Science.gov

Sample records for two-dimensional halbach cylinders

  1. Analysis and comparison of two two-dimensional Halbach permanent magnet arrays for magnetically levitated planar motor

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Kou, Baoquan; Xing, Feng; Zhang, He

    2014-05-01

    A novel 2-D Halbach permanent magnet array which can be used in magnetically levitated planar motor is proposed in this paper. The air-gap flux density distribution of the novel 2-D Halbach permanent magnet array is solved by the scalar magnetic potential equation. In order to compare with the well-known Halbach magnet array that was used by Jansen et al. [IEEE Trans. Ind. Appl. 44(4), 1108 (2008)], harmonic analysis of the x- and z- component of the air-gap flux density are carried out by Fourier decomposition. Comparison of Bx and Bz between the two 2-D Halbach magnet arrays are made. And it is verified that the performance of the new Halbach magnet array is superior to the existing Halbach magnet arrays, its higher magnetic flux density and lower high-order harmonics will help to improve the performance of the magnetically levitated planar motor.

  2. Two-dimensional wakes of a variable diameter cylinder

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Stremler, Mark

    2016-11-01

    It is well known that periodic variations in the position of a circular cylinder can produce a variety of complex vortex wake patterns. We will discuss what we believe is the first investigation of the wake patterns produced by a stationary circular cylinder undergoing periodic variations in the cylinder diameter. In our experiments, cylinder variations are produced by oscillating a cone perpendicularly through a flowing soap film. The wake flow generates thickness variations in the thin soap film, allowing direct observation of wake patterns through visualization of interference fringes. We consider diameter variations ranging from 0.1 to 0.5 times the mean diameter, with the Reynolds number varying from 50 to 150. The frequency of the diameter's variation influences the wake patterns. When the variation frequency is negligible compared to the vortex shedding frequency, the wake is a quasi-steady representation of fixed cylinder shedding. We will discuss wake pattern bifurcations that occur as the variation frequency becomes comparable to the vortex shedding frequency. Comparisons will be made with the wake patterns generated by a constant-diameter circular cylinder forced to oscillate transverse to the free stream.

  3. Two-dimensional subsonic compressible flow past elliptic cylinders

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1938-01-01

    The method of Poggi is used to calculate, for perfect fluids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned. Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleight and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is considerably reduced by the present solution.

  4. Bubbly flows around a two-dimensional circular cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  5. Simulation of laser bistatic two-dimensional scattering imaging about lambertian cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Li, Lang; Wang, Mingjun; Gong, Lei

    2016-10-01

    This paper deals with the simulation of laser bi-static scattering imaging about lambertian cylinders. Two-dimensional imaging of a target can reflect the shape of the target and material property on the surface of the target. Two-dimensional imaging has important significance for target recognition. Simulations results of laser bi-static two-dimensional scattering imaging of some cylinders are given. The laser bi-static scattering imaging of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. The scattering direction of laser bi-static scattering imaging is arbitrary direction. The scattering direction of backward two-dimensional scattering imaging is at opposite direction of the incident direction of laser. The backward two-dimensional scattering imaging is special case of bi-static two dimensional scattering imaging. The scattering intensity of a micro-element on the target could be obtained based on the laser radar equation. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the surface of cylinder. According to the incident direction of incident laser and normal of infinitesimal area, the local incidence angle can be calculated. According to the scattering direction and normal of infinitesimal area, the local angle of scattering can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get mathematical model of bi-static laser two dimensional scattering imaging about lambert cylinder. From the results given, one can see that the simulation results of laser bi-static scattering about lambert cylinder is correct.

  6. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  7. Far-field condition of vortex methods on an impulsively started two-dimensional circular cylinder with rotation

    NASA Astrophysics Data System (ADS)

    Kida, Teruhiko; Nagata, Toshimi; Nakajima, Tomoya

    1994-08-01

    The far-field condition in the problem of the steady two-dimensional flow past a rotating circular cylinder is well known, but this condition is not clear in the problem of the two-dimensional unsteady flow past a rotating circular cylinder which is impulsively started. In the latter problem, the circulation around a contour of sufficient large radius surrounding the cylinder is dependent on initial conditions: (1) The circular cylinder is impulsively started with rotation from rest and (2) the rotating cylinder is impulsively started. The hybrid vortex method combined with a panel method is used for the flow of a slightly viscous, incompressible fluid around the rotating circular cylinder in the two initial conditions mentioned above. The numerical accuracy of this hybrid method is tested on the flow around an impulsively started cylinder without rotation. The detailed results of the flow around the rotating cylinder with a constant clockwise angular velocity show: (1) The initial shedding vortex is anticlockwise in the former initial case, but it is clockwise in the latter initial case. (2) The growth of the wake depends on the initial condition. (3) The time history of the aerodynamic force is dependent on the initial condition at the early stages of the development but it is almost independent of the initial condition after the early stages.

  8. Two-dimensional wakes of oscillating and tandem cylinders at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Stremler, Mark

    2015-11-01

    Transverse flow past an oscillating bluff body or multiple stationary bodies can produce wakes with complicated spatio-temporal structure. Previous work by others has characterized the wake structure as a function of system parameters. These are typically 2D characterizations, despite the fact that instabilities often cause such wakes to become strongly 3D. We use a flowing soap film system to investigate the connections and differences between (quasi) 2D wakes and 3D wakes generated behind oscillating and tandem cylinders. Wake structure is identified through flow visualization. Inspired by the work of Williamson and collaborators, we investigate the wake structure behind a circular cylinder forced to oscillate transverse to the flow. We map the boundaries of the different wake modes with variations in the amplitude and frequency of oscillation, and we discuss how our quasi-2D results compare with 3D results from the literature. We also consider the wake interaction of two stationary cylinders arranged in tandem. Existing literature disagrees on the critical cylinder spacing that gives changes in the wake mode. We examine this point and discuss the connections and distinctions between our quasi-2D experiments, 2D simulations, and results from the literature.

  9. A numerical study of two-dimensional vortex shedding from rectangular cylinders

    NASA Technical Reports Server (NTRS)

    Hadid, A. H.; Sindir, Munir M.; Issa, R. I.

    1992-01-01

    An efficient time-marching, non-iterative calculation method is used to analyze time-dependent flows around rectangular cylinders. The turbulent flow in the wake region of a square section cylinder is analyzed using an anisotropic k-epsilon model. Initiation and subsequent development of the vortex shedding phenomenon is naturally captured once a perturbation is introduced in the flow. Transient calculations using standard eddy-viscosity and an anisotropic k-epsilon model averaged over an integral number of cycles to get the fluctuating energy (organized and turbulent) are compared with experimental data. It is shown that the anisotropic k-epsilon model resolves the anisotropy of the Reynolds stresses and gives mean energy distribution closer to the experiment than the standard k-epsilon model.

  10. Implementation of the matrix sparse decomposition technique to the scattering of two-dimensional homogeneous dielectric cylinders

    NASA Astrophysics Data System (ADS)

    Liu, Y. W.; Song, Y. M.; Mei, K. K.

    2001-03-01

    In this paper, a novel matrix-thinning technique, matrix sparse decomposition (MSD) [Liu et al., 1998, 1999], has been implemented to solve the scattering of waves by two-dimensional (2-D) homogeneous dielectric cylinders for the first time. The MSD technique is a further development of the integral equation formulation of the measured equation of invariance (MEI) (IE-MEI) [Rius et al., 1996a; Hirose et al., 1999a]. The MSD describes the local relationship between total currents and scattered fields rather than that between the scattered electric fields and the scattered magnetic fields in the IE-MEI. The MSD directly thins a dense matrix from singular integral equations, such as method of moments (MOM), into two sparse matrices. The IE-MEI method has difficulty in solving thin wire or thin plate structure problems. However, the MSD can do it without a hitch. Numerical examples for the scattering of 2-D homogeneous dielectric circular and rectangular cylinders under both transverse magnetic and transverse electric plane wave incidences show that the MSD is a simple and effective technique to thin the MOM dense matrix.

  11. Low-frequency bandgaps of two-dimensional phononic crystal plate composed of asymmetric double-sided cylinder stubs

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Jiang, Ping; Bao, Kai

    2016-03-01

    In this paper, we theoretically investigate the propagation characteristics of Lamb wave in a two-dimensional (2D) asymmetric phononic crystal (PC) plate composed of cylinder stubs of different radius deposited on both sides of a thin homogeneous plate. The dispersion relations, transmission spectra and displacement fields of the eigenmodes are calculated by using the finite element method (FEM). Two complete bandgaps (BGs) can be found in low-frequency range and the transmission spectra coincide with the band structures. We investigate the evolution of dispersion relations with the decrease of the upper stub radius. The physical mechanism of the upper stub radius effect is also studied with the displacement fields of the unit cell. Numerical results show that the symmetry of the stub radius can remarkably influence the band structures and the asymmetric double-sided plate exhibits a new bandgap (BG) in lower frequency range due to the coupling between the lower stub’s resonant mode and the plate’s Lamb mode becomes weak and the adjacent bands separate. Moreover, we further investigate the effect of the stub height on the dispersion relations and find that the BGs shift to lower frequency regions with the increase of the stub height. In addition, the BGs’ sensitivity to the upper stub radius and the stub height is discussed. The low-frequency BGs in the proposed PC plate can potentially be used to control and insulate vibration in low frequency range.

  12. A numerical solution of the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders in air

    NASA Technical Reports Server (NTRS)

    Johnston, K. D.; Hendricks, W. L.

    1978-01-01

    Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased.

  13. PHYSALIS: a new method for particle simulation. Part II: two-dimensional Navier-Stokes flow around cylinders

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.

    2003-05-01

    This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.

  14. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  15. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  16. Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers.

    PubMed

    He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Li, Dongzhi; Liao, Ran; He, Yonghong; Ma, Hui

    2013-04-01

    We present both the two-dimensional backscattering point-illumination and surface-illumination Mueller matrices for the anisotropic sphere-cylinder scattering media. The experimental results of the microsphere-silk sample show that the Mueller matrix elements of an anisotropic scattering medium are different from those of an isotropic medium. Moreover, both the experiments and Monte Carlo simulations show that the directions of the fibrous scatterers have prominent effects on the Mueller matrix elements. As the fibrous samples rotate, the surface-illumination Mueller matrix measurement results for the m12, m21, m13, m31, m22, m23, m32, and m33 elements represent periodical variations. Experiments on skeletal muscle and porcine liver tissue samples confirm that the periodical changes for the surface-illumination Mueller matrix elements are closely related to the well aligned fibrous scatterers. The m22, m23, m32, and m33 elements are powerful tools for quantitative characterization of anisotropic scattering media, including biological tissues.

  17. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  18. Halbach arrays in precision motion control

    SciTech Connect

    Trumper, D.L.; Williams, M.E.

    1995-02-01

    The Halbach array was developed for use as an optical element in particle accelerators. Following up on a suggestion from Klaus Halbach, the authors have investigated the utility of such arrays as the permanent magnet structure for synchronous machines in cartesian, polar, and cylindrical geometries. Their work has focused on the design of a novel Halbach array linear motor for use in a magnetic suspension stage for photolithography. This paper presents the details of the motor design and its force and power characteristics.

  19. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  20. Performance of Halbach magnet arrays with finite coercivity

    NASA Astrophysics Data System (ADS)

    Insinga, A. R.; Bahl, C. R. H.; Bjørk, R.; Smith, A.

    2016-06-01

    A numerical method to study the effect of finite coercivity on the Halbach cylinder geometry is presented. Despite the fact that the analytical solution available for this geometry does not set any limit to the maximum air gap flux density achievable, in real life the non-linear response of the magnetic material and the fact that the coercivity is not infinite will limit the attainable field. The presented method is able to predict when and where demagnetization will occur, and these predictions are compared with the analytical solution for the case of infinite coercivity. However, the approach presented here also allows quantification of the decrease in flux density and homogeneity for a partially demagnetized magnet. Moreover, the problem of how to realize a Halbach cylinder geometry using a mix of materials with different coercivities without altering the overall performance is addressed. Being based on a numerical approach, the presented method can be employed to analyze the demagnetization effects due to coercivity for any geometry, even when the analytical solution is not available.

  1. Torque Production in a Halbach Machine

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.

  2. Two-Dimensional Electrons.

    DTIC Science & Technology

    2014-09-26

    linear electronic specific heat disappears in strong magnetic fields if Landau levels are not broadened. Thus, the amplitude of the magnetothermal...Molec. Crys. Liq. Crys. 121, 169 (1984). In consideration of mixing of low-lying Landau levels, the magneto- conductance of two-dimensional electrons...and narrowing can be explained when the Landau level filling factor v is larger than 1. Actually, we have shown that the resonance phenomena are

  3. Two dimensional vernier

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  4. Numerical simulation and performance improvement of a multi-polar concentric Halbach cylindrical magnet for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    You, Yonghua; Guo, Yue; Xiao, Shuifang; Yu, Shen; Ji, Hu; Luo, Xiaobing

    2016-05-01

    Multi-polar concentric Halbach cylinders of magnets could generate the magnetic field varying considerably in the annular gaps, thus were applied in the rotary magnetic refrigerators. In the current investigation, a six-polar concentric Halbach cylinder is developed based on the ideal concentric one by the numerical simulation with COMSOL Multiphysics. Cylinder radii are optimized and magnet material profiles are adjusted for a better overall performance (Λcool). Moreover, the segmentation on the concentric cylinder is conducted for an easy fabrication, and the edge effect of finite-length device is studied. With the present investigation, it is found that a larger external radius of external cylinder facilitates a larger flux density in the high field region (| B | bar high), while Λcool could be worse. Meanwhile, with the removal of magnet materials enclosed by the equipotential lines of magnetic vector potential, the magnetic flux density in low field region (| B | bar low) drops from 0.271 to 0.0136 T, and Λcool rises from 1.36 to 1.85 T0.7. Moreover, a proper segmentation would not degrade the difference between | B | bar high and | B | bar low, on the contrary, Λcool rises by about 20.2% due to magnet materials lack for efficiency replaced by soft irons. Finally, current 3D simulation indicates the edge effect on Λcool could be trivial.

  5. Cloaking two-dimensional fermions

    SciTech Connect

    Lin, De-Hone

    2011-09-15

    A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.

  6. Fast two-dimensional model

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglass, Anne R.; Stolarski, Richard S.; Guthrie, Paul D.; Thompson, A. M.

    1990-01-01

    A two dimensional (altitude and latitude) model of the atmosphere is used to investigate problems relating to the variability of the dynamics and temperature of the atmosphere on the ozone distribution, solar cycle variations of atmospheric constituents, the sensitivity of model results to tropospheric trace gas sources, and assessment computations of changes in ozone related to manmade influences. In a comparison between two dimensional model results in which the odd nitrogen family was transported together and model results in which the odd nitrogen species was transported separately, it was found that the family approximations are adequate for perturbation scenario calculations.

  7. Flow of rarefied gases over two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Jeng, Duen-Ren; De Witt, Kenneth J.; Keith, Theo G., Jr.; Chung, Chan-Hong

    1989-01-01

    A kinetic-theory analysis is made of the flow of rarefied gases over two-dimensional bodies of arbitrary curvature. The Boltzmann equation simplified by a model collision integral is written in an arbitrary orthogonal curvilinear coordinate system, and solved by means of finite-difference approximation with the discrete ordinate method. A numerical code is developed which can be applied to any two-dimensional submerged body of arbitrary curvature for the flow regimes from free-molecular to slip at transonic Mach numbers. Predictions are made for the case of a right circular cylinder.

  8. Two-dimensional thermofield bosonization

    SciTech Connect

    Amaral, R.L.P.G.

    2005-12-15

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.

  9. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  10. Two dimensional unstable scar statistics.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  11. Two-Dimensional Vernier Scale

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  12. Two-Dimensional Potential Flows

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred; Tollmien, W.

    1949-01-01

    Contents include the following: Characteristic differential equations - initial and boundary conditions. Integration of the second characteristic differential equations. Direct application of Meyer's characteristic hodograph table for construction of two-dimensional potential flows. Prandtl-Busemann method. Development of the pressure variation for small deflection angles. Numerical table: relation between deflection, pressure, velocity, mach number and mach angle for isentropic changes of state according to Prandtl-Meyer for air (k = 1.405). References.

  13. Development and Testing of a Radial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA John H. Glenn Research Center has developed and tested a revolutionary Radial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Radial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Radial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical applications, manufacturing equipment, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Radial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  14. Development and Testing of an Axial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  15. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  16. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  17. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  18. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  19. Two-dimensional quantum repeaters

    NASA Astrophysics Data System (ADS)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  20. Two-dimensional capillary origami

    NASA Astrophysics Data System (ADS)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  1. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  2. Two-dimensional numerical simulation of flow around three-stranded rope

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  3. Two-dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  4. Lattice Boltzmann Method for Two-Dimensional Unsteady Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Mužík, Juraj

    2016-12-01

    A Lattice Boltzmann method is used to analyse incompressible fluid flow in a two-dimensional cavity and flow in the channel past cylindrical obstacle. The method solves the Boltzmann's transport equation using simple computational grid - lattice. With the proper choice of the collision operator, the Boltzmann's equation can be converted into incompressible Navier-Stokes equation. Lid-driven cavity benchmark case for various Reynolds numbers and flow past cylinder is presented in the article. The method produces stable solutions with results comparable to those in literature and is very easy to implement.

  5. Halbach array motor/generators: A novel generalized electric machine

    SciTech Connect

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

    1995-02-01

    For many years Klaus Halbach has been investigating novel designs for permanent magnet arrays, using advanced analytical approaches and employing a keen insight into such systems. One of his motivations for this research was to find more efficient means for the utilization of permanent magnets for use in particle accelerators and in the control of particle beams. As a result of his pioneering work, high power free-electron laser systems, such as the ones built at the Lawrence Livermore Laboratory, became feasible, and his arrays have been incorporated into other particle-focusing systems of various types. This paper reports another, quite different, application of Klaus` work, in the design of high power, high efficiency, electric generators and motors. When tested, these motor/generator systems display some rather remarkable properties. Their success derives from the special properties which these arrays, which the authors choose to call {open_quotes}Halbach arrays,{close_quotes} possess.

  6. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles.

    PubMed

    Ijiri, Y; Poudel, C; Williams, P S; Moore, L R; Orita, T; Zborowski, M

    2013-07-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles.

  7. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

    PubMed Central

    Ijiri, Y.; Poudel, C.; Williams, P.S.; Moore, L.R.; Orita, T.; Zborowski, M.

    2014-01-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles. PMID:25382864

  8. Energy harvesting from electric power lines employing the Halbach arrays.

    PubMed

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Lu, Caijiang; Yang, Aichao

    2013-10-01

    This paper proposes non-invasive energy harvesters to scavenge alternating magnetic field energy from electric power lines. The core body of a non-invasive energy harvester is a linear Halbach array, which is mounted on the free end of a piezoelectric cantilever beam. The Halbach array augments the magnetic flux density on the side of the array where the power line is placed and significantly lowers the magnetic field on the other side. Consequently, the magnetic coupling strength is enhanced and more alternating magnetic field energy from the current-carrying power line is converted into electrical energy. An analytical model is developed and the theoretical results verify the experimental results. A power of 566 μW across a 196 kΩ resistor is generated from a single wire, and a power of 897 μW across a 212 kΩ resistor is produced from a two-wire power cord carrying opposite currents at 10 A. The harvesters employing Halbach arrays for a single wire and a two-wire power cord, respectively, exhibit 3.9 and 3.2 times higher power densities than those of the harvesters employing conventional layouts of magnets. The proposed devices with strong response to the alternating currents are promising to be applied to electricity end-use environment in electric power systems.

  9. Measuring Monotony in Two-Dimensional Samples

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's…

  10. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  11. Two-dimensional generalized Toda lattice

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Olshanetsky, M. A.; Perelomov, A. M.

    1981-12-01

    The zero curvature representation is obtained for the two-dimensional generalized Toda lattices connected with semisimple Lie algebras. The reduction group and conservation laws are found and the mass spectrum is calculated.

  12. Two-dimensional function photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  13. Two Dimensional Plasmonic Cavities on Moire Surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  14. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  15. Efficient Two-Dimensional-FFT Program

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1992-01-01

    Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.

  16. Burgers approximation for two-dimensional flow past an ellipse

    NASA Technical Reports Server (NTRS)

    Dorrepaal, J. M.

    1982-01-01

    A linearization of the Navier-Stokes equation due to Burgers in which vorticity is transported by the velocity field corresponding to continuous potential flow is examined. The governing equations are solved exactly for the two dimensional steady flow past an ellipse of arbitrary aspect ratio. The requirement of no slip along the surface of the ellipse results in an infinite algebraic system of linear equations for coefficients appearing in the solution. The system is truncated at a point which gives reliable results for Reynolds numbers R in the range 0 R 5. Predictions of the Burgers approximation regarding separation, drag and boundary layer behavior are investigated. In particular, Burgers linearization gives drag coefficients which are closer to observed experimental values than those obtained from Oseen's approximation. In the special case of flow past a circular cylinder, Burgers approximation predicts a boundary layer whose thickness is roughly proportional to R-1/2.

  17. Molecular-dynamics simulation of two-dimensional thermophoresis

    PubMed

    Paredes; Idler; Hasmy; Castells; Botet

    2000-11-01

    A numerical technique is presented for the thermal force exerted on a solid particle by a gaseous medium between two flat plates at different temperatures, in the free molecular or transition flow. This is a two-dimensional molecular-dynamics simulation of hard disks in a inhomogeneous thermal environment. All steady-state features exhibited by the compressible hard-disk gas are shown to be consistent with the expected behaviors. Moreover the thermal force experienced by a large solid disk is investigated, and compared to the analytical case of cylinders moving perpendicularly to the constant temperature gradient for an infinite Knudsen number and in an infinite medium. We show precise examples of how this technique can be used simply to investigate more difficult practical problems, in particluar the influence of nonlinear gradients for large applied differences of temperature, of proximity of the walls, and of smaller Knudsen numbers.

  18. The art and science of magnet design: A Festschrift in honor of Klaus Halbach. Volume 1

    SciTech Connect

    Cross, J.

    1995-02-01

    This is a collection of technical papers and personal remembrances written expressly for the Halbach Symposium and dedicated to Klaus Halbach. The topics presented offer a hint of the diversity of Klaus`s scientific career. Most of the papers deal with magnets for accelerators and accelerator facilities. Other topics covered are free electron lasers, Halbach array motor/generators, radiation and gas conduction heat transport across a dewar multilayer insulation system, and surface structural determination from Fourier transforms of angle-resolved photoemission extended fine structure. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  20. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    SciTech Connect

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan E-mail: cbp@kias.re.kr

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  1. Mobility anisotropy of two-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  2. Soap film flows: Statistics of two-dimensional turbulence

    SciTech Connect

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-08-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}

  3. Relaxation-relaxation exchange experiments in porous media with portable Halbach-Magnets.

    NASA Astrophysics Data System (ADS)

    Haber, A.; Haber-Pohlmeier, S.; Casanova, F.; Blümich, B.

    2009-04-01

    Mobile NMR became a powerful tool following the development of portable NMR sensors for well logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of polymers is obtained, and new opportunities are provided for geo-physical investigations [1]. In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time tm [2]. Relaxation-relaxation exchange experiments of water in inorganic porous media were performed at low and moderately inhomogeneous magnetic field with a simple, portable Halbach-Magnet. By conducting NMR transverse relaxation exchange experiments for several mixing times and converting the results to 2D T2 distributions (joint probability densities of transverse relaxation times T2) with the help of the inverse 2D Laplace Transformation (ILT), we obtained characteristic exchange times for different pore sizes. The results of first experiments on soil samples are reported, which reveal information about the complex pore structure of soil and the moisture content. References: 1. B. Blümich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F. Casanova, Mobile NMR for Geo-Physical Analysis and Material Testing, Petroleum Science, xx (2009) xxx - xxx. 2. K. E. Washburn, P.T. Callaghan, Tracking pore to pore exchange using relaxation exchange spectroscopy, Phys. Rev. Lett. 97 (2006) 175502.

  4. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  5. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  6. New two dimensional compounds: beyond graphene

    NASA Astrophysics Data System (ADS)

    Lebegue, Sebastien

    2015-03-01

    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  7. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  8. Valley excitons in two-dimensional semiconductors

    SciTech Connect

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.

  9. Valley excitons in two-dimensional semiconductors

    DOE PAGES

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  10. Magnetization study of two dimensional helium three

    NASA Astrophysics Data System (ADS)

    Guo, Lei

    This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the

  11. Kirigami for Two-Dimensional Electronic Membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold

    2015-03-01

    Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.

  12. Cooperative two-dimensional directed transport

    NASA Astrophysics Data System (ADS)

    Zheng, Zhigang; Chen, Hongbin

    2010-11-01

    A mechanism for the cooperative directed transport in two-dimensional ratchet potentials is proposed. With the aid of mutual couplings among particles, coordinated unidirectional motion along the ratchet direction can be achieved by transforming the energy from the transversal rocking force (periodic or stochastic) to the work in the longitude direction. Analytical predictions on the relation between the current and other parameters for the ac-driven cases are given, which are in good agreement with numerical simulations. Stochastic driving forces can give rise to the resonant directional transport. The effect of the free length, which has been explored in experiments on the motility of bipedal molecular motors, is investigated for both the single- and double-channel cases. The mechanism and results proposed in this letter may both shed light on the collective locomotion of molecular motors and open ways on studies in two-dimensional collaborative ratchet dynamics.

  13. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  14. Electronics based on two-dimensional materials.

    PubMed

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  15. Plasmonics with two-dimensional conductors.

    PubMed

    Yoon, Hosang; Yeung, Kitty Y M; Kim, Philip; Ham, Donhee

    2014-03-28

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics.

  16. Two-dimensional plasmonic nanosurface for photovoltaics

    NASA Astrophysics Data System (ADS)

    Polemi, Alessia; Shuford, Kevin L.

    2011-12-01

    In this paper, we investigate a two-dimensional corrugated plasmonic nanosurface for efficient light trapping in a photovoltaic cell. Inspired by a well-known one-dimensional grating nanosurface, the present configuration is composed of two perpendicular gratings in the metal film that intersect to yield cross-shaped nanoelements. The surface corrugation is then covered by a silicon film. An additional degree of freedom can be introduced into the design by interrupting the grid in both directions. We show that this extra spacing between the array elements can be used to tune the absorption properties of the nanosurface. By including the effect of the solar spectrum, we demonstrate how this two-dimensional configuration is more efficient than its one-dimensional counterpart in terms of the actual short circuit photocurrent density. Finally, we propose possible extensions of this structure design, which can further enhance the solar cell performance.

  17. Two-dimensional optimal sensor placement

    SciTech Connect

    Zhang, H.

