Sample records for two-dimensional partial differential

  1. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  2. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

    PubMed

    Biala, T A; Jator, S N

    2015-01-01

    In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

  3. Computer simulation of two-dimensional unsteady flows in estuaries and embayments by the method of characteristics : basic theory and the formulation of the numerical method

    USGS Publications Warehouse

    Lai, Chintu

    1977-01-01

    Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)

  4. An interaction algorithm for prediction of mean and fluctuating velocities in two-dimensional aerodynamic wake flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Orzechowski, J. A.

    1980-01-01

    A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.

  5. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  6. Generation of three-dimensional body-fitted grids by solving hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  7. Generation of three-dimensional body-fitted grids by solving hyperbolic and parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.

    1989-01-01

    Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.

  8. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  9. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras

    PubMed Central

    Gazizov, R. K.

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184

  10. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    PubMed

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  11. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  12. Generalized Lie symmetry approach for fractional order systems of differential equations. III

    NASA Astrophysics Data System (ADS)

    Singla, Komal; Gupta, R. K.

    2017-06-01

    The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.

  13. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  14. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  15. The construction of a two-dimensional reproducing kernel function and its application in a biomedical model.

    PubMed

    Guo, Qi; Shen, Shu-Ting

    2016-04-29

    There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.

  16. Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations

    NASA Astrophysics Data System (ADS)

    Nadjafikhah, Mehdi; Jafari, Mehdi

    2013-12-01

    In this paper, partially invariant solutions (PISs) method is applied in order to obtain new four-dimensional Einstein Walker manifolds. This method is based on subgroup classification for the symmetry group of partial differential equations (PDEs) and can be regarded as the generalization of the similarity reduction method. For this purpose, those cases of PISs which have the defect structure δ=1 and are resulted from two-dimensional subalgebras are considered in the present paper. Also it is shown that the obtained PISs are distinct from the invariant solutions that obtained by similarity reduction method.

  17. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    NASA Astrophysics Data System (ADS)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  18. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  19. Linearized compressible-flow theory for sonic flight speeds

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard; Spreiter, John R

    1950-01-01

    The partial differential equation for the perturbation velocity potential is examined for free-stream Mach numbers close to and equal to one. It is found that, under the assumptions of linearized theory, solutions can be found consistent with the theory for lifting-surface problems both in stationary three-dimensional flow and in unsteady two-dimensional flow. Several examples are solved including a three dimensional swept-back wing and two dimensional harmonically-oscillating wing, both for a free stream Mach number equal to one. Momentum relations for the evaluation of wave and vortex drag are also discussed. (author)

  20. Use of hyperbolic partial differential equations to generate body fitted coordinates

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Sorenson, R. L.

    1980-01-01

    The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.

  1. A theoretical analysis of fluid flow and energy transport in hydrothermal systems

    USGS Publications Warehouse

    Faust, Charles R.; Mercer, James W.

    1977-01-01

    A mathematical derivation for fluid flow and energy transport in hydrothermal systems is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)

  2. Numerical method for solution of systems of non-stationary spatially one-dimensional nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Morozov, S. K.; Krasitskiy, O. P.

    1978-01-01

    A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.

  3. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  4. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  5. Dynamics of curved fronts in systems with power-law memory

    NASA Astrophysics Data System (ADS)

    Abu Hamed, M.; Nepomnyashchy, A. A.

    2016-08-01

    The dynamics of a curved front in a plane between two stable phases with equal potentials is modeled via two-dimensional fractional in time partial differential equation. A closed equation governing a slow motion of a small-curvature front is derived and applied for two typical examples of the potential function. Approximate axisymmetric and non-axisymmetric solutions are obtained.

  6. A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.

    1988-01-01

    A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.

  7. An efficient and robust algorithm for two dimensional time dependent incompressible Navier-Stokes equations: High Reynolds number flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1991-01-01

    An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.

  8. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification

  9. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 1: One-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    An algorithm for solving a large class of two- and three-dimensional nonseparable elliptic partial differential equations (PDE's) is developed and tested. It uses a modified D'Yakanov-Gunn iterative procedure in which the relaxation factor is grid-point dependent. It is easy to implement and applicable to a variety of boundary conditions. It is also computationally efficient, as indicated by the results of numerical comparisons with other established methods. Furthermore, the current algorithm has the advantage of possessing two important properties which the traditional iterative methods lack; that is: (1) the convergence rate is relatively insensitive to grid-cell size and aspect ratio, and (2) the convergence rate can be easily estimated by using the coefficient of the PDE being solved.

  10. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  11. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  12. Self-Similar Compressible Free Vortices

    NASA Technical Reports Server (NTRS)

    vonEllenrieder, Karl

    1998-01-01

    Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.

  13. Whitham modulation theory for the two-dimensional Benjamin-Ono equation.

    PubMed

    Ablowitz, Mark; Biondini, Gino; Wang, Qiao

    2017-09-01

    Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.

  14. Generalized symmetries and [ital w][sub [infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, S.

    After establishing a formal theory for getting solutions of one type of high-dimensional partial differential equation, two sets of generalized symmetries of the 3D Toda theory, which arises from a particular reduction of the 4D self-dual gravity equation, are obtained concretely by a simple formula. Each set of symmetries constitutes a generalized [omega][sub [infinity

  15. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

    PubMed

    Lenarda, P; Paggi, M

    A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

  16. The application of Green's theorem to the solution of boundary-value problems in linearized supersonic wing theory

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1950-01-01

    Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.

  17. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  18. A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu

    We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less

  19. Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu

    2016-07-15

    In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

  20. Unsteady boundary layer flow over a sphere in a porous medium

    NASA Astrophysics Data System (ADS)

    Mohammad, Nurul Farahain; Waini, Iskandar; Kasim, Abdul Rahman Mohd; Majid, Nurazleen Abdul

    2017-08-01

    This study focuses on the problem of unsteady boundary layer flow over a sphere in a porous medium. The governing equations which consists of a system of dimensional partial differential equations is applied with dimensionless parameter in order to attain non-dimensional partial differential equations. Later, the similarity transformation is performed in order to attain nonsimilar governing equations. Afterwards, the nonsimilar governing equations are solved numerically by using the Keller-Box method in Octave programme. The effect of porosity parameter is examined on separation time, velocity profile and skin friction of the unsteady flow. The results attained are presented in the form of table and graph.

  1. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  2. Isostable reduction with applications to time-dependent partial differential equations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2016-07-01

    Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory systems, are useful in the study of nonlinear equations which asymptotically approach a stationary solution. In this work, we present a general method for isostable reduction of partial differential equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity to 1. We illustrate the utility of this reduction by applying it to two different models with biological relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the necessary framework to design a simple control strategy to desynchronize a population of pathologically synchronized oscillatory neurons, as might be relevant to Parkinson's disease. Another example analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a cardiac system.

  3. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    USGS Publications Warehouse

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  4. Advantages of multigrid methods for certifying the accuracy of PDE modeling

    NASA Technical Reports Server (NTRS)

    Forester, C. K.

    1981-01-01

    Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.

  5. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions

    NASA Astrophysics Data System (ADS)

    Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad

    2017-01-01

    In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.

  6. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  7. Calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1978-01-01

    The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.

  8. PIFEX: An advanced programmable pipelined-image processor

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.; Wilcox, B.

    1985-01-01

    PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It will operate on digitized raster-scanned images (at 60 frames per second for images up to about 300 by 400 and at lesser rates for larger images), performing a variety of operations simultaneously under program control. It thus is a powerful, flexible tool for image processing and low-level computer vision. It also has applications in other two-dimensional problems such as route planning for obstacle avoidance and the numerical solution of two-dimensional partial differential equations (although its low numerical precision limits its use in the latter field). The concept and design of PIFEX are described herein, and some examples of its use are given.

  9. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  10. One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.

    2018-04-01

    The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.

  11. On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klevtsova, Yu Yu

    2013-09-30

    The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of a stationary measure. Bibliography: 25 titles.

  12. Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Kluwick, Alfred

    2004-09-01

    Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation bubbles. This is supported by asymptotic analysis.

  13. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  14. Two-dimensional mesh embedding for Galerkin B-spline methods

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Moser, Robert D.

    1995-01-01

    A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.

  15. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.

  16. Basis adaptation and domain decomposition for steady partial differential equations with random coefficients

    DOE PAGES

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    2017-09-04

    In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  17. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  18. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  19. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  20. Group invariant solution for a pre-existing fracture driven by a power-law fluid in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fareo, A. G.; Mason, D. P.

    2013-12-01

    The effect of power-law rheology on hydraulic fracturing is investigated. The evolution of a two-dimensional fracture with non-zero initial length and driven by a power-law fluid is analyzed. Only fluid injection into the fracture is considered. The surrounding rock mass is impermeable. With the aid of lubrication theory and the PKN approximation a partial differential equation for the fracture half-width is derived. Using a linear combination of the Lie-point symmetry generators of the partial differential equation, the group invariant solution is obtained and the problem is reduced to a boundary value problem for an ordinary differential equation. Exact analytical solutions are derived for hydraulic fractures with constant volume and with constant propagation speed. The asymptotic solution near the fracture tip is found. The numerical solution for general working conditions is obtained by transforming the boundary value problem to a pair of initial value problems. Throughout the paper, hydraulic fracturing with shear thinning, Newtonian and shear thickening fluids are compared.

  1. CPDES2: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.

  2. Numerical simulation of rarefied gas flow through a slit

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong

    1990-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.

  3. FDDO and DSMC analyses of rarefied gas flow through 2D nozzles

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.

  4. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  5. A lattice Boltzmann model for the Burgers-Fisher equation.

    PubMed

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  6. An artificial viscosity method for the design of supercritical airfoils

    NASA Technical Reports Server (NTRS)

    Mcfadden, G. B.

    1979-01-01

    A numerical technique is presented for the design of two-dimensional supercritical wing sections with low wave drag. The method is a design mode of the analysis code H which gives excellent agreement with experimental results and is widely used in the aircraft industry. Topics covered include the partial differential equations of transonic flow, the computational procedure and results; the design procedure; a convergence theorem; and description of the code.

  7. Observing spatio-temporal dynamics of excitable media using reservoir computing

    NASA Astrophysics Data System (ADS)

    Zimmermann, Roland S.; Parlitz, Ulrich

    2018-04-01

    We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.

  8. Effects of boundary layer refraction and fuselage scattering on fuselage surface noise from advanced turboprop propellers

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Rawls, J. W., Jr.

    1984-01-01

    An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.

  9. Analysis of spectral operators in one-dimensional domains

    NASA Technical Reports Server (NTRS)

    Maday, Y.

    1985-01-01

    Results are proven concerning certain projection operators on the space of all polynomials of degree less than or equal to N with respect to a class of one-dimensional weighted Sobolev spaces. The results are useful in the theory of the approximation of partial differential equations with spectral methods.

  10. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.

    PubMed

    Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar

    2014-01-01

    In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.

  11. Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance

    NASA Astrophysics Data System (ADS)

    Cao, Fangfei; Liu, Jinkun

    2018-05-01

    In this paper, we consider a boundary control problem for a constrained two-link rigid-flexible manipulator. The nonlinear system is described by hybrid ordinary differential equation-partial differential equation (ODE-PDE) dynamic model. Based on the coupled ODE-PDE model, boundary control is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. With the help of prescribed performance functions, the tracking error can converge to an arbitrarily small residual set and the convergence rate is no less than a certain pre-specified value. Asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle extended to infinite-dimensional system. Numerical simulations are provided to demonstrate the effectiveness of the proposed controller.

  12. Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei

    2018-03-01

    The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.

  13. Dynamic grid refinement for partial differential equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Mccormick, S.; Quinlan, D.

    1989-01-01

    The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.

  14. Applied Computational Electromagnetics Society Journal, volume 9, number 1, March 1994

    NASA Astrophysics Data System (ADS)

    1994-03-01

    The partial contents of this document include the following: On the Use of Bivariate Spline Interpolation of Slot Data in the Design of Slotted Waveguide Arrays; A Technique for Determining Non-Integer Eigenvalues for Solutions of Ordinary Differential Equations; Antenna Modeling and Characterization of a VLF Airborne Dual Trailing Wire Antenna System; Electromagnetic Scattering from Two-Dimensional Composite Objects; and Use of a Stealth Boundary with Finite Difference Frequency Domain Simulations of Simple Antenna Problems.

  15. Whitham modulation theory for (2  +  1)-dimensional equations of Kadomtsev–Petviashvili type

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor

    2018-05-01

    Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.

  16. Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends

    NASA Technical Reports Server (NTRS)

    Robertson, D. K.

    1985-01-01

    Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.

  17. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  18. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    NASA Astrophysics Data System (ADS)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  19. Multilevel Sequential Monte Carlo Samplers for Normalizing Constants

    DOE PAGES

    Moral, Pierre Del; Jasra, Ajay; Law, Kody J. H.; ...

    2017-08-24

    This article considers the sequential Monte Carlo (SMC) approximation of ratios of normalizing constants associated to posterior distributions which in principle rely on continuum models. Therefore, the Monte Carlo estimation error and the discrete approximation error must be balanced. A multilevel strategy is utilized to substantially reduce the cost to obtain a given error level in the approximation as compared to standard estimators. Two estimators are considered and relative variance bounds are given. The theoretical results are numerically illustrated for two Bayesian inverse problems arising from elliptic partial differential equations (PDEs). The examples involve the inversion of observations of themore » solution of (i) a 1-dimensional Poisson equation to infer the diffusion coefficient, and (ii) a 2-dimensional Poisson equation to infer the external forcing.« less

  20. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    DOE PAGES

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less

  1. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  2. [Correlation between gaseous exchange rate, body temperature, and mitochondrial protein content in the liver of mice].

    PubMed

    Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E

    2002-01-01

    Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.

  3. Curve and Polygon Evolution Techniques for Image Processing

    DTIC Science & Technology

    2002-01-01

    iterative image registration technique with an application to stereo vision. IJCAI, pages 674–679, 1981. 127 [93] R . Malladi , J.A. Sethian, and B.C...Notation A digital image to be processed is a 2-Dimensional (2-D) function denoted by I , I : ! R , where R2 is the domain of the function. Processing a...function Io(x; y), which depends on two spatial variables, x 2 R , and y 2 R , via a partial differential equation (PDE) takes the form; It = A(I; Ix

  4. Lectures on the Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1981-12-01

    2 can be treated similarly. By a translation and a rotation, we can transform it to the do- main 2 : -45 ° ( 9 225 ° . It is a good exercise to ...of boundary conditions along the lateral surface does not naturally give rise to a two-dimensional plate model. I According to the Rivlin-Erzcksen...series (3.17). In the sequel, we shall be concerned with the computation of the first term (u,o) which, according to the above considerations, should

  5. Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    An analysis is performed to explore the effects of homogenous-heterogeneous reactions on two-dimensional flow of Prandtl fluid over a stretching sheet. In present analysis, we used the developed model of homogeneous-heterogeneous reactions in boundary layer flow. The mathematical configuration of presented flow phenomenon yields the nonlinear partial differential equations. Using scaling transformations, the governing partial differential equations (momentum equation and homogenous-heterogeneous reactions equations) are transformed into non-linear ordinary differential equations (ODE's). Then, resulting non-linear ODE's are solved by computational scheme known as shooting method. The quantitative and qualitative manners of concerned physical quantities (velocity, concentration and drag force coefficient) are examined under prescribed physical constrained through figures and tables. It is observed that velocity profile enhances verses fluid parameters α and β while Hartmann number reduced it. The homogeneous and heterogeneous reactions parameters have reverse effects on concentration profile. Concentration profile shows retarding behavior for large values of Schmidt number. Skin fraction coefficient enhances with increment in Hartmann number H and fluid parameter α .

  6. For numerical differentiation, dimensionality can be a blessing!

    NASA Astrophysics Data System (ADS)

    Anderssen, Robert S.; Hegland, Markus

    Finite difference methods, such as the mid-point rule, have been applied successfully to the numerical solution of ordinary and partial differential equations. If such formulas are applied to observational data, in order to determine derivatives, the results can be disastrous. The reason for this is that measurement errors, and even rounding errors in computer approximations, are strongly amplified in the differentiation process, especially if small step-sizes are chosen and higher derivatives are required. A number of authors have examined the use of various forms of averaging which allows the stable computation of low order derivatives from observational data. The size of the averaging set acts like a regularization parameter and has to be chosen as a function of the grid size h. In this paper, it is initially shown how first (and higher) order single-variate numerical differentiation of higher dimensional observational data can be stabilized with a reduced loss of accuracy than occurs for the corresponding differentiation of one-dimensional data. The result is then extended to the multivariate differentiation of higher dimensional data. The nature of the trade-off between convergence and stability is explicitly characterized, and the complexity of various implementations is examined.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M. Bilal, E-mail: bilalashraf-qau@yahoo.com; Hayat, T.; Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  8. The method of lines in three dimensional fracture mechanics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J.; Berke, L.

    1980-01-01

    A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research activities are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Peano-Baker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.

  9. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-03-01

    As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.

  10. [Formula: see text] regularity properties of singular parameterizations in isogeometric analysis.

    PubMed

    Takacs, T; Jüttler, B

    2012-11-01

    Isogeometric analysis (IGA) is a numerical simulation method which is directly based on the NURBS-based representation of CAD models. It exploits the tensor-product structure of 2- or 3-dimensional NURBS objects to parameterize the physical domain. Hence the physical domain is parameterized with respect to a rectangle or to a cube. Consequently, singularly parameterized NURBS surfaces and NURBS volumes are needed in order to represent non-quadrangular or non-hexahedral domains without splitting, thereby producing a very compact and convenient representation. The Galerkin projection introduces finite-dimensional spaces of test functions in the weak formulation of partial differential equations. In particular, the test functions used in isogeometric analysis are obtained by composing the inverse of the domain parameterization with the NURBS basis functions. In the case of singular parameterizations, however, some of the resulting test functions do not necessarily fulfill the required regularity properties. Consequently, numerical methods for the solution of partial differential equations cannot be applied properly. We discuss the regularity properties of the test functions. For one- and two-dimensional domains we consider several important classes of singularities of NURBS parameterizations. For specific cases we derive additional conditions which guarantee the regularity of the test functions. In addition we present a modification scheme for the discretized function space in case of insufficient regularity. It is also shown how these results can be applied for computational domains in higher dimensions that can be parameterized via sweeping.

  11. Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-06-01

    In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.

  12. a Speculative Study on Negative-Dimensional Potential and Wave Problems by Implicit Calculus Modeling Approach

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Wang, Fajie

    Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.

  13. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Reduced Basis Method with Exact-Solution Certificates for Symmetric Coercive Equations

    DTIC Science & Technology

    2013-11-06

    the energy associated with the infinite - dimensional weak solution of parametrized symmetric coercive partial differential equations with piecewise...builds bounds with respect to the infinite - dimensional weak solution, aims to entirely remove the issue of the “truth” within the certified reduced basis...framework. We in particular introduce a reduced basis method that provides rigorous upper and lower bounds

  15. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Rizk, Y. M.

    1985-01-01

    An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.

  16. Two-dimensional description of surface-bounded exospheres with application to the migration of water molecules on the Moon

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert

    2015-05-01

    On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.

  17. Application of the Green's function method for 2- and 3-dimensional steady transonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.

    1984-01-01

    A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.

  18. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.

    2010-09-15

    We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less

  19. Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Govindarajan, A.; Sasikala, R.

    2018-04-01

    This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.

  20. Unsteady density-current equations for highly curved terrain

    NASA Technical Reports Server (NTRS)

    Sivakumaran, N. S.; Dressler, R. F.

    1989-01-01

    New nonlinear partial differential equations containing terrain curvature and its rate of change are derived that describe the flow of an atmospheric density current. Unlike the classical hydraulic-type equations for density currents, the new equations are valid for two-dimensional, gradually varied flow over highly curved terrain, hence suitable for computing unsteady (or steady) flows over arbitrary mountain/valley profiles. The model assumes the atmosphere above the density current exerts a known arbitrary variable pressure upon the unknown interface. Later this is specialized to the varying hydrostatic pressure of the atmosphere above. The new equations yield the variable velocity distribution, the interface position, and the pressure distribution that contains a centrifugal component, often significantly larger than its hydrostatic component. These partial differential equations are hyperbolic, and the characteristic equations and characteristic directions are derived. Using these to form a characteristic mesh, a hypothetical unsteady curved-flow problem is calculated, not based upon observed data, merely as an example to illustrate the simplicity of their application to unsteady flows over mountains.

  1. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Lin-Jie; Ma, Chang-Feng

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut + αuux + βunux + γuxx + δuxxx + ζuxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.

  2. Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch

    2013-10-01

    Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared tomore » MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.« less

  3. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  4. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1991-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

  5. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  6. Quantitative evaluation method for differentiation of C2C12 myoblasts by ultrasonic microscopy

    NASA Astrophysics Data System (ADS)

    Takanashi, Kyoichi; Washiya, Mamoru; Ota, Kazuki; Yoshida, Sachiko; Hozumi, Naohiro; Kobayashi, Kazuto

    2017-07-01

    Cell differentiation was evaluated by ultrasonic microscopy. However, there were some regions that showed a lower acoustic impedance than the culture liquid. It was considered that, in such regions, the cells were not perfectly in contact with the film substrate. Hence, a waveform analysis was performed, and compensated acoustic impedances in such regions were in a reasonable range of values. By the same analysis, the displacements of partially floated cells were also successfully calculated. The elapsed day transitions of the compensated acoustic impedances and displacements were successfully evaluated. In the process of differentiation, actin fibers comprising the cytoskeleton are supposed to loosen in order to induce cellular fusion. In addition, the progress in cell differentiation accompanied by a change into a three-dimensional structure can partially be assessed by the displacement between a cell and a cultured film. Hence, we believe that cell differentiation can be evaluated using an ultrasonic microscope.

