas
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ong, W.; Arakelyan, I.; Thomas, J. E.
2012-06-01
We measure radio-frequency spectra for a two-component mixture of a Li6 atomic Fermi gas in a quasi-two-dimensional regime with the Fermi energy comparable to the energy level spacing in the tightly confining potential. Near the Feshbach resonance, we find that the observed resonances do not correspond to transitions between confinement-induced dimers. The spectral shifts can be fit by assuming transitions between noninteracting polaron states in two dimensions.
Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps
NASA Technical Reports Server (NTRS)
Stroeer, A.; Blackburn, L.; Camp, J.
2011-01-01
Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time-amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a X(sup 2) goodness-offit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.
NASA Astrophysics Data System (ADS)
Kawaguchi, S.; Takemoto, M.; Osaka, K.; Nishibori, E.; Moriyoshi, C.; Kubota, Y.; Kuroiwa, Y.; Sugimoto, K.
2017-08-01
In this study, we developed a user-friendly automatic powder diffraction measurement system for Debye-Scherrer geometry using a capillary sample at beamline BL02B2 of SPring-8. The measurement system consists of six one-dimensional solid-state (MYTHEN) detectors, a compact auto-sampler, wide-range temperature control systems, and a gas handling system. This system enables to do the automatic measurement of temperature dependence of the diffraction patterns for multiple samples. We introduced two measurement modes in the MYTHEN system and developed new attachments for the sample environment such as a gas handling system. The measurement modes and the attachments can offer in situ and/or time-resolved measurements in an extended temperature range between 25 K and 1473 K and various gas atmospheres and pressures. The results of the commissioning and performance measurements using reference materials (NIST CeO2 674b and Si 640c), V2O3 and Ti2O3, and a nanoporous coordination polymer are presented.
Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H
2004-07-15
This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.
Electron mean free path dependence of the vortex surface impedance
Checchin, M.; Martinello, M.; Grassellino, A.; ...
2017-01-17
In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less
Electron mean free path dependence of the vortex surface impedance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, M.; Martinello, M.; Grassellino, A.
In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning andmore » flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. As a result, the dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.« less
A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, Doug; Davis, Milt, Jr.; Cole, Gary
1999-01-01
The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.
Magnetic Fields Generated by Internal Ocean Seawater Motion
1991-12-01
detection; Internal Waves; Boundary laver turbulence A’• S’N AC’ :Conrinue on re~erse ,f necessary and ,denbly by blo( k nurlbu.r) This thesis models...to a two- dimensional spectrum, and integrated over wavenumber from a minimum, k ~i, to infinity to give B,(W) . In the other, application of a...order of magnitude as ionospherically generated signals. The first k -dependence method yielded frequency responses that do not follow the 1/f 2
Solution of non-continuum flows using BGK-type model with enforced relaxation of moments
NASA Astrophysics Data System (ADS)
Alekseenko, Alexander; Gimelshein, Sergey; Nguyen, Truong; Vedula, Prakash
2016-11-01
A BGK-type model with velocity dependent collision frequency and enforced relaxation rates for selected moments is applied to simulation of one- and two-dimensional super sonic flows. Relaxation rates of the moments are estimated by evaluating the full Boltzmann collision integral several times during the simulation. The solutions show improvements in velocity and temperature profiles as compared to the classical ES-BGK model. However, enforcement of relaxation rates for high order moments increases stiffness of the model.
NASA Astrophysics Data System (ADS)
Wang, Wenbo; Fu, Dong; Hu, Xiaobin; Xu, Yun; Song, Guofeng; Wei, Xin
2016-10-01
Polarimetric imaging in infrared wavelengths have attracted more and more attention for broad applications in meteorological observations, medicine, remote sensing and many other fields. Metal metamaterial structures are used in nanophotonics in order to localize and enhance the incident electromagnetic field. Here we develop an elliptical gold Two-Dimensional Holes Array (2DHA) in which photons can be manipulated by surface plasmon resonance, and the ellipse introduce the asymmetry to realize a polarization selective function. Strong polarization dependence is observed in the simulated transmission spectra. To further understand the coupling mechanism between gold holes array and InP, the different parameters of the 2DHA are analyzed. It is shown that the polarization axis is perpendicular to the major axis of the ellipse, and the degree of polarization is determined by the aspect ratio of the ellipse. Furthermore, the resonance frequency of the 2DHA shows a linear dependence on the array period, the bandwidth of transmission spectra closely related to duty cycle of the ellipse in each period. This result will establish a basis for the development of innovative polarization selective infrared sensor.
Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing
2018-06-01
We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.
NASA Astrophysics Data System (ADS)
Huang, Hao; Ren, Xiaohui; Li, Zhongjun; Wang, Huide; Huang, Zongyu; Qiao, Hui; Tang, Pinghua; Zhao, Jinlai; Liang, Weiyuan; Ge, Yanqi; Liu, Jie; Li, Jianqing; Qi, Xiang; Zhang, Han
2018-06-01
Two dimensional Bi nanosheets have been employed to fabricate electrodes for broadband photo-detection. A series of characterization techniques including scanning electron microscopy and high-resolution transmission electron microscopy have verified that Bi nanosheets with intact lamellar structure have been obtained after facile liquid phase exfoliation. In the meanwhile, UV–vis and Raman spectra are also carried out and the inherent optical and physical properties of Bi nanosheets are confirmed. Inherited from the topological characteristics of Bi bulk counterpart, the resultant Bi nanosheet-based photo-detector exhibits preferable photo-response activity as well as environmental robustness. We then evaluate the photo-electrochemical (PEC) performance of the photodetector in 1 M NaOH and 0.5 M Na2SO4 electrolytes, and demonstrated that the as-prepared Bi nanosheets may possess a great potential as PEC-type photo-detector. Additional PEC measurements show that the current density of Bi nanosheets can reach up to 830 nA cm‑2, while an enhanced responsivity (1.8 μA W‑1) had been achieved. We anticipate that this contribution can provide feasibility towards the construction of high-performance elemental Bi nanosheets-based optoelectronic devices in the future.
Huang, Hao; Ren, Xiaohui; Li, Zhongjun; Wang, Huide; Huang, Zongyu; Qiao, Hui; Tang, Pinghua; Zhao, Jinlai; Liang, Weiyuan; Ge, Yanqi; Liu, Jie; Li, Jianqing; Qi, Xiang; Zhang, Han
2018-06-08
Two dimensional Bi nanosheets have been employed to fabricate electrodes for broadband photo-detection. A series of characterization techniques including scanning electron microscopy and high-resolution transmission electron microscopy have verified that Bi nanosheets with intact lamellar structure have been obtained after facile liquid phase exfoliation. In the meanwhile, UV-vis and Raman spectra are also carried out and the inherent optical and physical properties of Bi nanosheets are confirmed. Inherited from the topological characteristics of Bi bulk counterpart, the resultant Bi nanosheet-based photo-detector exhibits preferable photo-response activity as well as environmental robustness. We then evaluate the photo-electrochemical (PEC) performance of the photodetector in 1 M NaOH and 0.5 M Na 2 SO 4 electrolytes, and demonstrated that the as-prepared Bi nanosheets may possess a great potential as PEC-type photo-detector. Additional PEC measurements show that the current density of Bi nanosheets can reach up to 830 nA cm -2 , while an enhanced responsivity (1.8 μA W -1 ) had been achieved. We anticipate that this contribution can provide feasibility towards the construction of high-performance elemental Bi nanosheets-based optoelectronic devices in the future.
Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability
NASA Technical Reports Server (NTRS)
Baird, J.; Havemann, R. H.; Fults, R. D.
1973-01-01
The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.
Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
NASA Astrophysics Data System (ADS)
Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin
2017-04-01
An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).
Dimensionality and noise in energy selective x-ray imaging
Alvarez, Robert E.
2013-01-01
Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442
A new look at sound generation by blade/vortex interaction
NASA Technical Reports Server (NTRS)
Hardin, J. C.; Mason, J. P.
