Sample records for two-dimensional peptide mapping

  1. Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.

    PubMed

    Nguyen, Phuong H

    2006-12-01

    Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.

  2. Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests.

    PubMed

    Vanhoenacker, Gerd; Vandenheede, Isabel; David, Frank; Sandra, Pat; Sandra, Koen

    2015-01-01

    Comprehensive two-dimensional liquid chromatography (LC×LC) is here proposed as a novel tool for peptide mapping of therapeutic monoclonal antibodies in both R&D and routine (QA/QC) environments. This is illustrated by the analysis of the tryptic digest of trastuzumab (Herceptin) applying a commercially available two-dimensional 2D-LC system. Three different LC×LC combinations, i.e., strong cation-exchange × reversed-phase (SCX×RP), reversed-phase × reversed-phase (RP×RP), and hydrophilic interaction × reversed-phase (HILIC×RP), are reported. Detection was carried out using both UV detection (DAD) and mass spectrometry (MS). Several challenges related to the application of LC×LC in peptide mapping and the hyphenation to MS are addressed. The applicability of LC×LC in the assessment of identity, purity, and comparability is demonstrated by the analysis of different Herceptin innovator production batches, a Herceptin biosimilar in development and of stressed samples. The described methodology was shown to be precise in terms of peak volume and (2)D retention time opening interesting perspectives for use in QA/QC testing.

  3. Growth hormone-releasing hormone stimulates and somatostatin inhibits the release of a novel protein by cultured rat pituitary cells.

    PubMed

    Tachibana, K; Marquardt, H; Yokoya, S; Friesen, H G

    1988-10-01

    We have reported that the secretion of at least 17 distinct peptides [including rat (rGH)] GH by cultured rat pituitary cells was stimulated by GH-releasing hormone and inhibited by somatostatin, when analyzed by two-dimensional polyacrylamide gel electrophoresis. Three of these peptides (no. 23, 24, and 25) were not rGH immunoreactive. In order to determine whether these three peptides are fragments, degradation products or posttranscriptionally modified forms of rGH, rGH and peptide no. 23 were characterized structurally. From partial peptide maps of rGH and peptide no. 23 by V8 protease or chymotrypsin, it appeared that these peptides were not related to each other. By N-terminal microsequencing of two-dimensional polyacrylamide gel electrophoresis purified peptide, we have obtained the sequence of 24 N-terminal amino acid residues of peptide no. 23. This sequence has no significant homology with rGH or any other reported protein sequence. Antiserum was generated against a synthetic oligopeptide corresponding to amino acid residues 3-24 of peptide no. 23. The antiserum cross-reacted with peptides no. 23, 24, and 25 upon Western blot analysis. These results indicate that peptide no. 23 has a novel structure unrelated to other pituitary hormones. Since its secretion is influenced by GH-releasing hormone and somatostatin, peptide no. 23 may represent a previously unrecognized structurally unique growth factor.

  4. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    PubMed Central

    Edelmann, Mariola J.

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  5. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    NASA Astrophysics Data System (ADS)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  6. Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants

    PubMed Central

    Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut

    2005-01-01

    Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175

  7. Structural characteristics of Tla products

    PubMed Central

    1985-01-01

    Biochemical study of thymus leukemia antigen (TL) from thymocytes of various Tla genotypes and from leukemia cells revealed features that, given present evidence, are peculiar to TL among class I products of the H-2:Qa:Tla region of chromosome 17. Sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) of TL from thymocytes of all TL+ mouse strains, precipitated by anti-TL antiserum or monoclonal antibodies, showed two closely migrating bands of equal intensity in the heavy (H) chain position (45-50,000 mol wt). Comparison of these two bands by two-dimensional isoelectric focusing (2D IEF)-SDS-PAGE and 2D chymotryptic peptide mapping showed no differences indicative of protein dissimilarity. Thus, the two components of the H chain doublet may differ only in a feature of glycosylation that does not affect charge. The two leukemias studied gave only a single band in the H chain position. On 2D peptide mapping and 2D IEF-SDS-PAGE, the patterns for TL of Tlaa and Tlae thymocytes, which are closely related serologically, were broadly similar, but clearly different from the pattern typical of Tlac and Tlad thymocytes. 2D peptide maps of TL from Tlaa thymocytes and Tlaa leukemia cells did not differ. Leukemia cells of Tlab origin (thymocytes TL-) gave 2D peptide and 2D IEF-SDS-PAGE patterns of a third type. With the exception of Tlaa, thymocytes of TL+ mice yielded additional TL products of higher molecular weight than the TL H chain. PMID:3875681

  8. Structural analysis of N-linked carbohydrate chains of funnel web spider (Agelenopsis aperta) venom peptide isomerase.

    PubMed

    Shikata, Y; Ohe, H; Mano, N; Kuwada, M; Asakawa, N

    1998-06-01

    The structure of the N-linked carbohydrate chains of peptide isomerase from the venom of the funnel web spider (Agelenopsis aperta) has been analyzed. Carbohydrates were released from peptide isomerase by hydrazinolysis and reductively aminated with 2-aminopyridine. The fluorescent derivatives were purified by phenol/chloroform extraction, followed by size-exclusion HPLC. The structure of the purified pyridylamino (PA-) carbohydrate chains were analyzed by a combination of two-dimensional HPLC mapping, sugar composition analysis, sequential exoglycosidase digestions, and mass spectrometry. The peptide isomerase contains six kinds of N-linked carbohydrate chains of truncated high-mannose type, with a fucose alpha 1-6 linked to the reducing N-acetylglucosamine in approximately 80% of them.