  7. Investigation of magneto-hemodynamic flow in a semi-porous channel using orthonormal Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-07-01

    In this paper, the problem of the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field is investigated numerically. Using a Berman's similarity transformation, the two-dimensional momentum conservation partial differential equations can be written as a system of nonlinear ordinary differential equations incorporating Lorentizian magneto-hydrodynamic body force terms. A new computational method based on the operational matrix of derivative of orthonormal Bernstein polynomials for solving the resulting differential systems is introduced. Moreover, by using the residual correction process, two types of error estimates are provided and reported to show the strength of the proposed method. Graphical and tabular results are presented to investigate the influence of the Hartmann number ( Ha) and the transpiration Reynolds number ( Re on velocity profiles in the channel. The results are compared with those obtained by previous works to confirm the accuracy and efficiency of the proposed scheme.

  8. Three-dimensional instabilities of natural convection between two differentially heated vertical plates: Linear and nonlinear complementary approaches

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel

    2018-05-01

    The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.

  9. Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staples, Anne

    2008-11-01

    Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.

  10. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  11. Hidden physics models: Machine learning of nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  12. Effect of partial heating at mid of vertical plate adjacent to porous medium

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.

    2018-05-01

    Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.

  13. First passage times for multiple particles with reversible target-binding kinetics

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  14. Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar

    PubMed Central

    Nováková, Slavomíra; Flores-Ramírez, Gabriela; Glasa, Miroslav; Danchenko, Maksym; Fiala, Roderik; Skultety, Ludovit

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an emerging viral pathogen in cucurbit-growing areas wordwide. Infection causes significant yield losses in several species of the family Cucurbitaceae. To identify proteins potentially involved with resistance toward infection by the severe ZYMV-H isolate, two Cucurbita pepo cultivars (Zelena susceptible and Jaguar partially resistant) were analyzed using a two-dimensional gel electrophoresis-based proteomic approach. Initial symptoms on leaves (clearing veins) developed 6–7 days post-inoculation (dpi) in the susceptible C. pepo cv. Zelena. In contrast, similar symptoms appeared on the leaves of partially resistant C. pepo cv. Jaguar only after 15 dpi. This finding was confirmed by immune-blot analysis which showed higher levels of viral proteins at 6 dpi in the susceptible cultivar. Leaf proteome analyses revealed 28 and 31 spots differentially abundant between cultivars at 6 and 15 dpi, respectively. The variance early in infection can be attributed to a rapid activation of proteins involved with redox homeostasis in the partially resistant cultivar. Changes in the proteome of the susceptible cultivar are related to the cytoskeleton and photosynthesis. PMID:25972878

  15. Lyapunov exponents for infinite dimensional dynamical systems

    NASA Technical Reports Server (NTRS)

    Mhuiris, Nessan Mac Giolla

    1987-01-01

    Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.

  16. On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Sardar, Humara

    2018-03-01

    This paper investigates the steady two-dimensional flow over a moving/static wedge in a Carreau viscosity model with infinite shear rate viscosity. Additionally, heat transfer analysis is performed. Using suitable transformations, nonlinear partial differential equations are transformed into ordinary differential equations and solved numerically using the Runge-Kutta Fehlberg method coupled with the shooting technique. The effects of various physical parameters on the velocity and temperature distributions are displayed graphically and discussed qualitatively. A comparison with the earlier reported results has been made with an excellent agreement. It is important to note that the increasing values of the wedge angle parameter enhance the fluid velocity while the opposite trend is observed for the temperature field for both shear thinning and thickening fluids. Generally, our results reveal that the velocity and temperature distributions are marginally influenced by the viscosity ratio parameter. Further, it is noted that augmented values of viscosity ratio parameter thin the momentum and thermal boundary layer thickness in shear thickening fluid and reverse is true for shear thinning fluid. Moreover, it is noticed that the velocity in case of moving wedge is higher than static wedge.

  17. Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds.

    PubMed

    Wang, Wenlong; Kevrekidis, P G

    2015-03-01

    We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas." As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.

  18. Generalized vector calculus on convex domain

    NASA Astrophysics Data System (ADS)

    Agrawal, Om P.; Xu, Yufeng

    2015-06-01

    In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.

  19. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology

    NASA Astrophysics Data System (ADS)

    Barker, T.; Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.

    2017-05-01

    Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities.

  20. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology

    PubMed Central

    Schaeffer, D. G.; Shearer, M.; Gray, J. M. N. T.

    2017-01-01

    Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ(I)-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I-dependent rheology. When the I-dependence comes from a specific friction coefficient μ(I), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ(I) satisfies certain minimal, physically natural, inequalities. PMID:28588402

  1. Well-posed continuum equations for granular flow with compressibility and μ(I)-rheology.

    PubMed

    Barker, T; Schaeffer, D G; Shearer, M; Gray, J M N T

    2017-05-01

    Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent μ ( I )-rheology is ill-posed when the non-dimensional inertial number I is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with I -dependent rheology. When the I -dependence comes from a specific friction coefficient μ ( I ), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that μ ( I ) satisfies certain minimal, physically natural, inequalities.

  2. Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions

    NASA Astrophysics Data System (ADS)

    Haitjema, Henk M.

    1985-10-01

    A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.

  3. A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption.

    PubMed

    Pearson, Natalie C; Oliver, James M; Shipley, Rebecca J; Waters, Sarah L

    2016-06-01

    We present a simplified two-dimensional model of fluid flow, solute transport, and cell distribution in a hollow fibre membrane bioreactor. We consider two cell populations, one undifferentiated and one differentiated, with differentiation stimulated either by growth factor alone, or by both growth factor and fluid shear stress. Two experimental configurations are considered, a 3-layer model in which the cells are seeded in a scaffold throughout the extracapillary space (ECS), and a 4-layer model in which the cell-scaffold construct occupies a layer surrounding the outside of the hollow fibre, only partially filling the ECS. Above this is a region of free-flowing fluid, referred to as the upper fluid layer. Following previous models by the authors (Pearson et al. in Math Med Biol, 2013, Biomech Model Mechanbiol 1-16, 2014a, we employ porous mixture theory to model the dynamics of, and interactions between, the cells, scaffold, and fluid in the cell-scaffold construct. We use this model to determine operating conditions (experiment end time, growth factor inlet concentration, and inlet fluid fluxes) which result in a required percentage of differentiated cells, as well as maximising the differentiated cell yield and minimising the consumption of expensive growth factor.

  4. An analytic, approximate method for modeling steady, three-dimensional flow to partially penetrating wells

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    2001-05-01

    An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.

  5. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  6. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  7. Concircular vector fields on Lorentzian manifold of Bianchi type-I spacetimes

    NASA Astrophysics Data System (ADS)

    Mahmood, Amjad; Ali, Ahmad T.; Khan, Suhail

    2018-04-01

    Our aim in this paper is to obtain concircular vector fields (CVFs) on the Lorentzian manifold of Bianchi type-I spacetimes. For this purpose, two different sets of coupled partial differential equations comprising ten equations each are obtained. The first ten equations, known as conformal Killing equations are solved completely and components of conformal Killing vector fields (CKVFs) are obtained in different possible cases. These CKVFs are then substituted into second set of ten differential equations to obtain CVFs. It comes out that Bianchi type-I spacetimes admit four-, five-, six-, seven- or 15-dimensional CVFs for particular choices of the metric functions. In many cases, the CKVFs of a particular metric are same as CVFs while there exists few cases where proper CKVFs are not CVFs.

  8. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.

  9. Grid generation in three dimensions by Poisson equations with control of cell size and skewness at boundary surfaces

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.; Steger, J. L.

    1983-01-01

    An algorithm for generating computational grids about arbitrary three-dimensional bodies is developed. The elliptic partial differential equation (PDE) approach developed by Steger and Sorenson and used in the NASA computer program GRAPE is extended from two to three dimensions. Forcing functions which are found automatically by the algorithm give the user the ability to control mesh cell size and skewness at boundary surfaces. This algorithm, as is typical of PDE grid generators, gives smooth grid lines and spacing in the interior of the grid. The method is applied to a rectilinear wind-tunnel case and to two body shapes in spherical coordinates.

  10. Two-dimensional grating guided-mode resonance tunable filter.

    PubMed

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  11. Solvable two-dimensional time-dependent non-Hermitian quantum systems with infinite dimensional Hilbert space in the broken PT-regime

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Frith, Thomas

    2018-06-01

    We provide exact analytical solutions for a two-dimensional explicitly time-dependent non-Hermitian quantum system. While the time-independent variant of the model studied is in the broken PT-symmetric phase for the entire range of the model parameters, and has therefore a partially complex energy eigenspectrum, its time-dependent version has real energy expectation values at all times. In our solution procedure we compare the two equivalent approaches of directly solving the time-dependent Dyson equation with one employing the Lewis–Riesenfeld method of invariants. We conclude that the latter approach simplifies the solution procedure due to the fact that the invariants of the non-Hermitian and Hermitian system are related to each other in a pseudo-Hermitian fashion, which in turn does not hold for their corresponding time-dependent Hamiltonians. Thus constructing invariants and subsequently using the pseudo-Hermiticity relation between them allows to compute the Dyson map and to solve the Dyson equation indirectly. In this way one can bypass to solve nonlinear differential equations, such as the dissipative Ermakov–Pinney equation emerging in our and many other systems.

  12. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    PubMed

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  13. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models

    PubMed Central

    Xing, W. W.; Triantafyllidis, V.

    2017-01-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327

  14. Detection of symmetric homoclinic orbits to saddle-centres in reversible systems

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki; Wagenknecht, Thomas

    2006-02-01

    We present a perturbation technique for the detection of symmetric homoclinic orbits to saddle-centre equilibria in reversible systems of ordinary differential equations. We assume that the unperturbed system has primary, symmetric homoclinic orbits, which may be either isolated or appear in a family, and use an idea similar to that of Melnikov’s method to detect homoclinic orbits in their neighbourhood. This technique also allows us to identify bifurcations of unperturbed or perturbed, symmetric homoclinic orbits. Our technique is of importance in applications such as nonlinear optics and water waves since homoclinic orbits to saddle-centre equilibria describe embedded solitons (ESs) in systems of partial differential equations representing physical models, and except for special cases their existence has been previously studied only numerically using shooting methods and continuation techniques. We apply the general theory to two examples, a four-dimensional system describing ESs in nonlinear optical media and a six-dimensional system which can possess a one-parameter family of symmetric homoclinic orbits in the unperturbed case. For these examples, the analysis is compared with numerical computations and an excellent agreement between both results is found.

  15. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  16. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  17. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Computational analysis of non-Newtonian boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip

    NASA Astrophysics Data System (ADS)

    Amanulla, C. H.; Nagendra, N.; Suryanarayana Reddy, M.

    2018-03-01

    An analysis of this paper is examined, two-dimensional, laminar with heat and mass transfer of natural convective nanofluid flow past a semi-infinite vertical plate surface with velocity and thermal slip effects are studied theoretically. The coupled governing partial differential equations are transformed to ordinary differential equations by using non-similarity transformations. The obtained ordinary differential equations are solved numerically by a well-known method named as Keller Box Method (KBM). The influences of the emerging parameters i.e. Casson fluid parameter (β), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Buoyancy ratio parameter (N), Lewis number (Le), Prandtl number (Pr), Velocity slip factor (Sf) and Thermal slip factor (ST) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length. The major sources of nanoparticle migration in Nanofluids are Thermophoresis and Brownian motion. A suitable agreement with existing published literature is made and an excellent agreement is observed for the limiting case and also validation of solutions with a Nakamura tridiagonal method has been included. It is observed that nanoparticle concentrations on surface decreases with an increase in slip parameter. The study is relevant to enrobing processes for electric-conductive nano-materials, of potential use in aerospace and other industries.

  19. Prosthetic mitral valve obstruction: role of real-time three-dimensional transesophageal echocardiography in diagnosis.

    PubMed

    Kannan, Arun; Jahan, Kahroba; Lotun, Kapildeo; Janardhanan, Rajesh

    2015-09-21

    Acute prosthetic valve thrombosis is a potentially serious complication with an incidence as high as 6% per patient-year for prostheses in the mitral position. Accurate diagnosis of the degree of obstruction and differentiation of pannus versus thrombus is critical in determination of the best mode of therapy. We discuss a case of a patient with multiple comorbidities who presented with mechanical mitral valve obstruction where both transthoracic and two-dimensional transesophageal echocardiography (TEE) were limited in making an accurate diagnosis regarding the mechanism of obstruction. Real-time 3D-TEE (RT-3DTEE) was critical in identifying a partial thrombus on the mechanical valve and guided the choice of thrombolysis as the most appropriate intervention, thus avoiding high-risk surgery in this patient with significant multiple comorbidities. 2015 BMJ Publishing Group Ltd.

  20. Prosthetic mitral valve obstruction: role of real-time three-dimensional transesophageal echocardiography in diagnosis

    PubMed Central

    Kannan, Arun; Jahan, Kahroba; Lotun, Kapildeo; Janardhanan, Rajesh

    2015-01-01

    Acute prosthetic valve thrombosis is a potentially serious complication with an incidence as high as 6% per patient-year for prostheses in the mitral position. Accurate diagnosis of the degree of obstruction and differentiation of pannus versus thrombus is critical in determination of the best mode of therapy. We discuss a case of a patient with multiple comorbidities who presented with mechanical mitral valve obstruction where both transthoracic and two-dimensional transesophageal echocardiography (TEE) were limited in making an accurate diagnosis regarding the mechanism of obstruction. Real-time 3D-TEE (RT-3DTEE) was critical in identifying a partial thrombus on the mechanical valve and guided the choice of thrombolysis as the most appropriate intervention, thus avoiding high-risk surgery in this patient with significant multiple comorbidities. PMID:26392458

  1. In vitro three-dimensional coculturing poly3-hydroxybutyrate-co-3-hydroxyhexanoate with mouse-induced pluripotent stem cells for myocardial patch application.

    PubMed

    Shijun, Xu; Junsheng, Mu; Jianqun, Zhang; Ping, Bo

    2016-03-01

    Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate-co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture. © The Author(s) 2016.

  2. Study on low intensity aeration oxygenation model and optimization for shallow water

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  3. On the hierarchy of partially invariant submodels of differential equations

    NASA Astrophysics Data System (ADS)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  4. A Long-Term Mathematical Model for Mining Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Giraud, Pierre-Noel; Lasry, Jean-Michel

    A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is described by low dimensional systems of partial differential equations. The dimensionality depends on the number of technologies that a mining producer can choose. In somemore » cases, the systems may be reduced to a Hamilton–Jacobi equation which is degenerate at the boundary and whose right hand side may blow up at the boundary. A mathematical analysis is supplied. Then numerical simulations for models with one or two technologies are described. In particular, a numerical calibration of the model in order to fit the historical data is carried out.« less

  5. Excitations in a spin-polarized two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.

    2015-11-01

    A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.

  6. Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    F, M. Abbasi; M, Mustafa; S, A. Shehzad; M, S. Alhuthali; T, Hayat

    2016-01-01

    We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier’s law of heat conduction. Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).

  7. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    NASA Astrophysics Data System (ADS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.

  8. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    PubMed Central

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  9. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    PubMed

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  10. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. N.; Krivtsov, A. M.; Tsvetkov, D. V.

    2018-05-01

    We consider unsteady heat transfer in a one-dimensional harmonic crystal surrounded by a viscous environment and subjected to an external heat supply. The basic equations for the crystal particles are stated in the form of a system of stochastic differential equations. We perform a continualization procedure and derive an infinite set of linear partial differential equations for covariance variables. An exact analytic solution describing unsteady ballistic heat transfer in the crystal is obtained. It is shown that the stationary spatial profile of the kinetic temperature caused by a point source of heat supply of constant intensity is described by the Macdonald function of zero order. A comparison with the results obtained in the framework of the classical heat equation is presented. We expect that the results obtained in the paper can be verified by experiments with laser excitation of low-dimensional nanostructures.

  11. Solution of elliptic PDEs by fast Poisson solvers using a local relaxation factor

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1986-01-01

    A large class of two- and three-dimensional, nonseparable elliptic partial differential equations (PDEs) is presently solved by means of novel one-step (D'Yakanov-Gunn) and two-step (accelerated one-step) iterative procedures, using a local, discrete Fourier analysis. In addition to being easily implemented and applicable to a variety of boundary conditions, these procedures are found to be computationally efficient on the basis of the results of numerical comparison with other established methods, which lack the present one's: (1) insensitivity to grid cell size and aspect ratio, and (2) ease of convergence rate estimation by means of the coefficient of the PDE being solved. The two-step procedure is numerically demonstrated to outperform the one-step procedure in the case of PDEs with variable coefficients.

  12. On asymptotic behavior and energy distribution for some one-dimensional non-parabolic diffusion problems

    NASA Astrophysics Data System (ADS)

    Kim, Seonghak; Yan, Baisheng

    2018-06-01

    We study some non-parabolic diffusion problems in one space dimension, where the diffusion flux exhibits forward and backward nature of the Perona–Malik, Höllig or non-Fourier type. Classical weak solutions to such problems are constructed in a way to capture some expected and unexpected properties, including anomalous asymptotic behaviors and energy dissipation or allocation. Specific properties of solutions will depend on the type of the diffusion flux, but the primary method of our study relies on reformulating diffusion equations involved as an inhomogeneous partial differential inclusion and on constructing solutions from the differential inclusion by a combination of the convex integration and Baire’s category methods. In doing so, we introduce the appropriate notion of subsolutions of the partial differential inclusion and their transition gauge, which plays a pivotal role in dealing with some specific features of the constructed weak solutions.

  13. A Methodology to Determine Self-Similarity, Illustrated by Example: Transient Heat Transfer with Constant Flux

    ERIC Educational Resources Information Center

    Monroe, Charles; Newman, John

    2005-01-01

    This simple example demonstrates the physical significance of similarity solutions and the utility of dimensional and asymptotic analysis of partial differential equations. A procedure to determine the existence of similarity solutions is proposed and subsequently applied to transient constant-flux heat transfer. Short-time expressions follow from…

  14. A Three-Fold Approach to the Heat Equation: Data, Modeling, Numerics

    ERIC Educational Resources Information Center

    Spayd, Kimberly; Puckett, James

    2016-01-01

    This article describes our modeling approach to teaching the one-dimensional heat (diffusion) equation in a one-semester undergraduate partial differential equations course. We constructed the apparatus for a demonstration of heat diffusion through a long, thin metal rod with prescribed temperatures at each end. The students observed the physical…

  15. Numerical methods for the inverse problem of density functional theory

    DOE PAGES

    Jensen, Daniel S.; Wasserman, Adam

    2017-07-17

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  16. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com; Badruddin, Irfan Anjum

    2016-06-08

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  17. Non-axisymmetric local magnetostatic equilibrium

    DOE PAGES

    Candy, Jefferey M.; Belli, Emily A.

    2015-03-24

    In this study, we outline an approach to the problem of local equilibrium in non-axisymmetric configurations that adheres closely to Miller's original method for axisymmetric plasmas. Importantly, this method is novel in that it allows not only specification of 3D shape, but also explicit specification of the shear in the 3D shape. A spectrally-accurate method for solution of the resulting nonlinear partial differential equations is also developed. We verify the correctness of the spectral method, in the axisymmetric limit, through comparisons with an independent numerical solution. Some analytic results for the two-dimensional case are given, and the connection to Boozermore » coordinates is clarified.« less

  18. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel; KubizÅák, David; Santos, Jorge E.

    2018-06-01

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  19. Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.

    PubMed

    Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E

    2018-06-08

    We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

  20. Numerical methods for the inverse problem of density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Daniel S.; Wasserman, Adam

    Here, the inverse problem of Kohn–Sham density functional theory (DFT) is often solved in an effort to benchmark and design approximate exchange-correlation potentials. The forward and inverse problems of DFT rely on the same equations but the numerical methods for solving each problem are substantially different. We examine both problems in this tutorial with a special emphasis on the algorithms and error analysis needed for solving the inverse problem. Two inversion methods based on partial differential equation constrained optimization and constrained variational ideas are introduced. We compare and contrast several different inversion methods applied to one-dimensional finite and periodic modelmore » systems.« less

  1. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  2. 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Abdullah A. A. A.; Kolsi, Lioua; Oztop, Hakan F.; Aydi, Abdelkarim; Malekshah, Emad Hasani; Abu-Hamdeh, Nidal; Borjini, Mohamed Naceur

    2018-05-01

    A computational study has been performed to investigate the effects of partially active magnetic field on natural convection heat transfer in CNT-nanofluid filled and three-dimensional differentially heated closed space. Two cases are considered to see this effect as magnetic field is applied to upper half (Case I) and lower half (Case II) while remaining walls are insulated. The finite volume method is used to solve governing equations and results are obtained for different governing parameters as Hartmann number (0 ≤ Ha ≤ 100), nanoparticle volume fraction (0 ≤ φ ≤ 0.05) and height of the active zone (0 ≤ LB ≤ 1). It is found that location of magnetic field plays an important role even at the same Hartmann number. Thus, it can be a good parameter to control heat and fluid flow inside the closed space.

  3. Calculation of Scattering Amplitude Without Partial Analysis. II; Inclusion of Exchange

    NASA Technical Reports Server (NTRS)

    Temkin, Aaron; Shertzer, J.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    There was a method for calculating the whole scattering amplitude, f(Omega(sub k)), directly. The idea was to calculate the complete wave function Psi numerically, and use it in an integral expression for f, which can be reduced to a 2 dimensional quadrature. The original application was for e-H scattering without exchange. There the Schrodinger reduces a 2-d partial differential equation (pde), which was solved using the finite element method (FEM). Here we extend the method to the exchange approximation. The S.E. can be reduced to a pair of coupled pde's, which are again solved by the FEM. The formal expression for f(Omega(sub k)) consists two integrals, f+/- = f(sub d) +/- f(sub e); f(sub d) is formally the same integral as the no-exchange f. We have also succeeded in reducing f(sub e) to a 2-d integral. Results will be presented at the meeting.

  4. Derivative Sign Patterns in Two Dimensions

    ERIC Educational Resources Information Center

    Schilling, Kenneth

    2013-01-01

    Given a function defined on a subset of the plane whose partial derivatives never change sign, the signs of the partial derivatives form a two-dimensional pattern. We explore what patterns are possible for various planar domains.