    1995-05-01

    A method for determining the optimal two-dimensional spatial placement of multiple sensors participating in a robot perception task is introduced in this paper. This work is motivated by the fact that sensor data fusion is an effective means of reducing uncertainties in sensor observations, and that the combined uncertainty varies with the relative placement of the sensors with respect to each other. The problem of optimal sensor placement is formulated and a solution is presented in the two dimensional space. The algebraic structure of the combined sensor uncertainty with respect to the placement of sensor is studied. A necessary condition for optimal placement is derived and this necessary condition is used to obtain an efficient closed-form solution for the global optimal placement. Numerical examples are provided to illustrate the effectiveness and efficiency of the solution. 11 refs.

  18. Two-Dimensional NMR Lineshape Analysis

    NASA Astrophysics Data System (ADS)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  19. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  20. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  1. Two-dimensional ranking of Wikipedia articles

    NASA Astrophysics Data System (ADS)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  2. Deeply subrecoil two-dimensional Raman cooling

    SciTech Connect

    Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.

    2004-10-01

    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.

  3. Analytical calculation of two-dimensional spectra.

    PubMed

    Bell, Joshua D; Conrad, Rebecca; Siemens, Mark E

    2015-04-01

    We demonstrate an analytical calculation of two-dimensional (2D) coherent spectra of electronic or vibrational resonances. Starting with the solution to the optical Bloch equations for a two-level system in the 2D time domain, we show that a fully analytical 2D Fourier transform can be performed if the projection-slice and Fourier-shift theorems of Fourier transforms are applied. Results can be fit to experimental 2D coherent spectra of resonances with arbitrary inhomogeneity.

  4. Two dimensional echocardiographic detection of intraatrial masses.

    PubMed

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  5. Towards an understanding of vortex shedding frequency in conventional and quasi-two-dimensional flows.

    NASA Astrophysics Data System (ADS)

    Fontana, Paul W.

    2015-11-01

    I investigate mean flows and the role played by surface friction and surface tension in generating them in a quasi-two-dimensional vortex shedding experiment, thereby elucidating the connection between quasi-two-dimensional effects and shedding frequency. We have previously shown that quasi-two-dimensional effects in a vertical soap film channel produce anomalously low frequencies compared with conventional observations, and that the Strouhal number (St = fD /U∞ , where f is the shedding frequency, D the cylinder diameter, U∞ the upstream flow speed) is not uniquely determined by the Reynolds number (Re = DU / ν , where ν is the kinematic viscosity). Vortex shedding by circular cylinders is an archetypal flow instability, yet its physical mechanism remains poorly understood. There exists no rigorous theory predicting the shedding frequency, but evidence points to nonlinear mutual interaction between the mean flow and the shedding mode. I explore how quasi-two-dimensional effects influencing the shape the mean flow may therefore be responsible for the shedding behavior seen in the experiment.

  6. Physical Mechanisms of Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    2004-03-01

    Turbulence has slowly yielded its mysteries through over 100 years of persistent effort. Recently experimental techniques and computation power have reached the stage where significant progress has been made on this very challenging problem. Two dimensional turbulence offers some real advantages in terms of reduced degrees of freedom such that the problem can now be thoroughly explored from many perspectives. Further, two-dimensional turbulence exhibits the basic phenomena of direct-enstrophy and inverse-energy cascades thought to apply to oceanic and atmospheric systems. We have investigated the properties of turbulence in two spatial dimensions using experimental measurements of the grid turbulence in a flowing soap film^1 and of the electromagnetically-forced turbulence in a thin salt layer floating on a dense immiscible fluid underlayer. We have also explored 2D turbulence using several different direct numerical simulations of homogeneous, isotropic turbulence in a periodic box^2. The data for both consist of high resolution fields of velocity; some are statistically independent sets and others are temporally resolved for dynamics. From this data we construct conventional Eulerian statistics, directly measure energy and enstrophy transfer^1, identify coherent structures in the flow, determine Lagrangian quantities, and calculate stretching fields. This comprehensive experimental and numerical characterization elucidates the physical mechanisms of two-dimensional turbulence. ^1 M.K. Rivera, W.B. Daniel and R.E. Ecke, Phys. Rev. Lett. 90, 104502 (2003). ^2 S. Chen, R.E. Ecke, G. Eyink, X. Wang, and Z. Xiao, Phys. Rev. Lett. 91, 214501 (2003).

  7. Two dimensional thick center vortex model

    SciTech Connect

    Rafibakhsh, Shahnoosh; Ahmadi, Alireza

    2016-01-22

    The potential between static color source is calculated in the SU (3) gauge group by introducing a two dimensional vortex flux. To generalize the model, the length of the Wilson loop is equal to R oriented along the x axis, and the vortex flux is considered as a function of x and y. The comparison between the generalized model and the original one shows that the intermediate linear regime is increased significantly and better agreement with Casimir scaling is achieved. Furthermore, the model is applied to calculate the potential between baryons.

  8. Universal absorption of two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Noriega-Pérez, D.; Schliemann, J.

    2015-03-01

    We discuss the optical conductivity of several noninteracting two-dimensional semiconducting systems focusing on gapped Dirac and Schrödinger fermions as well as on a system mixing these two types. Close to the band gap, we can define a universal optical conductivity quantum of σ0=1/16 e/2ℏ for the pure systems. The effective optical conductivity then depends on the degeneracy factors gs (spin) and gv (valley) and on the curvature around the band gap ν , i.e., it generally reads σ =gsgvν σ0 . For a system composed of both types of carriers, the optical conductivity becomes nonuniversal.

  9. One- and two-dimensional hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Hassoun, G. Q.

    1981-02-01

    Certain one- and two-dimensional reductions of the three-dimensional Schrödinger equation of the hydrogen atom are considered. These reductions are carried out from the point of view of the two common sets of space coordinates: Cartesian and spherical. The resulting systems have features that relate more readily to the old quantum theory models of Bohr and Sommerfeld than the general three-dimensional hydrogen atom. Furthermore, the considerations yield interesting insights into the quantum mechanics of the hydrogen atom and may serve as helpful intermediary preparation, in an introductory presentation of the subject, for the unreduced three-dimensional case.

  10. Study of two-dimensional squeezed magnetopolarons

    NASA Astrophysics Data System (ADS)

    Zhang, Yanmin; Cheng, Ze; Wu, Zixia; Wang, Junfeng

    2006-11-01

    In this Letter, some properties of two-dimensional squeezed magnetopolarons are investigated. The Hamiltonian of magnetopolarons is dealt with by using squeezed state transformation, which is based on the Lee Low Pines and Huybrechts (LLP H) canonical transformations. This method makes it possible to consider bilinear terms of the phonon operators as well as linear terms arising from the LLP H transformations. Some exact results are obtained, such as the energies of ground and excited states for squeezed magnetopolarons and renormalized cyclotron masses for some possible transitions.

  11. Pressure of two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin; Wang, Lei; Tian, Wen-de

    2016-06-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner-Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas.

  12. Dynamics of film. [two dimensional continua theory

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  13. Two-dimensional meniscus in a wedge

    SciTech Connect

    Kagan, M.; Pinczewski, W.V.; Oren, P.E.

    1995-03-15

    This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.

  14. Two-dimensional photonic crystal surfactant detection.

    PubMed

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  15. Application of a Halbach magnetic array for long-range cell and particle separations in biological samples

    NASA Astrophysics Data System (ADS)

    Kang, Joo H.; Driscoll, Harry; Super, Michael; Ingber, Donald E.

    2016-05-01

    Here, we describe a versatile application of a planar Halbach permanent magnet array for an efficient long-range magnetic separation of living cells and microparticles over distances up to 30 mm. A Halbach array was constructed from rectangular bar magnets using 3D-printed holders and compared to a conventional alternating array of identical magnets. We theoretically predicted the superiority of the Halbach array for a long-range magnetic separation and then experimentally validated that the Halbach configuration outperforms the alternating array for isolating magnetic microparticles or microparticle-bound bacterial cells at longer distances. Magnetophoretic velocities (ymag) of magnetic particles (7.9 μm diameter) induced by the Halbach array in a microfluidic device were significantly higher and extended over a larger area than those induced by the alternating magnet array (ymag = 178 versus 0 μm/s at 10 mm, respectively). When applied to 50 ml tubes (˜30 mm diameter), the Halbach array removed >95% of Staphylococcus aureus bacterial cells bound with 1 μm magnetic particles compared to ˜70% removed using the alternating array. In addition, the Halbach array enabled manipulation of 1 μm magnetic beads in a deep 96-well plate for ELISA applications, which was not possible with the conventional magnet arrays. Our analysis demonstrates the utility of the Halbach array for the future design of devices for high-throughput magnetic separations of cells, molecules, and toxins.

  16. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  17. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    SciTech Connect

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  18. Orthogonal grid generation in two dimensional space

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, T.; Bergeles, G.; Athanassiadis, N.

    A generalization of a numerical technique for orthogonal mapping, used by Ryskin and Leal (1983) for the construction of boundary-fitted curvilinear coordinate systems in two-dimensional space, is proposed. The boundary-fitted orthogonal curvilinear coordinates are assumed to transform to Cartesian coordinates by Laplace equations. The scale factors involved in the Laplace equations are computed on boundaries and estimated on internal points by means of an interpolation formula. Three types of boundary conditions have been tested: Dirichlet, Cauchy-Riemann, and pseudo-Dirichlet. It is shown that, using this method, grids appropriate for the calculation of flow fields over sharp edges, complex boundary shapes, etc., can be easily constructed. Examples on various geometries are presented, together with a convenient method to check the orthogonality of the resulting meshes.

  19. Two-dimensional Inductive Position Sensing System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)

    2015-01-01

    A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.

  20. Two-dimensional motions of rockets

    NASA Astrophysics Data System (ADS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights.

  1. Two-dimensional swimming behavior of bacteria

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin

    Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.

  2. Rationally synthesized two-dimensional polymers.

    PubMed

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  3. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  4. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  5. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  6. Two-Dimensional Informative Array Testing

    PubMed Central

    McMahan, Christopher S.; Tebbs, Joshua M.; Bilder, Christopher R.

    2015-01-01

    Summary Array-based group testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this paper, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed-form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two-dimensional array testing in a heterogeneous population. We then propose two “informative” array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches which regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per-individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project. PMID:22212007

  7. Janus Spectra in Two-Dimensional Flows

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  8. Rationally synthesized two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Colson, John W.; Dichtel, William R.

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  9. Methods of Two-Dimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kneer, F.

    One of the main fields of solar research is the study of dynamic processes of small-scale structures. For this purpose, time sequences of spectroscopic and polarimetric information in two spatial dimensions with best achievable quality are needed. The present contribution deals with the ways to obtain images in small wavelength bands. Among these are image scanners and the MSDP (Multi-Channel Subtractive Double Pass Spectrograph). Further potential instruments are scanning Fabry-Perot interferometers (FPI). The principles of such instruments are discussed. The results obtained hitherto from the FPI in the Vacuum Tower Telescope at the Observatorio del Teide are promising. Small-band, two-dimensional spectroscopy with spatial resolution close to the telescopic diffraction limit seems possible in the near future.

  10. Phonon hydrodynamics in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-01

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  11. Local doping of two-dimensional materials

    DOEpatents

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  12. Two-dimensional virtual impactors. Final report

    SciTech Connect

    Forney, L.J.; Ravenhall, D.G.

    1980-12-01

    Theoretical predictions using both potential flow analyses and solutions to Navier-Stokes equations are made for the operating characteristics of a two-dimensional virtual impactor. Experiments were performed with 2.5 ..mu..m, uranine tagged, di-octylphthalate (DOP) oil droplets for a wide range of prototype geometries to measure the magnitude of internal losses and to fully characterize the instrument response. The influence of geometry including the throat angle (38/sup 0/ less than or equal to ..beta../sub 0/ less than or equal to 58.2/sup 0/) and normalized void width (0.7 less than or equal to h/w less than or equal to 1.5) on the particle cutoff diameter, efficiency curve steepness and properties of the internal particle loss factor are presented for fixed instrument Reynolds numbers Re = 1540 and bleed flow f = 0.1. The theory, supported by trends in the empirical data, predicts that internal particle losses reduce to zero as the normalized void width increases to h/w = 1.4 +- .1 while the data show a minimum at h/w = 1.6 +- .1. Increasing the void width, however, is shown to substantially reduce the steepness of the particle efficiency curves. Visual observations of the onset of fluid separation for two-dimensional jets impinging upon a void were conducted with a scaled-up water model and correlated with theory. It was found that the limiting void width h/sub lim//w marking the onset of fluid instabilities peaked for an intermediate value of the fluid deflecting plate angle ..beta.. approx. = 80/sup 0/ with larger values of h/sub lim//w corresponding to smaller throat angles ..beta../sub 0/. The limiting void width h/sub lim//w also increased with larger bleed flows into the void. These instabilities may make it difficult to correlate experimental virtual impactor data with theory.

  13. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    SciTech Connect

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  14. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  15. Two-dimensional Dirac signature of germanene

    SciTech Connect

    Zhang, L.; Bampoulis, P.; Houselt, A. van; Zandvliet, H. J. W.

    2015-09-14

    The structural and electronic properties of germanene coated Ge{sub 2}Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 Å and a buckling of 0.2 Å. The zigzag edges of germanene are reconstructed and display a 4× periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge{sub 2}Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.

  16. Polaritons in layered two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Low, Tony; Chaves, Andrey; Caldwell, Joshua D.; Kumar, Anshuman; Fang, Nicholas X.; Avouris, Phaedon; Heinz, Tony F.; Guinea, Francisco; Martin-Moreno, Luis; Koppens, Frank

    2016-11-01

    In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

  17. Two-Dimensional Phononic Crystals: Disorder Matters.

    PubMed

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  18. Two-dimensional hexagonal semiconductors beyond graphene

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  19. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  20. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  1. Photodetectors based on two dimensional materials

    NASA Astrophysics Data System (ADS)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  2. Buckled two-dimensional Xene sheets

    NASA Astrophysics Data System (ADS)

    Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji

    2017-01-01

    Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice -- similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.

  3. Nonlinear tunneling in two-dimensional lattices

    SciTech Connect

    Brazhnyi, V. A.; Konotop, V. V.; Kuzmiak, V.; Shchesnovich, V. S.

    2007-08-15

    We present a thorough analysis of the nonlinear tunneling of Bose-Einstein condensates in static and accelerating two-dimensional lattices within the framework of the mean-field approximation. We deal with nonseparable lattices, considering different initial atomic distributions in highly symmetric states. For an analytical description of the condensate before instabilities develop, we derive several few-mode models, analyzing essentially both nonlinear and quasilinear regimes of tunneling. By direct numerical simulations, we show that two-mode models provide an accurate description of tunneling when either initially two states are populated or tunneling occurs between two stable states. Otherwise, a two-mode model may give only useful qualitative hints for understanding tunneling, but does not reproduce many features of the phenomenon. This reflects the crucial role of instabilities developed due to two-body interactions resulting in a non-negligible population of the higher bands. This effect becomes even more pronounced in the case of accelerating lattices. In the latter case we show that the direction of the acceleration is a relevant physical parameter which affects the tunneling by changing the atomic rates at different symmetric states and by changing the numbers of bands involved in the atomic transfer.

  4. Dynamics of two-dimensional dipole systems

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan

    2010-09-15

    Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.

  5. Calculation of two-dimensional lambda modes

    SciTech Connect

    Belchior, A. Jr. ); Moreira, J.M.L. )

    1991-01-01

    A system for on-line monitoring of power distribution in small reactors (known as MAP) is under development at COPESP-IPEN. Signals of self-powered neutron detectors are input to a program that estimates the power distribution as an expansion of lambda modes. The modal coefficients are obtained from a least-mean-squares technique adequate for real-time analysis. Three-dimensional lambda modes are synthesized out of one- and two-dimensional lambda modes. As a part of this project, a modification of a computer code was carried out in order to obtain the lambda modes. The results of this effort are summarized. The lambda modes are the solutions of the time-independent multigroup neutron diffusion equation, an eigenvalue equation. Normally, the computer codes produce the fundamental mode corresponding to the largest eigenvalue; their respective interpretations are neutron flux distribution and effective multiplication factor. For calculating higher order lambda modes it is usually necessary to eliminate the contribution of the lower modes from the fission source.

  6. Polaritons in layered two-dimensional materials.

    PubMed

    Low, Tony; Chaves, Andrey; Caldwell, Joshua D; Kumar, Anshuman; Fang, Nicholas X; Avouris, Phaedon; Heinz, Tony F; Guinea, Francisco; Martin-Moreno, Luis; Koppens, Frank

    2017-02-01

    In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

  7. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  8. Seismic isolation of two dimensional periodic foundations

    SciTech Connect

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  9. Two-dimensional atomic crystals beyond graphene

    NASA Astrophysics Data System (ADS)

    Kaul, Anupama B.

    2014-06-01

    Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

  10. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  11. Compact Two-Dimensional Spectrometer Optics

    NASA Technical Reports Server (NTRS)

    Hong, John

    2008-01-01

    The figure is a simplified depiction of a proposed spectrometer optical unit that would be suitable for incorporation into a remote-sensing instrumentation system. Relative to prior spectrometer optical assemblies, this unit would be compact and simple, largely by virtue of its predominantly two-dimensional character. The proposed unit would be a combination of two optical components. One component would be an arrayed-waveguide grating (AWG) an integrated-optics device, developed for use in wavelength multiplexing in telecommunications. The other component would be a diffraction grating superimposed on part of the AWG. The function of an AWG is conceptually simple. Input light propagates along a single-mode optical waveguide to a point where it is split to propagate along some number (N) of side-by-side waveguides. The lengths of the optical paths along these waveguides differ such that, considering the paths in a sequence proceeding across the array of waveguides, the path length increases linearly. These waveguides launch quasi-free-space waves into a planar waveguide-coupling region. The waves propagate through this region to interfere onto an array of output waveguides. Through proper choice of key design parameters (waveguide lengths, size and shape of the waveguide coupling region, and lateral distances between waveguides), one can cause the input light to be channeled into wavelength bins nominally corresponding to the output waveguides.

  12. Two-dimensional discrete Coulomb alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yuqing; Thorpe, M. F.; Parkinson, J. B.

    1999-01-01

    We study an A1-xBx alloy on a two-dimensional triangular lattice. The ions A and B have different charges, with a background charge to ensure neutrality, and are constrained to lie at the discrete sites defined by a fixed triangular lattice. We study the various structures formed at different compositions x by doing computer simulations to find the lowest energy, using an energy minimization scheme, together with simulated annealing. Like ions try to avoid each other because of charge repulsion, which leads to structures, which are very different from those in a random alloy. At low concentrations, a triangular Wigner lattice is formed, which evolves continuously up to a concentration of x=1/3. For higher concentrations, 1/3<=x<=1/2 there are long polymer chains, with occasional branches. We show that there is a symmetry about x=1/2, which is the percolation point for nearest neighbors on the triangular lattice. At certain special stoichiometries, regular superlattices are formed, which usually have a slightly lower energy than a disordered configuration. The powder-diffraction patterns are calculated. The magnetic properties of this structure are also studied, and it is shown that the high-temperature susceptibility could be a useful diagnostic tool, in that it is very sensitive to the number of nearest-neighbor magnetic pairs. This work contributes to a better understanding of layered double hydroxides like Ni1-xAlx(OH)2(CO3)x/2.yH2O.

  13. Parallel Stitching of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Lin, Yuxuan; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing; Department of Electrical Engineering; Computer Science, Massachusetts Institute of Technology Team

    Large scale integration of atomically thin metals (e.g. graphene), semiconductors (e.g. transition metal dichalcogenides (TMDs)), and insulators (e.g. hexagonal boron nitride) is critical for constructing the building blocks for future nanoelectronics and nanophotonics. However, the construction of in-plane heterostructures, especially between two atomic layers with large lattice mismatch, could be extremely difficult due to the strict requirement of spatial precision and the lack of a selective etching method. Here, we developed a general synthesis methodology to achieve both vertical and in-plane ``parallel stitched'' heterostructures between a two-dimensional (2D) and TMD materials, which enables both multifunctional electronic/optoelectronic devices and their large scale integration. This is achieved via selective ``sowing'' of aromatic molecule seeds during the chemical vapor deposition growth. MoS2 is used as a model system to form heterostructures with diverse other 2D materials. Direct and controllable synthesis of large-scale parallel stitched graphene-MoS2 heterostructures was further investigated. Unique nanometer overlapped junctions were obtained at the parallel stitched interface, which are highly desirable both as metal-semiconductor contact and functional devices/systems, such as for use in logical integrated circuits (ICs) and broadband photodetectors.

  14. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Park, J. Y.

    2016-11-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance.

  15. The art and science of magnet design: Selected notes of Klaus Halbach. Volume 2

    SciTech Connect

    1995-02-01

    This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach`s interest and ability that have long been an inspiration to his many friends and colleagues. As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly--some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As the authors converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation. The notes are organized under five categories which reflect their primary content: Beam Position Monitors, (bpm), Current Sheet Electron Magnets (csem), Magnet Theory, (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time.

  16. Development and characterization of a multi-layer magnetorheological elastomer isolator based on a Halbach array

    NASA Astrophysics Data System (ADS)

    Przybylski, Michal; Sun, Shuaishuai; Li, Weihua

    2016-10-01

    Most existing vibration isolators and dampers based on magnetorheological (MR) materials need electrical power to feed magnetic coils to stimulate the MR material, so if there is a loss of power, such as during a strong earthquake or system failure, they are unable to protect the structure. This paper outlines the design and test of a controllable multilayered magnetorheological elastomer (MRE) isolator based on a circular dipolar Halbach array; which is a set of magnets that generates a strong and uniform magnetic field. Combining an MRE layered isolator system with the Halbach array allows for constant vibration isolation with very low power consumption, where the power generated is only used to adjust the Halbach position. When this system was tested it successfully altered the lateral stiffness and damping force by 81.13% and 148.72%, respectively. This paper also includes an extended analysis of the magnetic field generated by the circular dipolar Halbach array and a discussion of the improvements that may potentially improve the range of magnetic fields generated.

  17. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    SciTech Connect

    Marks, S.

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.

  18. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    PubMed

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  19. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems.

  20. Two-dimensional dynamic fluid bowtie attenuators

    PubMed Central

    Hermus, James R.; Szczykutowicz, Timothy P.

    2016-01-01

    Abstract. Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  1. Interaction of two-dimensional magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  2. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  3. Two-Dimensional Optical Proximity Effects

    NASA Astrophysics Data System (ADS)

    Flanner, Philip D.; Subramanian, Shankar; Neureuther, Andrew R.

    1986-08-01

    In projection printing the proximity effects between adjacent two-dimensional features such as concentric elbows can be the limiting factor in designing layout rules. An aerial image simulation code based on the imaging algorithms in SAMPLE has been developed and used to investigate these proximity effects. The program accepts arbitrary polygonal shapes constructed of rectangular and triangular patches. The image is calculated using Hopkins transmission cross coefficient formulation and uses rapid integral evaluation techniques. The cpu time for this FORTRAN F77 program depends on the size of the mask and the partial coherence factor as 0.25[(1 + σ) 2A(NA/λ)2]2 seconds on a DEC VAX 11/780 using double precision, where A is the mask area, σ the coherence factor, NA the numerical aperture and λ the wavelength. The output intensity can be displayed with graphics tools such as UNIGRAFIX or cross-sectioned for input to SAMPLE development simulation along critical paths. Proximity effects in critical regions between features such as nested elbows, contacts near contacts and lines, and lines near large pads are studied. For small contacts studies show that a contact hole can be placed as close as 0.5λ/NA microns to another contact hole. For nested elbows the critical effect is the variation in intensity in the straight regions just adjacent to the corner. This undesirable variation is primarily due to the intrafeature intensity interactions and is not greatly influenced by the proximity of another nested elbow. For general feature shapes the proximity effects are reduced by increasing the partial coherence factor to 0.5 or higher but at the cost of reducing contrast and peak intensity. For contact masks a partial coherence of 0.3 is recommended for higher edge slope and peak intensities. Proximity effects of small defects are also illustrated.

  4. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  5. Two-dimensional materials and their prospects in transistor electronics.

    PubMed

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  6. Numerical solution for viscous flow for two-dimensional domains using orthogonal coordinate systems

    NASA Astrophysics Data System (ADS)

    Rangwalla, A. A.; Munson, B. R.

    1987-06-01

    A numerical technique is developed to generate two-dimensional orthogonal maps for simply and doubly connected domains, solving the strong constraint as defined by Ryskin and Leal (1983) for the case of known domain boundaries. The approach employed is shown to avoid the use of Dirichlet boundary conditions and to perform accurately even with highly skewed initial grids. The technique is then used to solve the unsteady Navier-Stokes equations (in the vorticity/stream-function formulation of Roache, 1972) for a doubly connected two-dimensional domain (a rotating circular cylinder with a stationary rounded-end tab). The results are presented graphically and compared with analytical results and experimental data: good agreement is obtained at low Reynolds numbers, and at higher Re when boundary vorticity relaxation is applied.

  7. Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin S.; Moses, Gregory; Young, Todd

    2016-05-01

    We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, O k , k=1,\\ldots,p , have two-dimensional unstable manifolds that contain orbits connecting each O k to the next two equilibrium points O k+1 and O k+2 in the chain ({{O}p+1}={{O}1} ). We show that the union of these equilibria and their unstable manifolds form a two-dimensional surface with a boundary that is homeomorphic to a cylinder if p is even and a Möbius strip if p is odd. If, further, each equilibrium in the chain satisfies a condition called ‘dissipativity’, then this surface is asymptotically stable.

  8. On the origins of vortex shedding in two-dimensional incompressible flows

    NASA Astrophysics Data System (ADS)

    Boghosian, M. E.; Cassel, K. W.

    2016-12-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.

  9. Flow mediated interactions between two cylinders at finite Re numbers

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Mimeau, Chloe; Tchieu, Andrew A.; Koumoutsakos, Petros

    2012-04-01

    We present simulations of two interacting moving cylinders immersed in a two-dimensional incompressible, viscous flow. Simulations are performed by coupling a wavelet-adapted, remeshed vortex method with the Brinkman penalization and projection approach. This method is validated on benchmark problems and applied to simulations of a master-slave pair of cylinders. The master cylinder's motion is imposed and the slave cylinder is let free to respond to the flow. We study the relative role of viscous and inertia effects in the cylinders interactions and identify related sharp transitions in the response of the slave. The observed differences in the behavior of cylinders with respect to corresponding potential flow simulations are discussed. In addition, it is observed that in certain situations the finite size of the slave cylinders enhances the transport so that the cylinders are advected more effectively than passive tracers placed, respectively, at the same starting position.

  10. A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2016-09-01

    Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm-3 g-2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.