  9. A global comparability approach for biosimilar monoclonal antibodies using LC-tandem MS based proteomics.

    PubMed

    Chen, Shun-Li; Wu, Shiaw-Lin; Huang, Li-Juan; Huang, Jia-Bao; Chen, Shu-Hui

    2013-06-01

    Liquid chromatography-tandem mass spectrometry-based proteomics for peptide mapping and sequencing was used to characterize the marketed monoclonal antibody trastuzumab and compare it with two biosimilar products, mAb A containing D359E and L361M variations at the Fc site and mAb B without variants. Complete sequence coverage (100%) including disulfide linkages, glycosylations and other commonly occurring modifications (i.e., deamidation, oxidation, dehydration and K-clipping) were identified using maps generated from multi-enzyme digestions. In addition to the targeted comparison for the relative populations of targeted modification forms, a non-targeted approach was used to globally compare ion intensities in tryptic maps. The non-targeted comparison provided an extra-dimensional view to examine any possible differences related to variants or modifications. A peptide containing the two variants in mAb A, D359E and L361M, was revealed using the non-targeted comparison of the tryptic maps. In contrast, no significant differences were observed when trastuzumab was self-compared or compared with mAb B. These results were consistent with the data derived from peptide sequencing via collision induced dissociation/electron transfer dissociation. Thus, combined targeted and non-targeted approaches using powerful mass spectrometry-based proteomic tools hold great promise for the structural characterization of biosimilar products. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Isoforms of a cuticular protein from larvae of the meal beetle, Tenebrio molitor, studied by mass spectrometry in combination with Edman degradation and two-dimensional polyacrylamide gel electrophoresis.

    PubMed Central

    Haebel, S.; Jensen, C.; Andersen, S. O.; Roepstorff, P.

    1995-01-01

    Simultaneous sequencing, using a combination of mass spectrometry and Edman degradation, of three approximately 15-kDa variants of a cuticular protein extracted from the meal beetle Tenebrio molitor larva is demonstrated. The information obtained by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) time-course monitoring of enzymatic digests was found essential to identify the differences among the three variants and for alignment of the peptides in the sequence. To determine whether each individual insect larva contains all three protein variants, proteins extracted from single animals were separated by two-dimensional gel electrophoresis, electroeluted from the gel spots, and analyzed by MALDI MS. Molecular weights of the proteins present in each sample could be obtained, and mass spectrometric mapping of the peptides after digestion with trypsin gave additional information. The protein isoforms were found to be allelic variants. PMID:7795523

  11. Isoforms of a cuticular protein from larvae of the meal beetle, Tenebrio molitor, studied by mass spectrometry in combination with Edman degradation and two-dimensional polyacrylamide gel electrophoresis.

    PubMed

    Haebel, S; Jensen, C; Andersen, S O; Roepstorff, P

    1995-03-01

    Simultaneous sequencing, using a combination of mass spectrometry and Edman degradation, of three approximately 15-kDa variants of a cuticular protein extracted from the meal beetle Tenebrio molitor larva is demonstrated. The information obtained by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) time-course monitoring of enzymatic digests was found essential to identify the differences among the three variants and for alignment of the peptides in the sequence. To determine whether each individual insect larva contains all three protein variants, proteins extracted from single animals were separated by two-dimensional gel electrophoresis, electroeluted from the gel spots, and analyzed by MALDI MS. Molecular weights of the proteins present in each sample could be obtained, and mass spectrometric mapping of the peptides after digestion with trypsin gave additional information. The protein isoforms were found to be allelic variants.

  12. Antigenicity in sheep of synthetic peptides derived from stress-regulated Mycobacterium avium subsp. paratuberculosis proteins and comparison with recombinant protein and complex native antigens.

    PubMed

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Whittington, Richard J

    2014-03-15

    Serum antibody enzyme-linked immunosorbent assay is the most commonly used test for diagnosis of Mycobacterium avium subsp. paratuberculosis infection in ruminants. However, the assay requires serum preabsorption with Mycobacterium phlei proteins to reduce cross reactions potentially contributed by the exposure of livestock to environmental mycobacteria. To trial the discovery of novel antigens which do not require serum absorption, synthetic MAP-specific peptides were selected based on in silico research to identify putative B cell epitopes. Four peptides from previously identified stress-regulated proteins were synthesized and evaluated using enzyme linked immunosorbent assay to detect Mycobacterium avium subsp. paratuberculosis specific antibodies in sheep. Two peptides were from hypothetical MAP proteins (MAP3567 and MAP1168c) and two were from proteins with known function (MAP2698c, an acyl-acyl carrier protein desaturase-DesA2 and MAP2487c a carbonic anhydrase). The ability of each peptide to discriminate between unexposed and MAP exposed (infected and vaccinated) animals was similar to that of the parent recombinant MAP antigen, with area under receiver operating curve values of 0.86-0.93. Assays run with a combination of two peptides showed slightly higher reactivity than those of individual peptides. Peptides evaluated in this study had diagnostic potential similar to corresponding recombinant proteins but not superior to a complex native MAP antigen or a commercial assay. Further study is required to investigate other peptides for their diagnostic potential, and this may be simpler and cheaper than subunit protein-based research. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    PubMed

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Generative Topographic Mapping of Conformational Space.