  5. Some More Solutions of Burgers' Equation

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Raj

    2015-01-01

    In this work, similarity solutions of viscous one-dimensional Burgers' equation are attained by using Lie group theory. The symmetry generators are used for constructing Lie symmetries with commuting infinitesimal operators which lead the governing partial differential equation (PDE) to ordinary differential equation (ODE). Most of the constructed solutions are found in terms of Bessel functions which are new as far as authors are aware. Effect of various parameters in the evolutional profile of the solutions are shown graphically and discussed them physically.

  6. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  7. DNN-state identification of 2D distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  8. Linking laser scanning to snowpack modeling: Data processing and visualization

    NASA Astrophysics Data System (ADS)

    Teufelsbauer, H.

    2009-07-01

    SnowSim is a newly developed physical snowpack model that can use three-dimensional terrestrial laser scanning data to generate model domains. This greatly simplifies the input and numerical simulation of snow covers in complex terrains. The program can model two-dimensional cross sections of general slopes, with complicated snow distributions. The model predicts temperature distributions and snow settlements in this cross section. Thus, the model can be used for a wide range of problems in snow science and engineering, including numerical investigations of avalanche formation. The governing partial differential equations are solved by means of the finite element method, using triangular elements. All essential data for defining the boundary conditions and evaluating the simulation results are gathered by automatic weather and snow measurement sites. This work focuses on the treatment of these measurements and the simulation results, and presents a pre- and post-processing graphical user interface (GUI) programmed in Matlab.

  9. Experimental and Numerical Investigation of Adsorption/Desorption in Packed Sorption Beds Under Ideal and Non-Ideal Flows

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, H.; Knox, J. C.; Smith, James E.

    1999-01-01

    The importance of the wall effect on packed beds in the adsorption and desorption of carbon dioxide, nitrogen, and water on molecular sieve 5A of 0.127 cm in radius is examined experimentally and with one-dimensional computer simulations. Experimental results are presented for a 22.5-cm long by 4.5-cm diameter cylindrical column with concentration measurements taken at various radial locations. The set of partial differential equations are solved using finite differences and Newman's method. Comparison of test data with the axial-dispersed, non-isothermal, linear driving force model suggests that a two-dimensional model (submitted to Separation Science and Technology) is required for accurate simulation of the average column breakthrough concentration. Additional comparisons of test data with the model provided information on the interactive effects of carrier gas coadsorption with CO2, as well as CO2-H2O interactions.

  10. A three-dimensional, time-dependent model of Mobile Bay

    NASA Technical Reports Server (NTRS)

    Pitts, F. H.; Farmer, R. C.

    1976-01-01

    A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.

  11. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  12. Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two- and three-dimensional objective analysis

    NASA Technical Reports Server (NTRS)

    Shiau, Jyh-Jen; Wahba, Grace; Johnson, Donald R.

    1986-01-01

    A new method, based on partial spline models, is developed for including specified discontinuities in otherwise smooth two- and three-dimensional objective analyses. The method is appropriate for including tropopause height information in two- and three-dimensinal temperature analyses, using the O'Sullivan-Wahba physical variational method for analysis of satellite radiance data, and may in principle be used in a combined variational analysis of observed, forecast, and climate information. A numerical method for its implementation is described and a prototype two-dimensional analysis based on simulated radiosonde and tropopause height data is shown. The method may also be appropriate for other geophysical problems, such as modeling the ocean thermocline, fronts, discontinuities, etc.

  13. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

    NASA Astrophysics Data System (ADS)

    Cui, Tiangang; Marzouk, Youssef; Willcox, Karen

    2016-06-01

    Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

  14. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  15. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  16. Efficient implementation of a 3-dimensional ADI method on the iPSC/860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Wijngaart, R.F.

    1993-12-31

    A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.

  17. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    PubMed

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD

    NASA Astrophysics Data System (ADS)

    Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao

    Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.

  19. Oblique transport of gyrotactic microorganisms and bioconvection nanoparticles with convective mass flux

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Mehmood, Zaffar; Maraj, E. N.

    2017-04-01

    The present study deals with examination of steady two dimensional nanofluid containing both nanoparticles and gyrotactic microorganisms. Moreover the study comprises stagnation point flow of an obliquely striking nanofluid. The governing partial differential equations are complex and highly non-linear in nature. These are converted into system of ordinary differential equations using suitable transformations. The system is then solved numerically using shooting technique with Runge - Kutta Fehlberg method of order 5. Further, effect of different physical parameters on velocity f ‧ (η) , temperature θ (η) , density of motile microorganisms w (η) and concentration ϕ (η) along with skin friction coefficient Cf, local Nusselt Nux, Sherwood Shx and density of motile microorganism Nnx numbers have been discussed through graphs and tables. Results depict that temperature, concentration, density of motile microorganisms and local Nusselt number are increasing functions of thermophoresis parameter Nt. Whereas Nt contributes in lessening Sherwood and local density numbers.

  20. A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems

    NASA Technical Reports Server (NTRS)

    Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter

    1989-01-01

    An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.

  1. Jeffrey fluid effect on free convective over a vertically inclined plate with magnetic field: A numerical approach

    NASA Astrophysics Data System (ADS)

    Rao, J. Anand; Raju, R. Srinivasa; Bucchaiah, C. D.

    2018-05-01

    In this work, the effect of magnetohydrodynamic natural or free convective of an incompressible, viscous and electrically conducting non-newtonian Jeffrey fluid over a semi-infinite vertically inclined permeable moving plate embedded in a porous medium in the presence of heat absorption, heat and mass transfer. By using non-dimensional quantities, the fundamental governing non-linear partial differential equations are transformed into linear partial differential equations and these equations together with associated boundary conditions are solved numerically by using versatile, extensively validated, variational finite element method. The sway of important key parameters on hydrodynamic, thermal and concentration boundary layers are examined in detail and the results are shown graphically. Finally the results are compared with the works published previously and found to be excellent agreement.

  2. Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.

    2016-02-01

    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.

  3. Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.

    1994-07-01

    A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.

  4. Classification of symmetry-protected phases for interacting fermions in two dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Bi, Zhen; You, Yi-Zhuang; Gu, Zheng-Cheng

    2018-05-01

    Recently, it has been established that two-dimensional bosonic symmetry-protected topological (SPT) phases with on-site unitary symmetry G can be completely classified by the group cohomology H3( G ,U (1 ) ) . Later, group supercohomology was proposed as a partial classification for SPT phases of interacting fermions. In this work, we revisit this problem based on the algebraic theory of symmetry and defects in two-dimensional topological phases. We reproduce the partial classifications given by group supercohomology, and we also show that with an additional H1(G ,Z2) structure, a complete classification of SPT phases for two-dimensional interacting fermion systems with a total symmetry group G ×Z2f is obtained. We also discuss the classification of interacting fermionic SPT phases protected by time-reversal symmetry.

  5. Oscillation of certain higher-order neutral partial functional differential equations.

    PubMed

    Li, Wei Nian; Sheng, Weihong

    2016-01-01

    In this paper, we study the oscillation of certain higher-order neutral partial functional differential equations with the Robin boundary conditions. Some oscillation criteria are established. Two examples are given to illustrate the main results in the end of this paper.

  6. Local polynomial chaos expansion for linear differential equations with high dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Jakeman, John; Gittelson, Claude

    2015-01-08

    In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less

  7. Three-dimensional elliptic grid generation technique with application to turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Schwab, J. R.

    1988-01-01

    Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayegan, S.; Shalchi, M. A.; Hadizadeh, M. R.

    The recently developed chiral nucleon-nucleon (NN) potential by E. Epelbaum, W. Gloeckle, and Ulf-G. Meissner, Nucl. Phys. A747, 362 (2005) has been employed to study the two-nucleon bound and scattering states. Chiral NN potential up to next-to-next-to-next-to leading order (N{sup 3}LO) is used to calculate the np differential cross section and deuteron binding energy in a realistic three dimensional approach. The obtained results based on this helicity representation are compared to the standard partial wave (PW) results. This comparison shows that the 3D approach provides the same accuracy in the description of NN observables and the results are in closemore » agreement with available experimental data.« less

  9. Collective phase description of oscillatory convection

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-01

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  10. The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.

  11. Thermodynamically self-consistent theory for the Blume-Capel model.

    PubMed

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  12. Numerical study of Free Convective Viscous Dissipative flow along Vertical Cone with Influence of Radiation using Network Simulation method

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.

    2018-04-01

    A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.

  13. Mathematical Model of Bubble Sloshing Dynamics for Cryogenic Liquid Helium in Orbital Spacecraft Dewar Container

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.

  14. Eroding dipoles and vorticity growth for Euler flows in {{{R}}}^{3}: the hairpin geometry as a model for finite-time blowup

    NASA Astrophysics Data System (ADS)

    Childress, Stephen; Gilbert, Andrew D.

    2018-02-01

    A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.

  15. Boundary control for a flexible manipulator based on infinite dimensional disturbance observer

    NASA Astrophysics Data System (ADS)

    Jiang, Tingting; Liu, Jinkun; He, Wei

    2015-07-01

    This paper focuses on disturbance observer and boundary control design for the flexible manipulator in presence of both boundary disturbance and spatially distributed disturbance. Taking the infinite-dimensionality of the flexural dynamics into account, this study proposes a partial differential equation (PDE) model. Since the spatially distributed disturbance is infinite dimensional, it cannot be compensated by the typical disturbance observer, which is designed by finite dimensional approach. To estimate the spatially distributed disturbance, we propose a novel infinite dimensional disturbance observer (IDDO). Applying the IDDO as a feedforward compensator, a boundary control scheme is designed to regulate the joint position and eliminate the elastic vibration simultaneously. Theoretical analysis validates the stability of both the proposed disturbance observer and the boundary controller. The performance of the closed-loop system is demonstrated by numerical simulations.

  16. An extinction/reignition dynamic method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Knaus, Robert; Pantano, Carlos

    2011-11-01

    Quasi-randomly distributed locations of high strain in turbulent combustion can cause a nonpremixed or partially premixed flame to develop local regions of extinction called ``flame holes''. The presence and extent of these holes can increase certain pollutants and reduce the amount of fuel burned. Accurately modeling the dynamics of these interacting regions can improve the accuracy of combustion simulations by effectively incorporating finite-rate chemistry effects. In the proposed method, the flame hole state is characterized by a progress variable that nominally exists on the stoichiometric surface. The evolution of this field is governed by a partial-differential equation embedded in the time-dependent two-manifold of the flame surface. This equation includes advection, propagation, and flame hole formation (flame hole healing or collapse is accounted by propagation naturally). We present a computational algorithm that solves this equation by embedding it in the usual three-dimensional space. A piece-wise parabolic WENO scheme combined with a compression algorithm are used to evolve the flame hole progress variable. A key aspect of the method is the extension of the surface data to the three-dimensional space in an efficient manner. We present results of this method applied to canonical turbulent combusting flows where the flame holes interact and describe their statistics.

  17. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  18. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem ofmore » manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<

  19. Dynamics of Nearest-Neighbour Competitions on Graphs

    NASA Astrophysics Data System (ADS)

    Rador, Tonguç

    2017-10-01

    Considering a collection of agents representing the vertices of a graph endowed with integer points, we study the asymptotic dynamics of the rate of the increase of their points according to a very simple rule: we randomly pick an an edge from the graph which unambiguously defines two agents we give a point the the agent with larger point with probability p and to the lagger with probability q such that p+q=1. The model we present is the most general version of the nearest-neighbour competition model introduced by Ben-Naim, Vazquez and Redner. We show that the model combines aspects of hyperbolic partial differential equations—as that of a conservation law—graph colouring and hyperplane arrangements. We discuss the properties of the model for general graphs but we confine in depth study to d-dimensional tori. We present a detailed study for the ring graph, which includes a chemical potential approximation to calculate all its statistics that gives rather accurate results. The two-dimensional torus, not studied in depth as the ring, is shown to possess critical behaviour in that the asymptotic speeds arrange themselves in two-coloured islands separated by borders of three other colours and the size of the islands obey power law distribution. We also show that in the large d limit the d-dimensional torus shows inverse sine law for the distribution of asymptotic speeds.

  20. Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions

    PubMed Central

    Li, Haoran; Xiong, Li; Jiang, Xiaoqian

    2014-01-01

    Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. In this paper, we propose DPCopula, a differentially private data synthesization technique using Copula functions for multi-dimensional data. The core of our method is to compute a differentially private copula function from which we can sample synthetic data. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. We present two methods for estimating the parameters of the copula functions with differential privacy: maximum likelihood estimation and Kendall’s τ estimation. We present formal proofs for the privacy guarantee as well as the convergence property of our methods. Extensive experiments using both real datasets and synthetic datasets demonstrate that DPCopula generates highly accurate synthetic multi-dimensional data with significantly better utility than state-of-the-art techniques. PMID:25405241

  1. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    NASA Astrophysics Data System (ADS)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  2. Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg I.

    2018-06-01

    The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.

  3. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    PubMed

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  4. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  5. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  6. The lattice of trumping majorization for 4D probability vectors and 2D catalysts.

    PubMed

    Bosyk, Gustavo M; Freytes, Hector; Bellomo, Guido; Sergioli, Giuseppe

    2018-02-27

    The transformation of an initial bipartite pure state into a target one by means of local operations and classical communication and entangled-assisted by a catalyst defines a partial order between probability vectors. This partial order, so-called trumping majorization, is based on tensor products and the majorization relation. Here, we aim to study order properties of trumping majorization. We show that the trumping majorization partial order is indeed a lattice for four dimensional probability vectors and two dimensional catalysts. In addition, we show that the subadditivity and supermodularity of the Shannon entropy on the majorization lattice are inherited by the trumping majorization lattice. Finally, we provide a suitable definition of distance for four dimensional probability vectors.

  7. Solution of elliptic partial differential equations by fast Poisson solvers using a local relaxation factor. 2: Two-step method

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1986-01-01

    A two-step semidirect procedure is developed to accelerate the one-step procedure described in NASA TP-2529. For a set of constant coefficient model problems, the acceleration factor increases from 1 to 2 as the one-step procedure convergence rate decreases from + infinity to 0. It is also shown numerically that the two-step procedure can substantially accelerate the convergence of the numerical solution of many partial differential equations (PDE's) with variable coefficients.

  8. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  9. On a model of three-dimensional bursting and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.

    2008-04-01

    A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.

  10. Direct Calculation of the Scattering Amplitude Without Partial Wave Decomposition. III; Inclusion of Correlation Effects

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2007-01-01

    In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.

  11. On simplified application of multidimensional Savitzky-Golay filters and differentiators

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra

    2016-02-01

    I propose a simplified approach for multidimensional Savitzky-Golay filtering, to enable its fast and easy implementation in scientific and engineering applications. The proposed method, which is derived from a generalized framework laid out by Thornley (D. J. Thornley, "Novel anisotropic multidimensional convolution filters for derivative estimation and reconstruction" in Proceedings of International Conference on Signal Processing and Communications, November 2007), first transforms any given multidimensional problem into a unique one, by transforming coordinates of the sampled data nodes to unity-spaced, uniform data nodes, and then performs filtering and calculates partial derivatives on the unity-spaced nodes. It is followed by transporting the calculated derivatives back onto the original data nodes by using the chain rule of differentiation. The burden to performing the most cumbersome task, which is to carry out the filtering and to obtain derivatives on the unity-spaced nodes, is almost eliminated by providing convolution coefficients for a number of convolution kernel sizes and polynomial orders, up to four spatial dimensions. With the availability of the convolution coefficients, the task of filtering at a data node reduces merely to multiplication of two known matrices. Simplified strategies to adequately address near-boundary data nodes and to calculate partial derivatives there are also proposed. Finally, the proposed methodologies are applied to a three-dimensional experimentally obtained data set, which shows that multidimensional Savitzky-Golay filters and differentiators perform well in both the internal and the near-boundary regions of the domain.

  12. Surrogate modelling for the prediction of spatial fields based on simultaneous dimensionality reduction of high-dimensional input/output spaces.

    PubMed

    Crevillén-García, D

    2018-04-01

    Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.

  13. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Garreta, Elena; González, Federico; Montserrat, Núria

    2018-01-01

    Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease. © 2017 S. Karger AG, Basel.

  14. Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Anderson, P. G.

    1978-01-01

    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.

  15. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  16. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  17. Temporal chaos in Boussinesq magnetoconvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekki, Naoaki; Moriguchi, Hirofumi; Fundamental Science, Gifu National College of Technology, Motosu, Gifu 501-0495

    2007-01-15

    Two-dimensional Boussinesq magnetoconvection with idealized stress-free boundary conditions is numerically investigated in order to make clear the difference between chaos and turbulence. It is shown that the long-term behavior of magnetoconvection exhibits spatially coherent and temporally chaotic rolls in marked contrast to highly turbulent fluids. It is also shown that heat transport becomes larger anomalously when the polarity reversal of the magnetic field occurs intermittently in the case of temporally chaotic magnetoconvection. It is found that the Poincare return map of the relative maximum temperature fluctuation of partial differential equations as a function of the preceding maximum resembles the famousmore » Lorenz plot in narrow rolls of magnetoconvection. The chaotic behavior of narrow rolls for individual parameter values robustly persists up to rolls about one fifth as wide as they are high near the codimension-two bifurcation point.« less

  18. Large amplitude flexural vibration of thin elastic flat plates and shells

    NASA Technical Reports Server (NTRS)

    Pandalia, K. A. V.

    1972-01-01

    The general equations governing the large amplitude flexural vibration of any thin elastic shell using curvilinear orthogonal coordinates are derived and consist of two coupled, nonlinear, partial differential equations in the normal displacement w and the stress function F. From these equations, the governing equations for the case of shells of revolution or flat plates can be readily obtained as special cases. The material of the shell or plate is isotropic and homogeneous and Hooke's law for the two-dimensional case is valid. It is suggested that the difference between the hardening type of nonlinearity in the case of flat plates and straight beams and the softening type of nonlinearity in the case of shells and rings can, in general, be traced to the amount of curvature present in the underformed median surface of the structure concerned.

  19. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the resulting far-zone radiation pattern is displayed as well.

  20. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    NASA Astrophysics Data System (ADS)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  1. Distributional fold change test – a statistical approach for detecting differential expression in microarray experiments

    PubMed Central

    2012-01-01

    Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set. PMID:23122055

  2. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  3. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    PubMed

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  4. The nonlinear modified equation approach to analyzing finite difference schemes

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1981-01-01

    The nonlinear modified equation approach is taken in this paper to analyze the generalized Lax-Wendroff explicit scheme approximation to the unsteady one- and two-dimensional equations of gas dynamics. Three important applications of the method are demonstrated. The nonlinear modified equation analysis is used to (1) generate higher order accurate schemes, (2) obtain more accurate estimates of the discretization error for nonlinear systems of partial differential equations, and (3) generate an adaptive mesh procedure for the unsteady gas dynamic equations. Results are obtained for all three areas. For the adaptive mesh procedure, mesh point requirements for equal resolution of discontinuities were reduced by a factor of five for a 1-D shock tube problem solved by the explicit MacCormack scheme.

  5. Collective phase description of oscillatory convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp; Nakao, Hiroya

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shawmore » cells exhibiting oscillatory convection on the basis of the derived phase equations.« less

  6. An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.E.; Ritchie, A.B.

    1997-12-31

    One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less

  7. Numerical solutions of atmospheric flow over semielliptical simulated hills

    NASA Technical Reports Server (NTRS)

    Shieh, C. F.; Frost, W.

    1981-01-01

    Atmospheric motion over obstacles on plane surfaces to compute simulated wind fields over terrain features was studied. Semielliptical, two dimensional geometry and numerical simulation of flow over rectangular geometries is also discussed. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale were solved by a finite difference technique. The mechanism of flow separation induced by a semiellipse is the same as flow over a gradually sloping surface for which the flow separation is caused by the interaction between the viscous force, the pressure force, and the turbulence level. For flow over bluff bodies, a downstream recirculation bubble is created which increases the aspect ratio and/or the turbulence level results in flow reattachment close behind the obstacle.

  8. Flow Applications of the Least Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  9. Determining partial differential cross sections for low-energy electron photodetachment involving conical intersections using the solution of a Lippmann-Schwinger equation constructed with standard electronic structure techniques.

    PubMed

    Han, Seungsuk; Yarkony, David R

    2011-05-07

    A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.

  10. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS

    PubMed Central

    OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES

    2016-01-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028

  11. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    PubMed

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  12. Nonlinear Equations of Motion for Cantilever Rotor Blades in Hover with Pitch Link Flexibility, Twist, Precone, Droop, Sweep, Torque Offset, and Blade Root Offset

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1976-01-01

    Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.

  13. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  14. Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research article focuses on three-dimensional flow of viscoelastic(second grade) nanofluid in the presence of Cattaneo-Christov double-diffusion theory. Flow caused is due to stretching sheet. Characteristics of heat transfer are interpreted by considering the heat generation/absorption. Nanofluid theory comprises of Brownian motion and thermophoresis. Cattaneo-Christov double-diffusion theory is introduced in the energy and concentration expressions. Such diffusions are developed as a part of formulating the thermal and solutal relaxation times framework. Suitable variables are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been explored through homotopic algorithm. Behavior of sundry variables on the velocities, temperature and concentration are scrutinized graphically. Numerical values of skin friction coefficients are also calculated and examined. Here thermal field enhances for heat generation parameter while reverse situation is noticed for heat absorption parameter.

  15. Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity

    NASA Astrophysics Data System (ADS)

    Jayachandra Babu, M.; Sandeep, N.; Ali, M. E.; Nuhait, Abdullah O.

    The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively.

  16. Artificial neural network methods in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lagaris, I. E.; Likas, A.; Fotiadis, D. I.

    1997-08-01

    In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schrödinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with the Schrödinger and the Dirac equations for a muonic atom, as well as with a nonlocal Schrödinger integrodifferential equation that models the n + α system in the framework of the resonating group method. In two dimensions we consider the well-studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality.