  11. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles

    PubMed Central

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2011-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell’s equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm3), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. PMID:23335834

  12. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  13. Lamb waves in two-dimensional phononic crystal plate with anisotropic inclusions.

    PubMed

    Yao, Yuanwei; Wu, Fugen; Hou, Zhilin; Xin, Zhang

    2011-07-01

    An analysis is given to the band structure of the two-dimensional phononic crystal plate constituted of a square array of elastic anisotropic, circular Pb cylinders embedded in elastic isotropic epoxy. The numerical results show that the band gap can be tuned by rotating the anisotropic material orientation. It is found that the influence of anisotropy on band gap of Lamb wave is clearly different from that on the band gap of bulk waves. The thickness of the system under study is a sensitive parameter to affect the influence of anisotropic materials on the normalized gap width.

  14. Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Gopinath, Ashwin; Negro, Luca Dal

    2009-05-01

    Based on the rigorous generalized Mie theory solution of Maxwell's equations for dielectric cylinders we theoretically investigate the optical properties of two-dimensional deterministic structures based on the Fibonacci, Thue-Morse and Rudin-Shapiro aperiodic sequences. In particular, we investigate bandgap formation and mode localization properties in aperiodic photonic structures based on the accurate calculation of their local density of states (LDOS). In addition, we explore the potential of photonic structures based on aperiodic order for the engineering of radiative rates and emission patterns in erbium-doped silicon-rich nitride photonic structures.

  15. Two-dimensional material confined water.

    PubMed

    Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong

    2015-01-20

    CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and

  16. Two dimensional electron gas at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Janicka, Karolina

    2011-12-01

    Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles. The spatial extent of the 2DEG formed at the SrTiO3/LaAlO 3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO 3. The confinement width is then determined by the attenuation length of the metal induced gap states into SrTiO3 which is governed by the lowest decay rate evanescent states of bulk SrTiO3 which in turn can be found from the complex band structure of bulk SrTiO3. Magnetic properties of the 2DEG formed at the n-type interface of the SrTiO3/LaAlO3 superlattices are investigated. It is found that for a thin SrTiO3 film the interface is ferromagnetic but for a thicker SrTiO3 film the magnetic moment decreases and eventually disappears. This is a result of delocalization of the 2DEG that spreads over thicker SrTiO3 film which leads to violation of the Stoner criterion. Further, it is shown that inclusion of the Hubbard U interaction enhances the Stoner parameter and stabilizes the magnetism. The effect of the 2DEG and the polar interfaces for the thin film ferroelectricity is investigated using both first principles and model calculations. Using a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces it is shown that the intrinsic electric field produced by the polar interface forces ionic displacements in BaTiO3 to produce the electric polarization directed into the interior of the BaTiO 3 layer. This creates a ferroelectric dead layer near the interfaces that is non-switchable and thus detrimental to ferroelectricity. It is found that the effect is stronger for a larger effective ionic charge at the interface and longer screening length due to a stronger intrinsic electric

  17. Ultrafast two dimensional infrared chemical exchange spectroscopy

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  18. Vortices of Two Dimensional Guiding Center Plasmas.

    NASA Astrophysics Data System (ADS)

    Ting, Antonio Chofai

    A system of two dimensional guiding center plasma in a square conducting boundary is used as a model to study the anomalous transport is magnetically confined plasma. An external gravitational force is introduced to simulate the curvature and gradient of the magnetic field. For finite boundaries, it is a Hamiltonian system with finite phase space and negative temperature states are allowed. The statistical equilibrium states of this system are described by the solutions of a Poisson's equation with self-consistently determined charge density. In the limit of zero gravity, it can be reduced to the sinh-Poisson equation (DEL)('2)u + (lamda)('2)sinh u = 0. Previous numerical efforts have found solutions with vortex structures. A novel method of generating general exact solutions to this nonlinear boundary value problem is presented. These solutions are given by. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). where E(,i)'s are constants and the dependence of (gamma)(,j)'s on x and y are given by a set of coupled first order nonlinear ordinary differential equations. These equations can be linearized to give u(x,y) in terms of Riemann theta functions u(x,y) = 2ln (THETA)(l + 1/2)(THETA)(l) . The phases l evolve linearly in x and y while nonlinear superposition is displayed in the solution u(x,y). The self-consistent Poisson's equation with gravity is studied numerically. Different branches of solutions are obtained and their relations to the zero gravity solutions are discussed. The thermodynamically most favored structure of the system carries the feature of a heavy ion vortex on top of the light electron vortex. Branches of solutions are found to merge into each other as parameters in the equations were smoothly varied. A critical value of gravitational force exists such that below which there is a possibility of hysteresis between different equilibrium states. With the help of the nonzero gravity solutions, we also have a clearer picture of the transition from

  19. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  20. Molecular assembly on two-dimensional materials.

    PubMed

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-24

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule-substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging from

  1. Molecular assembly on two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  2. Resonant state expansion applied to two-dimensional open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2013-04-01

    The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as an unperturbed system, and its Green's function is shown to contain a cut in the complex frequency plane, which is included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film, and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for the thin-wire perturbation are shown to reproduce an approximative analytical solution.

  3. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    DTIC Science & Technology

    2015-06-01

    AFRL-RQ-WP-TP-2015-0109 ELLIPTIC LENGTH SCALES IN LAMINAR, TWO- DIMENSIONAL SUPERSONIC FLOWS James H. Miller Vehicle Technology Branch...SUBTITLE ELLIPTIC LENGTH SCALES IN LAMINAR, TWO-DIMENSIONAL SUPERSONIC FLOWS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 1 Approved for public release; distribution unlimited. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

  4. Two-dimensional Phase Unwrapping for Digital Holography

    DTIC Science & Technology

    2012-09-01

    Two-dimensional Phase Unwrapping for Digital Holography by Neal K. Bambha, Justin R. Bickford, and Karl K. Klett, Jr. ARL-TR-6225...1197 ARL-TR-6225 September 2012 Two-dimensional Phase Unwrapping for Digital Holography Neal K. Bambha, Justin R. Bickford, and Karl K...2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Two-dimensional Phase Unwrapping for Digital Holography 5a. CONTRACT

  5. Lie algebra contractions on two-dimensional hyperboloid

    SciTech Connect

    Pogosyan, G. S. Yakhno, A.

    2010-03-15

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E{sub 2} and eight on E{sub 1,1}. The text was submitted by the authors in English.

  6. A two-dimensional Segmented Boundary Algorithm for complex moving solid boundaries in Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khorasanizade, Sh.; Sousa, J. M. M.

    2016-03-01

    A Segmented Boundary Algorithm (SBA) is proposed to deal with complex boundaries and moving bodies in Smoothed Particle Hydrodynamics (SPH). Boundaries are formed in this algorithm with chains of lines obtained from the decomposition of two-dimensional objects, based on simple line geometry. Various two-dimensional, viscous fluid flow cases have been studied here using a truly incompressible SPH method with the aim of assessing the capabilities of the SBA. Firstly, the flow over a stationary circular cylinder in a plane channel was analyzed at steady and unsteady regimes, for a single value of blockage ratio. Subsequently, the flow produced by a moving circular cylinder with a prescribed acceleration inside a plane channel was investigated as well. Next, the simulation of the flow generated by the impulsive start of a flat plate, again inside a plane channel, has been carried out. This was followed by the study of confined sedimentation of an elliptic body subjected to gravity, for various density ratios. The set of test cases was completed with the simulation of periodic flow around a sunflower-shaped object. Extensive comparisons of the results obtained here with published data have demonstrated the accuracy and effectiveness of the proposed algorithms, namely in cases involving complex geometries and moving bodies.

  7. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGES

    Paul, J.; Dey, P.; Tokumoto, T.; ...

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  8. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of the 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.

  9. Beginning Introductory Physics with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  10. New two-dimensional quantum models with shape invariance

    SciTech Connect

    Cannata, F.; Ioffe, M. V.; Nishnianidze, D. N.

    2011-02-15

    Two-dimensional quantum models which obey the property of shape invariance are built in the framework of polynomial two-dimensional supersymmetric quantum mechanics. They are obtained using the expressions for known one-dimensional shape invariant potentials. The constructed Hamiltonians are integrable with symmetry operators of fourth order in momenta, and they are not amenable to the conventional separation of variables.

  11. An asymmetric pair of vortices adjacent to a spinning cylinder

    NASA Astrophysics Data System (ADS)

    Iosilevskii, G.; Seginer, A.

    The two-dimensional flow field over a spinning circular cylinder is analyzed using an extension of the Foeppl method. Equilibrium equations for two asymmetric point vortices in the wake of the cylinder are solved for a case when both vortices are equidistant from the cylinder. The two Foeppl solutions for the cylinder are presented. It is observed that the spin does not affect the angle between the two vortices; however, it displaces the vortex pair in the spin direction and the sinus of the displacement angle is proportional to the spin rate.

  12. Two-dimensional treatment of the level shift and decay rate in photonic crystals

    NASA Astrophysics Data System (ADS)

    Fussell, D. P.; McPhedran, R. C.; Martijn de Sterke, C.

    2005-10-01

    We present a comprehensive treatment of the level shift and decay rate of a model line source in a two-dimensional photonic crystal (2D PC) composed of circular cylinders. The quantities in this strictly two-dimensional system are determined by the two-dimensional local density of states (2D LDOS), which we compute using Rayleigh-multipole methods. We extend the critical point analysis that is traditionally applied to the 2D DOS (or decay rate) to the level shift. With this, we unify the crucial quantity for experiment—the 2D LDOS in a finite PC—with the band structure and the 2D DOS, 2D LDOS, and level shift in infinite PC’s. Consistent with critical point analysis, large variations in the level shift are associated with large variations in the 2D DOS (and 2D LDOS), corroborating a giant anomalous Lamb shift. The boundary of a finite 2D PC can produce resonances that cause the 2D LDOS in a finite 2D PC to differ markedly from the 2D LDOS in an infinite 2D PC.

  13. Two-dimensional treatment of the level shift and decay rate in photonic crystals

    SciTech Connect

    Fussell, D.P.; McPhedran, R.C.; Martijn de Sterke, C.

    2005-10-01

    We present a comprehensive treatment of the level shift and decay rate of a model line source in a two-dimensional photonic crystal (2D PC) composed of circular cylinders. The quantities in this strictly two-dimensional system are determined by the two-dimensional local density of states (2D LDOS), which we compute using Rayleigh-multipole methods. We extend the critical point analysis that is traditionally applied to the 2D DOS (or decay rate) to the level shift. With this, we unify the crucial quantity for experiment - the 2D LDOS in a finite PC - with the band structure and the 2D DOS, 2D LDOS, and level shift in infinite PC's. Consistent with critical point analysis, large variations in the level shift are associated with large variations in the 2D DOS (and 2D LDOS), corroborating a giant anomalous Lamb shift. The boundary of a finite 2D PC can produce resonances that cause the 2D LDOS in a finite 2D PC to differ markedly from the 2D LDOS in an infinite 2D PC.

  14. Two-dimensional treatment of the level shift and decay rate in photonic crystals.

    PubMed

    Fussell, D P; McPhedran, R C; Martijn de Sterke, C

    2005-10-01

    We present a comprehensive treatment of the level shift and decay rate of a model line source in a two-dimensional photonic crystal (2D PC) composed of circular cylinders. The quantities in this strictly two-dimensional system are determined by the two-dimensional local density of states (2D LDOS), which we compute using Rayleigh-multipole methods. We extend the critical point analysis that is traditionally applied to the 2D DOS (or decay rate) to the level shift. With this, we unify the crucial quantity for experiment--the 2D LDOS in a finite PC--with the band structure and the 2D DOS, 2D LDOS, and level shift in infinite PC's. Consistent with critical point analysis, large variations in the level shift are associated with large variations in the 2D DOS (and 2D LDOS), corroborating a giant anomalous Lamb shift. The boundary of a finite 2D PC can produce resonances that cause the 2D LDOS in a finite 2D PC to differ markedly from the 2D LDOS in an infinite 2D PC.

  15. Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Park, Jae Y.

    2017-03-01

    We present a dual Halbach array electromagnetic energy harvester that generates significant power from hand shaking vibration. The magnetic-spring configuration is employed for generating sufficient power from the hand motion of irregular and low-frequency vibrations. However, significant power generation at low-frequency vibrations is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density. A prototype was fabricated and tested both using a vibration exciter and by manual hand-shaking. The fabricated device showed resonant behavior during the vibration exciter test. For the vibration exciter test, the prototype device offers a maximum average power of 2.92 mW to a 62 Ω optimum load, at a 6 Hz resonance frequency and under a 0.5 g acceleration. The prototype device is capable of delivering a maximum average power of 2.27 mW from hand shaking. The fabricated device exhibited a normalized power density 0.46 mW cm‑2g‑2 which is very high compared to the current state-of-the-art devices, representing its ability in powering portable and wearable smart devices from extremely low frequency vibration.

  16. Turbulent Flow Between Rotating Cylinders

    NASA Technical Reports Server (NTRS)

    Shih-I, Pai

    1943-01-01

    The turbulent air flow between rotating cylinders was investigated. The distributions of mean speed and of turbulence were measured in the gap between a rotating inner and a stationary outer cylinder. The measurements led to the conclusion that the turbulent flow in the gap cannot be considered two dimensional, but that a particular type of secondary motion takes place. It is shown that the experimentally found velocity distribution can be fully understood under the assumption that this secondary motion consists of three-dimensional ring-shape vortices. The vortices occur only in pairs, and their number and size depend on the speed of the rotating cylinder; the number was found to decrease with increasing speed. The secondary motion has an essential part in the transmission of the moment of momentum. In regions where the secondary motion is negligible, the momentum transfer follows the laws known for homologous turbulence. Ring-shape vortices are known to occur in the laminar flow between rotating cylinders, but it was hitherto unknown that they exist even at speeds that are several hundred times the critical limit.

  17. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  18. Dynamics of two-dimensional and quasi-two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Sung, Bong June; Yethiraj, Arun

    2013-06-01

    The dynamic properties of dense two-dimensional (2D) polymer melts are studied using discontinuous molecular dynamics simulations. Both strictly 2D and quasi-2D systems are investigated. The strictly 2D model system consists of a fluid of freely jointed tangent hard disc chains. The translational diffusion coefficient, D, is strongly system size dependent with D ˜ ln L where L is the linear dimension of the square simulation cell. The rotational correlation time, τrot, is, however, independent of system size. The dynamics is consistent with Rouse behavior with D/ln L ˜ N-1 and τrot ˜ N2 for all area fractions. Analysis of the intermediate scattering function, Fs(k, t), shows that the dynamics becomes slow for N = 256 and the area fraction of 0.454 and that there might be a glass transition for long polymers at sufficiently high area fractions. The polymer mobility is not correlated with the conformation of the molecules. In the quasi-2D system hard sphere chains are confined between corrugated surfaces so that chains cannot go over each other or into the surfaces. The conformational properties are identical to the 2D case, but D and τrot are independent of system size. The scaling of D and τrot with N is similar to that of strictly 2D systems. The simulations suggest that 2D polymers are never entangled and follow Rouse dynamics at all densities.

  19. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Karaiskaj, D.; Tokumoto, T.; Hilton, D. J.; Reno, J. L.

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  20. A Hybrid Approach To Tandem Cylinder Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  1. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    DTIC Science & Technology

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  2. Strongly correlated quasi-two-dimensional dipolar fermions

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Skinner, Brian; Fogler, Michael; Demler, Eugene

    2013-03-01

    We study the collective oscillations of strongly correlated quasi-two-dimensional dipolar fermions at zero temperature. The correlation energy of the quasi-two-dimensional gas is obtained using a novel variational method based on the fixed-node diffusion Monte-Carlo analysis of strictly two-dimensional dipolar Fermi gas. As an application, we predict the dependence of the Wigner crystal transition point on the thickness of the layer, as well as the shift of the monopole oscillation frequency in harmonic traps.

  3. Model of a Negatively Curved Two-Dimensional Space.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1995-01-01

    Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)

  4. Difficulties that Students Face with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Mihas, P.; Gemousakakis, T.

    2007-01-01

    Some difficulties that students face with two-dimensional motion are addressed. The difficulties addressed are the vectorial representation of velocity, acceleration and force, the force-energy theorem and the understanding of the radius of curvature.

  5. A two-dimensional polymer prepared by organic synthesis.

    PubMed

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  6. Twinned growth behaviour of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Jiang, Bei; Xu, Zhen; Mendes, Rafael G.; Xiao, Yao; Chen, Linfeng; Fang, Liwen; Gemming, Thomas; Chen, Shengli; Rümmeli, Mark H.; Fu, Lei

    2016-12-01

    Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS2/WS2 vertical heterostructure. Moreover, the crystal size of the stacked structure is an order of magnitude larger than previous reports. Such twinned transition metal dichalcogenides vertical heterostructures exhibit great potential for use in optical, electronic and catalytic applications. The simplicity of the twinned growth can be utilized to expand the fabrication of other heterostructures or two-dimensional material superlattice and this strategy can be considered as an enabling technology for research in the emerging field of two-dimensional van der Waals heterostructures.

  7. Twinned growth behaviour of two-dimensional materials

    PubMed Central

    Zhang, Tao; Jiang, Bei; Xu, Zhen; Mendes, Rafael G.; Xiao, Yao; Chen, Linfeng; Fang, Liwen; Gemming, Thomas; Chen, Shengli; Rümmeli, Mark H.; Fu, Lei

    2016-01-01

    Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS2/WS2 vertical heterostructure. Moreover, the crystal size of the stacked structure is an order of magnitude larger than previous reports. Such twinned transition metal dichalcogenides vertical heterostructures exhibit great potential for use in optical, electronic and catalytic applications. The simplicity of the twinned growth can be utilized to expand the fabrication of other heterostructures or two-dimensional material superlattice and this strategy can be considered as an enabling technology for research in the emerging field of two-dimensional van der Waals heterostructures. PMID:27996005

  8. String & Sticky Tape Experiments: Two-Dimensional Collisions Using Pendulums.

    ERIC Educational Resources Information Center

    Edge, R. D.

    1989-01-01

    Introduces a method for two-dimensional kinematics measurements by hanging marbles with long strings. Describes experimental procedures for conservation of momentum and obtaining the coefficient of restitution. Provides diagrams and mathematical expressions for the activities. (YP)

  9. Power distribution in two-dimensional optical network channels

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue; Karim, Mohammad A.

    1996-04-01

    The power distribution in two-dimensional optical network channels is analyzed. The maximum number of allowable channels as determined by the characteristics of optical detector is identified, in particular, for neural-network and wavelet-transform applications.

  10. Fabrication and Characterization of Two-Dimensional Periodic Plasmonic Nanostructures

    DTIC Science & Technology

    2012-11-05

    SUPPLEMENTARY NOTES During the project, we have investigated the linear and nonlinear response of two dimensional gold square- nanopatch arrays. We have shown...dimensional gold square- nanopatch arrays. We have shown that these arrays exhibit very narrow resonances corresponding to the formation of leaky modes...fabricated square nanopatches in a two-dimensional square array since this configuration makes the device insensible to the polarization as reported in the

  11. Light evolution in arbitrary two-dimensional waveguide arrays

    SciTech Connect

    Szameit, Alexander; Pertsch, Thomas; Dreisow, Felix; Nolte, Stefan; Tuennermann, Andreas; Peschel, Ulf; Lederer, Falk

    2007-05-15

    We introduce an analytical formula for the dynamics of light propagation in a two-dimensional waveguide lattice including diagonal coupling. A superposition of infinite arrays created by imaginary sources is used to derive an expression for boundary reflections. It is shown analytically that for large propagation distances the propagating field reaches uniformity. Furthermore, periodic field recovery is studied and discrete anomalous refraction and diffraction are investigated in arbitrary two-dimensional lattices.

  12. Numerical modeling of two-dimensional confined flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1979-01-01

    A numerical model of two-dimensional confined flows is presented. The flow in the duct is partitioned into finite streams. The difference equations are then obtained by applying conservation principles directly to the individual streams. A listing of a computer code based on this approach in FORTRAN 4 language is presented. The code computes two dimensional compressible turbulent flows in ducts when the duct area along the flow is specified and the pressure gradient is unknown.

  13. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

    NASA Astrophysics Data System (ADS)

    Diaz-Valencia, B. F.; Calero, J. M.

    2017-02-01

    In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

  14. Navier-Stokes solutions for two-dimensional subsonic base flow

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.

    1984-01-01

    Methods for determining the effects of mass injection from the trailing edge of a bluff body at low speeds and in transonic flow were numerically studied along with an unmodified blunt-based body to gain insight into the effects of vortex shedding on the base drag. The methodology used to obtain finite-difference solutions to the Navier-Stokes equations for subsonic compressible two-dimensional near-wake flows is presented. The effectiveness of an introduced outflow boundary condition which minimizes reflections back into the computational domain was demonstrated with the solution of a model vortex problem. Calculations of the near-wake flow past a circular cylinder were in excellent agreement with experimental data. Laminar-flow solutions for a blunt-based model with and without a base cavity and with mass injection into the wake agreed qualitatively with experimental observations. The drag reduction capability provided by such base modifications was demonstrated.

  15. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  16. Anomalous negative reflection of acoustic waves from a two-dimensional phononic crystal immersed in water

    NASA Astrophysics Data System (ADS)

    Kang, Hwi Suk; Yoon, Suk Wang; Lee, Kang Il

    2017-02-01

    In the present study, we experimentally and theoretically demonstrated anomalous negative reflection of acoustic waves obliquely incident upon the boundary of a two-dimensional phononic crystal (PC) consisting of periodic square arrays of stainless-steel cylinders immersed in water. The angular spectrogram showing the frequency as a function of the angle was measured for the reflection from the PC when the incidence angle of the sound beam was fixed to be 20°. To understand the negative reflection from the PC, we considered the boundary of the PC to behave as an acoustic diffraction grating, and we calculated the acoustic pressure fields at specific frequencies of interest by using the finite element method. We found that the grating law could be successfully applied to the boundary of the PC in order to determine the direction of the acoustic waves diffracted in water.

  17. Vector finite formulation for scattering from two-dimensional heterogeneous bodies

    NASA Astrophysics Data System (ADS)

    Peterson, Andrew F.

    1994-03-01

    A formulation is proposed for electromagnetic scattering from two-dimensional heterogeneous structures that illustrates the combination the curl-curl form of vector Helmholtz equation with a local radiation boundary condition (RBC). To eliminate spurious nonzero eigenvalues in the spectrum of the matrix operator, vector basis function incorporating the Nedelec constraints are employed. Basis functions of linear and quadratic order are presented, and approximations made necessary by the use of the local RBC are discussed. Results obtained with linear-tangential/quadratic normal vector basis function exhibit excellent agreement with exact solution for layered circular cylinder geometries, and demonstrate that abrupt jump discontinues in the normal field components at material interfaces can be accurately modeled. The vector 2D formulation illustrates the features necessary for a general three-dimensional implementation.

  18. An Investigation of Two-Dimensional CAD Generated Models with Body Decoupled Cartesian Grids for DSMC

    SciTech Connect

    OTAHAL,THOMAS J.; GALLIS,MICHAIL A.; BARTEL,TIMOTHY J.

    2000-06-27

    This paper presents an investigation of a technique for using two-dimensional bodies composed of simple polygons with a body decoupled uniform Cmtesian grid in the Direct Simulation Monte Carlo method (DSMC). The method employs an automated grid pre-processing scheme beginning form a CAD geometry definition file, and is based on polygon triangulation using a trapezoid algorithm. A particle-body intersection time comparison is presented between the Icarus DSMC code using a body-fitted structured grid and using a structured body-decoupled Cartesian grid with both linear and logarithmic search techniques. A comparison of neutral flow over a cylinder is presented using the structured body fitted grid and the Cartesian body de-coupled grid.

  19. Multifarious topological quantum phase transitions in two-dimensional topological superconductors.

    PubMed

    Liu, Xiao-Ping; Zhou, Yuan; Wang, Yi-Fei; Gong, Chang-De

    2016-06-22

    We study the two-dimensional topological superconductors of spinless fermions in a checkerboard-lattice Chern-insulator model. With the short-range p-wave superconducting pairing, multifarious topological quantum phase transitions have been found and several phases with high Chern numbers have been observed. We have established a rich phase diagram for these topological superconducting states. A finite-size checkerboard-lattice cylinder with a harmonic trap potential has been further investigated. Based upon the self-consistent numerical calculations of the Bogoliubov-de Gennes equations, various phase transitions have also been identified at different regions of the system. Multiple pairs of Majorana fermions are found to be well-separated and localized at the phase boundaries between the phases characterized by different Chern numbers.

  20. Numerical simulation of two-dimensional steady granular flows in rotating drum: On surface flow rheology

    NASA Astrophysics Data System (ADS)

    Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.

    2005-10-01

    The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.

  1. Propagation of Electromagnetic Waves in Two Dimensionally Periodic Media

    NASA Astrophysics Data System (ADS)

    Dong, Tian-Lin

    1985-12-01

    The propagation of electromagnetic waves in two dimensionally periodic structure is systematically investigated, to provide the basic theory for two dimensionally modulated dielectric waveguide. A canonical two dimensionally periodic medium of infinite extent, whose dielectic constant varies sinusoidally in two orthogonal directions, is first examined. The charact solutions are represented exactly by a double Fourier series which is known as the Floquet solution. The harmonic amplitudes of the Floquet solution are determined by a five-term recurrence relation in the vector form, properly taking into account the hybrid-mode nature of the propagation problem. The five-term recurrence relation is then treated by different approaches so that clear physical pictures and practical numerical methods can be obtained. The characteristic solutions for two dimensionally periodic medium are then applied to the boundary-value problem of multi-layer dielectric waveguides containing a finite layer of periodic medium. As an example, the guidance problems are analysed and the numerical analysis of the dispersion characteristics are then carried out. Besides the canonical medium as a model, more general two dimensionally periodic medium are also discussed.

  2. Maximal liquid bridges between horizontal cylinders.

    PubMed

    Cooray, Himantha; Huppert, Herbert E; Neufeld, Jerome A

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  3. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  4. Vortex noise from nonrotating cylinders and airfoils

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.

    1976-01-01

    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  5. Complexity and efficient approximability of two dimensional periodically specified problems

    SciTech Connect

    Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.

    1996-09-01

    The authors consider the two dimensional periodic specifications: a method to specify succinctly objects with highly regular repetitive structure. These specifications arise naturally when processing engineering designs including VLSI designs. These specifications can specify objects whose sizes are exponentially larger than the sizes of the specification themselves. Consequently solving a periodically specified problem by explicitly expanding the instance is prohibitively expensive in terms of computational resources. This leads one to investigate the complexity and efficient approximability of solving graph theoretic and combinatorial problems when instances are specified using two dimensional periodic specifications. They prove the following results: (1) several classical NP-hard optimization problems become NEXPTIME-hard, when instances are specified using two dimensional periodic specifications; (2) in contrast, several of these NEXPTIME-hard problems have polynomial time approximation algorithms with guaranteed worst case performance.