    PubMed

    Horvath, Dragos; Baskin, Igor; Marcou, Gilles; Varnek, Alexandre

    2017-10-01

    Herein, Generative Topographic Mapping (GTM) was challenged to produce planar projections of the high-dimensional conformational space of complex molecules (the 1LE1 peptide). GTM is a probability-based mapping strategy, and its capacity to support property prediction models serves to objectively assess map quality (in terms of regression statistics). The properties to predict were total, non-bonded and contact energies, surface area and fingerprint darkness. Map building and selection was controlled by a previously introduced evolutionary strategy allowed to choose the best-suited conformational descriptors, options including classical terms and novel atom-centric autocorrellograms. The latter condensate interatomic distance patterns into descriptors of rather low dimensionality, yet precise enough to differentiate between close favorable contacts and atom clashes. A subset of 20 K conformers of the 1LE1 peptide, randomly selected from a pool of 2 M geometries (generated by the S4MPLE tool) was employed for map building and cross-validation of property regression models. The GTM build-up challenge reached robust three-fold cross-validated determination coefficients of Q 2 =0.7…0.8, for all modeled properties. Mapping of the full 2 M conformer set produced intuitive and information-rich property landscapes. Functional and folding subspaces appear as well-separated zones, even though RMSD with respect to the PDB structure was never used as a selection criterion of the maps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.

    PubMed

    Chen, Wenhan; Guo, William W; Huang, Yanxin; Ma, Zhiqiang

    2012-01-01

    Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/

  16. The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization.

    PubMed

    Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P; Mirokhin, Yuri A; Tchekhovskoi, Dmitrii V; Bukhari, Tallat H; Stein, Stephen E

    2018-04-01

    We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins.

  17. The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization

    PubMed Central

    Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P.; Mirokhin, Yuri A.; Tchekhovskoi, Dmitrii V.; Bukhari, Tallat H.; Stein, Stephen E.

    2018-01-01

    ABSTRACT We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins. PMID:29425077

  18. MASS SPECTROMETRY IMAGING FOR DRUGS AND METABOLITES

    PubMed Central

    Greer, Tyler; Sturm, Robert; Li, Lingjun

    2011-01-01

    Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review’s main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed. PMID:21515430

  19. Temperature-dependent instability of the cTnI subunit in NIST SRM2921 characterized by tryptic peptide mapping.

    PubMed

    van der Burgt, Yuri E M; Cobbaert, Christa M; Dalebout, Hans; Smit, Nico; Deelder, André M

    2012-08-01

    In this study temperature-dependent instability of the cTnI subunit of the three-protein complex NIST SRM2921 was demonstrated using a mass spectrometric tryptic peptide mapping approach. The results were compared to the cTnI subunit obtained as a protein standard from Calbiochem with identical amino acid sequence. Both the three-protein complex from NIST as well as the cTnI subunit were incubated at elevated temperatures and then evaluated with respect to the primary sequence. The corresponding peptide maps were analyzed using LC-MS/MS. From a Mascot database search in combination with "semiTrypsin" tolerance it was found that two peptide backbone cleavages had occurred in subunit cTnI in NIST SRM2921 material upon incubation at 37°C, namely between amino acids at 148/149 and 194/195. The Calbiochem standard did not show increased levels of "unexpected" peptides in tryptic peptide maps. One of the two peptide backbone cleavages could also be monitored using a "single-step" MALDI-MS approach, i.e. without the need for peptide separation. The amount of degradation appeared rather constant in replicate temperature-instability experiments. However, for accurate quantification internal labelled standards are needed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  1. Chaotic attractors of relaxation oscillators

    NASA Astrophysics Data System (ADS)

    Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang

    2006-03-01

    We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.

  2. Counterion dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic gel digestion of stained protein for mass spectrometry.

    PubMed

    Cong, Wei-Tao; Wang, Xu; Hwang, Sun-Young; Jin, Li-Tai; Choi, Jung-Kap

    2012-01-01

    A fast and matrix-assisted laser desorption/ionization mass spectrometry compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, zincon and ethyl violet, to form an ion-pair complex. The protocol, including fixing, staining, and quick washing steps, can be completed in 1-1.5 h, depending upon gel thickness. It has the sensitivity comparable to the colloidal Coomassie Brilliant Blue G stain using phosphoric acid as a component of staining solution (4-8 ng). The counterion dye stain does not induce protein modifications that complicate interpretation of peptide mapping data from mass spectrometry. Considering the speed, sensitivity, and compatibility with mass spectrometry, the counterion dye stain may be more practical than any other dye-based protein stains for routine proteomic researches.

  3. Integrated In Silico-In Vitro Identification and Characterization of the SH3-Mediated Interaction between Human PTTG and its Cognate Partners in Medulloblastoma.

    PubMed

    Liu, Jiangang; Wang, Dapeng; Li, Yanyan; Yao, Hui; Zhang, Nan; Zhang, Xuewen; Zhong, Fangping; Huang, Yulun

    2018-06-01

    The human pituitary tumor-transforming gene is an oncogenic protein which serves as a central hub in the cellular signaling network of medulloblastoma. The protein contains two vicinal PxxP motifs at its C terminus that are potential binding sites of peptide-recognition SH3 domains. Here, a synthetic protocol that integrated in silico analysis and in vitro assay was described to identify the SH3-binding partners of pituitary tumor-transforming gene in the gene expression profile of medulloblastoma. In the procedure, a variety of structurally diverse, non-redundant SH3 domains with high gene expression in medulloblastoma were compiled, and their three-dimensional structures were either manually retrieved from the protein data bank database or computationally modeled through bioinformatics technique. The binding capability of these domains towards the two PxxP-containing peptides m1p: 161 LGPPSPVK 168 and m2p: 168 KMPSPPWE 175 of pituitary tumor-transforming gene were ranked by structure-based scoring and fluorescence-based assay. Consequently, a number of SH3 domains, including MAP3K and PI3K, were found to have moderate or high affinity for m1p and/or m2p. Interestingly, the two overlapping peptides exhibits a distinct binding profile to these identified domain partners, suggesting that the binding selectivity of m1p and m2p is optimized across the medulloblastoma expression spectrum by competing for domain candidates. In addition, two redesigned versions of m1p peptide ware obtained via a structure-based rational mutation approach, which exhibited an increased affinity for the domain as compared to native peptide.