  17. A new modification in the exponential rational function method for nonlinear fractional differential equations

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Bibi, Sadaf; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-02-01

    We have modified the traditional exponential rational function method (ERFM) and have used it to find the exact solutions of two different fractional partial differential equations, one is the time fractional Boussinesq equation and the other is the (2+1)-dimensional time fractional Zoomeron equation. In both the cases it is observed that the modified scheme provides more types of solutions than the traditional one. Moreover, a comparison of the recent solutions is made with some already existing solutions. We can confidently conclude that the modified scheme works better and provides more types of solutions with almost similar computational cost. Our generalized solutions include periodic, soliton-like, singular soliton and kink solutions. A graphical simulation of all types of solutions is provided and the correctness of the solution is verified by direct substitution. The extended version of the solutions is expected to provide more flexibility to scientists working in the relevant field to test their simulation data.

  18. Interplay of differential cell mechanical properties, motility, and proliferation in emergent collective behavior of cell co-cultures

    NASA Astrophysics Data System (ADS)

    Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita

    The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.

  19. Laser-Induced Temperature Rise in a Composite Sandwich Structure

    DTIC Science & Technology

    2013-01-01

    Bertolotti and Sibilia, 1981; Burgener and Reedy, 1982; Calder and Sue, 1982; Moody and Hendel, 1982; Sanders, 1984; Araya and Gutierrez, 2006 ...REFERENCES [1] G. Araya , G. and G. Gutierre, Analytical solution for a transient, three-dimensional temperature distribution due to a moving laser...beam, Int. J. Heat and Mass Transfer, 49 ( 2006 ), 4124-4131. [2] N. Asmar, Partial Differential Equations with Fourier Series and Boundary Value

  20. Modelling the aggregation process of cellular slime mold by the chemical attraction.

    PubMed

    Atangana, Abdon; Vermeulen, P D

    2014-01-01

    We put into exercise a comparatively innovative analytical modus operandi, the homotopy decomposition method (HDM), for solving a system of nonlinear partial differential equations arising in an attractor one-dimensional Keller-Segel dynamics system. Numerical solutions are given and some properties show evidence of biologically practical reliance on the parameter values. The reliability of HDM and the reduction in computations give HDM a wider applicability.

  1. On the optimal systems of subalgebras for the equations of hydrodynamic stability analysis of smooth shear flows and their group-invariant solutions

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George

    2017-04-01

    We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.

  2. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  3. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.

    PubMed

    Augustin, Moritz; Ladenbauer, Josef; Baumann, Fabian; Obermayer, Klaus

    2017-06-01

    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.

  4. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation

    PubMed Central

    Baumann, Fabian; Obermayer, Klaus

    2017-01-01

    The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models. PMID:28644841

  5. Differential relations between two dimensions of self-esteem and the Big Five?

    PubMed

    Ramsdal, Gro Hilde

    2008-08-01

    Recent research has suggested the possibility that self-esteem (SE) may be viewed as a two-dimensional concept consisting of: (a) self-liking, the subjective evaluation of oneself as a social being; and (b) self-competence, the internal conceptions of success and failure in performing tasks (Tafarodi & Swann, 1995). Establishing differential relations between these two dimensions of SE and an important psychological concept like the Big Five, would support the notion of two-dimensional SE. To test this hypothesis the self-liking/self-competence scale (SLCS) and the Big Five Inventory (BFI) were administered to 128 Norwegian college students. The results show a differential relationship between the two dimensions of SE and the personality dimensions of the BFI.

  6. A note on the regularity of solutions of infinite dimensional Riccati equations

    NASA Technical Reports Server (NTRS)

    Burns, John A.; King, Belinda B.

    1994-01-01

    This note is concerned with the regularity of solutions of algebraic Riccati equations arising from infinite dimensional LQR and LQG control problems. We show that distributed parameter systems described by certain parabolic partial differential equations often have a special structure that smoothes solutions of the corresponding Riccati equation. This analysis is motivated by the need to find specific representations for Riccati operators that can be used in the development of computational schemes for problems where the input and output operators are not Hilbert-Schmidt. This situation occurs in many boundary control problems and in certain distributed control problems associated with optimal sensor/actuator placement.

  7. Group iterative methods for the solution of two-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Balasim, Alla Tareq; Ali, Norhashidah Hj. Mohd.

    2016-06-01

    Variety of problems in science and engineering may be described by fractional partial differential equations (FPDE) in relation to space and/or time fractional derivatives. The difference between time fractional diffusion equations and standard diffusion equations lies primarily in the time derivative. Over the last few years, iterative schemes derived from the rotated finite difference approximation have been proven to work well in solving standard diffusion equations. However, its application on time fractional diffusion counterpart is still yet to be investigated. In this paper, we will present a preliminary study on the formulation and analysis of new explicit group iterative methods in solving a two-dimensional time fractional diffusion equation. These methods were derived from the standard and rotated Crank-Nicolson difference approximation formula. Several numerical experiments were conducted to show the efficiency of the developed schemes in terms of CPU time and iteration number. At the request of all authors of the paper an updated version of this article was published on 7 July 2016. The original version supplied to AIP Publishing contained an error in Table 1 and References 15 and 16 were incomplete. These errors have been corrected in the updated and republished article.

  8. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today. PMID:27362493

  9. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

    PubMed

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.

  10. Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

    NASA Astrophysics Data System (ADS)

    Sotoudeh, Zahra

    2011-07-01

    Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less

  12. Three-dimensional transonic potential flow about complex 3-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1984-01-01

    An analysis has been developed and a computer code written to predict three-dimensional subsonic or transonic potential flow fields about lifting or nonlifting configurations. Possible condfigurations include inlets, nacelles, nacelles with ground planes, S-ducts, turboprop nacelles, wings, and wing-pylon-nacelle combinations. The solution of the full partial differential equation for compressible potential flow written in terms of a velocity potential is obtained using finite differences, line relaxation, and multigrid. The analysis uses either a cylindrical or Cartesian coordinate system. The computational mesh is not body fitted. The analysis has been programmed in FORTRAN for both the CDC CYBER 203 and the CRAY-1 computers. Comparisons of computed results with experimental measurement are presented. Descriptions of the program input and output formats are included.

  13. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.

    PubMed

    MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H

    2016-03-15

    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.

  14. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  15. Entropic manifestations of topological order in three dimensions

    NASA Astrophysics Data System (ADS)

    Bullivant, Alex; Pachos, Jiannis K.

    2016-03-01

    We evaluate the entanglement entropy of exactly solvable Hamiltonians corresponding to general families of three-dimensional topological models. We show that the modification to the entropic area law due to three-dimensional topological properties is richer than the two-dimensional case. In addition to the reduction of the entropy caused by a nonzero vacuum expectation value of contractible loop operators, a topological invariant emerges that increases the entropy if the model consists of nontrivially braiding anyons. As a result the three-dimensional topological entanglement entropy provides only partial information about the two entropic topological invariants.

  16. Direct reconstruction of the two-dimensional pair distribution function in partially ordered systems with angular correlations.

    PubMed

    Zaluzhnyy, I A; Kurta, R P; Menushenkov, A P; Ostrovskii, B I; Vartanyants, I A

    2016-09-01

    An x-ray scattering approach to determine the two-dimensional (2D) pair distribution function (PDF) in partially ordered 2D systems is proposed. We derive relations between the structure factor and PDF that enable quantitative studies of positional and bond-orientational (BO) order in real space. We apply this approach in the x-ray study of a liquid crystal (LC) film undergoing the smectic-A-hexatic-B phase transition, to analyze the interplay between the positional and BO order during the temperature evolution of the LC film. We analyze the positional correlation length in different directions in real space.

  17. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza

    2017-04-01

    The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.

  18. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  19. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  20. Conditioned medium as a strategy for human stem cells chondrogenic differentiation.

    PubMed

    Alves da Silva, M L; Costa-Pinto, A R; Martins, A; Correlo, V M; Sol, P; Bhattacharya, M; Faria, S; Reis, R L; Neves, Nuno M

    2015-06-01

    Paracrine signalling from chondrocytes has been reported to increase the synthesis and expression of cartilage extracellular matrix (ECM) by stem cells. The use of conditioned medium obtained from chondrocytes for stimulating stem cells chondrogenic differentiation may be a very interesting alternative for moving into the clinical application of these cells, as chondrocytes could be partially replaced by stem cells for this type of application. In the present study we aimed to achieve chondrogenic differentiation of two different sources of stem cells using conditioned medium, without adding growth factors. We tested both human bone marrow-derived mesenchymal stem cells (hBSMCs) and human Wharton's jelly-derived stem cells (hWJSCs). Conditioned medium obtained from a culture of human articular chondrocytes was used to feed the cells during the experiment. Cultures were performed in previously produced three-dimensional (3D) scaffolds, composed of a blend of 50:50 chitosan:poly(butylene succinate). Both types of stem cells were able to undergo chondrogenic differentiation without the addition of growth factors. Cultures using hWJSCs showed significantly higher GAGs accumulation and expression of cartilage-related genes (aggrecan, Sox9 and collagen type II) when compared to hBMSCs cultures. Conditioned medium obtained from articular chondrocytes induced the chondrogenic differentiation of MSCs and ECM formation. Obtained results showed that this new strategy is very interesting and should be further explored for clinical applications. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Ballooning instabilities in tokamaks with sheared toroidal flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of themore » mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs.« less

  2. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  3. Generalized self-similar unsteady gas flows behind the strong shock wave front

    NASA Astrophysics Data System (ADS)

    Bogatko, V. I.; Potekhina, E. A.

    2018-05-01

    Two-dimensional (plane and axially symmetric) nonstationary gas flows behind the front of a strong shock wave are considered. All the gas parameters are functions of the ratio of Cartesian coordinates to some degree of time tn, where n is a self-similarity index. The problem is solved in Lagrangian variables. It is shown that the resulting system of partial differential equations is suitable for constructing an iterative process. ¢he "thin shock layer" method is used to construct an approximate analytical solution of the problem. The limit solution of the problem is constructed. A formula for determining the path traversed by a gas particle in the shock layer along the front of a shock wave is obtained. A system of equations for determining the first approximation corrections is constructed.

  4. Damageable contact between an elastic body and a rigid foundation

    NASA Astrophysics Data System (ADS)

    Campo, M.; Fernández, J. R.; Silva, A.

    2009-02-01

    In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.

  5. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  6. Friedrichs systems in a Hilbert space framework: Solvability and multiplicity

    NASA Astrophysics Data System (ADS)

    Antonić, N.; Erceg, M.; Michelangeli, A.

    2017-12-01

    The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.

  7. A more accurate modeling of the effects of actuators in large space structures

    NASA Technical Reports Server (NTRS)

    Hablani, H. B.

    1981-01-01

    The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.

  8. Theoretical study of the incompressible Navier-Stokes equations by the least-squares method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.

    1994-01-01

    Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.

  9. The Statistical Mechanics of Ideal Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2002-01-01

    Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.

  10. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  11. Entropy and convexity for nonlinear partial differential equations

    PubMed Central

    Ball, John M.; Chen, Gui-Qiang G.

    2013-01-01

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue. PMID:24249768

  12. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  13. Entropy and convexity for nonlinear partial differential equations.

    PubMed

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  14. Differentiation of cumin seeds using a metal-oxide based gas sensor array in tandem with chemometric tools.

    PubMed

    Ghasemi-Varnamkhasti, Mahdi; Amiri, Zahra Safari; Tohidi, Mojtaba; Dowlati, Majid; Mohtasebi, Seyed Saeid; Silva, Adenilton C; Fernandes, David D S; Araujo, Mário C U

    2018-01-01

    Cumin is a plant of the Apiaceae family (umbelliferae) which has been used since ancient times as a medicinal plant and as a spice. The difference in the percentage of aromatic compounds in cumin obtained from different locations has led to differentiation of some species of cumin from other species. The quality and price of cumin vary according to the specie and may be an incentive for the adulteration of high value samples with low quality cultivars. An electronic nose simulates the human olfactory sense by using an array of sensors to distinguish complex smells. This makes it an alternative for the identification and classification of cumin species. The data, however, may have a complex structure, difficult to interpret. Given this, chemometric tools can be used to manipulate data with two-dimensional structure (sensor responses in time) obtained by using electronic nose sensors. In this study, an electronic nose based on eight metal oxide semiconductor sensors (MOS) and 2D-LDA (two-dimensional linear discriminant analysis), U-PLS-DA (Partial least square discriminant analysis applied to the unfolded data) and PARAFAC-LDA (Parallel factor analysis with linear discriminant analysis) algorithms were used in order to identify and classify different varieties of both cultivated and wild black caraway and cumin. The proposed methodology presented a correct classification rate of 87.1% for PARAFAC-LDA and 100% for 2D-LDA and U-PLS-DA, indicating a promising strategy for the classification different varieties of cumin, caraway and other seeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Three-dimensional solutions of the magnetohydrostatic equations for rigidly rotating magnetospheres in cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Wilson, F.; Neukirch, T.

    2018-01-01

    We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the "pseudo-potential" (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a "fractional multipole" nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.

  16. A delay differential model of ENSO variability: parametric instability and the distribution of extremes

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Zaliapin, I.; Thompson, S.

    2008-05-01

    We consider a delay differential equation (DDE) model for El-Niño Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing b, atmosphere-ocean coupling κ, and propagation period τ of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b, τ) plane at constant κ. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling κ increases. In the unstable regime, spontaneous transitions occur in the mean "temperature" (i.e., thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.

  17. An exponential time-integrator scheme for steady and unsteady inviscid flows

    NASA Astrophysics Data System (ADS)

    Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili

    2018-07-01

    An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.

  18. An enriched finite element method to fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam

    2017-08-01

    In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.

  19. Transformed Fourier and Fick equations for the control of heat and mass diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenneau, S.; Petiteau, D.; Zerrad, M.

    We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves,more » the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.« less

  20. Pseudopotential Method for Higher Partial Wave Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Calarco, Tommaso

    2006-01-13

    We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.

  1. Evaluation of the osteogenic differentiation of gingiva-derived stem cells grown on culture plates or in stem cell spheroids: Comparison of two- and three-dimensional cultures.

    PubMed

    Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2017-09-01

    Three-dimensional cell culture systems provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates. The current study aimed to evaluate the osteogenic differentiation potential of gingiva-derived stem cells cultured in two-dimensional or three-dimensional systems. To the best of our knowledge, the present study is the first to compare the growth of gingiva-derived stem cells in monolayer culture to a three-dimensional culture system with microwells. For three-dimensional culture, gingiva-derived stem cells were isolated and seeded into polydimethylsiloxane-based concave micromolds. Alkaline phosphatase activity and alizarin red S staining assays were then performed to evaluate osteogenesis and the degree of mineralization, respectively. Stem cell spheroids had a significantly increased level of alkaline phosphatase activity and mineralization compared with cells from the two-dimensional culture. In addition, an increase in mineralized deposits was observed with an increase in the loading cell number. The results of present study indicate that gingiva-derived stem cell spheroids exhibit an increased osteogenic potential compared with stem cells from two-dimensional culture. This highlights the potential of three-dimensional culture systems using gingiva-derived stem cells for regenerative medicine applications requiring stem cells with osteogenic potential.

  2. CPDES3: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.

  3. Spillover, nonlinearity, and flexible structures

    NASA Technical Reports Server (NTRS)

    Bass, Robert W.; Zes, Dean

    1991-01-01

    Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.

  4. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    PubMed

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  5. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    PubMed

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  6. Temporal expression profiles indicate a primary function for microRNA during the peak of DNA replication after rat partial hepatectomy.

    PubMed

    Raschzok, Nathanael; Werner, Wiebke; Sallmon, Hannes; Billecke, Nils; Dame, Christof; Neuhaus, Peter; Sauer, Igor M

    2011-06-01

    The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12-48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.

  7. Large Deviations for Nonlocal Stochastic Neural Fields

    PubMed Central

    2014-01-01

    We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers’ law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations. Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20. PMID:24742297

  8. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether

    NASA Astrophysics Data System (ADS)

    Ismail, N. A.; Cartmell, M. P.

    2016-03-01

    This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

  9. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  10. Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems.

    PubMed

    Faghihi, Faezeh; Mirzaei, Esmaeil; Ai, Jafar; Lotfi, Abolfazl; Sayahpour, Forough Azam; Barough, Somayeh Ebrahimi; Joghataei, Mohammad Taghi

    2016-04-01

    Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).

  11. Magnetohydrodynamic motion of a two-fluid plasma

    DOE PAGES

    Burby, Joshua W.

    2017-07-21

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  12. Magnetohydrodynamic motion of a two-fluid plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, Joshua W.

    Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less

  13. Stable isotope ratios of carbon and nitrogen and mercury concentrations in 13 toothed whale species taken from the western Pacific Ocean off Japan.

    PubMed

    Endo, Tetsuya; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi; Lavery, Shane; Dalebout, Merel L; Funahashi, Naoko; Baker, C Scott

    2010-04-01

    Stable isotope ratios of carbon (partial differential(13)C) and nitrogen (partial differential(15)N) and total mercury (T-Hg) concentrations were measured in red meat samples from 11 odontocete species (toothed whales, dolphins, and porpoises) sold in Japan (n = 96) and in muscle samples from stranded killer whales (n = 6) and melon-headed whales (n = 15), and the analytical data for these species were classified into three regions (northern, central, and southern Japan) depending on the locations in which they were caught or stranded. The partial differential(15)N in the samples from southern Japan tended to be lower than that in samples from the north, whereas both partial differential(13)C and T-Hg concentrations in samples from the south tended to higher than those in samples from northern Japan. Negative correlations were found between the partial differential(13)C and partial differential(15)N values and between the partial differential(15)N value and T-Hg concentrations in the combined samples all three regions (gamma= -0.238, n = 117, P < 0.01). The partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the samples varied more by habitat than by species. Spatial variations in partial differential(13)C, partial differential(15)N, and T-Hg concentrations in the ocean may be the cause of these phenomena.

  14. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  15. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  16. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  17. A similarity solution of time dependent MHD liquid film flow over stretching sheet with variable physical properties

    NASA Astrophysics Data System (ADS)

    Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq

    2018-03-01

    An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.

  18. Görtler instability of the axisymmetric boundary layer along a cone

    NASA Astrophysics Data System (ADS)

    ITOH, Nobutake

    2014-10-01

    Exact partial differential equations are derived to describe Görtler instability, caused by a weakly concave wall, of axisymmetric boundary layers with similar velocity profiles that are decomposed into a sequence of ordinary differential systems on the assumption that the solution can be expanded into inverse powers of local Reynolds number. The leading terms of the series solution are determined by solving a non-parallel version of Görtler’s eigenvalue problem and lead to a neutral stability curve and finite values of critical Görtler number and wave number for stationary and longitudinal vortices. Higher-order terms of the series solution indicate Reynolds-number dependence of Görtler instability and a limited validity of Görtler’s approximation based on the leading terms only. The present formulation is simply applicable to two-dimensional boundary layers of similar profiles, and critical Görtler number and wave number of the Blasius boundary layer on a flat plate are given by G2c = 1.23 and β2c = 0.288, respectively, if the momentum thickness is chosen as the reference length.

  19. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  20. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer

    NASA Astrophysics Data System (ADS)

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-01

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO2, HCHO, SO2, H2O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.

  1. Organization of the cytokeratin network in an epithelial cell.

    PubMed

    Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien

    2003-08-07

    The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.

  2. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  3. Three-dimensional co-culture process

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    1992-01-01

    The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.

  4. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  5. Approximation methods for inverse problems involving the vibration of beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.

  6. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  7. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  8. Network Simulation solution of free convective flow from a vertical cone with combined effect of non- uniform surface heat flux and heat generation or absorption

    NASA Astrophysics Data System (ADS)

    Immanuel, Y.; Pullepu, Bapuji; Sambath, P.

    2018-04-01

    A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.

  9. Couette flow of an incompressible fluid in a porous channel with mass transfer

    NASA Astrophysics Data System (ADS)

    Niranjana, N.; Vidhya, M.; Govindarajan, A.

    2018-04-01

    The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.

  10. Differential protein expression in Tree Shrew sclera during development of lens-induced myopia and recovery

    PubMed Central

    Norton, Thomas T.

    2007-01-01

    Purpose The tree shrew model of refractive development is particularly useful because, like humans, tree shrews have a fibrous sclera. Selective changes in some candidate extracellular matrix proteins and mRNAs have been found in the sclera during the development of, and recovery from, induced myopia. We undertook a more neutral proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry to identify scleral proteins that are differentially expressed during the development of, and recovery from, lens-induced myopia. Methods Five tree shrews (Tupaia glis belangeri) wore a monocular –5 D lens for 4 days, starting 24 days after natural eye opening. At the end of this time, all treated eyes had partially compensated for the lens and were –3.5±0.7 D (mean ± SEM) myopic relative to the untreated fellow control eyes. An additional five animals wore a –5 D lens for 11–13 days, followed by 4 days of recovery without the –5 D lens. The amount of recovery was 1.6±0.4 D. Scleral proteins from both groups were then isolated and resolved by two-dimensional gel electrophoresis and spots that were differentially expressed were identified by mass spectrometry. Results The scleral protein profile typically displayed ~700 distinct protein spots within the pH 5–8 range. Comparison of the treated-eye and control-eye scleras of the lens-compensation animals revealed five spots that were significantly differentially expressed in all five pairs of eyes; all were downregulated 1.2 to 1.7 fold in the treated eye. These proteins were identified as: pigment epithelium-derived factor (PEDF), procollagen I α1, procollagen I α2, and thrombospondin I (two spots). In the recovering eyes, the two thrombospondin I spots remained lower in abundance while PEDF and the procollagens were no longer downregulated. In addition, 78 kDa glucose-regulated protein (GRP 78), a member of the heat shock protein 70 family, was slightly upregulated 1.3 fold. Conclusions We found consistent results across animals that were of a magnitude consistent with the physiologically small changes to the focal plane of these eyes. Changes in collagen confirm previous findings, but downregulation of thrombospondin I adds detail to our understanding of the chain of signals that regulates scleral creep rate. The differential changes in PEDF and GRP 78 were not expected, based on previous studies, and demonstrate the utility of the proteomic approach in tree shrew sclera. PMID:17893659

  11. Network patterns in exponentially growing two-dimensional biofilms

    NASA Astrophysics Data System (ADS)

    Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos

    2017-10-01

    Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.