  6. Two-dimensional convolute integers for analytical instrumentation

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1982-01-01

    As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.

  7. Melting of a two-dimensional crystal of electrons

    NASA Astrophysics Data System (ADS)

    Grimes, C. C.

    1981-03-01

    Experiments show that a sheet of electrons in image-potential-induced states outside a helium surface forms at low temperatures a two-dimensional crystal (the classical, two-dimensional analog of a Wigner crystal). At higher temperatures the electron crystal melts to form a two-dimensional, classical, one-component plasma. The melting transition occurs at Γm = 131 ± 7 where Γ is a measure of the ratio of Coulomb potential energy to kinetic energy per electron. This measured value of Γm is consistent with a value obtained by Morf from a calculation based on the Kosterlitz and Thouless theory of dislocation mediated melting in two-dimensions.

  8. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.

  9. A two-dimensional measuring equipment for electrical steel

    SciTech Connect

    Salz, W. . Inst. fuer Werkstoffe der Elektrotechnik)

    1994-05-01

    The technical aspects of two-dimensional measuring equipment for electrical steel are described. The choice of the appropriate field sensors and the important point of the control of [rvec B](t) are described. The equipment described is designed to measure the two-dimensional properties of square shaped single sheets of all qualities of electrical steel covering the technical frequencies and induction ranges of the major applications. The equipment is useful for the manufacturers of electrical steel to control the texture of their material and for designers of machines to know about the properties of the material under two-dimensional excitation, which in case of rotational flux conditions are different from the one-dimensional properties measured with Epstein frame or single sheet testers.

  10. Two dimensional convolute integers for machine vision and image recognition

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  11. A two-dimensional spin liquid in quantum kagome ice.

    PubMed

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  12. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    PubMed

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  13. Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Ehlers, G.; White, S. R.; Noack, R. M.

    2017-03-01

    The performance of the density matrix renormalization group (DMRG) is strongly influenced by the choice of the local basis of the underlying physical lattice. We demonstrate that, for the two-dimensional Hubbard model, the hybrid-real-momentum-space formulation of the DMRG is computationally more efficient than the standard real-space formulation. In particular, we show that the computational cost for fixed bond dimension of the hybrid-space DMRG is approximately independent of the width of the lattice, in contrast to the real-space DMRG, for which it is proportional to the width squared. We apply the hybrid-space algorithm to calculate the ground state of the doped two-dimensional Hubbard model on cylinders of width four and six sites; at n =0.875 filling, the ground state exhibits a striped charge-density distribution with a wavelength of eight sites for both U /t =4.0 and 8.0 . We find that the strength of the charge ordering depends on U /t and on the boundary conditions. Furthermore, we investigate the magnetic ordering as well as the decay of the static spin, charge, and pair-field correlation functions.

  14. Two-Dimensional Inlet Simulation Using a Diagonal Implicit Algorithm

    NASA Technical Reports Server (NTRS)

    Chaussee, D.S.; Pulliam, T. H.

    1981-01-01

    A modification of an implicit approximate-factorization finite-difference algorithm applied to the two-dimensional Euler and Navier-Stokes equations in general curvilinear coordinates is presented for supersonic freestream flow about and through inlets. The modification transforms the coupled system of equations Into an uncoupled diagonal form which requires less computation work. For steady-state applications the resulting diagonal algorithm retains the stability and accuracy characteristics of the original algorithm. Solutions are given for inviscid and laminar flow about a two-dimensional wedge inlet configuration. Comparisons are made between computed results and exact theory.

  15. Equilibrium state of a trapped two-dimensional Bose gas

    SciTech Connect

    Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner

    2010-07-15

    We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.

  16. Spectral analysis of two-dimensional Bose-Hubbard models

    NASA Astrophysics Data System (ADS)

    Fischer, David; Hoffmann, Darius; Wimberger, Sandro

    2016-04-01

    One-dimensional Bose-Hubbard models are well known to obey a transition from regular to quantum-chaotic spectral statistics. We are extending this concept to relatively simple two-dimensional many-body models. Also in two dimensions a transition from regular to chaotic spectral statistics is found and discussed. In particular, we analyze the dependence of the spectral properties on the bond number of the two-dimensional lattices and the applied boundary conditions. For maximal connectivity, the systems behave most regularly in agreement with the applicability of mean-field approaches in the limit of many nearest-neighbor couplings at each site.

  17. Two-dimensional superconductors with atomic-scale thickness

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  18. Density fluctuation spectrum of two-dimensional correlated fermion systems

    NASA Astrophysics Data System (ADS)

    Kotani, Akihiro; Hirashima, Dai

    2012-12-01

    Density fluctuation spectrum of two-dimensional fermions that interact with short-range repulsive interaction is calculated with the self-consistent perturbation theory. The spectrum extends beyond the particle-hole continuum band in the noninteracting case because of the multiparticle excitations. At a large wave vector, a peak develops in the spectrum near the lower threshold of the particle-hole continuum. These results are compared with the recent inelastic neutron scattering experiment on two-dimensional 3He adsorbed on graphite.

  19. Two-dimensional signal reconstruction: The correlation sampling method

    SciTech Connect

    Roman, H. E.

    2007-12-15

    An accurate approach for reconstructing a time-dependent two-dimensional signal from non-synchronized time series recorded at points located on a grid is discussed. The method, denoted as correlation sampling, improves the standard conditional sampling approach commonly employed in the study of turbulence in magnetoplasma devices. Its implementation is illustrated in the case of an artificial time-dependent signal constructed using a fractal algorithm that simulates a fluctuating surface. A statistical method is also discussed for distinguishing coherent (i.e., collective) from purely random (noisy) behavior for such two-dimensional fluctuating phenomena.

  20. Two-dimensional spatial frequency response of SQUID planar gradiometers

    NASA Astrophysics Data System (ADS)

    Lima, E. Andrade; Bruno, A. C.; Szczupak, J.

    1999-11-01

    Planar gradiometers can be modelled as two-dimensional spatial filters, taking into account area, baseline and shape of the coils. We associate a spatial frequency response with each configuration studied and show that planar gradiometers behave as band-pass spatial filters. Also, in order to determine a spatial frequency range for typical magnetic field sources, we calculate the two-dimensional Fourier transform of the field due to a current dipole for several liftoffs. Important issues such as gradiometer spatial cutoff frequencies, bandwidth and symmetry are discussed.

  1. Two-dimensional temperature mapping using thermographic phosphors

    SciTech Connect

    Noel, B.W. ); Turley, W.D. ); Cates, M.R.; Tobin, K.W. )

    1990-01-01

    We have demonstrated the feasibility of extending a point-temperature measurement method to two-dimensional mapping of temperature distributions on surfaces. The point-measurement method used the temperature-dependant characteristics of sharp emission lines from thermographic phosphors to measure temperature. The two-dimensional extrusion uses an ultraviolet light source to illuminate the phosphor-coated surface and a high-grain video camera filtered to select the desired emission line. By changing filters, we acquire video data that are over-laid and analyzed by a video processor, then displayed in contour or pseudocolor maps of the temperature distribution. 13 refs., 14 figs., 1 tabs.

  2. Vortices in the Two-Dimensional Simple Exclusion Process

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  3. A two-dimensional adaptive mesh generation method

    NASA Astrophysics Data System (ADS)

    Altas, Irfan; Stephenson, John W.

    1991-05-01

    The present, two-dimensional adaptive mesh-generation method allows selective modification of a small portion of the mesh without affecting large areas of adjacent mesh-points, and is applicable with or without boundary-fitted coordinate-generation procedures. The cases of differential equation discretization by, on the one hand, classical difference formulas designed for uniform meshes, and on the other the present difference formulas, are illustrated through the application of the method to the Hiemenz flow for which the Navier-Stokes equation's exact solution is known, as well as to a two-dimensional viscous internal flow problem.

  4. The fractional Talbot effect of two-dimensional array

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Liu, Liren; Liu, De'an; Luan, Zu; Xu, Nan

    2005-09-01

    In this paper, we theoretically prove the fractional self-imaging effect of the two-dimensional array with arbitrary shape and symmetry, using scalar diffraction theory and the known periodic self-Fourier-Fresnel transform function comb(x , y). As a result, we also got a general equation to calculate the phase of the fractional Talbot image of the two-dimensional array. As an example, we numerically evaluate the intensity distribution of the diamond array in triangular symmetry in the fractional Talbot plane using Matlab, The result is a good agreement with the theory.

  5. Nonlinear standing waves on a periodic array of circular cylinders.

    PubMed

    Yuan, Lijun; Lu, Ya Yan

    2015-08-10

    A periodic array of parallel and infinitely long dielectric circular cylinders surrounded by air can be regarded as a simple two-dimensional periodic waveguide. For linear cylinders, guided modes exist continuously below the lightline in various frequency intervals, but standing waves, which are special guided modes with a zero Bloch wavenumber, could exist above the lightline at a discrete set of frequencies. In this paper, we consider a periodic array of nonlinear circular cylinders with a Kerr nonlinearity, and show numerically that nonlinear standing waves exist continuously with the frequency and their amplitudes depend on the frequency. The amplitude-frequency relations are further investigated in a perturbation analysis.

  6. Extinction paradox and actual power scattered in light beam scattering: a two-dimensional study.

    PubMed

    Lai, H M; Wong, W Y; Wong, W H

    2004-12-01

    The extinction paradox is examined by applying partial-wave analysis to a two-dimensional light beam interacting with a long transverse cylinder without absorption, assuming always short wavelengths. We show that the (conventional) power scattered, Psca, except for a very narrow beam hitting a transparent cylinder on axis, is always double the power directly intercepted by the scatterer, Pitc, including a zero result for Psca when the incident beam is basically off the material surface. This contradicts the interpretation that attributes one half of Psca to edge diffraction by the scatterer. Furthermore, we identify the shadow-forming wave (SFW) from the partial-wave sum in the forward direction and show that the actual power scattered or, equivalently, the power depleted from the incident beam is equal to one unit of Pitc for a narrow beam, gets larger for a broader beam, and approaches 2Pitc for a very broad beam. The larger value in the latter cases is due to the extent of divergence of the SFW beam out of the incident beam at distances well beyond the Rayleigh range.

  7. Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios

    NASA Astrophysics Data System (ADS)

    Hobrecht, Hendrik; Hucht, Alfred

    2017-02-01

    We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.

  8. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    NASA Astrophysics Data System (ADS)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  9. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting.

    PubMed

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-25

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  10. Numerical procedure to determine geometric view factors for surfaces occluded by cylinders

    NASA Technical Reports Server (NTRS)

    Sawyer, P. L.

    1978-01-01

    A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.

  11. Pressure Calculation for Two-Dimensional Flow Inside Hydraulic Structures.

    DTIC Science & Technology

    1986-04-01

    Englewood Cliffs, N. J., pp 525-530. Thompson , J . F . 1983 (Mar). "A Boundary-Fitted Coordinate Code for General Two-Dimensional Regions with Obstacles...and Boundary Intrusions," Technical Report E-83-8, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. V Thompson , J . F ., and Bernard, R

  12. Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    Santa Maria, Odilyn L.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  13. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  14. Chaotic dynamics for two-dimensional tent maps

    NASA Astrophysics Data System (ADS)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  15. Two-dimensional optimization of free electron laser designs

    DOEpatents

    Prosnitz, Donald; Haas, Roger A.

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  16. Two-dimensional optimization of free-electron-laser designs

    DOEpatents

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  17. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    ERIC Educational Resources Information Center

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  18. On the solvability of two dimensional semigroup gauge theories

    SciTech Connect

    Varga, Peter

    2010-06-15

    We study the solvability of two dimensional semigroup gauge theories by Migdal's link elimination method. We determine certain conditions that ensure that the partition sum corresponding to the join of two plaquettes depends only on the holonomy around the boundary of the joined plaquettes. These conditions are checked for a few types of semigroups: 0-groups, cyclic, inverse symmetric, and Brandt semigroups.

  19. Two-dimensional vortex motion and 'negative temperatures.'

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1972-01-01

    Explanation of the novel phenomenon, tentatively identified as the 'ergodic boundary' in a space of initial conditions for turbulent flow, suggested by the recent numerical integration of the two-dimensional Navier-Stokes equations at high Reynolds numbers reported by Deem and Zabusky (1971). The proposed explanation is presented in terms of negative temperatures for a point vortex model.

  20. Sound waves in two-dimensional ducts with sinusoidal walls

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  1. Imperfect two-dimensional topological insulator field-effect transistors

    NASA Astrophysics Data System (ADS)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators.

  2. Imperfect two-dimensional topological insulator field-effect transistors.

    PubMed

    Vandenberghe, William G; Fischetti, Massimo V

    2017-01-20

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators.

  3. Imperfect two-dimensional topological insulator field-effect transistors

    PubMed Central

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  4. Two-Dimensional Grids About Airfoils and Other Shapes

    NASA Technical Reports Server (NTRS)

    Sorenson, R.

    1982-01-01

    GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.

  5. Temperature maxima in stable two-dimensional shock waves

    NASA Astrophysics Data System (ADS)

    Kum, Oyeon; Hoover, Wm. G.; Hoover, C. G.

    1997-07-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy's pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith's model for strong shock waves in dilute three-dimensional gases.

  6. Dynamic two-dimensional beam-pattern steering technique

    NASA Astrophysics Data System (ADS)

    Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang

    1993-06-01

    A dynamic two-dimensional laser-beam-pattern steering technique using photorefractive holograms in conjunction with electrically addressed spatial light modulators is proposed and investigated. The experimental results demonstrate the dynamic steering of random combinations of basis beam patterns. The proposed method has the advantages of random beam-pattern combination, good beam intensity uniformity, and higher diffraction efficiency compared with conventional methods.

  7. Exact two-dimensional superconformal R symmetry and c extremization.

    PubMed

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  8. Two-dimensional Manifold with Point-like Defects

    NASA Astrophysics Data System (ADS)

    Gani, V. A.; Dmitriev, A. E.; Rubin, S. G.

    We study a class of two-dimensional compact extra spaces isomorphic to the sphere S 2 in the framework of multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  9. Two-dimensional electrostatic lattices for indirect excitons

    NASA Astrophysics Data System (ADS)

    Remeika, M.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.

    2012-02-01

    We report on a method for the realization of two-dimensional electrostatic lattices for excitons using patterned interdigitated electrodes. Lattice structure is set by the electrode pattern and depth of the lattice potential is controlled by applied voltages. We demonstrate square, hexagonal, and honeycomb lattices created by this method.

  10. Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang

    2016-01-15

    The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.

  11. Application of the Analogy Between Water Flow with a Free Surface and Two-Dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Butterly, Jack G

    1947-01-01

    The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  12. Application of the Analogy Between Water Flow with a Free Surface and Two-dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Bitterly, Jack G

    1947-01-01

    The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  13. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  14. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    SciTech Connect

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.

  15. Toward the Accurate Simulation of Two-Dimensional Electronic Spectra

    NASA Astrophysics Data System (ADS)

    Giussani, Angelo; Nenov, Artur; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Two-dimensional pump-probe electronic spectroscopy is a powerful technique able to provide both high spectral and temporal resolution, allowing the analysis of ultrafast complex reactions occurring via complementary pathways by the identification of decay-specific fingerprints. [1-2] The understanding of the origin of the experimentally recorded signals in a two-dimensional electronic spectrum requires the characterization of the electronic states involved in the electronic transitions photoinduced by the pump/probe pulses in the experiment. Such a goal constitutes a considerable computational challenge, since up to 100 states need to be described, for which state-of-the-art methods as RASSCF and RASPT2 have to be wisely employed. [3] With the present contribution, the main features and potentialities of two-dimensional electronic spectroscopy are presented, together with the machinery in continuous development in our groups in order to compute two-dimensional electronic spectra. The results obtained using different level of theory and simulations are shown, bringing as examples the computed two-dimensional electronic spectra for some specific cases studied. [2-4] [1] Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M, Int. J. Quantum Chem., 2014, 114, 85 [2] Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal V K, Altavilla S, Mukamel S, Garavelli M, Faraday Discuss. 2015, DOI: 10.1039/C4FD00175C [3] Nenov A, Giussani A, Segarra-Martí J, Jaiswal V K, Rivalta I, Cerullo G, Mukamel S, Garavelli M, J. Chem. Phys. submitted [4] Nenov A, Giussani A, Fingerhut B P, Rivalta I, Dumont E, Mukamel S, Garavelli M, Phys. Chem. Chem. Phys. Submitted [5] Krebs N, Pugliesi I, Hauer J, Riedle E, New J. Phys., 2013,15, 08501

  16. Quick release engine cylinder

    DOEpatents

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  17. Experimental free convection heat transfer from inclined square cylinders

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed

    2016-10-01

    Natural convection from axisymmetric objects such as vertical or horizontal cylinders and spheres are two dimensional. However, for inclined circular or noncircular cylinders the flow and heat transfer is three dimensional and hence more complex and needs more attention. This study investigates the steady state mechanism of natural convection from inclined square cylinders in air. Five different cylinders of 1 m length, 8 × 8, 7 × 7, 6 × 6, 4 × 4 and 2.5 × 2.5 cm2 cross sections are used. The cylinders are heated using inserted heating element of 6 mm in diameter. Self-adhesive thermocouples are used at the upper, bottom and at one side of the cylinders for temperature measurement. Three inclination angles to the horizontal 30, 45 and 60o are used for each cylinder with uniform heat flux boundary conditions. For each cylinder, about ten heat fluxes are used to generate the heat transfer data. Local and average heat transfer coefficient is determined for each cylinder at each inclination angle for each uniform heat flux. Laminar and transition to turbulent regimes are obtained and characterized. Local critical axial distance where heat transfer coefficient changes the mode is obtained for each heat flux. Local and averaged Nusselt numbers are correlated with the modified Rayleigh numbers for all angles.

  18. Guided Circumferential Waves in Layered Poroelastic Cylinders

    NASA Astrophysics Data System (ADS)

    Shah, S. A.; Apsar, G.

    2016-12-01

    The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly). The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.

  19. The Cylinder and Semicylinder in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Bingham, Harry J.; Weimer, David K..; Griffith, Wayland

    1952-01-01

    In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.

  20. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  1. Vortices and antivortices in two-dimensional ultracold Fermi gases.

    PubMed

    Bighin, G; Salasnich, L

    2017-04-04

    Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.

  2. Strong localization effect in magnetic two-dimensional hole systems

    NASA Astrophysics Data System (ADS)

    Wurstbauer, U.; Knott, S.; Zolotaryov, A.; Schuh, D.; Hansen, W.; Wegscheider, W.

    2010-01-01

    We report an extensive study of the magnetotransport properties of magnetically doped two-dimensional hole systems. Inverted manganese modulation doped InAs quantum wells with localized manganese ions providing a magnetic moment of S=5/2 were grown by molecular beam epitaxy. Strong localization effect found in low-field magnetotransport measurements on these structures can either be modified by the manganese doping density or by tuning the two-dimensional hole density p via field effect. The data reveal that the ratio between p and manganese ions inside or in close vicinity to the channel enlarges the strong localization effect. Moreover, asymmetric broadening of the doping layer due to manganese segregation is significantly influenced by strain in the heterostructure.

  3. Vortex annihilation and inverse cascades in two dimensional superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Chesler, Paul M.

    2015-03-01

    The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.

  4. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  5. No-hair conjecture in two-dimensional dilaton supergravity

    NASA Astrophysics Data System (ADS)

    Gamboa, J.; Georgelin, Y.

    1993-11-01

    We study two-dimensional (2D) dilaton gravity and supergravity following Hamiltonian methods. First, we consider the structure of constraints of 2D dilaton gravity, and then the 2D dilaton supergravity theory is obtained taking the square root of the bosonic constraints. We integrate exactly the equations of motion in both cases, and we show that the solutions of the equation of motion of 2D dilaton supergravity differ from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables; i.e., the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the two-dimensional analogue of the no-hair theorem for supergravity.

  6. Preliminary results on two-dimensional interferometry of HL Tau

    NASA Technical Reports Server (NTRS)

    Tollestrup, Eric V.; Harvey, Paul M.

    1989-01-01

    Preliminary two-dimensional speckle interferometry results of HL Tau were found to be qualitatively similar to those found with one-dimensional slit scanning techniques; results consist of a resolved component (approximately 0.7 arcsec in size) and an unresolved component. Researchers are currently reducing the rest of the data (taken on three different telescopes and at three different wavelengths) and are also exploring other high resolution methods like the shift and add technique and selecting only the very best images for processing. The availability of even better two-dimensional arrays within the next couple of years promises to make speckle interferometry and other high resolution techniques very powerful and exiting tools for probing a variety of objects in the subarcsec regime.

  7. Entanglement and Decoherence in Two-Dimensional Coherent State Superpositions

    NASA Astrophysics Data System (ADS)

    Maleki, Y.

    2017-03-01

    A detailed investigation of entanglement in the generalized two-dimensional nonorthogonal states, which are expressed in the framework of superposed coherent states, is presented. In addition to quantifying entanglement of the generalized two-dimensional coherent states superposition, necessary and sufficient conditions for maximality of entanglement of these states are found. We show that a large class of maximally entangled coherent states can be constructed, and hence, some new maximally entangled coherent states are explicitly manipulated. The investigation is extended to the mixed system states and entanglement properties of such mixed states are investigated. It is shown that in some cases maximally entangled mixed states can be detected. Furthermore, the effect of decoherence, due to both cavity losses and noisy channel process, on such entangled states are studied and its features are discussed.

  8. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang

    2017-04-01

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication.

  9. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  10. Manifestations of two-dimensional electron gas in molecular crystals

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Sharia, Onise; Tsyshevsky, Roman

    2017-03-01

    The existence of two-dimensional electron gas in molecular materials has not been reported or discussed. Intriguing properties of two-dimensional electron gas observed on interfaces of polar and nonpolar oxides spurred oxide electronics and advanced nanotechnology. Here we discover how an electrostatic instability occurs on polar surfaces of molecular crystals and explore its manifestations, chemical degradation of surfaces, charge separation, electrical conductivity, optical band-gap closure and surface metallization. A thin layer of polar surface of a dielectric molecular crystal becomes metallic due to interactions of polar molecules. Our findings are illustrated with two polymorphs of cyclotetramethylene-tetranitramine crystals, the polar δ-phase and nonpolar β-phase. Our theory offers an explanation to a relative stability of the β-phase versus the explosive reactivity of δ-phase and to the experimentally observed difference in conductivity of these crystals. We predict that the electrostatic instability takes place on all polar molecular materials.

  11. Two-dimensional fluorescence spectroscopy for application in biotechnology

    NASA Astrophysics Data System (ADS)

    Lindemann, Carsten; Marose, S.; Scheper, Thomas-Helmut; Nielsen, Hans O.; Hitzmann, Bernd; Belgardt, K.-H.

    1999-02-01

    A wide range of excitation and emission wavelengths is measured using the technique of two-dimensional (2D-) fluorescence spectroscopy. In a single, so called, two- dimensional fluorescence spectrum several biogenic fluorophors like proteins, vitamins and coenzymes can be detected simultaneously. This can give important information for bioprocess monitoring and control. An optical sensor (BioViewR) for on line fluorescence measurements at industrial (bio)-processes was used to get the results presented in this paper. This BioViewR-sensor is optimized to work in the harsh environment of production sites in biotechnological industry and -- using an optical light guide system with open-end detection -- it is very well suited for in vivo measurements, because it is non-invasive and the on line data can be performed in-situ.

  12. On two-dimensional flows of compressible fluids

    NASA Technical Reports Server (NTRS)

    Bergman, Stefan

    1945-01-01

    This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.

  13. Topological Phonon Modes in a Two-Dimensional Wigner Crystal

    NASA Astrophysics Data System (ADS)

    Ji, Wen-Cheng; Shi, Jun-Ren

    2017-03-01

    We investigate the spin-orbit coupling effect in a two-dimensional Wigner crystal. We show that sufficiently strong spin-orbit coupling and an appropriate sign of g-factor could transform the Wigner crystal to a topological phonon system. We demonstrate the existence of chiral phonon edge modes in finite size samples, as well as the robustness of the modes in the topological phase. We explore the possibility of realizing the topological phonon system in two-dimensional Wigner crystals confined in semiconductor quantum wells/heterostructure. We find that the spin-orbit coupling is too weak for driving a topological phase transition in these systems. We argue that one may look for the topological phonon system in correlated Wigner crystals with emergent effective spin-orbit coupling.

  14. Unshielded fetal magnetocardiography system using two-dimensional gradiometers

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio

    2008-03-01

    We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.

  15. Folding two dimensional crystals by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS2 does not.

  16. Two-dimensional magnetostriction under vector magnetic characteristic

    NASA Astrophysics Data System (ADS)

    Wakabayashi, D.; Enokizono, M.

    2015-05-01

    This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.

  17. Numerical analysis of a two-dimensional nonsteady detonations

    NASA Technical Reports Server (NTRS)

    Taki, S.; Fujiwara, T.

    1976-01-01

    In the present work a system of two-dimensional nonsteady hydrodynamic and chemical kinetic equations was numerically integrated for an exothermic system. Assumed two-step reaction model simulates practically an oxyhydrogen mixture. The calculation starts from a plane Chapman-Jouguet detonation as an initial condition. Two-dimensional disturbances are generated by artificially placing nonuniformities ahead of the detonation front. Regardless of the difference of the given initial disturbances, a fixed number of triple shock waves were produced for a fixed combination of mixture model and geometry when the transition period was over. This shows that for a given detonation tube geometry any exothermic system has its own characteristic multidimensional structure. The obtained number of triple shock waves contained in the detonation front was in agreement with existing experimental observations under the same condition.

  18. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    PubMed Central

    Xu, Jun; Zheng, Bowen

    2016-01-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices. PMID:27892963

  19. Mode conversion in plasmas with two-dimensional inhomogeneities

    NASA Astrophysics Data System (ADS)

    Nassiri-Mofakham, Nora; Sabzevari, Bijan Sh.

    2006-02-01

    Most of the mode conversion theories considered so far assume only a plane-layered medium, i.e. a medium where the parameters depend on one spatial coordinate. We generalize the mode-conversion method of Cairns and Lashmore-Davies to plasmas with two-dimensional inhomogeneities. In the method presented here, the frequencies ω_1 and ω_2 of the uncoupled modes belonging to two different dispersion equations are considered as functions of the space variable r and the wave vector k and are coupled together via a small quantity η. We calculate the energy transmission and conversion coefficients analytically by solving two coupled wave amplitude equations in the electron cyclotron range of frequencies. The results are applicable to electron Bernstein wave heating of plasmas with two-dimensional inhomogeneity, e.g. spherical tokamaks.