  4. Targeted nanosensor aided three-dimensional pH mapping in tumor spheroids using two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Lee, Yong-Eun Koo; Elbez, Remy; Kopelman, Raoul

    2012-03-01

    Tumors are generally characterized by a pH lower than the surrounding tissues. The mapping of tumor pH is of great importance as it plays a critical role in drug delivery and its effectiveness. Here we present a pH mapping technique in tumor spheroids, using targeted, ratiometric, fluorescent, pH nano-sensor that is based on two-photon excitation. Spheroids are micro-tumors that are widely used as an in-vitro three dimensional tumor model to study the different properties of the tumor for the purpose of drug delivery, therapy etc. The nanosensor consists of 8-Hydroxypyrene- 1,3,6-trisulfonic acid (HPTS), a pH sensitive dye, encapsulated in polyacrylamide hydrogel nanoparticle matrix and F3 peptide, conjugated to the nanoparticle's surface. The nanosensor has an average size of 68nm and contains approximately 0.5% dye by weight. The fluorescence intensity ratio, at the two-photon excitation wavelengths of 900nm and 750nm, increases linearly in the pH range from 6.0 to 8.0 and is used to determine the pH of the local environment. Our study reveals the pH distribution inside human cervix cancer spheroids (of different sizes) during the various stages of their formation. This information can be used to develop more efficient drug delivery mechanisms. The two-photon excitation used for this purpose is especially useful as it drastically minimizes both photobleaching and autofluorescence, thus leading to an increase in the signal-to-noise ratio. It also enables deep tissue imaging due to higher photon penetration depth.

  5. Discriminating trpzip2 and trpzip4 peptides’ folding landscape using the two-dimensional infrared spectroscopy: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan

    2014-02-07

    We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two β-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB{sup OBC} implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our studymore » further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors.« less

  6. Examination of segmental average mass spectra from liquid chromatography-tandem mass spectrometric (LC-MS/MS) data enables screening of multiple types of protein modifications.

    PubMed

    Liu, Nai-Yu; Lee, Hsiao-Hui; Chang, Zee-Fen; Tsay, Yeou-Guang

    2015-09-10

    It has been observed that a modified peptide and its non-modified counterpart, when analyzed with reverse phase liquid chromatography, usually share a very similar elution property [1-3]. Inasmuch as this property is common to many different types of protein modifications, we propose an informatics-based approach, featuring the generation of segmental average mass spectra ((sa)MS), that is capable of locating different types of modified peptides in two-dimensional liquid chromatography-mass spectrometric (LC-MS) data collected for regular protease digests from proteins in gels or solutions. To enable the localization of these peptides in the LC-MS map, we have implemented a set of computer programs, or the (sa)MS package, that perform the needed functions, including generating a complete set of segmental average mass spectra, compiling the peptide inventory from the Sequest/TurboSequest results, searching modified peptide candidates and annotating a tandem mass spectrum for final verification. Using ROCK2 as an example, our programs were applied to identify multiple types of modified peptides, such as phosphorylated and hexosylated ones, which particularly include those peptides that could have been ignored due to their peculiar fragmentation patterns and consequent low search scores. Hence, we demonstrate that, when complemented with peptide search algorithms, our approach and the entailed computer programs can add the sequence information needed for bolstering the confidence of data interpretation by the present analytical platforms and facilitate the mining of protein modification information out of complicated LC-MS/MS data. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pease, J.H.

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometrymore » calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.« less

  8. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  9. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  10. 2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.

  11. Regions of recognition by blocking antibodies on the light chain of botulinum neurotoxin A: antigenic structure of the entire toxin.

    PubMed

    Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger; Atassi, M Zouhair

    2011-06-01

    The continuous regions on botulinum neurotoxin A (BoNT/A) light (L) chain recognized by anti-toxin antibodies (Abs) from mouse, horse and chicken have been mapped. We synthesized a panel of thirty-two 19-residue peptides that overlapped consecutively by 5 residues and encompassed the entire L chain (residues 1-453). Mouse Abs recognized 5 major antigenic regions on the L chain, horse Abs recognized 9 while chicken Abs recognized 8 major antigenic regions. Overall, however, the three host species recognized, to some extent, similar, but not identical, peptides and the levels of Abs directed against a given region varied with the immunized host. Differences in the MHC of the host caused variation in levels of Ab recognition and some epitopes showed right or left frame-shifts among the species. Selected region(s) were also uniquely recognized by one species (e.g., peptide L1 by horse Abs). Mapping of the L chain antigenic regions and the previous localization of the regions on the H chain with the same antisera, has permitted description of the complete antigenic structure of BoNT/A. The locations in the 3-dimensional structure of the antigenic regions of the entire toxin are shown for mouse Abs. In the 3-D structure, the antigenic regions are on the surface of the toxin and when antibodies are bound the enzymatic activity of the light chain is obstructed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Speeding up biomolecular interactions by molecular sledding

    DOE PAGES

    Turkin, Alexander; Zhang, Lei; Marcozzi, Alessio; ...

    2015-10-07

    In numerous biological processes associations involve a protein with its binding partner, an event that is preceded by a diffusion-mediated search bringing the two partners together. Often hindered by crowding in biologically relevant environments, three-dimensional diffusion can be slow and result in long bimolecular association times. Moreover, the initial association step between two binding partners often represents a rate-limiting step in biotechnologically relevant reactions. We also demonstrate the practical use of an 11-a.a. DNA-interacting peptide derived from adenovirus to reduce the dimensionality of diffusional search processes and speed up associations between biological macromolecules. We functionalize binding partners with the peptidemore » and demonstrate that the ability of the peptide to one-dimensionally diffuse along DNA results in a 20-fold reduction in reaction time. We also show that modifying PCR primers with the peptide sled enables significant acceleration of standard PCR reactions.« less

  13. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.