  12. The modified semi-discrete two-dimensional Toda lattice with self-consistent sources

    NASA Astrophysics Data System (ADS)

    Gegenhasi

    2017-07-01

    In this paper, we derive the Grammian determinant solutions to the modified semi-discrete two-dimensional Toda lattice equation, and then construct the semi-discrete two-dimensional Toda lattice equation with self-consistent sources via source generation procedure. The algebraic structure of the resulting coupled modified differential-difference equation is clarified by presenting its Grammian determinant solutions and Casorati determinant solutions. As an application of the Grammian determinant and Casorati determinant solution, the explicit one-soliton and two-soliton solution of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources are given. We also construct another form of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources which is the Bäcklund transformation for the semi-discrete two-dimensional Toda lattice equation with self-consistent sources.

  13. Characterizing the Shape of Anatomical Structures With Poisson’s Equation

    PubMed Central

    Haidar, Haissam; Levitt, James J.; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.

    2009-01-01

    Poisson’s equation, a fundamental partial differential equation in classical physics, has a number of properties that are interesting for shape analysis. In particular, the equipotential sets of the solution graph become smoother as the potential increases. We use the displacement map, the length of the streamlines formed by the gradient field of the solution, to measure the “complexity” (or smoothness) of the equipotential sets, and study its behavior as the potential increases. We believe that this function complexity = f (potential), which we call the shape characteristic, is a very natural way to express shape. Robust algorithms are presented to compute the solution to Poisson’s equation, the displacement map, and the shape characteristic. We first illustrate our technique on two-dimensional synthetic examples and natural silhouettes. We then perform two shape analysis studies on three-dimensional neuroanatomical data extracted from magnetic resonance (MR) images of the brain. In the first study, we investigate changes in the caudate nucleus in Schizotypal Personality Disorder (SPD) and confirm previously published results on this structure [1]. In the second study, we present a data set of caudate nuclei of premature infants with asymmetric white matter injury. Our method shows structural shape differences that volumetric measurements were unable to detect. PMID:17024829

  14. Simulation of Electromigration Based on Resistor Networks

    NASA Astrophysics Data System (ADS)

    Patrinos, Anthony John

    A two dimensional computer simulation of electromigration based on resistor networks was designed and implemented. The model utilizes a realistic grain structure generated by the Monte Carlo method and takes specific account of the local effects through which electromigration damage progresses. The dynamic evolution of the simulated thin film is governed by the local current and temperature distributions. The current distribution is calculated by superimposing a two dimensional electrical network on the lattice whose nodes correspond to the particles in the lattice and the branches to interparticle bonds. Current is assumed to flow from site to site via nearest neighbor bonds. The current distribution problem is solved by applying Kirchhoff's rules on the resulting electrical network. The calculation of the temperature distribution in the lattice proceeds by discretizing the partial differential equation for heat conduction, with appropriate material parameters chosen for the lattice and its defects. SEReNe (for Simulation of Electromigration using Resistor Networks) was tested by applying it to common situations arising in experiments with real films with satisfactory results. Specifically, the model successfully reproduces the expected grain size, line width and bamboo effects, the lognormal failure time distribution and the relationship between current density exponent and current density. It has also been modified to simulate temperature ramp experiments but with mixed, in this case, results.

  15. Differential quadrature method of nonlinear bending of functionally graded beam

    NASA Astrophysics Data System (ADS)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  16. Three-dimensional modeling of n+-nu-n+ and p+-pi-p+ semiconducting devices for analog ULSI microelectronics

    NASA Astrophysics Data System (ADS)

    Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel

    2004-03-01

    Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.

  17. Classification of digital affine noncommutative geometries

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Pachoł, Anna

    2018-03-01

    It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."

  18. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    NASA Astrophysics Data System (ADS)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  19. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    PubMed

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.

  20. Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Liu, Changying; Wu, Xinyuan

    2017-07-01

    In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.

  1. Multidimensional flamelet-generated manifolds for partially premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam

    2010-01-15

    Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which ismore » tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)« less

  2. On domain symmetry and its use in homogenization

    DOE PAGES

    Barbarosie, Cristian A.; Tortorelli, Daniel A.; Watts, Seth E.

    2017-03-08

    The present study focuses on solving partial differential equations in domains exhibiting symmetries and periodic boundary conditions for the purpose of homogenization. We show in a systematic manner how the symmetry can be exploited to significantly reduce the complexity of the problem and the computational burden. This is especially relevant in inverse problems, when one needs to solve the partial differential equation (the primal problem) many times in an optimization algorithm. The main motivation of our study is inverse homogenization used to design architected composite materials with novel properties which are being fabricated at ever increasing rates thanks to recentmore » advances in additive manufacturing. For example, one may optimize the morphology of a two-phase composite unit cell to achieve isotropic homogenized properties with maximal bulk modulus and minimal Poisson ratio. Typically, the isotropy is enforced by applying constraints to the optimization problem. However, in two dimensions, one can alternatively optimize the morphology of an equilateral triangle and then rotate and reflect the triangle to form a space filling D 3 symmetric hexagonal unit cell that necessarily exhibits isotropic homogenized properties. One can further use this D 3 symmetry to reduce the computational expense by performing the “unit strain” periodic boundary condition simulations on the single triangle symmetry sector rather than the six fold larger hexagon. In this paper we use group representation theory to derive the necessary periodic boundary conditions on the symmetry sectors of unit cells. The developments are done in a general setting, and specialized to the two-dimensional dihedral symmetries of the abelian D 2, i.e. orthotropic, square unit cell and nonabelian D 3, i.e. trigonal, hexagon unit cell. We then demonstrate how this theory can be applied by evaluating the homogenized properties of a two-phase planar composite over the triangle symmetry sector of a D 3 symmetric hexagonal unit cell.« less

  3. Analysis of differential detergent fractions of an AtT-20 cellular homogenate using one- and two-dimensional capillary electrophoresis.

    PubMed

    Fazal, Md Abul; Palmer, Vanessa R; Dovichi, Norman J

    2006-10-20

    Differential detergent fractionation was used to sequentially extract cytosolic, membrane, nuclear, and cytoskeletal fractions from AtT-20 cells. Extracted components were denatured by sodium dodecyl sulfate (SDS) and then labeled with the fluorogenic reagent 3-(2-furoyl) quinoline-1-carboxaldehyde. Both capillary sieving electrophoresis (CSE) and micellar electrokinetic capillary chromatography (MECC) were used to separate labeled components by one-dimensional (1D) electrophoresis. Labeled components were also separated by two-dimensional (2D) capillary electrophoresis; CSE was employed in the first dimension and MECC in the second dimension. Roughly 150 fractions were transferred from the first to the second capillary for this comprehensive analysis in 2.5 h.

  4. NUMERICAL ANALYSES FOR TREATING DIFFUSION IN SINGLE-, TWO-, AND THREE-PHASE BINARY ALLOY SYSTEMS

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1994-01-01

    This package consists of a series of three computer programs for treating one-dimensional transient diffusion problems in single and multiple phase binary alloy systems. An accurate understanding of the diffusion process is important in the development and production of binary alloys. Previous solutions of the diffusion equations were highly restricted in their scope and application. The finite-difference solutions developed for this package are applicable for planar, cylindrical, and spherical geometries with any diffusion-zone size and any continuous variation of the diffusion coefficient with concentration. Special techniques were included to account for differences in modal volumes, initiation and growth of an intermediate phase, disappearance of a phase, and the presence of an initial composition profile in the specimen. In each analysis, an effort was made to achieve good accuracy while minimizing computation time. The solutions to the diffusion equations for single-, two-, and threephase binary alloy systems are numerically calculated by the three programs NAD1, NAD2, and NAD3. NAD1 treats the diffusion between pure metals which belong to a single-phase system. Diffusion in this system is described by a one-dimensional Fick's second law and will result in a continuous composition variation. For computational purposes, Fick's second law is expressed as an explicit second-order finite difference equation. Finite difference calculations are made by choosing the grid spacing small enough to give convergent solutions of acceptable accuracy. NAD2 treats diffusion between pure metals which form a two-phase system. Diffusion in the twophase system is described by two partial differential equations (a Fick's second law for each phase) and an interface-flux-balance equation which describes the location of the interface. Actual interface motion is obtained by a mass conservation procedure. To account for changes in the thicknesses of the two phases as diffusion progresses, a variable grid technique developed by Murray and Landis is employed. These equations are expressed in finite difference form and solved numerically. Program NAD3 treats diffusion between pure metals which form a two-phase system with an intermediate third phase. Diffusion in the three-phase system is described by three partial differential expressions of Fick's second law and two interface-flux-balance equations. As with the two-phase case, a variable grid finite difference is used to numerically solve the diffusion equations. Computation time is minimized without sacrificing solution accuracy by treating the three-phase problem as a two-phase problem when the thickness of the intermediate phase is less than a preset value. Comparisons between these programs and other solutions have shown excellent agreement. The programs are written in FORTRAN IV for batch execution on the CDC 6600 with a central memory requirement of approximately 51K (octal) 60 bit words.

  5. Reversible effects of oxygen partial pressure on genes associated with placental angiogenesis and differentiation in primary-term cytotrophoblast cell culture.

    PubMed

    Debiève, F; Depoix, C; Gruson, D; Hubinont, C

    2013-09-01

    Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  6. Coupled out of plane vibrations of spiral beams for micro-scale applications

    NASA Astrophysics Data System (ADS)

    Amin Karami, M.; Yardimoglu, Bulent; Inman, Daniel J.

    2010-12-01

    An analytical method is proposed to calculate the natural frequencies and the corresponding mode shape functions of an Archimedean spiral beam. The deflection of the beam is due to both bending and torsion, which makes the problem coupled in nature. The governing partial differential equations and the boundary conditions are derived using Hamilton's principle. Two factors make the vibrations of spirals different from oscillations of constant radius arcs. The first is the presence of terms with derivatives of the radius in the governing equations of spirals and the second is the fact that variations of radius of the beam causes the coefficients of the differential equations to be variable. It is demonstrated, using perturbation techniques that the derivative of the radius terms have negligible effect on structure's dynamics. The spiral is then approximated with many merging constant-radius curved sections joined together to approximate the slow change of radius along the spiral. The equations of motion are formulated in non-dimensional form and the effect of all the key parameters on natural frequencies is presented. Non-dimensional curves are used to summarize the results for clarity. We also solve the governing equations using Rayleigh's approximate method. The fundamental frequency results of the exact and Rayleigh's method are in close agreement. This to some extent verifies the exact solutions. The results show that the vibration of spirals is mostly torsional which complicates using the spiral beam as a host for a sensor or energy harvesting device.

  7. Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine

    PubMed Central

    Bae, Yoo-Jin; Kwon, Yong-Rim; Kim, Hye Joung; Lee, Seok

    2017-01-01

    Background Mesenchymal stromal cells (MSCs) are useful for cell therapy because of their potential for multilineage differentiation. However, MSCs that are expanded in traditional two-dimensional (2D) culture systems eventually lose their differentiation abilities. Therefore, we investigated whether azacitidine (AZA) supplementation and three-dimensional culture (3D) could improve the differentiation properties of MSCs. Methods 2D- or 3D-cultured MSCs which were prepared according to the conventional or hanging-drop culture method respectively, were treated with or without AZA (1 µM for 72 h), and their osteogenic and adipogenic differentiation potential were determined and compared. Results AZA treatment did not affect the cell apoptosis or viability in both 2D- and 3D-cultured MSCs. However, compared to conventionally cultured 2D-MSCs, AZA-treated 2D-MSCs showed marginally increased differentiation abilities. In contrast, 3D-MSCs showed significantly increased osteogenic and adipogenic differentiation ability. When 3D culture was performed in the presence of AZA, the osteogenic differentiation ability was further increased, whereas adipogenic differentiation was not affected. Conclusion 3D culture efficiently promoted the multilineage differentiation of MSCs, and in combination with AZA, it could help MSCs to acquire greater osteogenic differentiation ability. This optimized culture method can enhance the therapeutic potential of MSCs. PMID:28401097

  8. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  9. Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team

    2018-05-01

    In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.

  10. Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination

    NASA Technical Reports Server (NTRS)

    Gray, J. L.; Schwartz, R. J.

    1984-01-01

    A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.

  11. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    NASA Astrophysics Data System (ADS)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  12. Group invariant solution for a pre-existing fluid-driven fracture in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fitt, A. D.; Mason, D. P.; Moss, E. A.

    2007-11-01

    The propagation of a two-dimensional fluid-driven fracture in impermeable rock is considered. The fluid flow in the fracture is laminar. By applying lubrication theory a partial differential equation relating the half-width of the fracture to the fluid pressure is derived. To close the model the PKN formulation is adopted in which the fluid pressure is proportional to the half-width of the fracture. By considering a linear combination of the Lie point symmetries of the resulting non-linear diffusion equation the boundary value problem is expressed in a form appropriate for a similarity solution. The boundary value problem is reformulated as two initial value problems which are readily solved numerically. The similarity solution describes a preexisting fracture since both the total volume and length of the fracture are initially finite and non-zero. Applications in which the rate of fluid injection into the fracture and the pressure at the fracture entry are independent of time are considered.

  13. A Multidimensional Partial Credit Model with Associated Item and Test Statistics: An Application to Mixed-Format Tests

    ERIC Educational Resources Information Center

    Yao, Lihua; Schwarz, Richard D.

    2006-01-01

    Multidimensional item response theory (IRT) models have been proposed for better understanding the dimensional structure of data or to define diagnostic profiles of student learning. A compensatory multidimensional two-parameter partial credit model (M-2PPC) for constructed-response items is presented that is a generalization of those proposed to…

  14. Study on propellant dynamics during docking

    NASA Technical Reports Server (NTRS)

    Feng, G. C.; Robertson, S. J.

    1972-01-01

    The marker-and-cell numerical technique was applied to the study of axisymmetric and two-dimensional flow of liquid in containers under low gravity conditions. The purpose of the study was to provide the capability for numerically simulating liquid propellant motion in partially filled containers during a docking maneuver in orbit. A computer program to provide this capability for axisymmetric and two-dimensional flow was completed and computations were made for a number of hypothetical flow conditions.

  15. Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling

    NASA Technical Reports Server (NTRS)

    Hodges, D. H., Roberta.

    1976-01-01

    The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.

  16. Negative differential resistance in electron tunneling in ultrathin films near the two-dimensional limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.

    We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less

  17. Shift-connected SIMD array architectures for digital optical computing systems, with algorithms for numerical transforms and partial differential equations

    NASA Astrophysics Data System (ADS)

    Drabik, Timothy J.; Lee, Sing H.

    1986-11-01

    The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.

  18. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  19. Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface

    NASA Astrophysics Data System (ADS)

    Zaigham Zia, Q. M.; Ullah, Ikram; Waqas, M.; Alsaedi, A.; Hayat, T.

    2018-03-01

    This research intends to elaborate Soret-Dufour characteristics in mixed convective radiated Casson liquid flow by exponentially heated surface. Novel features of exponential space dependent heat source are introduced. Appropriate variables are implemented for conversion of partial differential frameworks into a sets of ordinary differential expressions. Homotopic scheme is employed for construction of analytic solutions. Behavior of various embedding variables on velocity, temperature and concentration distributions are plotted graphically and analyzed in detail. Besides, skin friction coefficients and heat and mass transfer rates are also computed and interpreted. The results signify the pronounced characteristics of temperature corresponding to convective and radiation variables. Concentration bears opposite response for Soret and Dufour variables.

  20. COMPUTATION OF ℛ IN AGE-STRUCTURED EPIDEMIOLOGICAL MODELS WITH MATERNAL AND TEMPORARY IMMUNITY.

    PubMed

    Feng, Zhilan; Han, Qing; Qiu, Zhipeng; Hill, Andrew N; Glasser, John W

    2016-03-01

    For infectious diseases such as pertussis, susceptibility is determined by immunity, which is chronological age-dependent. We consider an age-structured epidemiological model that accounts for both passively acquired maternal antibodies that decay and active immunity that wanes, permitting reinfection. The model is a 6-dimensional system of partial differential equations (PDE). By assuming constant rates within each age-group, the PDE system can be reduced to an ordinary differential equation (ODE) system with aging from one age-group to the next. We derive formulae for the effective reproduction number ℛ and provide their biological interpretation in some special cases. We show that the disease-free equilibrium is stable when ℛ < 1 and unstable if ℛ > 1.

  1. Response of a partially penetrating well in a heterogeneous aquifer: integrated well-face flux vs. uniform well-face flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Kabala, Z. J.

    1997-07-01

    A two-dimensional integrated well-face flux (IWFF) model is developed for computing the drawdown at the well-face and around a fully or partially penetrating well with wellbore storage, situated in a layered confined aquifer. In this model, we calculate drawdown and well-face flux distributions by numerically solving a two-dimensional diffusion equation in cylindrical coordinates subject to appropriate initial and boundary conditions and to the well-face boundary constraint of an integrated well-face flux rather than the physically inconsistent uniform well-face flux boundary condition (the UWFF model). The differences between the IWFF and UWFF models in a partially penetrating well situated in a homogeneous isotropic aquifer are insignificant for wellbore drawdown (less than 3%) but are pronounced for the well-face flux. In fact, the latter strongly deviates from uniformity as the ratio of the screen length to the aquifer thickness decreases. For partially penetrating wells situated in multilayer aquifers, significant differences between the two models may arise, especially if the screen is not located in the most conductive layer. These differences depend on the hydraulic conductivity contrast of the adjacent layers. Consequently, the uniform well-face flux boundary condition should be used with extreme caution.

  2. Group theoretic approach for solving the problem of diffusion of a drug through a thin membrane

    NASA Astrophysics Data System (ADS)

    Abd-El-Malek, Mina B.; Kassem, Magda M.; Meky, Mohammed L. M.

    2002-03-01

    The transformation group theoretic approach is applied to study the diffusion process of a drug through a skin-like membrane which tends to partially absorb the drug. Two cases are considered for the diffusion coefficient. The application of one parameter group reduces the number of independent variables by one, and consequently the partial differential equation governing the diffusion process with the boundary and initial conditions is transformed into an ordinary differential equation with the corresponding conditions. The obtained differential equation is solved numerically using the shooting method, and the results are illustrated graphically and in tables.

  3. BFV-BRST quantization of two-dimensional supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.

    1996-01-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less

  4. Superposing pure quantum states with partial prior information

    NASA Astrophysics Data System (ADS)

    Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter

    2018-05-01

    The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.

  5. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  6. Dynamical topology and statistical properties of spatiotemporal chaos.

    PubMed

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  7. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  8. A 3D model for rain-induced landslides based on molecular dynamics with fractal and fractional water diffusion

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco; Guarino, Alessio

    2017-09-01

    We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases.

  9. A finite element solution algorithm for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.

  10. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    NASA Astrophysics Data System (ADS)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  11. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  12. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 1. Theory

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Tankersley, Claude D.

    1994-05-01

    Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.

  13. The use of Galerkin finite-element methods to solve mass-transport equations

    USGS Publications Warehouse

    Grove, David B.

    1977-01-01

    The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)

  14. A non-linear study of fluctuating fluid flow on MHD mixed convection through a vertical permeable plate

    NASA Astrophysics Data System (ADS)

    Babu, R. Suresh; Rushi Kumar, B.

    2017-11-01

    In this paper, an analytical solution for an unsteady (independent of time), MHD mixed convection, two-dimensional (x and y), laminar, viscous flow of an incompressible fluid through a vertical permeable plate in a porous medium was developed with these assumptions:(i) the suction velocity (which is normal to the plate)and the free stream velocity both fluctuate with respect to time with a fixed mean; (ii) the wall temperature is constant;(iii) difference between the temperature of the plate and the free stream is moderately large due to the free convection currents. Based on the physical configuration of the model, the governing equations are derived and are non-dimensionalize using dimensionless parameters. The resultant nonlinear partial differential equations are solved using double regular perturbation technique analytically. The results are computed numerically to understand the behaviour of the fluid (i.e., effects of MHD, viscosity, body force etc.) for various non-dimensional parameters involving like Grashof number Gr, Prandtl number Pr, Hartmann number M, Eckert number E, the Viscous ratio λ and so on for velocity and temperature. These results are found to be in good agreement with known results available in the literature in the absence of few physical parameters. The numerical values of the above said flow is discussed through graphs on velocity and temperature.

  15. Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.

    2018-05-01

    The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.

  16. Two-Dimensional Grids About Airfoils and Other Shapes

    NASA Technical Reports Server (NTRS)

    Sorenson, R.

    1982-01-01

    GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.

  17. Two solvable problems of planar geometrical optics.

    PubMed

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  18. Geometry of Conservation Laws for a Class of Parabolic Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Clelland, Jeanne Nielsen

    1996-08-01

    I consider the problem of computing the space of conservation laws for a second-order, parabolic partial differential equation for one function of three independent variables. The PDE is formulated as an exterior differential system {cal I} on a 12 -manifold M, and its conservation laws are identified with the vector space of closed 3-forms in the infinite prolongation of {cal I} modulo the so -called "trivial" conservation laws. I use the tools of exterior differential systems and Cartan's method of equivalence to study the structure of the space of conservation laws. My main result is:. Theorem. Any conservation law for a second-order, parabolic PDE for one function of three independent variables can be represented by a closed 3-form in the differential ideal {cal I} on the original 12-manifold M. I show that if a nontrivial conservation law exists, then {cal I} has a deprolongation to an equivalent system {cal J} on a 7-manifold N, and any conservation law for {cal I} can be expressed as a closed 3-form on N which lies in {cal J}. Furthermore, any such system in the real analytic category is locally equivalent to a system generated by a (parabolic) equation of the formA(u _{xx}u_{yy}-u_sp {xy}{2}) + B_1u_{xx }+2B_2u_{xy} +B_3u_ {yy}+C=0crwhere A, B_{i}, C are functions of x, y, t, u, u_{x}, u _{y}, u_{t}. I compute the space of conservation laws for several examples, and I begin the process of analyzing the general case using Cartan's method of equivalence. I show that the non-linearizable equation u_{t} = {1over2}e ^{-u}(u_{xx}+u_ {yy})has an infinite-dimensional space of conservation laws. This stands in contrast to the two-variable case, for which Bryant and Griffiths showed that any equation whose space of conservation laws has dimension 4 or more is locally equivalent to a linear equation, i.e., is linearizable.