  20. Two-dimensional localized structures in harmonically forced oscillatory systems

    NASA Astrophysics Data System (ADS)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  1. Controlling chaotic transport in two-dimensional periodic potentials.

    PubMed

    Chacón, R; Lacasta, A M

    2010-10-01

    We uncover and characterize different chaotic transport scenarios in perfect two-dimensional periodic potentials by controlling the chaotic dynamics of particles subjected to periodic external forces in the absence of a ratchet effect (i.e., with no directed transport by symmetry breaking of zero-mean forces). After identifying relevant symmetries of the equations of motion, analytical estimates in parameter space for the occurrence of different transport scenarios are provided and confirmed by numerical simulations. These scenarios are highly sensitive to variations of the system's asymmetry parameters, including the eccentricity of the two-dimensional periodic potential and the direction of dc and ac forces, which could be useful for particle sorting purposes in those cases where chaos is unavoidable.

  2. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  3. Strong localization effect in magnetic two-dimensional hole systems

    SciTech Connect

    Wurstbauer, U.; Knott, S.; Zolotaryov, A.; Hansen, W.; Schuh, D.; Wegscheider, W.

    2010-01-11

    We report an extensive study of the magnetotransport properties of magnetically doped two-dimensional hole systems. Inverted manganese modulation doped InAs quantum wells with localized manganese ions providing a magnetic moment of S=5/2 were grown by molecular beam epitaxy. Strong localization effect found in low-field magnetotransport measurements on these structures can either be modified by the manganese doping density or by tuning the two-dimensional hole density p via field effect. The data reveal that the ratio between p and manganese ions inside or in close vicinity to the channel enlarges the strong localization effect. Moreover, asymmetric broadening of the doping layer due to manganese segregation is significantly influenced by strain in the heterostructure.

  4. Phase separation under two-dimensional Poiseuille flow.

    PubMed

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  5. Novel hybrid C/BN two-dimensional heterostructures

    NASA Astrophysics Data System (ADS)

    Kvashnin, Dmitry G.; Kvashnina, Olga P.; Avramov, Pavel V.; Sorokin, Pavel B.; Kvashnin, Alexander G.

    2017-02-01

    Here we present an investigation of new quasi-two-dimensional heterostructures based on the alternation of bounded carbon and boron nitride layers (C/BN). We carried out a theoretical study of the atomic structure, stability and electronic properties of the proposed heterostructures. Such ultrathin quasi-two-dimensional C/BN films can be synthesized by means of chemically induced phase transition by connection of the layers of multilayered h-BN/graphene van der Waals heterostructures, which is indicated by the negative phase transition pressure in the calculated phase diagrams (P, T) of the films. It was shown that the band gap value of the C/BN films spans the infrared and visible spectrum. We hope that the proposed films and fabrication method can be considered as a possible route to obtain nanostructures with a controllable band gap in wide energy range. This makes these materials potentially suitable for a variety of applications, including photovoltaics, photoelectronics and more.

  6. Unshielded fetal magnetocardiography system using two-dimensional gradiometers.

    PubMed

    Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio

    2008-03-01

    We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25 weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34 weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.

  7. Two dimensional disorder in black phosphorus and layered monochalcogenides

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.

    The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.

  8. Extension of modified power method to two-dimensional problems

    SciTech Connect

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.

  9. Two-dimensional semi-parametric alignment of chromatograms.

    PubMed

    de Boer, Wim P H; Lankelma, Jan

    2014-06-06

    We present a comprehensive alignment algorithm that extends the semi-parametric approach to two dimensions. The algorithm is based on modeling shifts with a two-dimensional "warp function" such that the sample chromatogram - its shifts corrected with the warp function - is adjusted to the reference chromatogram by minimizing the squared intensity difference. A warp function approach has the advantage that overlapping peaks are easily dealt with compared to other proposed two-dimensional algorithms. Another advantage is that missing peaks are allowed if the absence of these peaks has little numerical effect on the warp function computation and if these peaks occur between existing peaks. Performance of the algorithm is demonstrated using GC×GC data from three batches of three diesel oil samples and LC-MS data from a mouse breast cancer data set.

  10. Vortices and antivortices in two-dimensional ultracold Fermi gases

    PubMed Central

    Bighin, G.; Salasnich, L.

    2017-01-01

    Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations. PMID:28374762

  11. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  12. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    SciTech Connect

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Larcher, Luca; Wu, Ernest

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  13. Dirac Points in Two-Dimensional Inverse Opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2013-10-01

    The electron energy states and energy bands are calculated for a two-dimensional inverse opal structure. Assume that the opal structure is closed-packed circles, the inverse opal has the honeycomb lattice. The honeycomb lattice in two dimensions has a Dirac point. Its properties can be manipulated by altering the structure of the inverse opal: the radius of the circle, and the small gap between circles.

  14. In vivo two-dimensional NMR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraft, Robert A.

    1999-10-01

    The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and γ- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  15. Two Dimensional Compressibility of Electrochemically Adsorbed Lead on Silver (111).

    DTIC Science & Technology

    1988-01-28

    electrode surface, occur at electrode potentials positive of the reversible thermodynamic potential for bulk deposition and hence are termed underpotential ...monolayer formation and bulk deposition , the 1J near neighbor distance of the lead monolayer decreases linearly with applied potential, (proportional to the...report the two dimensional compressibility of electrochemically deposited lead on silver (111). Measurements were made in-situ (in contact with solution

  16. Two-Dimensional Simulation of Truckee River Hydrodynamics

    DTIC Science & Technology

    2006-09-01

    ANALYSIS: The Truckee River originates from Lake Tahoe , flowing 140 miles (225 km) through Reno, NV, to Pyramid Lake . The downstream boundary of the...riverine restoration design. A two-dimensional (2-D) hydrodynamic model was applied to the McCarran Ranch reach of the Truckee River to evaluate...existing condition and future restoration plan condition hydraulics. The impact of the restoration design is presented in terms of the difference in the

  17. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  18. Intermittency in two-dimensional Ekman-Navier-Stokes turbulence

    NASA Astrophysics Data System (ADS)

    Boffetta, G.; Celani, A.; Musacchio, S.; Vergassola, M.

    2002-08-01

    We study the statistics of the vorticity field in two-dimensional Navier-Stokes turbulence with linear Ekman friction. We show that the small-scale vorticity fluctuations are intermittent, as conjectured by Bernard [Europhys. Lett. 50, 333 (2000)] and Nam et al. [Phys. Rev. Lett. 84, 5134 (2000)]. The small-scale statistics of vorticity fluctuations coincide with that of a passive scalar with finite lifetime transported by the velocity field itself.

  19. Two dimensional thermal and charge mapping of power thyristors

    NASA Technical Reports Server (NTRS)

    Hu, S. P.; Rabinovici, B. M.

    1975-01-01

    The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.

  20. Suspended two-dimensional electron and hole gases

    SciTech Connect

    Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.

    2013-12-04

    We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.

  1. Itinerant ferromagnetism in a two-dimensional atomic gas

    SciTech Connect

    Conduit, G. J.

    2010-10-15

    Motivated by the first experimental evidence of ferromagnetic behavior in a three-dimensional ultracold atomic gas, we explore the possibility of itinerant ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we develop a formalism that demonstrates how quantum fluctuations drive the ferromagnetic reconstruction first order, and consider the consequences of an imposed population imbalance. Secondly, we adapt this formalism to elucidate the key experimental signatures of ferromagnetism in a realistic trapped geometry.

  2. SU(1,2) invariance in two-dimensional oscillator

    NASA Astrophysics Data System (ADS)

    Krivonos, Sergey; Nersessian, Armen

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1, 2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1, 2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  3. Structural transitions in laterally compressed two-dimensional Coulomb clusters

    SciTech Connect

    Rancova, O.; Anisimovas, E.; Varanavicius, T.

    2011-03-15

    We model structural transitions of small-size Wigner crystals in laterally compressed two-dimensional traps. Ground and metastable configurations are calculated and their transformations are linked to conspicuous changes in the heat capacity of the system. We show that various types of structural transitions are reflected by characteristic features in the behavior of the heat capacity. For deeper understanding, results produced by the Monte Carlo numerical calculations are compared to predictions of simple one-dimensional models.

  4. Spatially resolved two-dimensional Fourier transform electron spin resonance

    NASA Astrophysics Data System (ADS)

    Ewert, Uwe; Crepeau, Richard H.; Lee, Sanghyuk; Dunnam, Curt R.; Xu, Dajiang; Freed, Jack H.

    1991-09-01

    Fourier transform ESR methods have been extended to permit spatially resolved two-dimensional (2D)-ESR experiments. This is illustrated for the case of 2D-electron-electron double resonance (2D-ELDOR) spectra of nitroxides in a liquid that exhibits appreciable cross-peaks due to Heisenberg spin exchange. The use of spin-echo decays in spatially resolved FT-ESR is also demonstrated.

  5. Two-dimensional SU( N) Higgs theory . An instanton approach

    NASA Astrophysics Data System (ADS)

    Levine, H.

    1980-08-01

    The two-dimensional non-abelian Higgs model is studied by employing a dilute gas of Z N vortices. The results obtained are similar to the corresponding results of the abelian model, studied by Callan, Dashen and Gross, and Raby and Ukawa. The most interesting conclusion is that in the presence of some number, NF, of massless fermion flavors, the theory behaves differently for N > Ncrit or N < Ncrit where Ncrit = NF/( NF-2).

  6. Real-Time, Two-Dimensional Terahertz Beam Imaging

    DTIC Science & Technology

    2007-11-02

    The THz imaging system uses electro-optic crystals and is capable of time-domain far-infrared spectroscopy across a frequency range extending from...an electro-optic crystal which provides the measurement of a THz wave with an unprecedented data acquisition rate. We have attracted over $30,000...electro-optic crystal , the CCD, and optical design. We demonstrated the feasibility for building a real-time, two-dimensional, terahertz wave

  7. The scaling state in two-dimensional grain growth

    SciTech Connect

    Mulheran, P.A. . Dept. of Physics)

    1994-11-01

    A new model of normal grain growth in two-dimensional systems is derived from considerations of Potts model simulations. This Randomly Connected Bubble model is based on Hillert's theory and combines the essential topological features of the grain boundary network with the action of capillarity. It successfully predicts what the scaling state of the network should be and explains why the system evolves into this state. The implications for grain growth in real materials are also discussed.

  8. Two-dimensional correlation spectroscopy in polymer study

    PubMed Central

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  9. Resonant Zener tunneling in two-dimensional periodic photonic lattices.

    PubMed

    Desyatnikov, Anton S; Kivshar, Yuri S; Shchesnovich, Valery S; Cavalcanti, Solange B; Hickmann, Jandir M

    2007-02-15

    We study Zener tunneling in two-dimensional photonic lattices and derive, for the case of hexagonal symmetry, the generalized Landau-Zener-Majorana model describing resonant interaction between high-symmetry points of the photonic spectral bands. We demonstrate that this effect can be employed for the generation of Floquet-Bloch modes and verify the model by direct numerical simulations of the tunneling effect.

  10. Acoustic Bloch oscillations in a two-dimensional phononic crystal

    NASA Astrophysics Data System (ADS)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  11. Multiple Potts models coupled to two-dimensional quantum gravity

    NASA Astrophysics Data System (ADS)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  12. Multiple processes in two-dimensional visual statistical learning

    PubMed Central

    Hoshino, Eiichi; Mogi, Ken

    2017-01-01

    Knowledge about the arrangement of visual elements is an important aspect of perception. This study investigates whether humans learn rules of two-dimensional abstract patterns (exemplars) generated from Reber's artificial grammar. The key question is whether the subjects can implicitly learn them without explicit instructions, and, if so, how they use the acquired knowledge to judge new patterns (probes) in relation to their finite experience of the exemplars. The analysis was conducted using dissimilarities among patterns, which are defined with n-gram probabilities and the Levenshtein distance. The results show that subjects are able to learn rules of two-dimensional visual patterns (exemplars) and make categorical judgment of probes based on knowledge of exemplar-based representation. Our analysis revealed that subjects' judgments of probes were related to the degree of dissimilarities between the probes and exemplars. The result suggests the coexistence of configural and element-based processing in exemplar-based representations. Exemplar-based representation was preferred to prototypical representation through tasks requiring discrimination, recognition and working memory. Relations of the studied judgment processes to the neural basis are discussed. We conclude that knowledge of a finite experience of two-dimensional visual patterns would be crystalized in different levels of relations among visual elements. PMID:28212388

  13. Experimental realization of two-dimensional boron sheets.

    PubMed

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  14. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  15. Further Aspects of Transitions in Two-Dimensional Thermal Convection.

    NASA Astrophysics Data System (ADS)

    Zivkovi, Marina; Agee, Ernest M.

    1988-12-01

    In this paper we present the results of numerical investigation of a two-dimensional nonlinear set of Boussinesq equations governing Bénard-Rayleigh convection using spectral representation in the horizontal direction and finite-difference formulation in the vertical direction. Integrations were characterized by high resolution (up to 171 horizontal modes on 32 levels in the vertical direction) and large domain size (ten linear cells were represented). The results presented were obtained for moderate values of Rayleigh number (1150 < Ra < 33 000) that was varied in a near continuous fashion.It is found that two-dimensional heat flux transitions lead to simulations of various temporal states when sufficient resolution and high aspect-ratio domain of integration are used. The change of slope of the time-averaged logarithmic heat flux curve (log Nu) is simulated in a gradual manner by means of a series of bifurcated solutions.This study demonstrates that transition from steady to time-dependent convection in two-dimensional simulations is the generic property of the Boussinesq equations. The findings highlight the roles of scale truncation and large domain aspect-ratio in simulations of self-organizing properties of thermal convection. They also provide useful information for the application of nonlinear spectral models to the study of organized convection.

  16. A two-dimensional analytical model of petroleum vapor intrusion

    PubMed Central

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2017-01-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort. PMID:28255184

  17. Searching for two-dimensional Weyl superconductors in heterostructures

    NASA Astrophysics Data System (ADS)

    Hao, Lei; Ting, C. S.

    2017-02-01

    The two-dimensional Weyl superconductor is the most elusive member of a group of materials with Weyl fermions as low-energy excitations. Here, we propose to realize this state in a heterostructure consisting of thin films of half-metal and spin-singlet superconductors. In particular, for the d -wave case, a very robust two-dimensional Weyl superconductor (d WSC) is realized independently of the orientation of the spontaneous magnetization of the half metal. The quasiparticle spectra of the d WSC show interesting evolution with the direction of the magnetization, featured by a series of Lifshitz transitions in the zero-energy contour of the quasiparticle spectrum. In addition, we find a transition between type-I and type-II Weyl nodes. This is an example of a two-dimensional type-II Weyl node in the presence of a superconducting correlation. For a general magnetization orientation of the half metal, the state is a combination of a superconducting component and a normal fluid component and is different from all known forms of pairings. The symmetries and topological properties of the system are analyzed. We also study the phases in the heterostructure with the half metal replaced by a ferromagnetic metal with a partially spin-polarized Fermi surface.

  18. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    PubMed

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  19. a First Cryptosystem for Security of Two-Dimensional Data

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen

    In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.

  20. Two-dimensional materials as catalysts for energy conversion

    SciTech Connect

    Siahrostami, Samira; Tsai, Charlie; Karamad, Mohammadreza; Koitz, Ralph; García-Melchor, Max; Bajdich, Michal; Vojvodic, Aleksandra; Abild-Pedersen, Frank; Nørskov, Jens K.; Studt, Felix

    2016-08-24

    Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride (h-BN), transition metal dichalcogenides (e.g. MoS2, MoSe2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed for pure metals. Here, this observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts.

  1. Two-dimensional DNA fingerprinting of human individuals

    SciTech Connect

    Uitterlinden, A.G.; Slagboom, P.E.; Knook, D.L.; Vijg, J. )

    1989-04-01

    The limiting factor in the presently available techniques for the detection of DNA sequence variation in the human genome is the low resolution of Southern blot analysis. To increase the analytical power of this technique, the authors applied size fractionation of genomic DNA restriction fragments in conjunction with their sequence-dependent separation in denaturing gradient gels; the two-dimensional separation patterns obtained were subsequently transferred to nylon membranes. Hybridization analysis using minisatellite core sequences as probes resulted in two-dimensional genomic DNA fingerprints with a resolution of up to 625 separated spots per probe per human individual; by conventional Southern blot analysis, only 20-30 bands can be resolved. Using the two-dimensional DNA fingerprinting technique, they demonstrate in a small human pedigree the simultaneous transmission of 37 polymorphic fragments (out of 365 spots) for probe 33.15 and 105 polymorphic fragments (out of 625 spots) for probe 33.6. In addition, a mutation was detected in this pedigree by probe 33.6. They anticipate that this method will be of great use in studies aimed at (i) measuring human mutation frequencies, (ii) associating genetic variation with disease, (iii) analyzing genomic instability in relation to cancer and aging, and (iv) linkage analysis and mapping of disease genes.

  2. Two-dimensional materials as catalysts for energy conversion

    DOE PAGES

    Siahrostami, Samira; Tsai, Charlie; Karamad, Mohammadreza; ...

    2016-08-24

    Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride (h-BN), transition metal dichalcogenides (e.g. MoS2, MoSe2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed for pure metals. Here,more » this observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts.« less

  3. A two-dimensional analytical model of petroleum vapor intrusion

    NASA Astrophysics Data System (ADS)

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2016-02-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.

  4. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  5. Augmented reality simulator for training in two-dimensional echocardiography.

    PubMed

    Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A

    2000-02-01

    In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.

  6. Two-dimensional oxides: multifunctional materials for advanced technologies.

    PubMed

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials.

  7. Procedures for two-dimensional electrophoresis of proteins

    SciTech Connect

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  8. A Zeeman slower design with permanent magnets in a Halbach configuration.

    PubMed

    Cheiney, P; Carraz, O; Bartoszek-Bober, D; Faure, S; Vermersch, F; Fabre, C M; Gattobigio, G L; Lahaye, T; Guéry-Odelin, D; Mathevet, R

    2011-06-01

    We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups, no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold (87)Rb atoms. With typical fluxes of (1-5) × 10(10) atoms/s at 30 m s(-1), our apparatus efficiently loads a large magneto-optical trap with more than 10(10) atoms in 1 s, which is an ideal starting point for degenerate quantum gas experiments.

  9. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF

    NASA Astrophysics Data System (ADS)

    Windt, Carel W.; Soltner, Helmut; Dusschoten, Dagmar van; Blümler, Peter

    2011-01-01

    Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5 mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings.

  10. Design and Analysis of a Nested Halbach Permanent Magnet Magnetic Refrigerator

    NASA Astrophysics Data System (ADS)

    Tura, Armando

    A technology with the potential to create efficient and compact refrigeration devices is an active magnetic regenerative refrigerator (AMRR). AMRRs exploit the magnetocaloric effect displayed by magnetic materials whereby a reversible temperature change is induced when the material is exposed to a change in applied magnetic field. By using the magnetic materials in a regenerator as the heat storage medium and as the means of work input, one creates an active magnetic regenerator (AMR). Although several laboratory devices have been developed, no design has yet demonstrated the performance, reliability, and cost needed to compete with traditional vapor compression refrigerators. There are many reasons for this and questions remain as to the actual potential of the technology. The objective of the work described in this thesis is to quantify the actual and potential performance of a permanent magnet AMR system. A specific device configuration known as a dual-nested-Halbach system is studied in detail. A laboratory scale device is created and characterized over a wide range of operating parameters. A numerical model of the device is created and validated against experimental data. The resulting model is used to create a cost-minimization tool to analyze the conditions needed to achieve specified cost and efficiency targets. Experimental results include cooling power, temperature span, pumping power and work input. Although the magnetocaloric effect of gadolinium is small, temperature spans up to 30 K are obtained. Analysis of power input shows that the inherent magnetic work is a small fraction of the total work input confirming the assumption that potential cycle efficiencies can be large. Optimization of the device generates a number of areas for improvement and specific results depend upon targeted temperature spans and cooling powers. A competitive cost of cooling from a dual-nested-Halbach configuration is challenging and will depend on the ability to create

  11. Calculation of Optimal Coordinates for Two-Dimensional Incompressible Flow.

    DTIC Science & Technology

    1979-07-01

    a vertical wall, commonly known as Hiemenz flow and 8 - 0 represents the flow past a parabolic cylinder. Plots of the pressure gradient parameter 81...corresponds to increasing the downstream asymptotic wedge angle. If the downstream wedge angle is increased to 90, the Hiemenz flow or the flow past...thickness is constant for flow past a vertical wall ( Hiemenz flow). The condition for optimal coordinates requires that the displacement thickness should be

  12. Two-dimensional electronic spectroscopy of molecular excitons.

    PubMed

    Milota, Franz; Sperling, Jaroslaw; Nemeth, Alexandra; Mancal, Tomás; Kauffmann, Harald F

    2009-09-15

    Understanding of the nuclear and electronic structure and dynamics of molecular systems has advanced considerably through probing the nonlinear response of molecules to sequences of pulsed electromagnetic fields. The ability to control various degrees of freedom of the excitation pulses-such as duration, sequence, frequency, polarization, and shape-has led to a variety of time-resolved spectroscopic methods. The various techniques that researchers use are commonly classified by their dimensionality, which refers to the number of independently variable time delays between the pulsed fields that induce the signal. Though pico- and femtosecond time-resolved spectroscopies of electronic transitions have come of age, only recently have researchers been able to perform two-dimensional electronic spectroscopy (2D-ES) in the visible frequency regime and correlate transition frequencies that evolve in different time intervals. The two-dimensional correlation plots and their temporal evolution allow one to access spectral information that is not exposed directly in other one-dimensional nonlinear methods. In this Account, we summarize our studies of a series of increasingly complex molecular chromophores. We examine noninteracting dye molecules, a monomer-dimer equilibrium of a prototypical dye molecule, and finally a supramolecular assembly of electronically coupled absorbers. By tracing vibronic signal modulations, differentiating line-broadening mechanisms, analyzing distinctly different relaxation dynamics, determining electronic coupling strengths, and directly following excitation energy transfer pathways, we illustrate how two-dimensional electronic spectroscopy can image physical phenomena that underlie the optical response of a particular system. Although 2D-ES is far from being a "turn-key" method, we expect that experimental progress and potential commercialization of instrumentation will make 2D-ES accessible to a much broader scientific audience, analogous to

  13. Biological and environmental interactions of emerging two-dimensional nanomaterials

    PubMed Central

    Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert

    2016-01-01

    Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the “bio-nanosheet” interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057

  14. Two-dimensional symmetrical inlets with external compression

    NASA Technical Reports Server (NTRS)

    Ruden, P

    1950-01-01

    The purpose of inlets like, for instance, those of air-cooled radiators and scoops is to take a certain air quantity out of the free stream and to partly convert the free-stream velocity into pressure. In the extreme case this pressure conversion may occur either entirely in the interior of the inlet (inlet with internal compression) or entirely in the free stream ahead of the inlet (inlet with external compression). In this report a theory for two-dimensional inlets with external compression is developed and illustrated by numerical examples. Intermediary forms between inlets with internal and external compression which can be derived from the latter are briefly discussed.

  15. Two-dimensional chiral topological superconductivity in Shiba lattices

    PubMed Central

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-01-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal. PMID:27465127

  16. Two-dimensional magnetohydrodynamic turbulence - Cylindrical, non-dissipative model

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Vahala, G.

    1979-01-01

    Incompressible magnetohydrodynamic turbulence is treated in the presence of cylindrical boundaries which are perfectly conducting and rigidly smooth. The model treated is non-dissipative and two-dimensional, the variation of all quantities in the axial direction being ignored. Equilibrium Gibbs ensemble predictions are explored assuming the constraint of constant axial current (appropriate to tokamak operation). No small-amplitude approximations are made. The expectation value of the turbulent kinetic energy is found to approach zero for the state of maximum mean-square vector potential to energy ratio. These are the only states for which large velocity fluctuations are not expected.

  17. Power spectrum of passive scalars in two dimensional chaotic flows

    NASA Astrophysics Data System (ADS)

    Yuan, Guo-Cheng; Nam, Keeyeol; Antonsen, Thomas M.; Ott, Edward; Guzdar, Parvez N.

    2000-03-01

    In this paper the power spectrum of passive scalars transported in two dimensional chaotic fluid flows is studied theoretically. Using a wave-packet method introduced by Antonsen et al., several model flows are investigated, and the fact that the power spectrum has the k-1-scaling predicted by Batchelor is confirmed. It is also observed that increased intermittency of the stretching tends to make the roll-off of the power spectrum at the high k end of the k-1 scaling range more gradual. These results are discussed in light of recent experiments where a k-1 scaling range was not observed.

  18. Dissipative vortex solitons in two-dimensional lattices

    SciTech Connect

    Mejia-Cortes, C.; Soto-Crespo, J. M.; Molina, Mario I.; Vicencio, Rodrigo A.

    2010-12-15

    We report the existence of stable symmetric vortex-type solutions for two-dimensional nonlinear discrete dissipative systems governed by a cubic-quintic complex Ginzburg-Landau equation. We construct a whole family of vortex solitons with a topological charge S=1. Surprisingly, the dynamical evolution of unstable solutions of this family does not significantly alter their profile, but instead their phase distribution completely changes; they transform into two-charge swirl-vortex solitons. We dynamically excite this structure showing its experimental feasibility.

  19. Quantum skyrmions in two-dimensional chiral magnets

    NASA Astrophysics Data System (ADS)

    Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon

    2016-10-01

    We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.

  20. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Sledzinska, M.; Alzina, F.; Gomis-Bresco, J.; Reparaz, J. S.; Wagner, M. R.; Sotomayor Torres, C. M.

    2015-02-01

    We investigate experimentally and theoretically the acoustic phonon propagation in two-dimensional phononic crystal membranes. Solid-air and solid-solid phononic crystals were made of square lattices of holes and Au pillars in and on 250 nm thick single crystalline Si membrane, respectively. The hypersonic phonon dispersion was investigated using Brillouin light scattering. Volume reduction (holes) or mass loading (pillars) accompanied with second-order periodicity and local resonances are shown to significantly modify the propagation of thermally activated GHz phonons. We use numerical modeling based on the finite element method to analyze the experimental results and determine polarization, symmetry, or three-dimensional localization of observed modes.

  1. Terahertz plasmons in coupled two-dimensional semiconductor resonators

    NASA Astrophysics Data System (ADS)

    Sydoruk, O.; Wu, J. B.; Mayorov, A.; Wood, C. D.; Mistry, D. K.; Cunningham, J. E.

    2015-11-01

    Advances in theory are needed to match recent progress in measurements of coupled semiconductor resonators supporting terahertz plasmons. Here, we present a field-based model of plasmonic resonators that comprise gated and ungated two-dimensional electron systems. The model is compared to experimental measurements of a representative system, in which the interaction between the gated and ungated modes leads to a rich spectrum of hybridized resonances. A theoretical framework is thus established for the analysis and design of gated low-dimensional systems used as plasmonic resonators, underlining their potential application in the manipulation of terahertz frequency range signals.