    PubMed

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-05

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Design and synthesis of multiple antigenic peptides and their application for dengue diagnosis.

    PubMed

    Rai, Reeta; Dubey, Sameer; Santosh, K V; Biswas, Ashutosh; Mehrotra, Vinit; Rao, D N

    2017-09-01

    Major difficulty in development of dengue diagnostics is availability of suitable antigens. To overcome this, we made an attempt to develop a peptide based diagnosis which offers significant advantage over other methods. With the help of in silico methods, two epitopes were selected from envelope protein and three from NS1 protein of dengue virus. These were synthesized in combination as three multiple antigenic peptides (MAPs). We have tested 157 dengue positive sera confirmed for NS1 antigen. MAP1 showed 96.81% sera positive for IgM and 68.15% positive for IgG. MAP2 detected 94.90% IgM and 59.23% IgG positive sera. MAP3 also detected 96.17% IgM and 59.87% IgG positive sera. To the best of our knowledge this is the first study describing the use of synthetic multiple antigenic peptides for the diagnosis of dengue infection. This study describes MAPs as a promising tool for the use in serodiagnosis of dengue. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  16. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography.

    PubMed

    Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan

    2017-10-27

    The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  18. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  19. The versatility of heart-cutting and comprehensive two-dimensional liquid chromatography in monoclonal antibody clone selection.

    PubMed

    Sandra, Koen; Steenbeke, Mieke; Vandenheede, Isabel; Vanhoenacker, Gerd; Sandra, Pat

    2017-11-10

    In recent years, two-dimensional liquid chromatography (2D-LC) has seen an enormous evolution and one of the fields where it is being widely adopted is in the analysis of therapeutic monoclonal antibodies (mAbs). We here further add to the many flavours of this powerful technology. Workflows based on heart-cutting (LC-LC) and comprehensive (LC×LC) 2D-LC are described that allow to guide the clone selection process in mAb and biosimilar development. Combining Protein A affinity chromatography in the first dimension with size exclusion (SEC), cation exchange (CEX) or reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) in the second dimension simultaneously allows to assess mAb titer and critical structural aspects such as aggregation, fragmentation, charge heterogeneity, molecular weight (MW), amino acid sequence and glycosylation. Complementing the LC-LC measurements at intact protein level with LC×LC based peptide mapping provides the necessary information to make clear decisions on which clones to take further into development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Epitope mapping of PR81 anti-MUC1 monoclonal antibody following PEPSCAN and phage display techniques.

    PubMed

    Mohammadi, Mohammad; Rasaee, Mohammad Javad; Rajabibazl, Masoumeh; Paknejad, Malihe; Zare, Mehrak; Mohammadzadeh, Sara

    2007-08-01

    PR81 is an anti-MUC1 monoclonal antibody (MAb) which was generated against human MUC1 mucin that reacted with breast cancerous tissue, MUC1 positive cell line (MCF-7, BT-20, and T-4 7 D), and synthetic peptide, including the tandem repeat sequence of MUC1. Here we characterized the binding properties of PR81 against the tandem repeat of MUC1 by two different epitope mapping techniques, namely, PEPSCAN and phage display. Epitope mapping of PR81 MAb by PEPSCAN revealed a minimal consensus binding sequence, PDTRP, which is found on MUC1 peptide as the most important epitope. Using the phage display peptide library, we identified the motif PD(T/S/G)RP as an epitope and the motif AVGLSPDGSRGV as a mimotope recognized by PR81. Results of these two methods showed that the two residues, arginine and aspartic acid, have important roles in antibody binding and threonine can be substituted by either glycine or serine. These results may be of importance in tailor making antigens used in immunoassay.

  1. Mimotope mapping as a complementary strategy to define allergen IgE-epitopes: peach Pru p 3 allergen as a model.

    PubMed

    Pacios, Luis F; Tordesillas, Leticia; Cuesta-Herranz, Javier; Compes, Esther; Sánchez-Monge, Rosa; Palacín, Arantxa; Salcedo, Gabriel; Díaz-Perales, Araceli

    2008-04-01

    Lipid transfer proteins (LTPs) are the major allergens of Rosaceae fruits in the Mediterranean area. Pru p 3, the LTP and major allergen of peach, is a suitable model for studying food allergy and amino acid sequences related with its IgE-binding capacity. In this work, we sought to map IgE mimotopes on the structure of Pru p 3, using the combination of a random peptide phage display library and a three-dimensional modelling approach. Pru p 3-specific IgE was purified from 2 different pools of sera from peach allergic patients grouped by symptoms (OAS-pool or SYS-pool), and used for screening of a random dodecapeptide phage display library. Positive clones were further confirmed by ELISA assays testing individual sera from each pool. Three-dimensional modelling allowed location of mimotopes based on analysis of electrostatic properties and solvent exposure of the Pru p 3 surface. Twenty-one phage clones were selected using Pru p 3-specific IgE, 9 of which were chosen using OAS-specific IgE while the other 12 were selected with systemic-specific IgE. Peptide alignments revealed consensus sequences for each pool: L37 R39 T40 P42 D43 R44 A46 P70 S76 P78 Y79 for OAS-IgE, and N35 N36 L37 R39 T40 D43 A46 S76 I77 P78 for systemic-IgE. These 2 consensus sequences were mapped on the same surface of Pru p 3, corresponding to the helix 2-loop-helix 3 region and part of the non-structured C-terminal coil. Thus, 2 relevant conformational IgE-binding regions of Pru p 3 were identified using a random peptide phage display library. Mimotopes can be used to study the interaction between allergens and IgE, and to accelerate the process to design new vaccines and new immunotherapy strategies.