  19. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  20. Viscoelastic flow modeling in the extrusion of a dough-like fluid

    NASA Technical Reports Server (NTRS)

    Dhanasekharan, M.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    2000-01-01

    This work attempts to investigate the effect of viscoelasticity and three-dimensional geometry in screw channels. The Phan-Thien Tanner (PTT) constitutive equation with simplified model parameters was solved in conjunction with the flow equations. Polyflow, a commercially available finite element code was used to solve the resulting nonlinear partial differential equations. The PTT model predicted one log scale lower pressure buildup compared to the equivalent Newtonian results. However, the velocity profile did not show significant changes for the chosen PTT model parameters. Past Researchers neglected viscoelastic effects and also the three dimensional nature of the flow in extruder channels. The results of this paper provide a starting point for further simulations using more realistic model parameters, which may enable the food engineer to more accurately scale-up and design extrusion processes.

  1. Algorithm for Stabilizing a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  2. Numerical scheme approximating solution and parameters in a beam equation

    NASA Astrophysics Data System (ADS)

    Ferdinand, Robert R.

    2003-12-01

    We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.

  3. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  4. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  5. Semi-Analytic Reconstruction of Flux in Finite Volume Formulations

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2006-01-01

    Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.

  6. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes.

    PubMed

    Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong

    2008-10-01

    We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.

  7. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  8. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    We develop a three dimensional (3D) Galerkin formulation of the matched interface and boundary (MIB) method for solving elliptic partial differential equations (PDEs) with discontinuous coefficients, i.e., the elliptic interface problem. The present approach builds up two sets of elements respectively on two extended subdomains which both include the interface. As a result, two sets of elements overlap each other near the interface. Fictitious solutions are defined on the overlapping part of the elements, so that the differentiation operations of the original PDEs can be discretized as if there was no interface. The extra coefficients of polynomial basis functions, which furnish the overlapping elements and solve the fictitious solutions, are determined by interface jump conditions. Consequently, the interface jump conditions are rigorously enforced on the interface. The present method utilizes Cartesian meshes to avoid the mesh generation in conventional finite element methods (FEMs). We implement the proposed MIB Galerkin method with three different elements, namely, rectangular prism element, five-tetrahedron element and six-tetrahedron element, which tile the Cartesian mesh without introducing any new node. The accuracy, stability and robustness of the proposed 3D MIB Galerkin are extensively validated over three types of elliptic interface problems. In the first type, interfaces are analytically defined by level set functions. These interfaces are relatively simple but admit geometric singularities. In the second type, interfaces are defined by protein surfaces, which are truly arbitrarily complex. The last type of interfaces originates from multiprotein complexes, such as molecular motors. Near second order accuracy has been confirmed for all of these problems. To our knowledge, it is the first time for an FEM to show a near second order convergence in solving the Poisson equation with realistic protein surfaces. Additionally, the present work offers the first known near second order accurate method for C1 continuous or H2 continuous solutions associated with a Lipschitz continuous interface in a 3D setting. PMID:25309038

  9. Effects of Heat Source/Sink and Chemical Reaction on MHD Maxwell Nanofluid Flow Over a Convectively Heated Exponentially Stretching Sheet Using Homotopy Analysis Method

    NASA Astrophysics Data System (ADS)

    Sravanthi, C. S.; Gorla, R. S. R.

    2018-02-01

    The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD (magnetohydrodynamic) two-dimensional mixed convective boundary layer flow of a Maxwell nanofluid over a porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used to convert the governing partial differential equations into non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are developed in series form. Convergence of the constructed solution is verified. A comparison is made with the available results in the literature and our results are in very good agreement with the known results. The obtained results are presented through graphs for several sets of values of the parameters and salient features of the solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood number are computed and analyzed.

  10. Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Hussain, Arif; Malik, M. Y.; Salahuddin, T.; Khan, Farzana

    This article presents the two-dimensional flow of MHD hyperbolic tangent fluid with nanoparticles towards a stretching surface. The mathematical modelling of current flow analysis yields the nonlinear set of partial differential equations which then are reduce to ordinary differential equations by using suitable scaling transforms. Then resulting equations are solved by using shooting technique. The behaviour of the involved physical parameters (Weissenberg number We , Hartmann number M , Prandtl number Pr , Brownian motion parameter Nb , Lewis number Le and thermophoresis number Nt) on velocity, temperature and concentration are interpreted in detail. Additionally, local skin friction, local Nusselt number and local Sherwood number are computed and analyzed. It has been explored that Weissenberg number and Hartmann number are decelerate fluid motion. Brownian motion and thermophoresis both enhance the fluid temperature. Local Sherwood number is increasing function whereas Nusselt number is reducing function for increasing values of Brownian motion parameter Nb , Prandtl number Pr , thermophoresis parameter Nt and Lewis number Le . Additionally, computed results are compared with existing literature to validate the accuracy of solution, one can see that present results have quite resemblance with reported data.

  11. Determination of the temperature field of shell structures

    NASA Astrophysics Data System (ADS)

    Rodionov, N. G.

    1986-10-01

    A stationary heat conduction problem is formulated for the case of shell structures, such as those found in gas-turbine and jet engines. A two-dimensional elliptic differential equation of stationary heat conduction is obtained which allows, in an approximate manner, for temperature changes along a third variable, i.e., the shell thickness. The two-dimensional problem is reduced to a series of one-dimensional problems which are then solved using efficient difference schemes. The approach proposed here is illustrated by a specific example.

  12. Second-order (2 +1 ) -dimensional anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2014-11-01

    We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.

  13. A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Small, Des; Wiggins, Stephen

    2006-12-01

    In the past 15 years the framework and ideas from dynamical systems theory have been applied to a variety of transport and mixing problems in oceanic flows. The motivation for this approach comes directly from advances in observational capabilities in oceanography (e.g., drifter deployments, remote sensing capabilities, satellite imagery, etc.) which reveal space-time structures that are highly suggestive of the structures one visualizes in the global, geometrical study of dynamical systems theory. In this tutorial, we motivate this approach by showing the relationship between fluid transport in two-dimensional time-periodic incompressible flows and the geometrical structures that exist for two-dimensional area-preserving maps, such as hyperbolic periodic orbits, their stable and unstable manifolds and KAM (Kolmogorov-Arnold-Moser) tori. This serves to set the stage for the attempt to “transfer” this approach to more realistic flows modelling the ocean. However, in order to accomplish this several difficulties must be overcome. The first difficulty that confronts us that any attempt to carry out a dynamical systems approach to transport requires us to obtain the appropriate “dynamical system”, which is the velocity field describing the fluid flow. In general, adequate model velocity fields are obtained by numerical solution of appropriate partial differential equations describing the dynamical evolution of the velocity field. Numerical solution of the partial differential equations can only be done for a finite time interval, and since the ocean is generally not time-periodic, this leads to a new type of dynamical system: a finite-time, aperiodically time-dependent velocity field defined as a data set on a space-time grid. The global, geometrical analysis of transport in such dynamical systems requires both new concepts and new analytical and computational tools, as well as the necessity to discard some of the standard ideas and results from dynamical systems theory. The purpose of this tutorial is to describe these new concepts and analytical tools first using simple dynamical systems where quantities can be computed exactly. We then discuss their computational implications and implementation in the context of a model geophysical flow: a turbulent wind-driven double-gyre in the quasigeostrophic approximation.

  14. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  15. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.

    PubMed

    Katgert, Gijs; Latka, Andrzej; Möbius, Matthias E; van Hecke, Martin

    2009-06-01

    We probe the flow of two-dimensional (2D) foams, consisting of a monolayer of bubbles sandwiched between a liquid bath and glass plate, as a function of driving rate, packing fraction, and degree of disorder. First, we find that bidisperse, disordered foams exhibit strongly rate-dependent and inhomogeneous (shear-banded) velocity profiles, while monodisperse ordered foams are also shear banded but essentially rate independent. Second, we adapt a simple model [E. Janiaud, D. Weaire, and S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006)] based on balancing the averaged drag forces between the bubbles and the top plate F[over ]_{bw} and the averaged bubble-bubble drag forces F[over ]_{bb} by assuming that F[over ]_{bw} approximately v;{2/3} and F[over ]_{bb} approximately ( partial differential_{y}v);{beta} , where v and ( partial differential_{y}v) denote average bubble velocities and gradients. This model captures the observed rate-dependent flows for beta approximately 0.36 , and the rate independent flows for beta approximately 0.67 . Third, we perform independent rheological measurements of F[over ]_{bw} and F[over ]_{bb} , both for ordered and disordered systems, and find these to be fully consistent with the forms assumed in the simple model. Disorder thus leads to a modified effective exponent beta . Fourth, we vary the packing fraction phi of the foam over a substantial range and find that the flow profiles become increasingly shear banded when the foam is made wetter. Surprisingly, the model describes flow profiles and rate dependence over the whole range of packing fractions with the same power-law exponents-only a dimensionless number k that measures the ratio of the prefactors of the viscous drag laws is seen to vary with packing fraction. We find that k approximately (phi-phi_{c});{-1} , where phi_{c} approximately 0.84 corresponds to the 2D jamming density, and suggest that this scaling follows from the geometry of the deformed facets between bubbles in contact. Overall, our work shows that the presence of disorder qualitatively changes the effective bubble-bubble drag forces and suggests a route to rationalize aspects of the ubiquitous Herschel-Bulkley (power-law) rheology observed in a wide range of disordered materials.

  16. Acoustic wave simulation using an overset grid for the global monitoring system

    NASA Astrophysics Data System (ADS)

    Kushida, N.; Le Bras, R.

    2017-12-01

    The International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has been monitoring hydro-acoustic and infrasound waves over the globe. Because of the complex natures of the oceans and the atmosphere, computer simulation can play an important role in understanding the observed signals. In this regard, methods which depend on partial differential equations and require minimum modelling, are preferable. So far, to our best knowledge, acoustic wave propagation simulations based on partial differential equations on such a large scale have not been performed (pp 147 - 161 of ref [1], [2]). The main difficulties in building such simulation codes are: (1) considering the inhomogeneity of medium including background flows, (2) high aspect ratio of computational domain, (3) stability during long time integration. To overcome these difficulties, we employ a two-dimensional finite different (FDM) scheme on spherical coordinates with the Yin-Yang overset grid[3] solving the governing equation of acoustic waves introduces by Ostashev et. al.[4]. The comparison with real recording examples in hydro-acoustic will be presented at the conference. [1] Paul C. Etter: Underwater Acoustic Modeling and Simulation, Fourth Edition, CRC Press, 2013. [2] LIAN WANG et. al.: REVIEW OF UNDERWATER ACOUSTIC PROPAGATION MODELS, NPL Report AC 12, 2014. [3] A. Kageyama and T. Sato: "Yin-Yang grid": An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, 2004. [4] Vladimir E. Ostashev et. al: Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation, Acoustical Society of America. DOI: 10.1121/1.1841531, 2005.

  17. A numerical study of coarsening in the two-dimensional complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Liu, Weigang; Tauber, Uwe

    The complex Ginzburg-Landau equation with additive noise is a stochastic partial differential equation that describes a remarkably wide range of physical systems: coupled non-linear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose-Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics. We employ a finite-difference method to numerically solve the noisy complex Ginzburg-Landau equation on a two-dimensional domain with the goal to investigate the coarsening dynamics following a quench from a strongly fluctuating defect turbulence phase to a long-range ordered phase. We start from a simplified amplitude equation, solve it numerically, and then study the spatio-temporal behavior characterized by the spontaneous creation and annihilation of topological defects (spiral waves). We check our simulation results against the known dynamical phase diagram in this non-equilibrium system, tentatively analyze the coarsening kinetics following sudden quenches, and characterize the ensuing aging scaling behavior. In addition, we aim to use Voronoi triangulation to study the cellular structure in the phase turbulence and frozen states. This research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-09ER46613.

  18. High performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas

    2016-05-01

    The recently developed semi-Lagrangian discontinuous Galerkin approach is used to discretize hyperbolic partial differential equations (usually first order equations). Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes (which are usually based on polynomial or spline interpolation). In this paper, we consider a parallel implementation of a semi-Lagrangian discontinuous Galerkin method for distributed memory systems (so-called clusters). Both strong and weak scaling studies are performed on the Vienna Scientific Cluster 2 (VSC-2). In the case of weak scaling we observe a parallel efficiency above 0.8 for both two and four dimensional problems and up to 8192 cores. Strong scaling results show good scalability to at least 512 cores (we consider problems that can be run on a single processor in reasonable time). In addition, we study the scaling of a two dimensional Vlasov-Poisson solver that is implemented using the framework provided. All of the simulations are conducted in the context of worst case communication overhead; i.e., in a setting where the CFL (Courant-Friedrichs-Lewy) number increases linearly with the problem size. The framework introduced in this paper facilitates a dimension independent implementation of scientific codes (based on C++ templates) using both an MPI and a hybrid approach to parallelization. We describe the essential ingredients of our implementation.

  19. A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics

    NASA Astrophysics Data System (ADS)

    Brovont, Aaron D.

    The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.

  20. TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE

    NASA Technical Reports Server (NTRS)

    Vu, B. T.

    1994-01-01

    TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.

  1. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  2. A solution procedure for behavior of thick plates on a nonlinear foundation and postbuckling behavior of long plates

    NASA Technical Reports Server (NTRS)

    Stein, M.; Stein, P. A.

    1978-01-01

    Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.

  3. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    PubMed

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  4. The assessment of nanofluid in a Von Karman flow with temperature relied viscosity

    NASA Astrophysics Data System (ADS)

    Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.

    2018-06-01

    This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.

  5. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  6. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation.

    PubMed

    Ballester-Beltrán, José; Trujillo, Sara; Alakpa, Enateri V; Compañ, Vicente; Gavara, Rafael; Meek, Dominic; West, Christopher C; Péault, Bruno; Dalby, Matthew J; Salmerón-Sánchez, Manuel

    2017-08-14

    Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system.

  7. Confined Sandwichlike Microenvironments Tune Myogenic Differentiation

    PubMed Central

    2017-01-01

    Sandwichlike (SW) cultures are engineered as a multilayer technology to simultaneously stimulate dorsal and ventral cell receptors, seeking to mimic cell adhesion in three-dimensional (3D) environments in a reductionist manner. The effect of this environment on cell differentiation was investigated for several cell types cultured in standard growth media, which promotes proliferation on two-dimensional (2D) surfaces and avoids any preferential differentiation. First, murine C2C12 myoblasts showed specific myogenic differentiation. Human mesenchymal stem cells (hMSCs) of adipose and bone marrow origin, which can differentiate toward a wider variety of lineages, showed again myodifferentiation. Overall, this study shows myogenic differentiation in normal growth media for several cell types under SW conditions, avoiding the use of growth factors and cytokines, i.e., solely by culturing cells within the SW environment. Mechanistically, it provides further insights into the balance between integrin adhesion to the dorsal substrate and the confinement imposed by the SW system. PMID:28824958

  8. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal

    2017-12-01

    Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.

  9. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.

    PubMed

    Venturi, D; Karniadakis, G E

    2014-06-08

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.

  10. Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.

    PubMed

    Costin, Ovidiu; Luo, Guo; Tanveer, Saleh

    2008-08-13

    We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and show how the IE approach can give rise to local existence proofs. In this approach, the global existence problem in three-dimensional NS systems, for specific initial condition and viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some positive power of 1/t). Furthermore, the errors in numerical computations in the associated IE can be controlled rigorously, which is very important for nonlinear PDEs such as NS when solutions are not known to exist globally.Moreover, computation of the solution of the IE over an interval [0,p0] provides sharper control of its p-->infinity behaviour. Preliminary numerical computations give encouraging results.

  11. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems

    PubMed Central

    Venturi, D.; Karniadakis, G. E.

    2014-01-01

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima–Zwanzig–Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection–reaction problems. PMID:24910519

  12. 'Where' depends on 'what': a differential functional anatomy for position discrimination in one- versus two-dimensions.

    PubMed

    Fink, G R; Marshall, J C; Weiss, P H; Shah, N J; Toni, I; Halligan, P W; Zilles, K

    2000-01-01

    Line bisection is widely used as a clinical test of spatial cognition in patients with left visuospatial neglect after right hemisphere lesion. Surprisingly, many neglect patients who show severe impairment on marking the center of horizontal lines can accurately mark the center of squares. That these patients with left neglect are also typically poor at judging whether lines are correctly prebisected implies that the deficit can be perceptual rather than motoric. These findings suggest a differential neural basis for one- and two-dimensional visual position discrimination that we investigated with functional neuroimaging (fMRI). Normal subjects judged whether, in premarked lines or squares, the mark was placed centrally. Line center judgements differentially activated right parietal cortex, while square center judgements differentially activated the lingual gyrus bilaterally. These distinct neural bases for one- and two-dimensional visuospatial judgements help explain the observed clinical dissociations by showing that as a stimulus becomes a better, more 'object-like' gestalt, the ventral visuoperceptive route assumes more responsibility for assessing position within the object.

  13. One- and two-dimensional antenna arrays for microwave wireless power transfer (MWPT) systems and dual-antenna transceivers

    NASA Astrophysics Data System (ADS)

    Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang

    2018-06-01

    In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.

  14. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  15. Optimal Conclusive Teleportation of an Arbitrary d-Dimensional N-Particle Unknown State via a Partially Entangled Quantum Channel

    NASA Astrophysics Data System (ADS)

    Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong

    2003-02-01

    In this paper we generalize the standard teleportation to the conclusive teleportation case which can teleport an arbitrary d-dimensional N-particle unknown state via the partially entangled quantum channel. We show that only if the quantum channel satisfies a constraint condition can the most general d-dimensional N-particle unknown state be perfect conclusively teleported. We also present a method for optimal conclusively teleportation of the N-particle states and for constructing the joint POVM which can discern the quantum states on the sender's (Alice's) side. Two typical examples are given so that one can see how our method works. The project supported in part by National Natural Science Foundation of China under Grant No. 19975036 and the Foundation of Science and Technology Committee of Hunan Province of China under Grant No. 21000205

  16. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides

    DOE PAGES

    McGuire, Michael A.

    2017-04-27

    Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less

  17. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  18. Materials for interocclusal records and their ability to reproduce a 3-dimensional jaw relationship.

    PubMed

    Ockert-Eriksson, G; Eriksson, A; Lockowandt, P; Eriksson, O

    2000-01-01

    The purpose of this study was to determine if accuracy and dimensional stability of vinyl polysiloxanes and irreversible hydrocolloids stabilized by a tray used for fixed prosthodontics, removable partial, and complete denture cases are comparable to those of waxes and record rims and if storage time (24 hours or 6 days) affects dimensional stability of the tested materials. Two waxes, two record rims, three vinyl polysiloxanes, and one irreversible hydrocolloid (alginate) were examined. Three pairs of master casts with measuring steel rods were mounted on an articulator (initial position). Five records were made of each material, and the upper cast was remounted after 24 hours or 6 days so that deviations from the initial position could be measured. Vinyl polysiloxanes reinforced by a stabilization tray were the most accurate materials able to reproduce a settled interocclusal position. Mounting casts (fixed prosthodontics cases) without records gave accuracy similar to wax records. Record rims used for removable partial and complete denture cases produced lesser accuracy than vinyl polysiloxanes and irreversible hydrocolloid stabilized by a tray. Accuracy was not significantly affected by storage time. The results show that accuracy of vinyl polysiloxanes and irreversible hydrocolloids reinforced by a tray is superior to that of record rims with regard to the complete denture case and is among the most accurate with regard to the removable partial denture case. For fixed prosthodontics, however, reinforcement is unnecessary.

  19. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  20. A numerical scheme for the identification of hybrid systems describing the vibration of flexible beams with tip bodies

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1984-01-01

    A cubic spline based Galerkin-like method is developed for the identification of a class of hybrid systems which describe the transverse vibration to flexible beams with attached tip bodies. The identification problem is formulated as a least squares fit to data subject to the system dynamics given by a coupled system of ordnary and partial differential equations recast as an abstract evolution equation (AEE) in an appropriate infinite dimensional Hilbert space. Projecting the AEE into spline-based subspaces leads naturally to a sequence of approximating finite dimensional identification problems. The solutions to these problems are shown to exist, are relatively easily computed, and are shown to, in some sense, converge to solutions to the original identification problem. Numerical results for a variety of examples are discussed.

  1. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  2. Coronal View Ultrasound Imaging of Movement in Different Segments of the Tongue during Paced Recital: Findings from Four Normal Speakers and a Speaker with Partial Glossectomy

    ERIC Educational Resources Information Center

    Bressmann, Tim; Flowers, Heather; Wong, Willy; Irish, Jonathan C.

    2010-01-01

    The goal of this study was to quantitatively describe aspects of coronal tongue movement in different anatomical regions of the tongue. Four normal speakers and a speaker with partial glossectomy read four repetitions of a metronome-paced poem. Their tongue movement was recorded in four coronal planes using two-dimensional B-mode ultrasound…

  3. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon.

    PubMed

    Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen

    2017-11-28

    High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.

  4. Two-phase pressure drop reduction BWR assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dix, G.E.; Crowther, R.L.; Colby, M.J.