  2. Magnetic quantum dot in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Li, Guo; Zhu, Jia-Lin; Yang, Ning

    2017-03-01

    Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.

  3. Disordered two-dimensional electron systems with chiral symmetry

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Schweitzer, L.

    2012-10-01

    We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

  4. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  5. Surface gravity waves over a two-dimensional random seabed.

    PubMed

    Pihl, Jørgen H; Mei, Chiang C; Hancock, Matthew J

    2002-07-01

    We extend homogenization theory to study the two-dimensional evolution of weakly nonlinear waves in a sea where the bathymetry is random over a large area. A deterministic nonlinear Schrödinger equation is derived for the envelope of a nearly sinusoidal progressive wave train. Randomness is shown to yield a linear term with a complex coefficient depending on a certain statistical average of the bathymetry. Numerical solutions are discussed for the diffraction of a Stokes wave in head-sea incidence towards a bathymetry of given plan form. Effects of the height and plan form of the randomness, as well as wave nonlinearity are examined analytically and numerically.

  6. Short characteristics method for two dimensional heterogeneous Cartesian cells

    SciTech Connect

    Masiello, E.; Zmijarevic, I.

    2006-07-01

    The short characteristics method for two-dimensional xy-geometry is extended to heterogeneous Cartesian cells. The new method is intended for realistic neutron transport calculation, as for pressurized water reactor assemblies and bundles, without pin cells homogenization. The pin cell is chosen as the basic element for geometrical mapping. Thus, the heterogeneous cells are modeled by a rectangular element with an arbitrary number of concentric rings. Test problems show that the use of this kind of cells allows a minimal geometrical modeling without a significant lost in precision. (authors)

  7. Two-dimensionally confined topological edge states in photonic crystals

    NASA Astrophysics Data System (ADS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  8. Two-dimensional chiral topological superconductivity in Shiba lattices.

    PubMed

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A H; Yazdani, A; Bernevig, B Andrei

    2016-07-28

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.

  9. Elastic models of defects in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.

    2014-12-01

    Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.

  10. Fractional impurity moments in two-dimensional noncollinear magnets.

    PubMed

    Wollny, Alexander; Fritz, Lars; Vojta, Matthias

    2011-09-23

    We study dilute magnetic impurities and vacancies in two-dimensional frustrated magnets with noncollinear order. Taking the triangular-lattice Heisenberg model as an example, we use quasiclassical methods to determine the impurity contributions to the magnetization and susceptibility. Most importantly, each impurity moment is not quantized but receives nonuniversal screening corrections due to local relief of frustration. At finite temperatures, where bulk long-range order is absent, this implies an impurity-induced magnetic response of Curie form, with a prefactor corresponding to a fractional moment per impurity. We also discuss the behavior in an applied magnetic field, where we find a singular linear-response limit for overcompensated impurities.

  11. Two-dimensional Fourier transform of scaled Dirac delta curves

    NASA Astrophysics Data System (ADS)

    Guizar-Sicairos, Manuel; Gutiérrez-Vega, Julio C.

    2004-09-01

    We obtain a Fourier transform scaling relation to find analytically, numerically, or experimentally the spectrum of an arbitrary scaled two-dimensional Dirac delta curve from the spectrum of the nonscaled curve. An amplitude factor is derived and given explicitly in terms of the scaling factors and the angle of the forward tangent at each point of the curve about the positive x axis. With the scaling relation we determine the spectrum of an elliptic curve by a circular geometry instead of an elliptical one. The generalization to N-dimensional Dirac delta curves is also included.

  12. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  13. Synthesis of two-dimensional materials for beyond graphene devices

    NASA Astrophysics Data System (ADS)

    Zhang, Kehao; Eichfeld, Sarah; Leach, Jacob; Metzger, Bob; Lin, Yu-Chuan; Evans, Keith; Robinson, Joshua A.

    2015-05-01

    In this paper, we present an overview of the currently employed techniques to synthesize two-dimensional materials, focusing on MoS2 and WSe2, and summarize the progress reported to-date. Here we discuss the importance of controlling reactor geometries to improve film uniformity and quality for MoS2 through a combination of modeling and experimental design. In addition, development of processes scalable to provide wafer scale uniformity is explored using synthesis of WSe2 via metal-organic chemical vapor deposition. Finally, we discuss the impact of each of these processes for TMD synthesis on epitaxial graphene.

  14. Nonlinear Cascades in Two-Dimensional Turbulent Magnetoconvection

    SciTech Connect

    Skandera, Dan; Mueller, Wolf-Christian

    2009-06-05

    The dynamics of spectral transport in two-dimensional turbulent convection of electrically conducting fluids is studied by means of direct numerical simulations in the frame of the magnetohydrodynamic Boussinesq approximation. The system performs quasioscillations between two different regimes of small-scale turbulence: one dominated by nonlinear magnetohydrodynamic interactions; the other governed by buoyancy forces. The self-excited change of turbulent states is reported here for the first time. The process is controlled by the ideal invariant cross helicity, H{sup C}=SdSv{center_dot}b. The observations are explained by the interplay of convective driving with the nonlinear spectral transfer of total magnetohydrodynamic energy and cross helicity.

  15. Optofluidic two-dimensional grating volume refractive index sensor.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.

  16. Femtosecond phase-coherent two-dimensional spectroscopy.

    PubMed

    Tian, Peifang; Keusters, Dorine; Suzaki, Yoshifumi; Warren, Warren S

    2003-06-06

    Femtosecond phase-coherent two-dimensional (2D) spectroscopy has been experimentally demonstrated as the direct optical analog of 2D nuclear magnetic resonance. An acousto-optic pulse shaper created a collinear three-pulse sequence with well-controlled and variable interpulse delays and phases,which interacted with a model atomic system of rubidium vapor. The desired nonlinear polarization was selected by phase cycling (coadding experimental results obtained with different interpulse phases). This method may enhance our ability to probe the femtosecond structural dynamics of macromolecules.

  17. Bending-induced extension in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Pan, Douxing; Li, Yao; Wang, Tzu-Chiang; Guo, Wanlin

    2017-02-01

    We find by ab initio simulations that significant overall tensile strain can be induced by pure bending in a wide range of two-dimensional crystals perpendicular to the bending moment, just like an accordion being bent to open. This bending-induced tensile strain increases in a power law with bent curvature and can be over 20% in monolayered black phosphorus and transition metal dichalcogenides at a moderate curvature of 2 nm^{-1} but more than an order weaker in graphene and hexagon boron nitride. This accordion effect is found to be a quantum mechanical effect raised by the asymmetric response of chemical bonds and electron density to the bending curvature.

  18. High-Tc superconductors in the two-dimensional limit:

    PubMed

    Choy; Kwon; Park

    1998-06-05

    The free modulation of interlayer distance in a layered high-transition temperature (high-Tc) superconductor is of crucial importance not only for the study of the superconducting mechanism but also for the practical application of high-Tc superconducting materials. Two-dimensional (2D) superconductors were achieved by intercalating a long-chain organic compound into bismuth-based high-Tc cuprates. Although the intercalation of the organic chain increased the interlayer distance remarkably, to tens of angstroms, the superconducting transition temperature of the intercalate was nearly the same as that of the pristine material, suggesting the 2D nature of the high-Tc superconductivity.

  19. Two-Dimensional Optoelectronic Graphene Nanoprobes for Neural Nerwork

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Kitko, Kristina; Wang, Rui; Zhang, Qi; Xu, Yaqiong

    2014-03-01

    Brain is the most complex network created by nature, with billions of neurons connected by trillions of synapses through sophisticated wiring patterns and countless modulatory mechanisms. Current methods to study the neuronal process, either by electrophysiology or optical imaging, have significant limitations on throughput and sensitivity. Here, we use graphene, a monolayer of carbon atoms, as a two-dimensional nanoprobe for neural network. Scanning photocurrent measurement is applied to detect the local integration of electrical and chemical signals in mammalian neurons. Such interface between nanoscale electronic device and biological system provides not only ultra-high sensitivity, but also sub-millisecond temporal resolution, owing to the high carrier mobility of graphene.

  20. Quantum control in two-dimensional Fourier-transform spectroscopy

    SciTech Connect

    Lim, Jongseok; Lee, Han-gyeol; Lee, Sangkyung; Ahn, Jaewook

    2011-07-15

    We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum interference involved in two-photon interexcited-state transitions of a V-type quantum system. In experiments performed with atomic rubidium, quantum control for the enhancement and reduction of the 5P{sub 1/2}{yields} 5P{sub 3/2} transition was successfully tested in which the engineered transitions were distinguishably extracted in the presence of dominant one-photon transitions.

  1. Coulomb impurities in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Lin; Li, Guo; Yang, Ning

    2017-03-01

    Introducing a powerful method, we obtain the exact solutions for a Coulomb impurity in two-dimensional infinite and finite topological insulators. The level order and zero-energy degeneracy of the spectra are found to be quite different between topological trivial and nontrivial phases. For quantum dots of topological insulator, the variation of the edge and Coulomb states with dot size, Coulomb potential, and magnetic field are clearly shown. It is found that for small dots the edge states can be strongly coupled with the Coulomb states and for large dots the edge states are insensitive to the Coulomb fields but sensitive to the magnetic fields.

  2. Two-dimensional chiral topological superconductivity in Shiba lattices

    NASA Astrophysics Data System (ADS)

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-07-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.

  3. Wake-induced bending of two-dimensional plasma crystals

    SciTech Connect

    Röcker, T. B. Ivlev, A. V. Zhdanov, S. K.; Morfill, G. E.; Couëdel, L.

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  4. Fractional-step method for two-dimensional estuarine transport

    USGS Publications Warehouse

    Bales, Jerad D.; Holley, Edward R.

    1988-01-01

    The fractional-step method was used in this study to split the longitudinal advective transport term from the other terms in the two-dimensional, laterally-averaged equation for estuarine mass transport. The method of characteristics with spline interpolations was used to approximate the longitudinal advective transport. A general discussion of the fractional-step method, the specific algorithm developed in this investigation, and results of numerical tests are presented. Application of the fractional-step method in conjunction with the characteristic-spline scheme offers the potential for improved simulations of transport for situations in which concentration gradients are steep.

  5. General relativity as a two-dimensional CFT

    NASA Astrophysics Data System (ADS)

    Adamo, Tim

    2015-11-01

    The tree-level scattering amplitudes of general relativity (GR) encode the full nonlinearity of the Einstein field equations. Yet remarkably compact expressions for these amplitudes have been found which seem unrelated to a perturbative expansion of the Einstein-Hilbert action. This suggests an entirely different description of GR which makes this on-shell simplicity manifest. Taking our cue from the tree-level amplitudes, we discuss how such a description can be found. The result is a formulation of GR in terms of a solvable two-dimensional conformal field theory (CFT), with the Einstein equations emerging as quantum consistency conditions.

  6. Two-dimensional elliptical electromagnetic superscatterer and superabsorber.

    PubMed

    Zang, Xiaofei; Jiang, Chun

    2010-03-29

    Using coordinate transformation stated earlier by Pendry et al. [Science 312, 1780 (2006)], we investigate the two-dimensional elliptical electromagnetic superscatterer and superabsorber, based on the concept of complementary media. Such an elliptical electromagnetic superscatterer (or superabsorber) is realized by coating an elliptical negative refractive material shell. The effectiveness of the elliptical electromagnetic superscatterer and superabsorber designs is verified by finite element simulations. The proposed design provides a more practical superscatterer (or superabsorber) geometry when compared to previous designs with axial and radial symmetries. Our results can be extended to an arbitrarily shaped electromagnetic superscatterer and superabsorber.

  7. Topological phases in two-dimensional materials: a review

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Qiao, Zhenhua; Niu, Qian

    2016-06-01

    Topological phases with insulating bulk and gapless surface or edge modes have attracted intensive attention because of their fundamental physics implications and potential applications in dissipationless electronics and spintronics. In this review, we mainly focus on recent progress in the engineering of topologically nontrivial phases (such as {{{Z}}2} topological insulators, quantum anomalous Hall effects, quantum valley Hall effects etc) in two-dimensional systems, including quantum wells, atomic crystal layers of elements from group III to group VII, and the transition metal compounds.

  8. Investigation of Membrane Peptides by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanco, Emily Ann; Zanni, Martin T.

    2009-06-01

    Two-dimensional infrared spectroscopy (2D IR) is a useful tool for studying the structure of membrane peptides. Isotope labeling individual amino acids with 13C=18O decouples the isotope labeled amide I from the other amide I modes in the peptide. Work has been done on both the M2 ion channel and ovispirin antimicrobial peptide, studying the diagonal linewidths of the isotope labeled amide I. The diagonal linewidth of the isotope labeled amide I gives information about the local environment of that residue, which in turn gives structural information about the membrane peptide.

  9. Is Diffusion Anomalous in Two-Dimensional Yukawa Liquids?

    SciTech Connect

    Ott, T.; Bonitz, M.

    2009-11-06

    There have recently been many predictions of 'superdiffusion' in two-dimensional strongly coupled Yukawa systems, both by computer simulations and in dusty plasma experiments, with substantially varying diffusion exponents. Here we show that the results crucially depend on the strength of dissipation and the time instant of the measurement. For sufficiently large friction even subdiffusion is possible. However, there are strong indications that, in the long-time limit, anomalous diffusion vanishes and the system returns to normal diffusion, for dissipative as well as for frictionless systems.

  10. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  11. Superconductivity in the two-dimensional generalized Hubbard model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-08-01

    We have used the Green's functions method at finite temperature and the Kubo's formalism, to calculate the electron conductivity σ(ω) in the generalized two-dimensional Hubbard model. We have obtained a behavior superconductor for the system to T > T0. The AC conductivity falls to zero in ω =ω0 , where ω0 depends on Δ, which is the gap of the system. The behavior gotten is according of with the behavior of the superconductors of high Tc where there is a changes abruptly from a Mott's insulator state to superconductor.

  12. Two-dimensional electron gas magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Morelli, D. T.; Fuller, B. K.; Thrush, C. M.

    1990-07-01

    We describe the use of accumulation layers of electron charge in applications as magnetoresistive devices. We consider two such systems: an InGaAs/InP heterostructure in which we identify a two-dimensional electron gas from the observation of the quantum Hall effect, and InAs films, in which a strong surface accumulation of charge is inferred from depth profiling studies of the galvanomagnetic coefficients. Magnetoresistive devices fabricated from these materials exhibit outstanding field sensitivity and temperature stability due to the existence of electrons of relatively high density and mobility in the accumulation regions. We also model the magnetosensitivity of our devices.

  13. Condensate fraction of a two-dimensional attractive Fermi gas

    SciTech Connect

    Salasnich, Luca

    2007-07-15

    We investigate the Bose-Einstein condensation of fermionic pairs in a two-dimensional uniform two-component Fermi superfluid obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. By using the mean-field extended Bardeen-Cooper-Schrieffer theory, we analyze, as a function of the bound-state energy, the off-diagonal long-range order in the crossover from the Bardeen-Cooper-Schrieffer state of weakly bound Cooper pairs to the Bose-Einstein condensate of strongly-bound molecular dimers.

  14. Operational manual for two-dimensional transonic code TSFOIL

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1978-01-01

    This code solves the two-dimensional, transonic, small-disturbance equations for flow past lifting airfoils in both free air and various wind-tunnel environments by using a variant of the finite-difference method. A description of the theoretical and numerical basis of the code is provided, together with complete operating instructions and sample cases for the general user. In addition, a programmer's manual is also presented to assist the user interested in modifying the code. Included in the programmer's manual are a dictionary of subroutine variables in common and a detailed description of each subroutine.

  15. Two-Dimensional One-Component Plasma on Flamm's Paraboloid

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo; Téllez, Gabriel

    2008-11-01

    We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.

  16. Exciton-polariton gap solitons in two-dimensional lattices.

    PubMed

    Cerda-Méndez, E A; Sarkar, D; Krizhanovskii, D N; Gavrilov, S S; Biermann, K; Skolnick, M S; Santos, P V

    2013-10-04

    We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude.

  17. Topological insulating phases from two-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Araújo, Miguel A. N.

    2016-10-01

    Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.

  18. Numerical calculations of two dimensional, unsteady transonic flows with circulation

    NASA Technical Reports Server (NTRS)

    Beam, R. M.; Warming, R. F.

    1974-01-01

    The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

  19. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  20. Depletion of nonlinearity in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Pushkarev, Andrey; Bos, Wouter; Rubinstein, Robert

    2014-11-01

    The strength of the nonlinearity is measured in decaying two-dimensional turbulence, by comparing its value to that found in a Gaussian field. It is shown how the nonlinearity drops following a two-step process. First a fast relaxation is observed on a timescale comparable to the time of formation of vortical structures, as also observed in 3 dimensions, then at long times the nonlinearity relaxes further during the phase when the eddies merge to form the final dynamic state of decay. Both processes seem roughly independent of the value of the Reynolds number.

  1. Multiphoton laser direct writing of two-dimensional silver structures.

    PubMed

    Baldacchini, Tommaso; Pons, Anne-Cécile; Pons, Josefina; Lafratta, Christopher; Fourkas, John; Sun, Yong; Naughton, Michael

    2005-02-21

    We report a novel and efficient method for the laser direct writing of two-dimensional silver structures. Multiphoton absorption of a small fraction of the output of a Ti:sapphire oscillator is sufficient to photoreduce silver nitrate in a thin film of polyvinylpyrrolidone that has been spin-coated on a substrate. The polymer can then be washed away, leaving a pattern consisting of highly interconnected silver nanoparticles. We report the characterization of the silver patterns using scanning electron and atomic force microscopies, and demonstrate the application of this technique in the creation of diffraction gratings.

  2. High order hybrid numerical simulations of two dimensional detonation waves

    NASA Technical Reports Server (NTRS)

    Cai, Wei

    1993-01-01

    In order to study multi-dimensional unstable detonation waves, a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves was developed. The numerical algorithm uses a multi-domain approach so different numerical techniques can be applied for different components of detonation waves. The detonation waves are assumed to undergo an irreversible, unimolecular reaction A yields B. Several cases of unstable two dimensional detonation waves are simulated and detailed transverse wave interactions are documented. The numerical results show the importance of resolving the detonation front without excessive numerical viscosity in order to obtain the correct cellular patterns.

  3. Melting behavior of single two-dimensional crystal

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Grieve, R.

    2006-02-01

    In an experimental system millimeter-sized steel balls repel each other through the Coulomb force to imitate a two-dimensional (2D) atomic lattice in a vacuum both topologically and dynamically. Care has been taken to avoid the formation of grain boundaries. This 2D single crystal melts into a liquid via the hexatic state consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young scenario. Initially in the melting process defects of the 2D lattice tend to emerge from the edge of the crystal. These defects are found to be close to the liquid state according to the Lindemann and Born criteria, confirming the idea of edge melting.

  4. SOLVING THE TWO-DIMENSIONAL DIFFUSION FLOW MODEL.

    USGS Publications Warehouse

    Hromadka, T.V.; Lai, Chintu

    1985-01-01

    A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion equation. To investigate its capability, the numerical model using the diffusion approach is applied to a hypothetical failure problem of a regional water reservoir. The model is based on an explicit, integrated finite-difference scheme, and the floodplain is simulated by a popular home computer which supports 64K FORTRAN. Though simple, the 2-D model can simulate some interesting flooding effects that a 1-D full dynamic model cannot.

  5. Kinetic analysis of two dimensional metallic grating Cerenkov maser

    SciTech Connect

    Zhao Ding

    2011-08-15

    The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.

  6. Correlation effects in two-dimensional topological insulators.

    PubMed

    Hohenadler, M; Assaad, F F

    2013-04-10

    Topological insulators have become one of the most active research areas in condensed matter physics. This article reviews progress on the topic of electronic correlation effects in the two-dimensional case, with a focus on systems with intrinsic spin-orbit coupling and numerical results. Topics addressed include an introduction to the noninteracting case, an overview of theoretical models, correlated topological band insulators, interaction-driven phase transitions, topological Mott insulators and fractional topological states, correlation effects on helical edge states, and topological invariants of interacting systems.

  7. Two-dimensional unsteady lift problems in supersonic flight

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  8. Magnus force in discrete and continuous two-dimensional superfluids

    SciTech Connect

    Gecse, Z.; Khlebnikov, S.

    2005-08-01

    Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays.

  9. Dynamic multiscaling in two-dimensional fluid turbulence.

    PubMed

    Ray, Samriddhi Sankar; Mitra, Dhrubaditya; Perlekar, Prasad; Pandit, Rahul

    2011-10-28

    We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.

  10. Effective theory of chiral two-dimensional superfluids

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Moroz, Sergej; Son, Dam Thanh

    2014-05-01

    We construct, to leading orders in the momentum expansion, an effective theory of a chiral (px+ipy) two-dimensional fermionic superfluid at zero temperature that is consistent with nonrelativistic general coordinate invariance. This theory naturally incorporates the parity and time-reversal violating effects such as the Hall viscosity and the edge current. The particle number current and stress tensor are computed and their linear response to electromagnetic and gravitational sources is calculated. We also consider an isolated vortex in a chiral superfluid and identify the leading chirality effect in the density depletion profile.

  11. The XY model coupled to two-dimensional quantum gravity

    NASA Astrophysics Data System (ADS)

    Baillie, C. F.; Johnston, D. A.

    1992-09-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.

  12. Two-dimensional agarose gel electrophoresis of DNA topoisomers.

    PubMed

    Roca, Joaquim

    2009-01-01

    The electrophoretic velocity of a duplex DNA ring is mainly determined by its overall shape. Consequently, DNA topoisomers of opposite supercoiling handedness can have identical gel velocity, and topoisomers highly supercoiled cannot be separated beyond some point. These problems are overcome by two-dimensional agarose gel electrophoresis, which involves two successive electrophoresis steps in one gel slab. The first and second electrophoresis steps are conducted in orthogonal directions with different concentrations of DNA intercalating agents. These compounds alter the overall shape of the DNA and, thereby, change the relative mobility of individual DNA topoisomers.

  13. Carbon dioxide separation with a two-dimensional polymer membrane.

    PubMed

    Schrier, Joshua

    2012-07-25

    Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications.

  14. Compact Analytic Expression for the Electric Field of a 2DElliptical Charge Distribution Inside a Perfectly Conducting CircularCylinder

    SciTech Connect

    Furman, M.A.

    2007-05-29

    By combining the method of images with calculus of complex variables, we provide a simple expression for the electric field of a two-dimensional (2D) static elliptical charge distribution inside a perfectly conducting cylinder. The charge distribution need not be concentric with the cylinder.

  15. Electronic transport in two-dimensional high dielectric constant nanosystems

    PubMed Central

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-01-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials. PMID:25860804

  16. Vortical control of forced two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Fontane, Jérôme; Dritschel, David G.; Scott, Richard K.

    2013-01-01

    A new numerical technique for the simulation of forced two-dimensional turbulence [D. Dritschel and J. Fontane, "The combined Lagrangian advection method," J. Comput. Phys. 229, 5408-5417 (2010), 10.1016/j.jcp.2010.03.048] is used to examine the validity of Kraichnan-Batchelor scaling laws at higher Reynolds number than previously accessible with classical pseudo-spectral methods, making use of large simulation ensembles to allow a detailed consideration of the inverse cascade in a quasi-steady state. Our results support the recent finding of Scott [R. Scott, "Nonrobustness of the two-dimensional turbulent inverse cascade," Phys. Rev. E 75, 046301 (2007), 10.1103/PhysRevE.75.046301], namely that when a direct enstrophy cascading range is well-represented numerically, a steeper energy spectrum proportional to k-2 is obtained in place of the classical k-5/3 prediction. It is further shown that this steep spectrum is associated with a faster growth of energy at large scales, scaling like t-1 rather than Kraichnan's prediction of t-3/2. The deviation from Kraichnan's theory is related to the emergence of a population of vortices that dominate the distribution of energy across scales, and whose number density and vorticity distribution with respect to vortex area are related to the shape of the enstrophy spectrum. An analytical model is proposed which closely matches the numerical spectra between the large scales and the forcing scale.

  17. Magnetic field correlations in kinematic two-dimensional magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Schumacher, Jörg; Eckhardt, Bruno

    1999-09-01

    The scaling properties of the second order magnetic structure function D2(B)(r) and the corresponding magnetic correlation function C2(B)(r) are derived for two-dimensional magnetohydrodynamic turbulence in the kinematic regime where the ratio of kinetic energy to magnetic energy is much larger than one. In this regime the magnetic flux function ψ can be treated as a passive scalar advected in a two-dimensional turbulent flow. Its structure function D2(ψ)(r) and the one for the magnetic field D2(B)(r) are connected by an exact relation. We calculate D2(ψ)(r) and thus D2(B)(r) within geometric measure theory over a wide range of scales r and magnetic Prandtl numbers Prm. The magnetic field correlations follow a r-4/3-scaling law and show an anticorrelation at the beginning of the Batchelor regime indicative of the formation of strongly filamented current sheets. Differences to the full dynamic regime, where the ratio of kinetic to magnetic energies is smaller than in the kinematic case, are discussed.

  18. Interscale transfer in two-dimensional compact vortices

    NASA Astrophysics Data System (ADS)

    Pedrizzetti, Gianni; Vassilicos, J. C.

    2000-03-01

    The property of transfer between different scales of motion in evolving two-dimensional compact vortices is studied here, and a general mathematical framework is developed to describe the transfer between scales inside compact structures. This new approach is applied to the case of an axisymmetric advection which represents the leading-order (large time) approximation for Lundgren's family of two-dimensional vortices. It is also generalized to passive scalar advection by non-axisymmetric velocity fields. It is shown that scale interactions generated by an axisymmetric advection are essentially local and dominated by distant triadic interactions: in the case of an evolving spiral vortex sheet this result is confirmed even when non-axisymmetric corrections are included. A physical interpretation of the results is given, which can be summarized by saying that locality of scale interactions is caused by the uniformity of shear at a given scale and is therefore increasingly natural at small lengthscales. Local interactions are shown to arise in axisymmetric advection but to be uncommon in non-axisymmetric advection.

  19. Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2016-02-01

    Almost a decade ago, transformation optics established a geometrical perspective to describe the interaction of light with structured matter, enhancing our understanding and control of light. However, despite their huge technological relevance in applications such as optical circuitry, optical detection, and actuation, guided electromagnetic waves along dielectric waveguides have not yet benefited from the flexibility and conceptual simplicity of transformation optics. Indeed, transformation optics inherently imposes metamaterials not only inside the waveguide's core but also in the surrounding substrate and cladding. Here we restore the two-dimensional nature of guided electromagnetic waves by introducing a thickness variation on an anisotropic dielectric core according to alternative two-dimensional equivalence relations. Our waveguides require metamaterials only inside the core with the additional advantage that the metamaterials need not be magnetic and, hence, our purely dielectric waveguides are low loss. We verify the versatility of our theory with full wave simulations of three crucial functionalities: beam bending, beam splitting, and lensing. Our method opens up the toolbox of transformation optics to a plethora of waveguide-based devices.