  2. Proteomics analysis of "Rovabiot Excel", a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation.

    PubMed

    Guais, Olivier; Borderies, Gisèle; Pichereaux, Carole; Maestracci, Marc; Neugnot, Virginie; Rossignol, Michel; François, Jean Marie

    2008-12-01

    MS/MS techniques are well customized now for proteomic analysis, even for non-sequenced organisms, since peptide sequences obtained by these methods can be matched with those found in databases from closely related sequenced organisms. We used this approach to characterize the protein content of the "Rovabio Excel", an enzymatic cocktail produced by Penicillium funiculosum that is used as feed additive in animal nutrition. Protein separation by bi-dimensional electrophoresis yielded more than 100 spots, from which 37 proteins were unambiguously assigned from peptide sequences. By one-dimensional SDS-gel electrophoresis, 34 proteins were identified among which 8 were not found in the 2-DE analysis. A third method, termed 'peptidic shotgun', which consists in a direct treatment of the cocktail by trypsin followed by separation of the peptides on two-dimensional liquid chromatography, resulted in the identification of two additional proteins not found by the two other methods. Altogether, more than 50 proteins, among which several glycosylhydrolytic, hemicellulolytic and proteolytic enzymes, were identified by combining three separation methods in this enzymatic cocktail. This work confirmed the power of proteome analysis to explore the genome expression of a non-sequenced fungus by taking advantage of sequences from phylogenetically related filamentous fungi and pave the way for further functional analysis of P. funiculosum.

  3. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.

    PubMed

    Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon

    2015-11-03

    Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Kozinski, Mariusz; Sander, Wolfram; Hamm, Peter

    2006-11-01

    X-ray crystallography and nuclear magnetic resonance measurements provide us with atomically resolved structures of an ever-growing number of biomolecules. These static structural snapshots are important to our understanding of biomolecular function, but real biomolecules are dynamic entities that often exploit conformational changes and transient molecular interactions to perform their tasks. Nuclear magnetic resonance methods can follow such structural changes, but only on millisecond timescales under non-equilibrium conditions. Time-resolved X-ray crystallography has recently been used to monitor the photodissociation of CO from myoglobin on a subnanosecond timescale, yet remains challenging to apply more widely. In contrast, two-dimensional infrared spectroscopy, which maps vibrational coupling between molecular groups and hence their relative positions and orientations, is now routinely used to study equilibrium processes on picosecond timescales. Here we show that the extension of this method into the non-equilibrium regime allows us to observe in real time in a short peptide the weakening of an intramolecular hydrogen bond and concomitant opening of a β-turn. We find that the rate of this process is two orders of magnitude faster than the `folding speed limit' established for contact formation between protein side chains.

  5. Towards a Molecular Movie: Real Time Observation of Hydrogen Bond Breaking by Transient 2D-IR Spectroscopy in a Cyclic Peptide

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter

    Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.

  6. Coupled chaotic fluctuations in a model of international trade and innovation: Some preliminary results

    NASA Astrophysics Data System (ADS)

    Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori

    2018-05-01

    We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.

  7. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  8. Two-dimensional sum-frequency generation (2D SFG) reveals structure and dynamics of a surface-bound peptide

    PubMed Central

    Laaser, Jennifer E.; Skoff, David R.; Ho, Jia-Jung; Joo, Yongho; Serrano, Arnaldo L.; Steinkruger, Jay D.; Gopalan, Padma; Gellman, Samuel H.; Zanni, Martin T.

    2014-01-01

    Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which is collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D lineshapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins. PMID:24372101

  9. Water-Floating Giant Nanosheets from Helical Peptide Pentamers

    NASA Astrophysics Data System (ADS)

    Lee, Jaehun; Nam, Ki Tae

    One of the important challenges in the development of protein-mimetic materials is to understand the sequence specific assembly behavior and the dynamic folding change. Conventional strategies to construct two dimensional nanostructures from the peptides have been limited to beta-sheet forming sequences in use of basic building blocks because of their natural tendency to form sheet like aggregations. Here we identified a new peptide sequence, YFCFY that can form dimers by the disulfide bridge, fold into helix and assemble into macroscopic flat sheet at the air/water interface. Because of large driving force for two dimensional assembly and high elastic modulus of the resulting sheet, the peptide assembly induces the flattening of initially round water droplet. Additionally, we found that stabilization of helix by the dimerization is a key determinant for maintaining macroscopic flatness over a few tens centimeter even with a uniform thickness below 10 nm. Furthermore, the capability to transfer 2D film from water droplet to other substrates allows for the multiple stacking of 2D peptide nanostructure, suggesting possible applications in the biomimetic catalysts, biosensor and 2D related electronic devices. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1401-01.

  10. Immune recognition of botulinum neurotoxin B: antibody-binding regions on the heavy chain of the toxin.

    PubMed

    Dolimbek, Behzod Z; Steward, Lance E; Aoki, K Roger; Atassi, M Zouhair

    2008-02-01

    The purpose of this work was to map the continuous regions recognized by human, horse and mouse anti-botulinum neurotoxin B (BoNT/B) antibodies (Abs). We synthesized a panel of sixty 19-residue peptides (peptide C31 was 24 residues) that overlapped consecutively by 5 residues and together encompassed the entire heavy chain of BoNT/B (H/B, residues 442-1291). Abs from the three host species recognized similar, but not identical, peptides. There were also peptides recognized by two or only by one host species. Where a peptide was recognized by Abs of more than one host species, these Abs were at different levels among the species. Human, horse and mouse Abs bound, although in different amounts, to regions within peptides 736-754, 778-796, 848-866, 932-950, 974-992, 1058-1076 and 1128-1146. Human and horse Abs bound to peptides 890-908 and 1170-1188. Human and mouse Abs recognized peptides 470-488/484-502 overlap, 638-656, 722-740, 862-880, 1030-1048, 1072-1090, 1240-1258 and 1268-1291. We concluded that the antigenic regions localized with the three antisera are quite similar, exhibiting in some cases a small shift to the left or to the right. This is consistent with what is known about protein immune recognition. In the three-dimensional structure, the regions recognized on H/B by anti-BoNT/B Abs occupied surface locations and analysis revealed no correlation between these surface locations and surface electrostatic potential, hydrophilicity, hydrophobicity, or temperature factor. A region that bound mouse Abs overlapped with a recently defined site on BoNT/B that binds to mouse and rat synaptotagmin II, thus providing a molecular explanation for the blocking (protecting) activity of these Abs. The regions thus localized afford candidates for incorporation into a synthetic vaccine design.