    1991-05-21

    This patent describes an improved fuel assembly for a boiling water reactor. It comprises: a fuel channel; a lower tie plate; an upper tie plate; the lower tie plate and the upper tie plate defining a two-dimensional matrix; at least one water rod the fuel rods being partial length rods.

  5. From Three-Dimensional Cell Culture to Organs-on-Chips

    PubMed Central

    Huh, Dongeun; Hamilton, Geraldine A.; Ingber, Donald E.

    2014-01-01

    Three-dimensional (3D) cell culture models have recently garnered great attention because they often promote levels of cell differentiation and tissue organization not possible in conventional two-dimensional (2D) culture systems. Here, we review new advances in 3D culture that leverage microfabrication technologies from the microchip industry and microfluidics approaches to create cell culture microenvironments that both support tissue differentiation and recapitulate the tissue-tissue interfaces, spatiotemporal chemical gradients, and mechanical microenvironments of living organs. These ‘organs-on-chips’ permit study of human physiology in an organ-specific context, enable development of novel in vitro disease models, and could potentially serve as replacements for animals used in drug development and toxin testing. PMID:22033488

  6. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  7. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK

    PubMed Central

    2014-01-01

    Background Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system’s set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This “code-based” approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. Results As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. Conclusions The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts. PMID:24725437

  8. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.

    PubMed

    Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi

    2014-04-11

    Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.

  9. SAGUARO: a finite-element computer program for partially saturated porous flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Gartling, D.K.; Larson, D.E.

    1983-06-01

    SAGUARO is a finite element computer program designed to calculate two-dimensional flow of mass and energy through porous media. The media may be saturated or partially saturated. SAGUARO solves the parabolic time-dependent mass transport equation which accounts for the presence of partially saturated zones through the use of highly non-linear material characteristic curves. The energy equation accounts for the possibility of partially saturated regions by adjusting the thermal capacitances and thermal conductivities according to the volume fraction of water present in the local pores. Program capabilities, user instructions and a sample problem are presented in this manual.

  10. A Model for the Oxidation of C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2003-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.

  11. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.

  12. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  13. Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, W.D.; Keyes, D.E.

    1988-03-01

    The authors discuss the parallel implementation of preconditioned conjugate gradient (PCG)-based domain decomposition techniques for self-adjoint elliptic partial differential equations in two dimensions on several architectures. The complexity of these methods is described on a variety of message-passing parallel computers as a function of the size of the problem, number of processors and relative communication speeds of the processors. They show that communication startups are very important, and that even the small amount of global communication in these methods can significantly reduce the performance of many message-passing architectures.

  14. An efficient numerical scheme for the study of equal width equation

    NASA Astrophysics Data System (ADS)

    Ghafoor, Abdul; Haq, Sirajul

    2018-06-01

    In this work a new numerical scheme is proposed in which Haar wavelet method is coupled with finite difference scheme for the solution of a nonlinear partial differential equation. The scheme transforms the partial differential equation to a system of algebraic equations which can be solved easily. The technique is applied to equal width equation in order to study the behaviour of one, two, three solitary waves, undular bore and soliton collision. For efficiency and accuracy of the scheme, L2 and L∞ norms and invariants are computed. The results obtained are compared with already existing results in literature.

  15. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    PubMed Central

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  16. Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo

    2018-04-01

    We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.

  17. Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling.

    PubMed

    Gieseck, Richard L; Vallier, Ludovic; Hannan, Nicholas R F

    2015-01-01

    Hepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin.

  18. Confocal microscopy refines generic concept of a problematic taxon: rediagnosis of the genus Neoprothrix and remarks on female anatomy of eriophyoids (Acari: Eriophyoidea).

    PubMed

    Chetverikov, Philipp E; Desnitskiy, Alexey G; Navia, Denise

    2015-02-16

    Due to the higher resolution, confocal microscopy (CLSM) can be applied to refine the origin of tiny structures of the autofluorescent exoskeletons of microarthropods (mites in particular) which are hard to visualize using traditional differential interference contract light microscopy (DIC LM) and phase contrast light microscopy (PC LM). Three-dimensional (3D) reconstructions of the prodorsal shield topography of eriophyoid mites using Neoprothrix hibiscus Reis and Navia as a model, suggest that the structures originally treated as paired setae vi are two internal rod-like apodemes. Based on this, the genus Neoprothrix is excluded from the subfamily Prothricinae Amrine and transferred to the subfamily Sierraphytoptinae Keifer. Observations on partially cleared specimens of N. hibiscus showed that remnants of the central nervous system, paired glands and developing oocytes can be visualized using DIC LM and CLSM methods. New high quality microscope images are provided of recently described "flower-shaped" structures and two main components of yolk inclusions of the mature eggs inside the oviduct.

  19. Computing the Evans function via solving a linear boundary value ODE

    NASA Astrophysics Data System (ADS)

    Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn

    2015-11-01

    Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.

  20. Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1983-01-01

    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh.

  1. Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents

    DOE PAGES

    Zheng, Zhong; Christov, Ivan  C.; Stone, Howard  A.

    2014-05-01

    We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b)more » a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.« less

  2. Finite-difference model to simulate the areal flow of saltwater and fresh water separated by an interface

    USGS Publications Warehouse

    Mercer, James W.; Larson, S.P.; Faust, Charles R.

    1980-01-01

    Model documentation is presented for a two-dimensional (areal) model capable of simulating ground-water flow of salt water and fresh water separated by an interface. The partial differential equations are integrated over the thicknesses of fresh water and salt water resulting in two equations describing the flow characteristics in the areal domain. These equations are approximated using finite-difference techniques and the resulting algebraic equations are solved for the dependent variables, fresh water head and salt water head. An iterative solution method was found to be most appropriate. The program is designed to simulate time-dependent problems such as those associated with the development of coastal aquifers, and can treat water-table conditions or confined conditions with steady-state leakage of fresh water. The program will generally be most applicable to the analysis of regional aquifer problems in which the zone between salt water and fresh water can be considered a surface (sharp interface). Example problems and a listing of the computer code are included. (USGS).

  3. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  4. On the anomaly of velocity-pressure decoupling in collocated mesh solutions

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Vanoverbeke, Thomas

    1991-01-01

    The use of various pressure correction algorithms originally developed for fully staggered meshes can yield a velocity-pressure decoupled solution for collocated meshes. The mechanism that causes velocity-pressure decoupling is identified. It is shown that the use of a partial differential equation for the incremental pressure eliminates such a mechanism and yields a velocity-pressure coupled solution. Example flows considered are a three dimensional lid-driven cavity flow and a laminar flow through a 90 deg bend square duct. Numerical results obtained using the collocated mesh are in good agreement with the measured data and other numerical results.

  5. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  6. 3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.

    PubMed

    Toth, Arpád; Banky, Dániel; Grolmusz, Vince

    2011-12-01

    A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.

  7. Computing Evans functions numerically via boundary-value problems

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Nguyen, Rose; Sandstede, Björn; Ventura, Nathaniel; Wahl, Colin

    2018-03-01

    The Evans function has been used extensively to study spectral stability of travelling-wave solutions in spatially extended partial differential equations. To compute Evans functions numerically, several shooting methods have been developed. In this paper, an alternative scheme for the numerical computation of Evans functions is presented that relies on an appropriate boundary-value problem formulation. Convergence of the algorithm is proved, and several examples, including the computation of eigenvalues for a multi-dimensional problem, are given. The main advantage of the scheme proposed here compared with earlier methods is that the scheme is linear and scalable to large problems.

  8. Nucleation type instabilities in partially wetting nanoscale nematic liquid films

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Cummings, Linda; Kondic, Lou

    2016-11-01

    Nucleation type instabilities are studied in nematic liquid crystal (NLC) films with thicknesses less than a micrometer. Within the framework of the long wave approximation, a 4th order nonlinear partial differential equation is proposed for the free surface height. Unlike simple fluids, NLC molecules have a dipole moment which induces an elastic response due to deformation in the bulk of the fluid. The model includes the balance between the bulk elasticity energy and the anchoring (boundary) energy at the substrate and free surface, and van der Waals' intermolecular forces, by means of a structural disjoining pressure. In this presentation, we focus on two-dimensional flow and present simulation results for a flat film with a localized perturbation. We are interested in the morphology of the dewetted film as a function of the initial film thickness. We will show that there exists a range of film thicknesses within the linearly unstable flat film regime where stability analysis does not explain the morphology of the dewetted film. Marginal stability criterion (MSC) is used to derive an analytical expression for the velocity at which a perturbation propagates into the unstable flat film. Finally, we discuss the degree to which MSC can be used to explain the observed morphology.

  9. Evaluating Feynman integrals by the hypergeometry

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Fu; Chang, Chao-Hsi; Chen, Jian-Bin; Gu, Zhi-Hua; Zhang, Hai-Bin

    2018-02-01

    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0 and massless C0 functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.

  10. Oscillation of two-dimensional linear second-order differential systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, M.K.; Kaper, H.G.

    This article is concerned with the oscillatory behavior at infinity of the solution y: (a, infinity) ..-->.. R/sup 2/ of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon(a, infinity); Q is a continuous matrix-valued function on (a, infinity) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t ..-->.. infinity. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it ismore » shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references.« less

  11. Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model

    NASA Astrophysics Data System (ADS)

    Jusoh, R.; Nazar, R.; Pop, I.

    2018-03-01

    A reformulation of the three-dimensional flow of a nanofluid by employing Buongiorno's model is presented. A new boundary condition is implemented in this study with the assumption of nanoparticle mass flux at the surface is zero. This condition is practically more realistic since the nanoparticle fraction at the boundary is latently controlled. This study is devoted to investigate the impact of the velocity slip and suction to the flow and heat transfer characteristics of nanofluid. The governing partial differential equations corresponding to the momentum, energy, and concentration are reduced to the ordinary differential equations by utilizing the appropriate transformation. Numerical solutions of the ordinary differential equations are obtained by using the built-in bvp4c function in Matlab. Graphical illustrations displaying the physical influence of the several nanofluid parameters on the flow velocity, temperature, and nanoparticle volume fraction profiles, as well as the skin friction coefficient and the local Nusselt number are provided. The present study discovers the existence of dual solutions at a certain range of parameters. Surprisingly, both of the solutions merge at the stretching sheet indicating that the presence of the velocity slip affects the skin friction coefficients. Stability analysis is carried out to determine the stability and reliability of the solutions. It is found that the first solution is stable while the second solution is not stable.

  12. A principled dimension-reduction method for the population density approach to modeling networks of neurons with synaptic dynamics.

    PubMed

    Ly, Cheng

    2013-10-01

    The population density approach to neural network modeling has been utilized in a variety of contexts. The idea is to group many similar noisy neurons into populations and track the probability density function for each population that encompasses the proportion of neurons with a particular state rather than simulating individual neurons (i.e., Monte Carlo). It is commonly used for both analytic insight and as a time-saving computational tool. The main shortcoming of this method is that when realistic attributes are incorporated in the underlying neuron model, the dimension of the probability density function increases, leading to intractable equations or, at best, computationally intensive simulations. Thus, developing principled dimension-reduction methods is essential for the robustness of these powerful methods. As a more pragmatic tool, it would be of great value for the larger theoretical neuroscience community. For exposition of this method, we consider a single uncoupled population of leaky integrate-and-fire neurons receiving external excitatory synaptic input only. We present a dimension-reduction method that reduces a two-dimensional partial differential-integral equation to a computationally efficient one-dimensional system and gives qualitatively accurate results in both the steady-state and nonequilibrium regimes. The method, termed modified mean-field method, is based entirely on the governing equations and not on any auxiliary variables or parameters, and it does not require fine-tuning. The principles of the modified mean-field method have potential applicability to more realistic (i.e., higher-dimensional) neural networks.

  13. Modelling in vivo action potential propagation along a giant axon.

    PubMed

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  14. Quality assessment of gasoline using comprehensive two-dimensional gas chromatography combined with unfolded partial least squares: A reliable approach for the detection of gasoline adulteration.

    PubMed

    Parastar, Hadi; Mostafapour, Sara; Azimi, Gholamhasan

    2016-01-01

    Comprehensive two-dimensional gas chromatography and flame ionization detection combined with unfolded-partial least squares is proposed as a simple, fast and reliable method to assess the quality of gasoline and to detect its potential adulterants. The data for the calibration set are first baseline corrected using a two-dimensional asymmetric least squares algorithm. The number of significant partial least squares components to build the model is determined using the minimum value of root-mean square error of leave-one out cross validation, which was 4. In this regard, blends of gasoline with kerosene, white spirit and paint thinner as frequently used adulterants are used to make calibration samples. Appropriate statistical parameters of regression coefficient of 0.996-0.998, root-mean square error of prediction of 0.005-0.010 and relative error of prediction of 1.54-3.82% for the calibration set show the reliability of the developed method. In addition, the developed method is externally validated with three samples in validation set (with a relative error of prediction below 10.0%). Finally, to test the applicability of the proposed strategy for the analysis of real samples, five real gasoline samples collected from gas stations are used for this purpose and the gasoline proportions were in range of 70-85%. Also, the relative standard deviations were below 8.5% for different samples in the prediction set. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.

    2017-03-01

    Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.

  16. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    NASA Astrophysics Data System (ADS)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  17. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  18. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  19. A cross-diffusion system derived from a Fokker-Planck equation with partial averaging

    NASA Astrophysics Data System (ADS)

    Jüngel, Ansgar; Zamponi, Nicola

    2017-02-01

    A cross-diffusion system for two components with a Laplacian structure is analyzed on the multi-dimensional torus. This system, which was recently suggested by P.-L. Lions, is formally derived from a Fokker-Planck equation for the probability density associated with a multi-dimensional Itō process, assuming that the diffusion coefficients depend on partial averages of the probability density with exponential weights. A main feature is that the diffusion matrix of the limiting cross-diffusion system is generally neither symmetric nor positive definite, but its structure allows for the use of entropy methods. The global-in-time existence of positive weak solutions is proved and, under a simplifying assumption, the large-time asymptotics is investigated.

  20. Validity of GNRB® arthrometer compared to Telos™ in the assessment of partial anterior cruciate ligament tears.

    PubMed

    Lefevre, N; Bohu, Y; Naouri, J F; Klouche, S; Herman, S

    2014-02-01

    The main goal of this study was to compare the results of the GNRB(®) arthrometer to those of Telos™ in the diagnosis of partial thickness tears of the anterior cruciate ligament (ACL). A prospective study performed January-December 2011 included all patients presenting with a partial or full-thickness ACL tears without ACL reconstruction and with a healthy contralateral knee. Anterior laxity was measured in all patients by the Telos™ and GNRB(®) devices. This series included 139 patients, mean age 30.7 ± 9.3 years. Arthroscopic reconstruction was performed in 109 patients, 97 for complete tears and 12 single bundle reconstructions for partial thickness tears. Conservative treatment was proposed in 30 patients with a partial thickness tear. The correlation between the two devices was evaluated by the Spearman coefficient. The optimal laxity thresholds were determined with ROC curves, and the diagnostic value of the tests was assessed by the area under the curve (AUC). The differential laxities of full and partial thickness tears were significantly different with the two tests. The correlation between the results of laxity measurement with the two devices was fair, with the strongest correlation between Telos™ 250 N and GNRB(®) 250 N (r = 0.46, p = 0.00001). Evaluation of the AUC showed that the informative value of all tests was fair with the best results with the GNRB(®) 250 N: AUC = 0.89 [95 % CI 0.83-0.94]. The optimal differential laxity threshold with the GNRB(®) 250 N was 2.5 mm (Se = 84 %, Sp = 81 %). The diagnostic value of GNRB(®) was better than Telos™ for ACL partial thickness tears.

  1. Magnetic resonance imaging of the posterior cruciate ligament in flexion.

    PubMed

    Craddock, William; Smithers, Troy; Harris, Craig; du Moulin, William; Molnar, Robert

    2018-06-01

    Posterior cruciate ligament (PCL) injuries of the knee are common and sometimes difficult to diagnose. Magnetic resonance imaging (MRI), performed using standard orthogonal plane views, is the investigation of choice. It can be particularly difficult to differentiate acute partial and complete tears and identify elongation of chronic healed tears. The aim of the paper is to describe a new method of positioning the patient with the knee flexed at 90°, allowing the PCL to be visualised in a position of greatest length and tension which may assist in differentiating and identifying these injuries. Four symptomatic patients with suspected PCL injuries, two acute and two chronic, were MRI scanned using a routine protocol with the knee in extension before performing oblique sagittal fast spin-echo (FSE) proton-density (PD) sequences with the knee positioned in 90° of flexion. The appearance of the PCLs were then qualitatively assessed. MRI scanning with the knee in flexion identified more extensive PCL injury than standard imaging. In the two patients with acute injuries, partial tears on the standard orthogonal plane views were found to be complete ruptures. In the two patients with chronic injuries, elongation of the PCL not identifiable on the standard orthogonal plane views was apparent. MRI scanning of the PCL with the knee flexed at 90° may help in differentiating partial and complete ruptures of the PCL and identifying elongation of the PCL in chronic injuries. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. An Adult Mouse Thyroid Side Population Cell Line that Exhibits Enriched Epithelial–Mesenchymal Transition

    PubMed Central

    Murata, Tsubasa; Iwadate, Manabu; Takizawa, Yoshinori; Miyakoshi, Masaaki; Hayase, Suguru; Yang, Wenjing; Cai, Yan; Yokoyama, Shigetoshi; Nagashima, Kunio; Wakabayashi, Yoshiyuki; Zhu, Jun

    2017-01-01

    Background: Studies of thyroid stem/progenitor cells have been hampered due to the small organ size and lack of tissue, which limits the yield of these cells. A continuous source that allows the study and characterization of thyroid stem/progenitor cells is desired to push the field forward. Method: A cell line was established from Hoechst-resistant side population cells derived from mouse thyroid that were previously shown to contain stem/progenitor-like cells. Characterization of these cells were carried out by using in vitro two- and three-dimensional cultures and in vivo reconstitution of mice after orthotopic or intravenous injection, in conjunction with quantitative reverse transcription polymerase chain reaction, Western blotting, immunohisto(cyto)chemistry/immunofluorescence, and RNA seq analysis. Results: These cells were named SPTL (side population cell-derived thyroid cell line). Under low serum culturing conditions, SPTL cells expressed the thyroid differentiation marker NKX2-1, a transcription factor critical for thyroid differentiation and function, while no expression of other thyroid differentiation marker genes were observed. SPTL cells formed follicle-like structures in Matrigel® cultures, which did not express thyroid differentiation marker genes. In mouse models of orthotopic and intravenous injection, the latter following partial thyroidectomy, a few SPTL cells were found in part of the follicles, most of which expressed NKX2-1. SPTL cells highly express genes involved in epithelial–mesenchymal transition, as demonstrated by RNA seq analysis, and exhibit a gene-expression pattern similar to anaplastic thyroid carcinoma. Conclusion: These results demonstrate that SPTL cells have the capacity to differentiate into thyroid to a limited degree. SPTL cells may provide an excellent tool to study stem cells, including cancer stem cells of the thyroid. PMID:28125936

  3. The in vitro biocompatibility of d-(+) raffinose modified chitosan: Two-dimensional and three-dimensional systems for culturing of horse articular chondrocytes.

    PubMed

    De Angelis, Elena; Ravanetti, Francesca; Martelli, Paolo; Cacchioli, Antonio; Ivanovska, Ana; Corradi, Attilio; Nasi, Sonia; Bianchera, Annalisa; Passeri, Benedetta; Canelli, Elena; Bettini, Ruggero; Borghetti, Paolo

    2017-12-01

    The present study investigated the biocompatibility of chitosan films and scaffolds modified with d-(+)raffinose and their capability to support the growth and maintenance of the differentiation of articular chondrocytes in vitro. Primary equine articular chondrocytes were cultured on films and scaffolds of modified d-(+) raffinose chitosan. Their behavior was compared to that of chondrocytes grown in conventional bi- and three-dimensional culture systems, such as micromasses and alginate beads. Chitosan films maintained the phenotype of differentiated chondrocytes (typical round morphology) and sustained the synthesis of cartilaginous extracellular matrix (ECM), even at 4weeks of culture. Indeed, starting from 2weeks of culture, chondrocytes seeded on chitosan scaffolds were able to penetrate the surface pores and to colonize the internal matrix. Moreover they produced ECM expressing the genes of typical chondrocytes differentiation markers such as collagen II and aggrecan. In conclusion, chitosan modified with d-raffinose represents an ideal support for chondrocyte adhesion, proliferation and for the maintenance of cellular phenotypic and genotypic differentiation. This novel biomaterial could potentially be a reliable support for the re-differentiation of dedifferentiated chondrocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

    DOE PAGES

    Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...

    2017-12-20

    We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less

  5. pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul

    We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less

  6. A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS

  7. Two-dimensional ground-water flow model of the Cretaceous aquifer system of Lee County and vicinity, Mississippi

    USGS Publications Warehouse

    Kernodle, John Michael

    1981-01-01

    A two-dimensional ground-water flow model of the Eutaw-McShan and Gordo aquifers in the area of Lee County, Miss., was successfully calibrated and verified using data from six long-term observation wells and two intensive studies of areal water levels. The water levels computed by the model were found to be most sensitive to changes in simulated aquifer hydraulic conductivity and to changes in head in the overlying Coffee Sand aquifer. The two-dimensional model performed reasonably well in simulating the aquifer system except possibly in southern Lee County and southward where a clay bed at the top of the Gordo Formation partially isolated the Gordo from the overlying Eutaw-McShan aquifer. The verified model was used to determine theoretical aquifer response to increased ground-water withdrawal to the year 2000. Two estimated rates of increase and five possible well field locations were examined. (USGS)

  8. Two-dimensional wavefront reconstruction based on double-shearing and least squares fitting

    NASA Astrophysics Data System (ADS)

    Liang, Peiying; Ding, Jianping; Zhu, Yangqing; Dong, Qian; Huang, Yuhua; Zhu, Zhen

    2017-06-01

    The two-dimensional wavefront reconstruction method based on double-shearing and least squares fitting is proposed in this paper. Four one-dimensional phase estimates of the measured wavefront, which correspond to the two shears and the two orthogonal directions, could be calculated from the differential phase, which solves the problem of the missing spectrum, and then by using the least squares method the two-dimensional wavefront reconstruction could be done. The numerical simulations of the proposed algorithm are carried out to verify the feasibility of this method. The influence of noise generated from different shear amount and different intensity on the accuracy of the reconstruction is studied and compared with the results from the algorithm based on single-shearing and least squares fitting. Finally, a two-grating lateral shearing interference experiment is carried out to verify the wavefront reconstruction algorithm based on doubleshearing and least squares fitting.