1985-01-01
As a preliminary attempt to understand the dynamics of blade/vortex interaction, the two-dimensional problem of a rectilinear vortex filament interacting with a Joukowski airfoil is analyzed in both the lifting and nonlifting cases. The vortex velocity components could be obtained analytically and integrated to determine the vortex trajectory. With this information, the aeroacoustic low-frequency Green's function approach could then be employed to calculate the sound produced during the encounter. The results indicate that the vortex path deviates considerably from simple convection due to the presence of the airfoil and that a reasonably sharp sound pulse is radiated during the interaction whose fundamental frequency is critically dependent upon whether the vortex passes above or below the airfoil. Determination of this gross parameter of the interaction is shown to be highly nonlinearly dependent upon airfoil circulation, vortex circulation, and initial position.
Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M
2008-11-01
A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.
Diffraction mode terahertz tomography
Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng
2006-10-31
A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.
NASA Astrophysics Data System (ADS)
Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.
2011-03-01
A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.
Transmission beam characteristics of a Risso's dolphin (Grampus griseus).
Smith, Adam B; Kloepper, Laura N; Yang, Wei-Cheng; Huang, Wan-Hsiu; Jen, I-Fan; Rideout, Brendan P; Nachtigall, Paul E
2016-01-01
The echolocation system of the Risso's dolphin (Grampus griseus) remains poorly studied compared to other odontocete species. In this study, echolocation signals were recorded from a stationary Risso's dolphin with an array of 16 hydrophones and the two-dimensional beam shape was explored using frequency-dependent amplitude plots. Click source parameters were similar to those already described for this species. Centroid frequency of click signals increased with increasing sound pressure level, while the beamwidth decreased with increasing center frequency. Analysis revealed primarily single-lobed, and occasionally vertically dual-lobed, beam shapes. Overall beam directivity was found to be greater than that of the harbor porpoise, bottlenose dolphin, and a false killer whale. The relationship between frequency content, beam directivity, and head size for this Risso's dolphin deviated from the trend described for other species. These are the first reported measurements of echolocation beam shape and directivity in G. griseus.
Kim, Min-Young; Sramek, Christopher; Uchida, Atsushi; Roy, Rajarshi
2006-07-01
Synchronization of chaotic systems has been studied extensively, and especially, the possible applications to the communication systems motivated many research areas. We demonstrate the effect of the frequency bandwidth limitations in the communication channel on the synchronization of two unidirectionally coupled Mackey-Glass (MG) analog circuits, both numerically and experimentally. MG system is known to generate high dimensional chaotic signals. The chaotic signal generated from the drive MG system is modified by a low pass filter and is then transmitted to the response MG system. Our results show that the inclusion of the dominant frequency component of the original drive signals is crucial to achieve synchronization between the drive and response circuits. The maximum cross correlation and the corresponding time shift reveal that the frequency-dependent coupling introduced by the low pass filtering effect in the communication channel change the quality of synchronization.
NASA Astrophysics Data System (ADS)
Wang, Jun; Zhou, Xiaoqin; Wang, Rongqi; Lin, Jieqiong
2018-05-01
In this paper, the layered cantilever-in-mass structures (LCIMs) will be theoretically investigated to reveal the effects of the layered structures on band gaps, which have great potential to bring in many useful material properties without much increasing the manufacturing difficulty by stacking the damped layers or other different component layers. Firstly, the negative effective mass model of LCIMs is derived based on the mass-in-mass model, which is applied to analyze the effective parameters of band gaps in terms of the geometrical features and material properties, the analytical results indicate the negative effective masses of LCIMs depend highly on the material parameter and thicknesses of each constituent layers. Then the LCIMs consist of the same thickness layers are further researched, which has found that their resonance frequency are independent on the layer thickness, and the numeric values of resonance frequencies are between the maximum and minimum local resonance frequency of their constituent layers. To validate the above analytical model, the three-dimensional model and the two-dimensional shell model of LCIMs are constructed in COMSOL Multiphysics. The obtained results show well agreement with the derived model in both the three-dimensional model and shell model. Finally, the dissipative LCIMs modeled by stacking the damped layers and metal layers are studied and discussed.
Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data
NASA Technical Reports Server (NTRS)
Soderblom, Laurence A.; Kirk, Randolph L.