  11. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.

    PubMed

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  12. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide

    NASA Astrophysics Data System (ADS)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  13. The mzqLibrary--An open source Java library supporting the HUPO-PSI quantitative proteomics standard.

    PubMed

    Qi, Da; Zhang, Huaizhong; Fan, Jun; Perkins, Simon; Pisconti, Addolorata; Simpson, Deborah M; Bessant, Conrad; Hubbard, Simon; Jones, Andrew R

    2015-09-01

    The mzQuantML standard has been developed by the Proteomics Standards Initiative for capturing, archiving and exchanging quantitative proteomic data, derived from mass spectrometry. It is a rich XML-based format, capable of representing data about two-dimensional features from LC-MS data, and peptides, proteins or groups of proteins that have been quantified from multiple samples. In this article we report the development of an open source Java-based library of routines for mzQuantML, called the mzqLibrary, and associated software for visualising data called the mzqViewer. The mzqLibrary contains routines for mapping (peptide) identifications on quantified features, inference of protein (group)-level quantification values from peptide-level values, normalisation and basic statistics for differential expression. These routines can be accessed via the command line, via a Java programming interface access or a basic graphical user interface. The mzqLibrary also contains several file format converters, including import converters (to mzQuantML) from OpenMS, Progenesis LC-MS and MaxQuant, and exporters (from mzQuantML) to other standards or useful formats (mzTab, HTML, csv). The mzqViewer contains in-built routines for viewing the tables of data (about features, peptides or proteins), and connects to the R statistical library for more advanced plotting options. The mzqLibrary and mzqViewer packages are available from https://code.google.com/p/mzq-lib/. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. © 2013 The Authors. Child Development © 2013 Society for Research in Child Development, Inc.

  15. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    NASA Astrophysics Data System (ADS)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  16. Inverse full state hybrid projective synchronization for chaotic maps with different dimensions

    NASA Astrophysics Data System (ADS)

    Ouannas, Adel; Grassi, Giuseppe

    2016-09-01

    A new synchronization scheme for chaotic (hyperchaotic) maps with different dimensions is presented. Specifically, given a drive system map with dimension n and a response system with dimension m, the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states. The method, based on the Lyapunov stability theory and the pole placement technique, presents some useful features: (i) it enables synchronization to be achieved for both cases of n < m and n > m; (ii) it is rigorous, being based on theorems; (iii) it can be readily applied to any chaotic (hyperchaotic) maps defined to date. Finally, the capability of the approach is illustrated by synchronization examples between the two-dimensional Hénon map (as the drive system) and the three-dimensional hyperchaotic Wang map (as the response system), and the three-dimensional Hénon-like map (as the drive system) and the two-dimensional Lorenz discrete-time system (as the response system).

  17. LC-MS/MS with 2D mass mapping of skin secretions' peptides as a reliable tool for interspecies identification inside Rana esculenta complex.

    PubMed

    Samgina, Tatyana Yu; Gorshkov, Vladimir A; Artemenko, Konstantin A; Vorontsov, Egor A; Klykov, Oleg V; Ogourtsov, Sergey V; Zubarev, Roman A; Lebedev, Albert T

    2012-04-01

    Identification of species constituting Rana esculenta complex represents a certain problem as two parental species Rana ridibunda and Rana lessonae form their hybrid R. esculenta, while external signs and sizes of the members of this complex are intersected. However the composition of skin secretion consisting mainly of peptides is different for the species of the complex. LC-MS/MS is an ideal analytical tool for the quantitative and qualitative analysis of these peptides. The results covering elemental composition of these peptides, their levels in the secretion, as well as their belonging to a certain family of peptides may be visualized by means of 2D mass maps. The proposed approach proved itself to be a perspective tool for the reliable identification of all 3 species constituting R. esculenta complex. Easy distinguishing between the species may be achieved using 2D maps as fingerprints. Besides this approach may be used to study hybridogenesis and mechanisms of hemiclonal transfer of genetic information, when rapid and reliable identification of species involved in the process is required. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tao; Meyer, Travis A.; Modlin, Charles

    In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less

  19. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    DOE PAGES

    Jiang, Tao; Meyer, Travis A.; Modlin, Charles; ...

    2017-09-26

    In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less

  20. Site-specific vibrational dynamics of the CD3ζ membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prabuddha; Krummel, Amber T.; Fulmer, Eric C.; Kass, Itamar; Arkin, Isaiah T.; Zanni, Martin T.

    2004-06-01

    Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3ζ. Using 1-13C=18O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm-1, respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm-1 to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3ζ peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed.