  9. Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Kong, Lingping; Guo, Peijun

    The discovery of elevated environmental stability in two-dimensional (2D) Ruddlesden–Popper hybrid perovskites represents a significant advance in low-cost, high-efficiency light absorbers. In comparison to 3D counterparts, 2D perovskites of organo-lead-halides exhibit wider, quantum-confined optical bandgaps that reduce the wavelength range of light absorption. Here, we characterize the structural and optical properties of 2D hybrid perovskites as a function of hydrostatic pressure. We observe bandgap narrowing with pressure of 633 meV that is partially retained following pressure release due to an atomic reconfiguration mechanism. We identify two distinct regimes of compression dominated by the softer organic and less compressible inorganic sublattices.more » Our findings, which also include PL enhancement, correlate well with density functional theory calculations and establish structure–property relationships at the atomic scale. These concepts can be expanded into other hybrid perovskites and suggest that pressure/strain processing could offer a new route to improved materials-by-design in applications.« less

  10. Dynamics from a mathematical model of a two-state gas laser

    NASA Astrophysics Data System (ADS)

    Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.

    2018-05-01

    Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.

  11. Elastic Differential Cross Sections

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin M.; Ford, William P.; Norbury, John W.; Vera, Michael D.

    2014-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A less than or equal to 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon- nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability.

  12. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  13. The Riemann-Lanczos equations in general relativity and their integrability

    NASA Astrophysics Data System (ADS)

    Dolan, P.; Gerber, A.

    2008-06-01

    The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.

  14. Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells

    PubMed Central

    Smith, Michael L; Gourdon, Delphine; Little, William C; Kubow, Kristopher E; Eguiluz, R. Andresen; Luna-Morris, Sheila; Vogel, Viola

    2007-01-01

    Whether mechanically unfolded fibronectin (Fn) is present within native extracellular matrix fibrils is controversial. Fn extensibility under the influence of cell traction forces has been proposed to originate either from the force-induced lengthening of an initially compact, folded quaternary structure as is found in solution (quaternary structure model, where the dimeric arms of Fn cross each other), or from the force-induced unfolding of type III modules (unfolding model). Clarification of this issue is central to our understanding of the structural arrangement of Fn within fibrils, the mechanism of fibrillogenesis, and whether cryptic sites, which are exposed by partial protein unfolding, can be exposed by cell-derived force. In order to differentiate between these two models, two fluorescence resonance energy transfer schemes to label plasma Fn were applied, with sensitivity to either compact-to-extended conformation (arm separation) without loss of secondary structure or compact-to-unfolded conformation. Fluorescence resonance energy transfer studies revealed that a significant fraction of fibrillar Fn within a three-dimensional human fibroblast matrix is partially unfolded. Complete relaxation of Fn fibrils led to a refolding of Fn. The compactly folded quaternary structure with crossed Fn arms, however, was never detected within extracellular matrix fibrils. We conclude that the resting state of Fn fibrils does not contain Fn molecules with crossed-over arms, and that the several-fold extensibility of Fn fibrils involves the unfolding of type III modules. This could imply that Fn might play a significant role in mechanotransduction processes. PMID:17914904

  15. Asymptotic derivation of nonlocal plate models from three-dimensional stress gradient elasticity

    NASA Astrophysics Data System (ADS)

    Hache, F.; Challamel, N.; Elishakoff, I.

    2018-01-01

    This paper deals with the asymptotic derivation of thin and thick nonlocal plate models at different orders from three-dimensional stress gradient elasticity, through the power series expansions of the displacements in the thickness ratio of the plate. Three nonlocal asymptotic approaches are considered: a partial nonlocality following the thickness of the plate, a partial nonlocality following the two directions of the plates and a full nonlocality (following all the directions). The three asymptotic approaches lead at the zeroth order to a nonlocal Kirchhoff-Love plate model, but differ in the expression of the length scale. The nonlocal asymptotic models coincide at this order with the stress gradient Kirchhoff-Love plate model, only when the nonlocality is following the two directions of the plate and expressed through a nabla operator. This asymptotic model also yields the nonlocal truncated Uflyand-Mindlin plate model at the second order. However, the two other asymptotic models lead to equations that differ from the current existing nonlocal engineering models (stress gradient engineering plate models). The natural frequencies for an all-edges simply supported plate are obtained for each model. It shows that the models provide similar results for low orders of frequencies or small thickness ratio or nonlocal lengths. Moreover, only the asymptotic model with a partial nonlocality following the two directions of the plates is consistent with a stress gradient plate model, whatever the geometry of the plate.

  16. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.

    PubMed

    Haskins, Justin B; Lawson, John W

    2016-05-14

    We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.

  17. Real-time optical laboratory solution of parabolic differential equations

    NASA Technical Reports Server (NTRS)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  18. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    NASA Astrophysics Data System (ADS)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  19. FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.; Torrisi, M.; Tracinà, R.

    2010-11-01

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.

  20. High-order fractional partial differential equation transform for molecular surface construction.

    PubMed

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.

  1. A new methodology for determination of macroscopic transport parameters in drying porous media

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  2. Flow Past a Descending Balloon

    NASA Technical Reports Server (NTRS)

    Baginski, Frank

    2001-01-01

    In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.

  3. Forms of null Lagrangians in field theories of continuum mechanics

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Radaev, Yu. N.

    2012-02-01

    The divergence representation of a null Lagrangian that is regular in a star-shaped domain is used to obtain its general expression containing field gradients of order ≤ 1 in the case of spacetime of arbitrary dimension. It is shown that for a static three-component field in the three-dimensional space, a null Lagrangian can contain up to 15 independent elements in total. The general form of a null Lagrangian in the four-dimensional Minkowski spacetime is obtained (the number of physical field variables is assumed arbitrary). A complete theory of the null Lagrangian for the n-dimensional spacetime manifold (including the four-dimensional Minkowski spacetime as a special case) is given. Null Lagrangians are then used as a basis for solving an important variational problem of an integrating factor. This problem involves searching for factors that depend on the spacetime variables, field variables, and their gradients and, for a given system of partial differential equations, ensure the equality between the scalar product of a vector multiplier by the system vector and some divergence expression for arbitrary field variables and, hence, allow one to formulate a divergence conservation law on solutions to the system.

  4. A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruen, Christine, E-mail: christine.gruen@univ-brest.fr

    We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.

  5. The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow

    NASA Technical Reports Server (NTRS)

    Hewitt, R. E.; Hall, P.

    1996-01-01

    We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.

  6. On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2014-08-01

    The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also themore » stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.« less

  7. On the dynamics of the Ising model of cooperative phenomena

    PubMed Central

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  8. Thermal evolution of a partially differentiated H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.

    2016-12-01

    It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.

  9. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  10. Thermal Pollution Mathematical Model. Volume 3: User's Manual for One-Dimensional Numerical Model for the Seasonal Thermocline. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A user's manual for a one dimensional thermal model to predict the temperature profiles of a deep body of water for any number of annual cycles is presented. The model is essentially a set of partial differential equations which are solved by finite difference methods using a high speed digital computer. The model features the effects of area change with depth, nonlinear interaction of wind generated turbulence and buoyancy, adsorption of radiative heat flux below the surface, thermal discharges, and the effects of vertical convection caused by discharge. The main assumption in the formulation is horizontal homogeneity. The environmental impact of thermal discharges from power plants is emphasized. Although the model is applicable to most lakes, a specific site (Lake Keowee, S.C.) application is described in detail. The programs are written in FORTRAN 5.

  11. Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.

    PubMed

    Li, Ben; Stenstrom, M K

    2014-01-01

    One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.

  12. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    PubMed

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  13. Spectral factorization of wavefields and wave operators

    NASA Astrophysics Data System (ADS)

    Rickett, James Edward

    Spectral factorization is the problem of finding a minimum-phase function with a given power spectrum. Minimum phase functions have the property that they are causal with a causal (stable) inverse. In this thesis, I factor multidimensional systems into their minimum-phase components. Helical boundary conditions resolve any ambiguities over causality, allowing me to factor multi-dimensional systems with conventional one-dimensional spectral factorization algorithms. In the first part, I factor passive seismic wavefields recorded in two-dimensional spatial arrays. The result provides an estimate of the acoustic impulse response of the medium that has higher bandwidth than autocorrelation-derived estimates. Also, the function's minimum-phase nature mimics the physics of the system better than the zero-phase autocorrelation model. I demonstrate this on helioseismic data recorded by the satellite-based Michelson Doppler Imager (MDI) instrument, and shallow seismic data recorded at Long Beach, California. In the second part of this thesis, I take advantage of the stable-inverse property of minimum-phase functions to solve wave-equation partial differential equations. By factoring multi-dimensional finite-difference stencils into minimum-phase components, I can invert them efficiently, facilitating rapid implicit extrapolation without the azimuthal anisotropy that is observed with splitting approximations. The final part of this thesis describes how to calculate diagonal weighting functions that approximate the combined operation of seismic modeling and migration. These weighting functions capture the effects of irregular subsurface illumination, which can be the result of either the surface-recording geometry, or focusing and defocusing of the seismic wavefield as it propagates through the earth. Since they are diagonal, they can be easily both factored and inverted to compensate for uneven subsurface illumination in migrated images. Experimental results show that applying these weighting functions after migration leads to significantly improved estimates of seismic reflectivity.

  14. Filling-enforced nonsymmorphic Kondo semimetals in two dimensions

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Lee, SungBin; Brandom, B.; Parameswaran, S. A.

    2017-08-01

    We study the competition between Kondo screening and frustrated magnetism on the nonsymmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. This model is known to host a set of gapless partially Kondo screened phases intermediate between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symmetries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protection and allowing the partially Kondo screened phase to be deformed into a Kondo insulator via a Lifshitz transition. We confirm these results using large-N mean-field theory and then use nonperturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure of two-dimensional nonsymmorphic Kondo lattices beyond the mean-field limit.

  15. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems

    NASA Technical Reports Server (NTRS)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid

    2003-01-01

    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  16. Modelling, validation and analysis of a three-dimensional railway vehicle-track system model with linear and nonlinear track properties in the presence of wheel flats

    NASA Astrophysics Data System (ADS)

    Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.

    2013-11-01

    This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.

  17. Analysis of Radiation-natural Convection Interactions in 1-g and low-g Environments using the Discrete Exchange Factor Method

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Naraghi, M. H. N.

    1993-01-01

    A new numerical method is presented for the analysis of combined natural convection and radiation heat transfer with applications in many engineering situations such as materials processing, combustion and fire research. Because of the recent interest in the low gravity environment of space, attention is devoted to both 1-g and low-g applications. The two-dimensional mathematical model is represented by a set of coupled nonlinear integro-partial differential equations. Radiative exchange is formulated using the Discrete Exchange Factor method (DEF). This method considers point to point exchange and provides accurate results over a wide range of radiation parameters. Numerical results show that radiation significantly influences the flow and heat transfer in both low-g and 1-g applications. In the low-g environment, convection is weak, and radiation can easily become the dominant heat transfer mode. It is also shown that volumetric heating by radiation gives rise to an intricate cell pattern in the top heated enclosure.

  18. A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Carrillo, José A.; Shu, Chi-Wang

    2018-01-01

    We consider a class of time-dependent second order partial differential equations governed by a decaying entropy. The solution usually corresponds to a density distribution, hence positivity (non-negativity) is expected. This class of problems covers important cases such as Fokker-Planck type equations and aggregation models, which have been studied intensively in the past decades. In this paper, we design a high order discontinuous Galerkin method for such problems. If the interaction potential is not involved, or the interaction is defined by a smooth kernel, our semi-discrete scheme admits an entropy inequality on the discrete level. Furthermore, by applying the positivity-preserving limiter, our fully discretized scheme produces non-negative solutions for all cases under a time step constraint. Our method also applies to two dimensional problems on Cartesian meshes. Numerical examples are given to confirm the high order accuracy for smooth test cases and to demonstrate the effectiveness for preserving long time asymptotics.

  19. Survey of the status of finite element methods for partial differential equations

    NASA Technical Reports Server (NTRS)

    Temam, Roger

    1986-01-01

    The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.

  20. Analytical solutions for systems of partial differential-algebraic equations.

    PubMed

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2014-01-01

    This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

  1. Time-partitioning simulation models for calculation on parallel computers

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  2. Effective diffusion of confined active Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  3. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  4. Solution of differential equations by application of transformation groups

    NASA Technical Reports Server (NTRS)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  5. Solving vertical and horizontal well hydraulics problems analytically in Cartesian coordinates with vertical and horizontal anisotropies

    NASA Astrophysics Data System (ADS)

    Batu, Vedat

    2012-01-01

    SummaryA new generalized three-dimensional analytical solution is developed for a partially-penetrating vertical rectangular parallelepiped well screen in a confined aquifer by solving the three-dimensional transient ground water flow differential equation in x- y- z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities ( Kx, Ky, and Kz) along the x- y- z coordinate directions. The fully penetrating screen case becomes equivalent to the single vertical fracture case of Gringarten and Ramey (1973). It is shown that the new solution and Gringarten and Ramey solution (1973) match very well. Similarly, it is shown that this new solution for a horizontally tiny fully penetrating parallelepiped rectangular parallelepiped screen case match very well with Theis (1935) solution. Moreover, it is also shown that the horizontally tiny partially-penetrating parallelepiped rectangular well screen case of this new solution match very well with Hantush (1964) solution. This new analytical solution can also cover a partially-penetrating horizontal well by representing its screen interval with vertically tiny rectangular parallelepiped. Also the solution takes into account both the vertical anisotropy ( azx = Kz/ Kx) as well as the horizontal anisotropy ( ayx = Ky/ Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating vertical and horizontal wells by representing them as tiny rectangular parallelepiped as well as line sources. The solution has also potential application areas for a partially-penetrating parallelepiped rectangular vertical fracture. With this new solution, the horizontal anisotropy ( ayx = Ky/ Kx) in addition to the vertical anisotropy ( azx = Kz/ Kx) can also be determined using observed drawdown data. Most importantly, with this solution, to the knowledge of the author, it has been shown the first time in the literature that some well-known well hydraulics problems can also be solved in Cartesian coordinates with some additional advantages other than the conventional cylindrical coordinates method.

  6. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    PubMed

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Opinion: Building epithelial architecture: insights from three-dimensional culture models.

    PubMed

    O'Brien, Lucy Erin; Zegers, Mirjam M P; Mostov, Keith E

    2002-07-01

    How do individual cells organize into multicellular tissues? Here, we propose that the morphogenetic behaviour of epithelial cells is guided by two distinct elements: an intrinsic differentiation programme that drives formation of a lumen-enclosing monolayer, and a growth factor-induced, transient de-differentiation that allows this monolayer to be remodelled.

  8. Solution methods for one-dimensional viscoelastic problems

    NASA Technical Reports Server (NTRS)

    Stubstad, John M.; Simitses, George J.

    1987-01-01

    A recently developed differential methodology for solution of one-dimensional nonlinear viscoelastic problems is presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential formulation are compared to results generated using a previously published integral solution technique. It is shown that the results obtained from these distinct methodologies exhibit a surprisingly high degree of correlation with one another. A discussion of the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included. Finally, the influences of some 'higher order' effects, such as straining along the centroidal axis are discussed.

  9. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  10. A numerical and experimental study of three-dimensional liquid sloshing in a rotating spherical container

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.

    1992-01-01

    A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.

  11. Dynamic characteristics of a two-stage variable-mass flexible missile with internal flow

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1972-01-01

    A general formulation of the dynamical problems associated with powered flight of a two stage flexible, variable-mass missile with internal flow, discrete masses, and aerodynamic forces is presented. The formulation comprises six ordinary differential equations for the rigid body motion, 3n ordinary differential equations for the n discrete masses and three partial differential equations with the appropriate boundary conditions for the elastic motion. This set of equations is modified to represent a single stage flexible, variable-mass missile with internal flow and aerodynamic forces. The rigid-body motion consists then of three translations and three rotations, whereas the elastic motion is defined by one longitudinal and two flexural displacements, the latter about two orthogonal transverse axes. The differential equations are nonlinear and, in addition, they possess time-dependent coefficients due to the mass variation.

  12. Dual differential interferometer for measurements of broadband surface acoustic waves

    NASA Technical Reports Server (NTRS)

    Turner, T. M.; Claus, R. O.

    1981-01-01

    A simple duel interferometer which uses two pairs of orthogonally polarized optical beams to measure both the amplitude and direction of propagation of broadband ultrasonic surface waves is described. Each pair of focused laser probe beams is used in a separate wideband differential interferometer to independently detect the component of surface wave motion along one direction on the surface. By combining the two output signals corresponding to both components, the two dimensional surface profile and its variation as a function of time is determined.

  13. Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line.

    PubMed

    Cimmino, Flora; Spano, Daniela; Capasso, Mario; Zambrano, Nicola; Russo, Roberta; Zollo, Massimo; Iolascon, Achille

    2007-07-01

    Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which G beta2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer.

  14. Adjoint-based constant-mass partial derivatives

    DOE PAGES

    Favorite, Jeffrey A.

    2017-09-01

    In transport theory, adjoint-based partial derivatives with respect to mass density are constant-volume derivatives. Likewise, adjoint-based partial derivatives with respect to surface locations (i.e., internal interface locations and the outer system boundary) are constant-density derivatives. This study derives the constant-mass partial derivative of a response with respect to an internal interface location or the outer system boundary and the constant-mass partial derivative of a response with respect to the mass density of a region. Numerical results are given for a multiregion two-dimensional (r-z) cylinder for three very different responses: the uncollided gamma-ray flux at an external detector point, k effmore » of the system, and the total neutron leakage. Finally, results from the derived formulas compare extremely well with direct perturbation calculations.« less

  15. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  16. Reciprocal links among differential parenting, perceived partiality, and self-worth: a three-wave longitudinal study.

    PubMed

    Shebloski, Barbara; Conger, Katherine J; Widaman, Keith F

    2005-12-01

    This study examined reciprocal links between parental differential treatment, siblings' perception of partiality, and self-worth with 3 waves of data from 384 adolescent sibling dyads. Results suggest that birth-order status was significantly associated with self-worth and perception of maternal and paternal differential treatment. There was a consistent across-time effect of self-worth on perception of parental partiality for later born siblings, but not earlier born siblings, and a consistent effect of differential treatment on perception of partiality for earlier born but not later born siblings. The results contribute new insight into the associations between perception of differential parenting and adolescents' adjustment and the role of birth order. Copyright 2006 APA, all rights reserved).

  17. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models.

    PubMed

    Addetia, Karima; Mor-Avi, Victor; Weinert, Lynn; Salgo, Ivan S; Lang, Roberto M

    2014-01-01

    Differentiating between mitral valve (MV) prolapse (MVP) and MV billowing (MVB) on two-dimensional echocardiography is challenging. The aim of this study was to test the hypothesis that color-coded models of maximal leaflet displacement from the annular plane into the atrium derived from three-dimensional transesophageal echocardiography would allow discrimination between these lesions. Three-dimensional transesophageal echocardiographic imaging of the MV was performed in 50 patients with (n = 38) and without (n = 12) degenerative MV disease. Definitive diagnosis of MVP versus MVB was made using inspection of dynamic three-dimensional renderings and multiple two-dimensional cut planes extracted from three-dimensional data sets. This was used as a reference standard to test an alternative approach, wherein the color-coded parametric models were inspected for integrity of the coaptation line and location of the maximally displaced portion of the leaflet. Diagnostic interpretations of these models by two independent readers were compared with the reference standard. In all cases of MVP, the color-coded models depicted loss of integrity of the coaptation line and maximal leaflet displacement extending to the coaptation line. MVB was depicted by preserved leaflet apposition with maximal displacement away from the coaptation line. Interpretation of the 50 color-coded models by novice readers took 5 to 10 min and resulted in good agreement with the reference technique (κ = 0.81 and κ = 0.73 for the two readers). Three-dimensional color-coded models provide a static display of MV leaflet displacement, allowing differentiation between MVP and MVB, without the need to inspect multiple planes and while taking into account the saddle shape of the mitral annulus. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  18. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    NASA Astrophysics Data System (ADS)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  19. Chaos and Robustness in a Single Family of Genetic Oscillatory Networks

    PubMed Central

    Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav I.

    2014-01-01

    Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback. PMID:24667178

  20. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Forister, Matthew L; Buerkle, C Alex

    2012-07-01

    Speciation is the process by which reproductively isolated lineages arise, and is one of the fundamental means by which the diversity of life increases. Whereas numerous studies have documented an association between ecological divergence and reproductive isolation, relatively little is known about the role of natural selection in genome divergence during the process of speciation. Here, we use genome-wide DNA sequences and Bayesian models to test the hypothesis that loci under divergent selection between two butterfly species (Lycaeides idas and L. melissa) also affect fitness in an admixed population. Locus-specific measures of genetic differentiation between L. idas and L. melissa and genomic introgression in hybrids varied across the genome. The most differentiated genetic regions were characterized by elevated L. idas ancestry in the admixed population, which occurs in L. idas-like habitat, consistent with the hypothesis that local adaptation contributes to speciation. Moreover, locus-specific measures of genetic differentiation (a metric of divergent selection) were positively associated with extreme genomic introgression (a metric of hybrid fitness). Interestingly, concordance of differentiation and introgression was only partial. We discuss multiple, complementary explanations for this partial concordance. © 2012 The Author(s).

Top