2003-01-01
We have extended our previous efforts to derive through controlled photoclinometry, accurate, calibrated, high-resolution topographic models of the martian surface. The process involves combining MGS MOLA topographic profiles and MGS MOC Narrow Angle images. The earlier work utilized, along with a particular MOC NA image, the MOLA topographic profile that was acquired simultaneously, in order to derive photometric and scattering properties of the surface and atmosphere so as to force the low spatial frequencies of a one-dimensional MOC photoclinometric model to match the MOLA profile. Both that work and the new results reported here depend heavily on successful efforts to: 1) refine the radiometric calibration of MOC NA; 2) register the MOC to MOLA coordinate systems and refine the pointing; and 3) provide the ability to project into a common coordinate system, simultaneously acquired MOC and MOLA with a single set of SPICE kernels utilizing the USGS ISIS cartographic image processing tools. The approach described in this paper extends the MOC-MOLA integration and cross-calibration procedures from one-dimensional profiles to full two-dimensional photoclinometry and image simulations. Included are methods to account for low-frequency albedo variations within the scene.
Fast time variations of supernova neutrino signals from 3-dimensional models
Lund, Tina; Wongwathanarat, Annop; Janka, Hans -Thomas; ...
2012-11-19
Here, we study supernova neutrino flux variations in the IceCube detector, using 3D models based on a simplified neutrino transport scheme. The hemispherically integrated neutrino emission shows significantly smaller variations compared with our previous study of 2D models, largely because of the reduced activity of the standing accretion shock instability in this set of 3D models which we interpret as a pessimistic extreme. For the studied cases, intrinsic flux variations up to about 100 Hz frequencies could still be detected in a supernova closer than about 2 kpc.
A Two-Channel Phoswich Detector for Dual and Triple Coincidence Measurements of Radioxenon Isotopes
2007-09-01
radon daughters in a two-dimensional beta/gamma coincidence energy distribution (McIntyre et al., 2004). This eliminates the need for additional...gamma spectrum is used to monitor xenon radioisotopes in the ARSA system (Figure 1). There are three boxed areas (in the absence of any radon daughters ) from
Noise-induced phase space transport in two-dimensional Hamiltonian systems.
Pogorelov, I V; Kandrup, H E
1999-08-01
First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.
NASA Astrophysics Data System (ADS)
Sharma, Saumya
Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at +/-200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd). The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or +/-1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz. Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter. Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.
Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials
NASA Astrophysics Data System (ADS)
Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina
1992-08-01
Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.
A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates
NASA Astrophysics Data System (ADS)
Zhang, Shunzu; Yao, Hong; Gao, Yuanwen
2017-04-01
A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via " ΔE effect", can enhance ME coefficient about 100 times than that at low frequency.
NASA Astrophysics Data System (ADS)
Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman
2016-08-01
Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two generations of development and optimization cycles. We review our imager results using the first-generation detectors. In the second-generation devices, the dark current is reduced by two orders of magnitude, and bandwidth is improved by 4 orders of magnitude. The dark current density of the EI detector is shown to outperform the state-of-the-art technology, the
NASA Astrophysics Data System (ADS)
Gómez-Urrea, H. A.; Escorcia-García, J.; Duque, C. A.; Mora-Ramos, M. E.
2017-11-01
The transmittance spectrum of a one-dimensional hybrid photonic crystal built from the suitable arrangement of periodic and quasiregular Rudin-Shapiro heterolayers that include superconducting slabs is investigated. The four-layer Rudin-Shapiro structure is designed with three lossless dielectric layers and a low-temperature superconductor one. The dielectric function of the superconducting layer is modeled by the two-fluid Gorter-Casimir theory, and the transmittance is calculated with the use of the transfer matrix method. The obtained results reveal the presence of a cut-off frequency fc - a forbidden frequency band for propagation - that can be manipulated by changing the width of the superconducting layer, the temperature and the order of the Rudin-Shapiro sequence. In addition, the spatial distribution of the electric field amplitude for the propagating TM modes is also discussed. It is found that the maximum of localized electric field relative intensity - which reaches a value of several tens - corresponds to the frequency values above to the cut-off frequency, at which, the effective dielectric function of the hybrid unit cell becomes zero. The proposed structure could be another possible system for optical device design for temperature-dependent optical devices such as stop-band filters, or as bolometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M.
2016-06-15
Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency andmore » effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.« less
Larsson, Jakob C; Lundström, Ulf; Hertz, Hans M
2016-06-01
High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28-38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.
Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing
NASA Astrophysics Data System (ADS)
Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.
2018-03-01
Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.
Deibel, Jason A; Berndsen, Nicholas; Wang, Kanglin; Mittleman, Daniel M; van der Valk, Nick C; Planken, Paul C M
2006-09-18
We report on the emission patterns from THz plasmons propagating towards the end of cylindrical metal waveguides. Such waveguides exhibit low loss and dispersion, but little is known about the dynamics of the terahertz radiation at the end of the waveguide, specifically in the near- and intermediate-field. Our experimental results and numerical simulations show that the near- and intermediate-field terahertz spectra, measured at the end of the waveguide, vary with the position relative to the waveguide. This is explained by the frequency-dependent diffraction occurring at the end of the cylindrical waveguide. Our results show that near-field changes in the frequency content of THz pulses for increasing wire-detector distances must be taken into account when studying surface waves on cylindrical waveguides.
Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi
2006-01-01
Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.
Assessing alternatives for directional detection of a halo of weakly interacting massive particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copi, Craig J.; Krauss, Lawrence M.; Department of Astronomy, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-7079
2007-01-15
The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can explore a large range of WIMP parameter space using well-tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with andmore » without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.« less
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.
1999-09-01
We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.
Two-photon absorption in layered transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Dong, Ningning; Zhang, Saifeng; Li, Yuanxin; Wang, Jun
2018-02-01
Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) exhibit unique nonlinear optical (NLO) features and have becoming intriguing and promising candidate materials for photonic and optoelectronic devices with high performance and unique functions. Owing to layered geometry and the thickness-dependent bandgap, we studied the ultrafast NLO properties of a range of TMDCs. TMDCs with high-quality layered nanosheets were prepared through chemical vapor deposition (CVD) technique and vapor-phase growth method. Saturable absorption, two photon absorption (TPA) and two photon pumped frequency up-converted luminescence were observed from these 2D nanostructures. The exciting results open up the door to 2D photonic devices, such as passive mode-lockers, Q-switchers, optical limiters, light emitters, etc.
Phonons in two-dimensional soft colloidal crystals.
Chen, Ke; Still, Tim; Schoenholz, Samuel; Aptowicz, Kevin B; Schindler, Michael; Maggs, A C; Liu, Andrea J; Yodh, A G
2013-08-01
The vibrational modes of pristine and polycrystalline monolayer colloidal crystals composed of thermosensitive microgel particles are measured using video microscopy and covariance matrix analysis. At low frequencies, the Debye relation for two-dimensional harmonic crystals is observed in both crystal types; at higher frequencies, evidence for van Hove singularities in the phonon density of states is significantly smeared out by experimental noise and measurement statistics. The effects of these errors are analyzed using numerical simulations. We introduce methods to correct for these limitations, which can be applied to disordered systems as well as crystalline ones, and we show that application of the error correction procedure to the experimental data leads to more pronounced van Hove singularities in the pristine crystal. Finally, quasilocalized low-frequency modes in polycrystalline two-dimensional colloidal crystals are identified and demonstrated to correlate with structural defects such as dislocations, suggesting that quasilocalized low-frequency phonon modes may be used to identify local regions vulnerable to rearrangements in crystalline as well as amorphous solids.
Fringe pattern information retrieval using wavelets
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Patimo, Caterina; Manicone, Pasquale D.; Lamberti, Luciano
2005-08-01
Two-dimensional phase modulation is currently the basic model used in the interpretation of fringe patterns that contain displacement information, moire, holographic interferometry, speckle techniques. Another way to look to these two-dimensional signals is to consider them as frequency modulated signals. This alternative interpretation has practical implications similar to those that exist in radio engineering for handling frequency modulated signals. Utilizing this model it is possible to obtain frequency information by using the energy approach introduced by Ville in 1944. A natural complementary tool of this process is the wavelet methodology. The use of wavelet makes it possible to obtain the local values of the frequency in a one or two dimensional domain without the need of previous phase retrieval and differentiation. Furthermore from the properties of wavelets it is also possible to obtain at the same time the phase of the signal with the advantage of a better noise removal capabilities and the possibility of developing simpler algorithms for phase unwrapping due to the availability of the derivative of the phase.
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1986-01-01
Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.