  20. Unpacking of a Crumpled Wire from Two-Dimensional Cavities.

    PubMed

    Sobral, Thiago A; Gomes, Marcelo A F; Machado, Núbia R; Brito, Valdemiro P

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.

  1. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGES

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  2. Electronic transport in two-dimensional high dielectric constant nanosystems

    SciTech Connect

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  3. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions.

    PubMed

    Duan, Xidong; Wang, Chen; Shaw, Jonathan C; Cheng, Rui; Chen, Yu; Li, Honglai; Wu, Xueping; Tang, Ying; Zhang, Qinling; Pan, Anlian; Jiang, Jianhui; Yu, Ruqing; Huang, Yu; Duan, Xiangfeng

    2014-12-01

    Two-dimensional layered semiconductors such as MoS₂ and WSe₂ have attracted considerable interest in recent times. Exploring the full potential of these layered materials requires precise spatial modulation of their chemical composition and electronic properties to create well-defined heterostructures. Here, we report the growth of compositionally modulated MoS₂-MoSe₂ and WS₂-WSe₂ lateral heterostructures by in situ modulation of the vapour-phase reactants during growth of these two-dimensional crystals. Raman and photoluminescence mapping studies demonstrate that the resulting heterostructure nanosheets exhibit clear structural and optical modulation. Transmission electron microscopy and elemental mapping studies reveal a single crystalline structure with opposite modulation of sulphur and selenium distributions across the heterostructure interface. Electrical transport studies demonstrate that the WSe₂-WS₂ heterojunctions form lateral p-n diodes and photodiodes, and can be used to create complementary inverters with high voltage gain. Our study is an important advance in the development of layered semiconductor heterostructures, an essential step towards achieving functional electronics and optoelectronics.

  4. Aspects of jamming in two-dimensional athermal frictionless systems.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2014-05-07

    In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.

  5. Unpacking of a Crumpled Wire from Two-Dimensional Cavities

    PubMed Central

    Sobral, Thiago A.; Gomes, Marcelo A. F.; Machado, Núbia R.; Brito, Valdemiro P.

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon. PMID:26047315

  6. Two-dimensional XXZ-Ising model with quartic interactions.

    PubMed

    Valverde, J S

    2012-05-01

    In this work we study a two-dimensional XXZ-Ising spin-1/2 model with quartic interactions. The model is composed of a two-dimensional lattice of edge-sharing unitary cells, where each cell consists of two triangular prisms, converging in a basal plane with four Ising spin-1/2 (open circles); the apical positions are also occupied by four Heisenberg spin-1/2 (solid circles). Interaction of the base plane containing the multispin Ising interaction has the parameter J_{4}, and the other pairwise interactions have parameter J. For the proposed model we construct the phase diagram at zero temperature and give all possible spin configurations. In addition, we investigate two regions where the model can be solved exactly, the free fermion condition (FFC) and the symmetrical eight-vertex condition (SEVC). For this purpose we perform a straightforward mapping for a zero-field eight-vertex model. The necessary conditions for the equivalence are analyzed for all ranges of the interaction parameters. Unfortunately, the present model does not satisfy the FFC unless the trivial case; however, it was possible to give a region where the model can be solved approximately. We study the SEVC and verify that this condition is always satisfied. We also explore and discuss the critical conditions giving the region where these critical points are relevant.

  7. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  8. Quantum creep in a highly crystalline two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu

    Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.

  9. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  10. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    SciTech Connect

    Goldman, D.; Merril, C.R.

    1983-09-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of /sup 14/C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses.

  11. Two-dimensional acoustic metamaterial structure for potential image processing

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Han, Yu; Li, Ying; Pai, Frank

    2015-12-01

    This paper presents modeling, analysis techniques and experiment of for two-Dimensional Acoustic metamaterial Structure for filtering acoustic waves. For a unit cell of an infinite two-Dimensional Acoustic metamaterial Structure, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed acoustic metamaterial structure is based on the concept of conventional mechanical vibration absorbers. It uses the incoming wave in the structure to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic metamaterial structure consisting of lumped mass and elastic membrane is fabricated in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic metamaterial structure do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic metamaterial structure can be used for absorption of low-frequency waves. Hence this special structure can be used in filtering the waves, and the potential using can increase the ultrasonic imaging quality.

  12. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

    NASA Astrophysics Data System (ADS)

    Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

    2015-12-01

    This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

  13. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

    PubMed Central

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-01-01

    The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins. PMID:28248237

  14. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Xu, Weigao; Liu, Weiwei; Schmidt, Jan F.; Zhao, Weijie; Lu, Xin; Raab, Timo; Diederichs, Carole; Gao, Weibo; Seletskiy, Denis V.; Xiong, Qihua

    2016-12-01

    ‘Blinking’, or ‘fluorescence intermittency’, refers to a random switching between ‘ON’ (bright) and ‘OFF’ (dark) states of an emitter; it has been studied widely in zero-dimensional quantum dots and molecules, and scarcely in one-dimensional systems. A generally accepted mechanism for blinking in quantum dots involves random switching between neutral and charged states (or is accompanied by fluctuations in charge-carrier traps), which substantially alters the dynamics of radiative and non-radiative decay. Here, we uncover a new type of blinking effect in vertically stacked, two-dimensional semiconductor heterostructures, which consist of two distinct monolayers of transition metal dichalcogenides (TMDs) that are weakly coupled by van der Waals forces. Unlike zero-dimensional or one-dimensional systems, two-dimensional TMD heterostructures show a correlated blinking effect, comprising randomly switching bright, neutral and dark states. Fluorescence cross-correlation spectroscopy analyses show that a bright state occurring in one monolayer will simultaneously lead to a dark state in the other monolayer, owing to an intermittent interlayer carrier-transfer process. Our findings suggest that bilayer van der Waals heterostructures provide unique platforms for the study of charge-transfer dynamics and non-equilibrium-state physics, and could see application as correlated light emitters in quantum technology.

  15. Electronic transport in two-dimensional high dielectric constant nanosystems

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  16. A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear Bicharacteristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for two-dimensional model problems on uniform grids, and the Finite Difference Time Domain (FDTD) algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has less phase velocity error.

  17. Commensurability oscillations in a two-dimensional lateral superlattice

    NASA Astrophysics Data System (ADS)

    Davies, John; Long, Andrew; Grant, David; Chowdhury, Suja

    2000-03-01

    We have calculated and measured conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential and a normal magnetic field. Simulations with a potential Vx \\cos(2π x/a) + Vy \\cos(2π y/a) show the usual commensurability oscillations in ρ_xx(B) with Vx alone. The introduction of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρ_yy(B) expected from previous perturbation theories. We explain this in terms of drift of the guiding center of cyclotron motion along contours of an effective potential: open orbits of the guiding center contribute to conduction but closed orbits do not. All orbits are closed in a symmetric superlattice with |V_x| = |V_y| and commensurability oscillations are therefore quenched. Experiments on etched superlattices confirm this picture. Conventional lattice-matched samples give a symmetric potential and weak oscillations; the symmetry is broken by the piezoelectric effect in stressed samples, leading to strong oscillations. Periodic modulation of the magnetic field can be treated in the same way, which explains previous experimental results.

  18. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis.

    PubMed

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-09-09

    The pioneering work by Patrick H. O'Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007-4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O'Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

  19. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    SciTech Connect

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  20. SCAPS, a two-dimensional ion detector for mass spectrometer

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40

  1. Two-dimensional retention indices improve component identification in comprehensive two-dimensional gas chromatography of saffron.

    PubMed

    Jiang, Ming; Kulsing, Chadin; Nolvachai, Yada; Marriott, Philip J

    2015-06-02

    Comprehensive two-dimensional gas chromatography hyphenated with accurate mass time-of-flight mass spectrometry (GC × GC-accTOFMS) was applied for improved analytical accuracy of saffron analysis, by using retention indices in the two-dimensional separation. This constitutes 3 dimensions of identification. In addition to accTOFMS specificity, and first dimension retention indices ((1)I), a simple method involving direct multiple injections with stepwise isothermal temperature programming is described for construction of isovolatility curves for reference alkane series in GC × GC. This gives access to calculated second dimension retention indices ((2)I). Reliability of the calculated (2)I was evaluated by using a Grob test mixture, and saturated alkanes, revealing good correlation between previously reported I values from the literature, with R(2) correlation being 0.9997. This essentially recognizes the retention property of peaks in the GC × GC 2D space as being reducible to a retention index in each dimension, which should be a valuable tool supporting identification. The benefit of (2)I data, in supplementing (1)I and MS library matching, was clearly demonstrated by the progressive reduction of the number of possible compound matches for peaks observed in saffron. 114 analytes were assessed according to (1)I and (2)I values within ±20 index unit of reference values, and by MS spectrum matching above a match statistic of 750 (including mass accuracy of the molecular ion <20 ppm) and their possible identities derived. The described method provides a new avenue to utilize the full capability of the two-dimensional separation (GC × GC), in combination with MS library matching in complex sample analysis, to provide improved component identification.

  2. Laminar flow past a rotating circular cylinder

    NASA Astrophysics Data System (ADS)

    Kang, Sangmo; Choi, Haecheon; Lee, Sangsan

    1999-11-01

    The present study numerically investigates two-dimensional laminar flow past a circular cylinder rotating with a constant angular velocity, for the purpose of controlling vortex shedding and understanding the underlying flow mechanism. Numerical simulations are performed for flows with Re=60, 100, and 160 in the range of 0⩽α⩽2.5, where α is the circumferential speed at the cylinder surface normalized by the free-stream velocity. Results show that the rotation of a cylinder can suppress vortex shedding effectively. Vortex shedding exists at low rotational speeds and completely disappears at α>αL, where αL is the critical rotational speed which shows a logarithmic dependence on Re. The Strouhal number remains nearly constant regardless of α while vortex shedding exists. With increasing α, the mean lift increases linearly and the mean drag decreases, which differ significantly from those predicted by the potential flow theory. On the other hand, the amplitude of lift fluctuation stays nearly constant with increasing α (<αL), while that of drag fluctuation increases. Further studies from the instantaneous flow fields demonstrate again that the rotation of a cylinder makes a substantial effect on the flow pattern.

  3. Optical properties of two-dimensional metamaterial photonic crystals

    SciTech Connect

    Mejía-Salazar, J. R.

    2013-12-14

    In the present work, we theoretically study a 2D photonic crystal (PC) comprised by double negative (DNG) metamaterial cylinders, showing that such a system presents a superior light-matter interaction when compared with their single negative (SNG) plasmonic PC counterparts, suggesting a route to enhance the performance of sensors and photovoltaic cells. On the other hand, we have observed that depending on the frequency, the mode symmetry resembles either the case of SNG electric (SNG-E) or SNG magnetic (SNG-M) PC, suggesting that either the electric or magnetic character of the DNG metamaterial dominates in each case.

  4. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    NASA Astrophysics Data System (ADS)

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-09-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound.

  5. Curvature-induced crosshatched order in two-dimensional semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Vrusch, Cyril; Storm, Cornelis

    2015-12-01

    A recurring motif in the organization of biological tissues are networks of long, fibrillar protein strands effectively confined to cylindrical surfaces. Often, the fibers in such curved, quasi-two-dimensional (2D) geometries adopt a characteristic order: the fibers wrap around the central axis at an angle which varies with radius and, in several cases, is strongly bimodally distributed. In this Rapid Communication, we investigate the general problem of a 2D crosslinked network of semiflexible fibers confined to a cylindrical substrate, and demonstrate that in such systems the trade-off between bending and stretching energies, very generically, gives rise to crosshatched order. We discuss its general dependency on the radius of the confining cylinder, and present an intuitive model that illustrates the basic physical principle of curvature-induced order. Our findings shed new light on the potential origin of some curiously universal fiber orientational distributions in tissue biology, and suggests novel ways in which synthetic polymeric soft materials may be instructed or programmed to exhibit preselected macromolecular ordering.

  6. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  7. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices.

    PubMed

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. A10.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite infinity x n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. E10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. E10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. E10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder infinity x n lattice strip has exactly the same first n terms in the series expansion as that of an infinite infinity x infinity lattice.

  8. Aspects of Infalling D-Branes in Two-Dimensional Black Hole

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuji

    This is a brief review of Refs. 1 and 2. We study the dynamics of D0-brane falling into the Lorentzian two-dimensional black hole (2D BH), typically arising in the near-horizon limit of non-extremal NS5-brane background, by the methods of conformal field theory. We propose the exact boundary state describing the infalling D0-brane by carefully carrying out the Wick rotation from the known D1-brane solution. We evaluate the closed string radiation from the infalling brane. A thermal-like behavior at the Hawking temperature is observed in the outgoing radiation. On the other hand, it is remarkable to find the incoming radiation absorbed by the black hole effectively showing the Hagedorn-like behavior with precise α‧-correction. We confirm this feature by exactly analyzing the imaginary part of cylinder amplitudes, as well as the saddle point approximation. The radiation rate curiously depends on the level k of SL(2)/U(1) supercoset, suggesting the "black hole/string phase transition" at k = 1 (k = 3 for the bosonic coset) discussed recently.

  9. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  10. Two-dimensional transport in structured optical force landscapes

    NASA Astrophysics Data System (ADS)

    Xiao, Ke

    The overdamped transport of a Brownian particle in a structured force landscape has been studied extensively for a century. Even such well-studied examples as Brownian transport in a one-dimensional tilted washboard potential continue to yield surprising results, with recent discoveries including the giant enhancement of diffusion at the depinning transition, and the so-called "thermal ratchet effect". The transport phenomena in higher-dimensional systems should be substantially richer, but remain largely unexplored. In this Thesis we study the biased diffusion of colloidal spheres through two-dimensional force landscapes created with holographic optical tweezers (HOT). These studies take advantage of holographic video microscopy (HVM), which enables us to follow spheres' three-dimensional motions with nanometer resolution while simultaneously measuring their radii and refractive indexes with part-per-thousand resolution. Using these techniques we investigated the kinetically and statistically locked-in transport of colloidal spheres through arrays of optical traps, and confirmed previously untested predictions for kinetically locked-in transport that can be used for sorting applications with previously unheard finesse. Extending this result to highly structured two-dimensional landscapes, we developed prismatic optical fractionation, in which objects with different physical properties are deflected into different directions, a phenomenon analogous to a prism dispersing different wavelengths of light into different directions. Our simulational and experimental studies revealed the important role that thermal fluctuations play in establishing the hierarchy of kinetically locked-in states. We also investigated Brownian motion in a two-dimensional optical force landscape that varies in time. The traps for these studies were arranged in particular pattern called a "Fibonacci spiral" that is both the densest arrangement of circular objects with a circular domain and

  11. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  12. Cylinder monitoring program

    SciTech Connect

    Alderson, J.H.

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  13. Collapsing bacterial cylinders

    NASA Astrophysics Data System (ADS)

    Betterton, M. D.; Brenner, Michael P.

    2001-12-01

    Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially collapse into cylindrical structures, which subsequently destabilize and break up into spherical aggregates. This paper presents a theoretical description of the process, from the structure of the collapsing cylinder to the spacing of the final aggregates. We show that cylindrical collapse involves a delicate balance in which bacterial attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional analysis. The instability of a collapsing cylinder is composed of two distinct stages: Initially, slow modulations to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ultimately, one point on the cylinder pinches off. At this final stage of the instability, a front propagates from the pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the front propagation.

  14. Two-dimensional soft nanomaterials: a fascinating world of materials.

    PubMed

    Zhuang, Xiaodong; Mai, Yiyong; Wu, Dongqing; Zhang, Fan; Feng, Xinliang

    2015-01-21

    The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.

  15. Two-dimensional colloidal mixtures in magnetic and gravitational fields

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Horn, T.; Neuhaus, T.; ten Hagen, B.

    2013-11-01

    This mini-review is concerned with two-dimensional colloidal mixtures exposed to various kinds of external fields. By a magnetic field perpendicular to the plane, dipole moments are induced in paramagnetic particles which give rise to repulsive interactions leading to complex crystalline alloys in the composition-asymmetry diagram. A quench in the magnetic field induces complex crystal nucleation scenarios. If exposed to a gravitational field, these mixtures exhibit a brazil-nut effect and show a boundary layering which is explained in terms of a depletion bubble picture. The latter persists for time-dependent gravity ("colloidal shaking"). Finally, we summarize crystallization effects when the second species is frozen in a disordered matrix which provides obstacles for the crystallizing component.

  16. Extended quantum jump description of vibronic two-dimensional spectroscopy

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Keß, Martin; Wehner, Johannes G.; Engel, Volker; Zhang, Pan-Pan; Eisfeld, Alexander

    2015-06-07

    We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic method and provides an efficient method for the calculation of the 2D-spectra.

  17. Two-dimensional MHD generator model. [GEN code

    SciTech Connect

    Geyer, H. K.; Ahluwalia, R. K.; Doss, E. D.

    1980-09-01

    A steady state, two-dimensional MHD generator code, GEN, is presented. The code solves the equations of conservation of mass, momentum, and energy, using a Von Mises transformation and a local linearization of the equations. By splitting the source terms into a part proportional to the axial pressure gradient and a part independent of the gradient, the pressure distribution along the channel is easily obtained to satisfy various criteria. Thus, the code can run effectively in both design modes, where the channel geometry is determined, and analysis modes, where the geometry is previously known. The code also employs a mixing length concept for turbulent flows, Cebeci and Chang's wall roughness model, and an extension of that model to the effective thermal diffusities. Results on code validation, as well as comparisons of skin friction and Stanton number calculations with experimental results, are presented.

  18. Soliton nanoantennas in two-dimensional arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.

    2015-06-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  19. Electrical resistance of complex two-dimensional structures of loops

    NASA Astrophysics Data System (ADS)

    Gomes, M. A. F.; Hora, R. R.; Brito, V. P.

    2011-06-01

    This work presents a study of the dc electrical resistance of a recently discovered hierarchical two-dimensional system which has a complex topology consisting of a distribution of disordered macroscopic loops with no characteristic size and a distribution of several types of contacts between loops. In addition to its intrinsic interest in the important context of low-dimensional systems and crumpled systems, the structures under study are of relevance in a number of areas including soft condensed matter and packing of DNA in viral capsids. In the particular case discussed here, the loops are made of layers of graphite with a height of tens of nanometers deposited on a substrate of cellulose. Experiments with these systems indicate an anomalous electrical resistance of sub-diffusive type. The results reported here are explained with scaling arguments and computer simulation. A comparison with the dc electrical properties of percolation clusters is made, and some other experimental issues as future prospects are commented.

  20. Velocity statistics in two-dimensional granular turbulence

    NASA Astrophysics Data System (ADS)

    Isobe, Masaharu

    2003-10-01

    We studied the macroscopic statistical properties on the freely evolving quasielastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found it to be remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering, and final state. In the shearing stage, the self-organized macroscopic coherent vortices become dominant. In the clustering stage, the energy spectra are close to the expectation of Kraichnan-Batchelor theory and the squared two-particle separation strictly obeys Richardson law.

  1. The modified cumulant expansion for two-dimensional isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Tatsumi, T.; Yanase, S.

    1981-09-01

    The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k to the -3rd power inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969), assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time which separates the initial period and the similarity period in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit.

  2. Velocity statistics in two-dimensional granular turbulence.

    PubMed

    Isobe, Masaharu

    2003-10-01

    We studied the macroscopic statistical properties on the freely evolving quasielastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found it to be remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering, and final state. In the shearing stage, the self-organized macroscopic coherent vortices become dominant. In the clustering stage, the energy spectra are close to the expectation of Kraichnan-Batchelor theory and the squared two-particle separation strictly obeys Richardson law.

  3. Two-Dimensional Platform for Networks of Majorana Bound States

    NASA Astrophysics Data System (ADS)

    Hell, Michael; Leijnse, Martin; Flensberg, Karsten

    2017-03-01

    We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and demonstrate that topological superconducting channels are formed when stripes of the superconducting layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes. We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs 2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can be designed.

  4. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    SciTech Connect

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    2010-04-21

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

  5. Design and fabrication of a two dimensional valveless micropump

    SciTech Connect

    Kahl, W.K.; Egert, C.M.; Hylton, K.W.

    1995-12-31

    The scale-down of a liquid mini-pump (order of 10 mm) to a micrometre scale has been attempted using a novel valveless nozzle-diffuser design and new application of an organic physical vapor-deposited membrane. The micropump employs no moving parts other than the membrane and accomplishes the rectification of fluid flow due to pressure recovery differences in the nozzle and diffuser flow directions. More specifically, liquids flow with less resistance (i.e. conduct more fluid) in the diffuser direction than the nozzle direction, for a given pressure differential. At the micrometre scale, the fabrication of the critical nozzle and diffuser elements was performed by focused ion beam (FIB) microlithography of glass slides. Etched slides were sandwiched to make two-dimensional venturis. Sternme and Sternme noted the importance of a lower Reynolds Number linfit on the desired pressure recovery which challenged the fabrication of this pump design at the scale used.

  6. Two dimensional turbulence in inviscid fluids or guiding center plasmas

    NASA Technical Reports Server (NTRS)

    Seyler, C. E., Jr.; Salu, Y.; Montgomery, D.; Knorr, G.

    1975-01-01

    Analytic theory for two-dimensional turbulent equilibria for the inviscid Navier-Stokes equations is examined mathematically. Application of the technique to electrostatic guiding center plasma is discussed. A good fit is demonstrated for the approach to a predicted energy per Fourier mode obtained from a two-temperature canonical ensemble. Negative as well as positive temperature regimes are explored. Fluctuations about the mean energy per mode also compare well with theory. In the regime of alpha less than zero, beta greater than zero, with the minimum value of alpha plus beta times k squared near zero, contour plots of the stream function reveal macroscopic vortex structures similar to those seen previously in discrete vortex simulations. Eulerian direct interaction equations, which can be used to follow the approach to inviscid equilibrium, are derived.

  7. Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-11-01

    We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.

  8. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  9. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications.

    PubMed

    Xiong, Mengyi; Rong, Qiming; Meng, Hong-Min; Zhang, Xiao-Bing

    2017-03-15

    Two-dimensional graphitic carbon nitride nanosheets (CNNSs) with planar graphene-like structure have stimulated increasingly research interest in recent years due to their unique physicochemical properties. CNNSs possess superior stability, high fluorescence quantum yield, low-toxicity, excellent biocompatibility, unique electroluminescent and photoelectrochemical properties, which make them appropriate candidates for biosensing. In this review, we first introduce the preparation and unique properties of CNNSs, with emphasis on their superior properties for biosensing. Then, recent advances of CNNSs in photoelectrochemical biosensing, electrochemiluminescence biosensing and fluorescence biosensing are highlighted. An additional attention is paid to the marriage of CNNSs and nucleic acids, which exhibits great potentials in both biosensing and intracellular imaging. Finally, current challenges and opportunities of this 2D material are outlined. Inspired by the unique properties of CNNSs and their advantages in biological applications, we expect that more attention will be drawn to this promising 2D material and extensive applications can be found in bioanalysis and diseases diagnosis.

  10. Spontaneous supersymmetry breaking in two dimensional lattice super QCD

    DOE PAGES

    Catterall, Simon; Veernala, Aarti

    2015-10-02

    We report on a non-perturbative study of two dimensional N=(2,2) super QCD. Our lattice formulation retains a single exact supersymmetry at non-zero lattice spacing, and contains Nf fermions in the fundamental representation of a U(Nc) gauge group. The lattice action we employ contains an additional Fayet-Iliopoulos term which is also invariant under the exact lattice supersymmetry. This work constitutes the first numerical study of this theory which serves as a toy model for understanding some of the issues that are expected to arise in four dimensional super QCD. As a result, we present evidence that the exact supersymmetry breaks spontaneouslymore » when Nf < Nc in agreement with theoretical expectations.« less

  11. Spontaneous supersymmetry breaking in two dimensional lattice super QCD

    SciTech Connect

    Catterall, Simon; Veernala, Aarti

    2015-10-02

    We report on a non-perturbative study of two dimensional N=(2,2) super QCD. Our lattice formulation retains a single exact supersymmetry at non-zero lattice spacing, and contains Nf fermions in the fundamental representation of a U(Nc) gauge group. The lattice action we employ contains an additional Fayet-Iliopoulos term which is also invariant under the exact lattice supersymmetry. This work constitutes the first numerical study of this theory which serves as a toy model for understanding some of the issues that are expected to arise in four dimensional super QCD. As a result, we present evidence that the exact supersymmetry breaks spontaneously when Nf < Nc in agreement with theoretical expectations.

  12. Two-Dimensional Perovskite Activation with an Organic Luminophore.

    PubMed

    Jemli, Khaoula; Audebert, Pierre; Galmiche, Laurent; Trippé-Allard, Gaelle; Garrot, Damien; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2015-10-07

    A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type organic-inorganic perovskite, while respecting the two-dimensional perovskite structure. A substantial increase of the brilliance of the perovskite is obtained. This activation of the perovskite luminescence by the adequate engineering of the organic part is an original approach, and is particularly interesting in the framework of the light-emitting devices such as organic light-emitting diodes (OLEDs) or lasers.

  13. The role of noise in two-dimensional vortex merging

    NASA Astrophysics Data System (ADS)

    Basu, Amit J.

    1992-11-01

    All numerical, and some experimental studies of merging of two-dimensional vortex patches point at the existence of a critical initial distance of separation below which merging occurs and above which it does not. Some other laboratory experiments, however, report no such marked sensitivity of merging behavior on the initial distance of separation. We study the effects of noise, which is one of the possible causes of the above mentioned difference, on vortex merging. We find that noise accelerates merging, and the time needed for merging decreases nearly linearly with increasing noise for high noise levels. However, the level of noise required for merging within the advection time scale is higher than what is usually found in 'clean' wind tunnels or water tanks, and thus the presence of noise in laboratories is not the sole cause of the above difference.

  14. Superfluid response of two-dimensional parahydrogen clusters in confinement

    SciTech Connect

    Idowu, Saheed; Boninsegni, Massimo

    2015-04-07

    We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.

  15. Two-dimensional optical splitters with polymer optical fibre arrays

    NASA Astrophysics Data System (ADS)

    Wen, Fung Jacky; Sheun Chung, Po

    2007-07-01

    A novel approach for optical beam distribution into two-dimensional (2D) fibre arrays using 2D Dammann gratings is investigated. We report for the first time experimental results of a 2D optical power distribution into 2 × 2 polymer optical fibre arrays using a Dammann grating. This paper focuses on the design and fabrication of the diffractive optical element (DOE) along with investigating the coupling performance of the system. This grating may be applicable to a fibre to the home (FTTH) network as it can support sufficient channels with good output uniformity together with low polarization-dependent loss (PDL). Using an appropriate optimization algorithm, the optimum profile for the Dammann gratings can be calculated. The gratings are then fabricated on indium-doped tin oxide (ITO) glass using electron-beam lithography. This method shows that it can achieve low PDL and good uniformity together with acceptable insertion loss.

  16. Two-dimensional angular transmission characterization of CPV modules.

    PubMed

    Herrero, R; Domínguez, C; Askins, S; Antón, I; Sala, G

    2010-11-08

    This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement.

  17. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    SciTech Connect

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.

  18. Dissipative, forced turbulence in two-dimensional magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.; Joyce, G.

    1976-01-01

    The equations of motion for turbulent two-dimensional magnetohydrodynamic flows are solved in the presence of finite viscosity and resistivity, for the case in which external forces (mechanical and/or magnetic) act on the fluid. The goal is to verify the existence of a magnetohydrodynamic dynamo effect which is represented mathematically by a substantial back-transfer of mean square vector potential to the longest allowed Fourier wavelengths. External forces consisting of a random part plus a fraction of the value at the previous time step are employed, after the manner of Lilly for the Navier-Stokes case. The regime explored is that for which the mechanical and magnetic Reynolds numbers are in the region of 100 to 1000. The conclusions are that mechanical forcing terms alone cannot lead to dynamo action, but that dynamo action can result from either magnetic forcing terms or from both mechanical and magnetic forcing terms simultaneously.

  19. Fluid dynamics of two-dimensional pollination in Ruppia maritima

    NASA Astrophysics Data System (ADS)

    Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra

    2016-11-01

    The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.

  20. Two-dimensional streaming flows induced by resonating, thin beams

    NASA Astrophysics Data System (ADS)

    Açıkalın, Tolga; Raman, Arvind; Garimella, Suresh V.

    2003-10-01

    Miniaturized resonating slender beams are finding increased applications as fluidic actuators for portable electronics cooling. Piezoelectric and ultrasonic ``fans'' drive a flexural mode of the beam into resonance thus inducing a streaming flow, which can be used to cool microelectronic components. This paper presents analytical, computational, and experimental investigations of the incompressible two-dimensional streaming flows induced by resonating thin beams. Closed-form analytical streaming solutions are presented first for an infinite beam. These are used to motivate a computational scheme to predict the streaming flows from a baffled piezoelectric fan. Experiments are conducted to visualize the asymmetric streaming flows from a baffled piezoelectric fan and the experimental results are found to be in close agreement with the predicted results. The findings are expected to be of relevance in the optimal design and positioning of these solid-state devices in cooling applications.

  1. Two-dimensional streaming flows induced by resonating, thin beams.

    PubMed

    Açikalin, Tolga; Raman, Arvind; Garimella, Suresh V

    2003-10-01

    Miniaturized resonating slender beams are finding increased applications as fluidic actuators for portable electronics cooling. Piezoelectric and ultrasonic "fans" drive a flexural mode of the beam into resonance thus inducing a streaming flow, which can be used to cool microelectronic components. This paper presents analytical, computational, and experimental investigations of the incompressible two-dimensional streaming flows induced by resonating thin beams. Closed-form analytical streaming solutions are presented first for an infinite beam. These are used to motivate a computational scheme to predict the streaming flows from a baffled piezoelectric fan. Experiments are conducted to visualize the asymmetric streaming flows from a baffled piezoelectric fan and the experimental results are found to be in close agreement with the predicted results. The findings are expected to be of relevance in the optimal design and positioning of these solid-state devices in cooling applications.

  2. Percolation threshold of correlated two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.

    1999-12-01

    Previous simulations of percolation on correlated square and cubic lattices [Phys. Rev. E 56, 6586 (1997)] have been extended to all of the common two-dimensional lattices, including triangular, square 1-2, honeycomb, and kagome. Simulations were performed on lattices of up to 1024×1024 sites. The results are independent of lattice size except, possibly, for a weak dependence at large correlation lengths. As in the previous studies, all results can be fit by a Gaussian function of the correlation length w, pc=p∞c+(p0c-p∞c)e-αw2. However, there is some evidence that this fit is not theoretically significant. For the self-matching triangular and the matching square and square 1-2 lattices, the percolation thresholds satisfy the Sykes-Essam relation pc(L)+pc(L*)=1.

  3. Two dimensional fractional projectile motion in a resisting medium

    NASA Astrophysics Data System (ADS)

    Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  4. Two dimensional fractional projectile motion in a resisting medium

    NASA Astrophysics Data System (ADS)

    Rosales, Juan J.; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds ( sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  5. Anisotropic electronic conduction in stacked two-dimensional titanium carbide

    PubMed Central

    Hu, Tao; Zhang, Hui; Wang, Jiemin; Li, Zhaojin; Hu, Minmin; Tan, Jun; Hou, Pengxiang; Li, Feng; Wang, Xiaohui

    2015-01-01

    Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2T2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons contributing most to the conduction. The conduction is also significantly anisotropic due to the fact that the effective masses of carriers including electrons and holes are remarkably direction-dependent. Such an anisotropic electronic conduction is evidenced by the I−V curves of an individual Ti3C2T2 particulate, which demonstrates that the in-plane electrical conduction is at least one order of magnitude higher than that vertical to the basal plane. PMID:26548439

  6. Fermionic boundary modes in two-dimensional noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Samokhin, K. V.; Mukherjee, S. P.

    2016-09-01

    We calculate the spectrum of the Andreev boundary modes in a two-dimensional superconductor formed at an interface between two different nonsuperconducting materials, e.g., insulating oxides. Inversion symmetry is absent in this system, and both the electron band structure and the superconducting pairing are strongly affected by the spin-orbit coupling of the Rashba type. We consider isotropic s -wave pairing states, both with and without time-reversal symmetry breaking, as well as various d -wave states. In all cases, there exist subgap Andreev boundary states, whose properties, in particular, the number and location of the zero-energy modes, qualitatively depend on the gap symmetry and the spin-orbit coupling strength.

  7. Two-dimensional electron beam charging model for polymer films

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.

  8. Electromigration-driven shape evolution of two-dimensional voids

    NASA Astrophysics Data System (ADS)

    Schimschak, M.; Krug, J.

    2000-01-01

    We present a detailed numerical study of the electromigration-induced shape evolution of quasi-two-dimensional (cylindrical) voids in metallic thin films. The problem is treated within a continuum formulation which takes into account mass transport along surfaces, current crowding, and crystal anisotropy in the surface mobility. Finite strips with periodic boundary conditions in the current direction are treated as well as voids in infinite or semi-infinite films. For the strip geometry, it is shown that the linear instability of the strip edge can induce the release of voids into the interior of the film, while edge voids develop into fatal slits only in the presence of moderate (not too strong) crystalline anisotropy. Distorted voids in an infinite film typically disintegrate, but the breakup scenario is qualitatively different in isotropic and anisotropic media. A rigid boundary attracts voids and may also induce void breakup.

  9. Superconductivity in two-dimensional CoO2 layers.

    PubMed

    Takada, Kazunori; Sakurai, Hiroya; Takayama-Muromachi, Eiji; Izumi, Fujio; Dilanian, Ruben A; Sasaki, Takayoshi

    2003-03-06

    Since the discovery of high-transition-temperature (high-T(c)) superconductivity in layered copper oxides, many researchers have searched for similar behaviour in other layered metal oxides involving 3d-transition metals, such as cobalt and nickel. Such attempts have so far failed, with the result that the copper oxide layer is thought to be essential for superconductivity. Here we report that Na(x)CoO2*yH2O (x approximately 0.35, y approximately 1.3) is a superconductor with a T(c) of about 5 K. This compound consists of two-dimensional CoO2 layers separated by a thick insulating layer of Na+ ions and H2O molecules. There is a marked resemblance in superconducting properties between the present material and high-T(c) copper oxides, suggesting that the two systems have similar underlying physics.

  10. Current fluctuations in a two dimensional model of heat conduction

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Garrido, Pedro L.; Hurtado, Pablo I.

    2011-03-01

    In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced algorithm which allows the direct evaluation of large deviations functions. We compare our results with predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined temperature profile associated to a given current fluctuation which depends exclusively on the magnitude of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.

  11. Time-evolving bubbles in two-dimensional stokes flow

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh; Vasconcelos, Giovani L.

    1994-01-01

    A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.

  12. Towards automated screening of two-dimensional crystals.

    PubMed

    Cheng, Anchi; Leung, Albert; Fellmann, Denis; Quispe, Joel; Suloway, Christian; Pulokas, James; Abeyrathne, Priyanka D; Lam, Joseph S; Carragher, Bridget; Potter, Clinton S

    2007-12-01

    Screening trials to determine the presence of two-dimensional (2D) protein crystals suitable for three-dimensional structure determination using electron crystallography is a very labor-intensive process. Methods compatible with fully automated screening have been developed for the process of crystal production by dialysis and for producing negatively stained grids of the resulting trials. Further automation via robotic handling of the EM grids, and semi-automated transmission electron microscopic imaging and evaluation of the trial grids is also possible. We, and others, have developed working prototypes for several of these tools and tested and evaluated them in a simple screen of 24 crystallization conditions. While further development of these tools is certainly required for a turn-key system, the goal of fully automated screening appears to be within reach.

  13. Supported phospholipid bilayers for two-dimensional protein crystallization.

    PubMed

    Uzgiris, E E

    1986-01-29

    Phospholipid bilayers, supported on UV irradiated carbon shadowed nitrocellulose electron microscope grids, have been used to induce two-dimensional crystal growth of IgE and IgG anti-DNP monoclonal antibodies. The UV irradiation renders the grids hydrophilic in a very uniform fashion and allows for the transfer of phospholipid monolayers from an air/water interface in a sequential dipping procedure. The surface coverage achieved was nearly 100% as measured by antibody binding and by the formation of protein arrays on the bilayer covered grids. The supported bilayers appear to be stably held and are appropriate for slow binding conditions and long incubation times with low concentrations of binding protein.

  14. Defect Interactions in Anisotropic Two-Dimensional Fluids

    NASA Astrophysics Data System (ADS)

    Stannarius, R.; Harth, K.

    2016-10-01

    Disclinations in liquid crystals bear striking analogies to defect structures in a wide variety of physical systems, and their straightforward optical observability makes them excellent models to study fundamental properties of defect interactions. We employ freely suspended smectic-C films, which behave as quasi-two-dimensional polar nematics. A procedure to capture high-strength disclinations in localized spots is introduced. These disclinations are released in a controlled way, and the motion of the mutually repelling topological charges with strength +1 is studied quantitatively. We demonstrate that the classical models, which employ elastic one-constant approximation, fail to describe their dynamics correctly. In realistic liquid crystals, even small differences between splay and bend constants lead to the selection of pure splay or pure bend +1 defects. For those, the models work only in very special configurations. In general, additional director walls are involved which reinforce the repulsive interactions substantially.

  15. Electromagnetic two-dimensional analysis of trapped-ion eigenmodes

    SciTech Connect

    Kim, D.; Rewoldt, G.

    1984-11-01

    A two-dimensional electromagnetic analysis of the trapped-ion instability for the tokamak case with ..beta.. not equal to 0 has been made, based on previous work in the electrostatic limit. The quasineutrality condition and the component of Ampere's law along the equilibrium magnetic field are solved for the perturbed electrostatic potential and the component of the perturbed vector potential along the equilibrium magnetic field. The general integro-differential equations are converted into a matrix eigenvalue-eigenfunction problem by expanding in cubic B-spline finite elements in the minor radius and in Fourier harmonics in the poloidal angle. A model MHD equilibrium with circular, concentric magnetic surfaces and large aspect ratio is used which is consistent with our assemption that B << 1. The effect on the trapped-ion mode of including these electromagnetic extensions to the calculation is considered, and the temperature (and ..beta..) scaling of the mode frequency is shown and discussed.

  16. Purification and two-dimensional crystallization of bacterial cytochrome oxidases.

    PubMed

    Warne, A; Wang, D N; Saraste, M

    1995-12-01

    A novel strategy which employes chromatography on an immobilized metal ion has been developed for the purification of bacterial cytochrome c and quinol oxidases. Many bacterial oxidase complexes appear to have a natural affinity to bind to the chelated copper ion. A combination of three different chromatographic principles (anion exchange, metal-affinity and gel filtration) makes an effective tool chest for the preparation of homogeneous and protein-chemically pure bacterial oxidases. These preparations have been used for two-dimensional crystallization. Until now, crystals have been obtained using the Paracococcus denitrificans and Rhodobacter sphaeroides cytochrome aa3 and the Escherichia coli cytochrome bo. The crystals diffract to approximately 2.5 nm in negative stain and have potential for further structural studies.

  17. Kinetic theory of a two-dimensional magnetized plasma.

    NASA Technical Reports Server (NTRS)

    Vahala, G.; Montgomery, D.

    1971-01-01

    Several features of the equilibrium and nonequilibrium statistical mechanics of a two-dimensional plasma in a uniform dc magnetic field are investigated. The charges are assumed to interact only through electrostatic potentials. The problem is considered both with and without the guiding-center approximation. With the guiding-center approximation, an appropriate Liouville equation and BBGKY hierarchy predict no approach to thermal equilibrium for the spatially uniform case. For the spatially nonuniform situation, a guiding-center Vlasov equation is discussed and solved in special cases. For the nonequilibrium, nonguiding-center case, a Boltzmann equation, and a Fokker-Planck equation are derived in the appropriate limits. The latter is more tractable than the former, and can be shown to obey conservation laws and an H-theorem, but contains a divergent integral which must be cut off on physical grounds. Several unsolved problems are posed.

  18. Two-dimensional fruit ripeness estimation using thermal imaging

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2013-06-01

    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  19. Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Ju, Long

    This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is

  20. Equation of State of the Two-Dimensional Hubbard Model

    NASA Astrophysics Data System (ADS)

    Cocchi, Eugenio; Miller, Luke A.; Drewes, Jan H.; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael

    2016-04-01

    The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0 ≲U /t ≲20 and temperatures, down to kBT /t =0.63 (2 ) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.

  1. Ultrafast optical excitation of coherent two-dimensional plasmons

    NASA Astrophysics Data System (ADS)

    Armitage, A.; Andrews, S. R.; Cluff, J. A.; Huggard, P. G.; Linfield, E. H.; Ritchie, D. A.

    2004-03-01

    THz emission from two-dimensional plasmons excited by femtosecond interband optical pulses has been studied in the time domain. Different modulation-doped semiconductor heterostructures have been investigated in order to determine the driving mechanism. The excitation energy and power dependence of the amplitude of the field radiated by the plasmons is similar in all structures to that of the underlying bulk material. A sample dependent phase shift of the plasmon signal by approximately π is observed when the excitation energy is tuned from the bulk GaAs band edge to about 100 meV above in some structures while no phase shift is observed in others. Our observations are inconsistent with recently proposed ultrafast thermalization or impulsive Raman scattering driving mechanisms, but can be at least partly explained if the plasmons are driven by an electrostatic coupling of the transverse plasmon field to transient transport and displacement photocurrents in the underlying bulk material.

  2. Two-Dimensional Massless Light Front Fields and Solvable Models

    NASA Astrophysics Data System (ADS)

    Martinovic̆, L'ubomír; Grangé, Pierre

    2016-07-01

    Quantum field theory formulated in terms of light front (LF) variables has a few attractive as well as some puzzling features. The latter hindered a wider acceptance of LF methods. In two space-time dimensions, it has been a long-standing puzzle how to correctly quantize massless fields, in particular fermions. Here we show that two-dimensional massless LF fields (scalar and fermion) can be recovered in a simple way as limits of the corresponding massive fields and thereby quantized without any loss of physical information. Bosonization of the fermion field then follows in a straightforward manner and the solvable models can be studied directly in the LF theory. We sketch the LF operator solution of the Thirring-Wess model and also point out the closeness of the massless LF fields to those of conformal field theory.

  3. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  4. Mixing times in quantum walks on two-dimensional grids

    SciTech Connect

    Marquezino, F. L.; Portugal, R.; Abal, G.

    2010-10-15

    Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.

  5. Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics.

    PubMed

    Kan, Erjun; Li, Ming; Hu, Shuanglin; Xiao, Chuanyun; Xiang, Hongjun; Deng, Kaiming

    2013-04-04

    Two-dimensional materials have been the hot subject of studies due to their great potential in applications. However, their applications in spintronics have been blocked by the difficulty in producing ordered spin structures in 2D structures. Here we demonstrated that the ultrathin films of recently experimentally realized wurtzite MnO can automatically transform into a stable graphitic structure with ordered spin arrangement via density functional calculation, and the stability of graphitic structure can be enhanced by external strain. Moreover, the antiferromagnetic ordering of graphitic MnO single layer can be switched into half-metallic ferromagnetism by small hole-doping, and the estimated Curie temperature is higher than 300 K. Thus, our results highlight a promising way toward 2D magnetic materials.

  6. Two dimensional layered materials: First-principle investigation

    NASA Astrophysics Data System (ADS)

    Tang, Youjian

    Two-dimensional layered materials have emerged as a fascinating research area due to their unique physical and chemical properties, which differ from those of their bulk counterparts. Some of these unique properties are due to carriers and transport being confined to 2 dimensions, some are due to lattice symmetry, and some arise from their large surface area, gateability, stackability, high mobility, spin transport, or optical accessibility. How to modify the electronic and magnetic properties of two-dimensional layered materials for desirable long-term applications or fundamental physics is the main focus of this thesis. We explored the methods of adsorption, intercalation, and doping as ways to modify two-dimensional layered materials, using density functional theory as the main computational methodology. Chapter 1 gives a brief review of density functional theory. Due to the difficulty of solving the many-particle Schrodinger equation, density functional theory was developed to find the ground-state properties of many-electron systems through an examination of their charge density, rather than their wavefunction. This method has great application throughout the chemical and material sciences, such as modeling nano-scale systems, analyzing electronic, mechanical, thermal, optical and magnetic properties, and predicting reaction mechanisms. Graphene and transition metal dichalcogenides are arguably the two most important two-dimensional layered materials in terms of the scope and interest of their physical properties. Thus they are the main focus of this thesis. In chapter 2, the structure and electronic properties of graphene and transition metal dichalcogenides are described. Alkali adsorption onto the surface of bulk graphite and metal intecalation into transition metal dichalcogenides -- two methods of modifying properties through the introduction of metallic atoms into layered systems -- are described in chapter 2. Chapter 3 presents a new method of tuning

  7. Nonlinear transport in a two dimensional holographic superconductor

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Tian, Yu; Fan, Zhe Yong; Chen, Chiang-Mei

    2016-06-01

    The problem of nonlinear transport in a two-dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both the near- and nonequilibrium regimes. The limit of weak electric field corresponds to the near-equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting nonequilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Increasing the amplitude of the applied electric field results in a far-from-equilibrium nonsuperconducting steady state with a universal linear conductivity of one. In the lower temperature regime we also find chaotic behavior of the superconducting gap, which results in a nonmonotonic field-dependent nonlinear conductivity.

  8. Dynamics of a Two-Dimensional System of Quantum Dipoles

    SciTech Connect

    Mazzanti, F.; Astrakharchik, G. E.; Boronat, J.; Zillich, R. E.

    2009-03-20

    A detailed microscopic analysis of the dynamic structure function S(k,{omega}) of a two-dimensional Bose system of dipoles polarized along the direction perpendicular to the plane is presented and discussed. Starting from ground-state quantities obtained using a quantum diffusion Monte Carlo algorithm, the density-density response is evaluated in the context of the correlated basis functions (CBF) theory. CBF predicts a sharp peak and a multiexcitation component at higher energies produced by the decay of excitations. We discuss the structure of the phonon-roton peak and show that the Feynman and Bogoliubov predictions depart from the CBF result already at low densities. We finally discuss the emergence of a roton in the spectrum, but find the roton energy not low enough to make the system unstable under density fluctuations up to the highest density considered that is close to the freezing point.

  9. Two-dimensional assemblies from crystallizable homopolymers with charged termini.

    PubMed

    He, Xiaoming; Hsiao, Ming-Siao; Boott, Charlotte E; Harniman, Robert L; Nazemi, Ali; Li, Xiaoyu; Winnik, Mitchell A; Manners, Ian

    2017-04-01

    The creation of shaped, uniform and colloidally stable two-dimensional (2D) assemblies by bottom-up methods represents a challenge of widespread current interest for a variety of applications. Herein, we describe the utilization of surface charge to stabilize self-assembled planar structures that are formed from crystallizable polymer precursors by a seeded growth approach. Addition of crystallizable homopolymers with charged end-groups to seeds generated by the sonication of block copolymer micelles with crystalline cores yields uniform platelet micelles with controlled dimensions. Significantly, the seeded growth approach is characterized by a morphological memory effect whereby the origin of the seed, which can involve a quasi-hexagonal or rectangular 2D platelet precursor, dictates the observed 2D platelet shape. This new strategy is illustrated using two different polymer systems, and opens the door to the construction of 2D hierarchical structures with broad utility.

  10. Adsorption of C20 on two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Hussain, M. B.; Xu, L. H.; Xu, Y. X.; Wu, S. Q.; Zhu, Z. Z.

    2017-03-01

    We considered the geometric and electronic properties of C20 molecule adsorbed on various two-dimensional (2D) substrates surfaces, such as graphene, silicene, germanene, stanene, BN and MoS2 by using first-principles calculations based on the density functional theory. For each case, we have considered three adsorption configurations of C20 molecule, i.e. top-site (T), hallow-site (H) and bridge site (B), respectively. Our results show that C20's are strongly bound to silicene, germanene and stanene, however, the adsorbed C20 molecules have only weak interactions with graphene, BN and MoS2 substrates. Moreover, charge density plot implies substantial charge transfer taking place between the constituents of C20 and the substrate of silicene, germanene and stanene. Results indicate that the buckling structure of the 2D material plays important role in determining the reactivity of a 2D substrate.

  11. Lift generation by a two-dimensional symmetric flapping wing

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji; Ota, Keigo; Suzuki, Kosuke

    2010-11-01

    Two-dimensional symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method. In the method we can treat the moving boundary problem efficiently on the Cartesian grid. First, we investigate the effect of the Reynolds number on flows around symmetric flapping wings under no-gravity field and find that at high Reynolds numbers asymmetric vortices are appeared and the time-averaged lift force is induced on the wings, while at low Reynolds numbers only symmetric vortices are appeared around the wings and no lift force is induced. Also, the effect of the initial position of the wings on the lift force is investigated. Secondly, we carry out free flight simulations under gravity field for various Reynolds and Froude numbers and find the region where upward flights are possible.

  12. Plasmon excitations in two-dimensional atomic cluster systems

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Qin; Yu, Ya-Bin; Xue, Hong-Jie; Wang, Ya-Xin; Chen, Jie

    2016-09-01

    Properties of plasmon excitations in two-dimensional (2D) atomic cluster systems are theoretically studied within an extended Hubbard model. The collective oscillation equations of charge, plasmon eigen-equations and the energy-absorption spectrum formula are presented. The calculated results show that different symmetries of plasmons exist in the cluster systems, and the symmetry of charge distribution in the plasmon resonance originate from the intrinsic symmetry of the corresponding eigen-plasmon modes, but not from the symmetry of applied external fields; however, the plasmon excitation with a certain polarization direction should be excited by the field in this direction, the dipole mode of plasmons can be excited by both uniform and non-uniform fields, but multipole ones cannot be excited by an uniform field. In addition, we show that for a given electron density, plasmon spectra are red-shifted with increasing size of the systems.

  13. Global geometry of two-dimensional charged black holes

    SciTech Connect

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2006-06-15

    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation.

  14. Grain-boundary fluctuations in two-dimensional colloidal crystals.

    PubMed

    Skinner, Thomas O E; Aarts, Dirk G A L; Dullens, Roel P A

    2010-10-15

    We study grain-boundary fluctuations in two-dimensional colloidal crystals in real space and time using video microscopy. The experimentally obtained static and dynamic correlation functions are very well described by expressions obtained using capillary wave theory. This directly leads to values for the interfacial stiffness and the interface mobility, the key parameters in curvature-driven grain-boundary migration. Furthermore, we show that the average grain-boundary position exhibits a one-dimensional random walk as recently suggested by computer simulations [Z. T. Trautt, M. Upmanyu, and A. Karma, Science 314, 632 (2006)]. The interface mobility determined from the mean-square displacement of the average grain-boundary position is in good agreement with values inferred from grain-boundary fluctuations.

  15. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  16. Equation of State of the Two-Dimensional Hubbard Model.

    PubMed

    Cocchi, Eugenio; Miller, Luke A; Drewes, Jan H; Koschorreck, Marco; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael

    2016-04-29

    The subtle interplay between kinetic energy, interactions, and dimensionality challenges our comprehension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a broad range of interactions 0≲U/t≲20 and temperatures, down to k_{B}T/t=0.63(2) using high-resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compressibilities, and double occupancies over the whole doping range, and, hence, our results constitute benchmarks for state-of-the-art theoretical approaches.

  17. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  18. Microphase morphology in two-dimensional fluids under lateral confinement.

    PubMed

    Imperio, Alessandra; Reatto, Luciano

    2007-10-01

    We study the effects of confinement between two parallel walls on a two dimensional fluid with competing interactions which lead to the formation of particle microdomains at the thermodynamic equilibrium (microphases or microseparation). The possibility to induce structural changes of the morphology of the microdomains is explored, under different confinement conditions and temperatures. In the presence of neutral walls, a switch from stripes of particles to circular clusters (droplets) occurs as the temperature decreases, which does not happen in bulk. While the passage from droplets to stripes, as the density increases, is a well-known phenomenon, the change of the stripes into droplets as an effect of temperature is rather unexpected. Depending on the wall separation and on the wall-fluid interaction parameters, the stripes can switch from parallel to perpendicular to the walls and also a mixed morphology can be stable.

  19. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  20. The magnetic order of two-dimensional anisotropic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Yuan; Wang, Qin

    2011-01-01

    We study the two-dimensional quantum Heisenberg antiferromagnet on the square lattice with easy-axis exchange anisotropy by means of Green's function approach within random phase and Callen's approximations. The Néel temperature TN, energy gap w0 and staggered magnetization m are calculated. The theoretical predictions of TN and w0 for K2NiF4, Rb2MnF4, K2MnF4, Rb2MnCl4 and (CH3NH3)2MnCl4 fit well to the measured values. The power law behavior of w(T)/w(0)=β[ is also investigated. The exponents β and ν for K2NiF4 are in excellent agreement with the experimental results.