  1. Conformal mapping in optical biosensor applications.

    PubMed

    Zumbrum, Matthew E; Edwards, David A

    2015-09-01

    Optical biosensors are devices used to investigate surface-volume reaction kinetics. Current mathematical models for reaction dynamics rely on the assumption of unidirectional flow within these devices. However, new devices, such as the Flexchip, include a geometry that introduces two-dimensional flow, complicating the depletion of the volume reactant. To account for this, a previous mathematical model is extended to include two-dimensional flow, and the Schwarz-Christoffel mapping is used to relate the physical device geometry to that for a device with unidirectional flow. Mappings for several Flexchip dimensions are considered, and the ligand depletion effect is investigated for one of these mappings. Estimated rate constants are produced for simulated data to quantify the inclusion of two-dimensional flow in the mathematical model.

  2. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  3. JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins.

    PubMed

    Hiller, Karsten; Grote, Andreas; Maneck, Matthias; Münch, Richard; Jahn, Dieter

    2006-10-01

    After the publication of JVirGel 1.0 in 2003 we got many requests and suggestions from the proteomics community to further improve the performance of the software and to add additional useful new features. The integration of the PrediSi algorithm for the prediction of signal peptides for the Sec-dependent protein export into JVirGel 2.0 allows the exclusion of most exported preproteins from calculated proteomic maps and provides the basis for the calculation of Sec-based secretomes. A tool for the identification of transmembrane helices carrying proteins (JCaMelix) and the prediction of the corresponding membrane proteome was added. Finally, in order to directly compare experimental and calculated proteome data, a function to overlay and evaluate predicted and experimental two-dimensional gels was included. JVirGel 2.0 is freely available as precompiled package for the installation on Windows or Linux operating systems. Furthermore, there is a completely platform-independent Java version available for download. Additionally, we provide a Java Server Pages based version of JVirGel 2.0 which can be operated in nearly all web browsers. All versions are accessible at http://www.jvirgel.de

  4. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    PubMed

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  5. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  6. Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa

    PubMed Central

    Campos, Alexandre; Turkina, Maria V.; Ribeiro, Tiago; Osorio, Hugo; Vasconcelos, Vítor; Antunes, Agostinho

    2018-01-01

    Cnidarian toxic products, particularly peptide toxins, constitute a promising target for biomedicine research. Indeed, cnidarians are considered as the largest phylum of generally toxic animals. However, research on peptides and toxins of sea anemones is still limited. Moreover, most of the toxins from sea anemones have been discovered by classical purification approaches. Recently, high-throughput methodologies have been used for this purpose but in other Phyla. Hence, the present work was focused on the proteomic analyses of whole-body extract from the unexplored sea anemone Bunodactis verrucosa. The proteomic analyses applied were based on two methods: two-dimensional gel electrophoresis combined with MALDI-TOF/TOF and shotgun proteomic approach. In total, 413 proteins were identified, but only eight proteins were identified from gel-based analyses. Such proteins are mainly involved in basal metabolism and biosynthesis of antibiotics as the most relevant pathways. In addition, some putative toxins including metalloproteinases and neurotoxins were also identified. These findings reinforce the significance of the production of antimicrobial compounds and toxins by sea anemones, which play a significant role in defense and feeding. In general, the present study provides the first proteome map of the sea anemone B. verrucosa stablishing a reference for future studies in the discovery of new compounds. PMID:29364843

  7. Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa.

    PubMed

    Domínguez-Pérez, Dany; Campos, Alexandre; Alexei Rodríguez, Armando; Turkina, Maria V; Ribeiro, Tiago; Osorio, Hugo; Vasconcelos, Vítor; Antunes, Agostinho

    2018-01-24

    Cnidarian toxic products, particularly peptide toxins, constitute a promising target for biomedicine research. Indeed, cnidarians are considered as the largest phylum of generally toxic animals. However, research on peptides and toxins of sea anemones is still limited. Moreover, most of the toxins from sea anemones have been discovered by classical purification approaches. Recently, high-throughput methodologies have been used for this purpose but in other Phyla. Hence, the present work was focused on the proteomic analyses of whole-body extract from the unexplored sea anemone Bunodactis verrucosa . The proteomic analyses applied were based on two methods: two-dimensional gel electrophoresis combined with MALDI-TOF/TOF and shotgun proteomic approach. In total, 413 proteins were identified, but only eight proteins were identified from gel-based analyses. Such proteins are mainly involved in basal metabolism and biosynthesis of antibiotics as the most relevant pathways. In addition, some putative toxins including metalloproteinases and neurotoxins were also identified. These findings reinforce the significance of the production of antimicrobial compounds and toxins by sea anemones, which play a significant role in defense and feeding. In general, the present study provides the first proteome map of the sea anemone B. verrucosa stablishing a reference for future studies in the discovery of new compounds.

  8. Two-dimensional proteome reference maps for the soybean cyst nematode Heterodera glycines

    USDA-ARS?s Scientific Manuscript database

    Two-dimensional electrophoresis (2-DE) reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. Results showed...

  9. Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid State NMR

    PubMed Central

    Luca, Sorin; Yau, Wai-Ming; Leapman, Richard; Tycko, Robert

    2008-01-01

    The 37-residue amylin peptide, also known as islet amyloid polypeptide, forms fibrils that are the main peptide or protein component of amyloid that develops in the pancreas of type 2 diabetes patients. Amylin also readily forms amyloid fibrils in vitro that are highly polymorphic under typical experimental conditions. We describe a protocol for the preparation of synthetic amylin fibrils that exhibit a single predominant morphology, which we call a striated ribbon, in electron microscope and atomic force microscope images. Solid state nuclear magnetic resonance (NMR) measurements on a series of isotopically labeled samples indicate a single molecular structure within the striated ribbons. We use scanning transmission electron microscopy and several types of one-dimensional and two-dimensional solid state NMR techniques to obtain constraints on the peptide conformation and supramolecular structure in these amylin fibrils, and derive molecular structural models that are consistent with the experimental data. The basic structural unit in amylin striated ribbons, which we call the protofilament, contains four-layers of parallel β-sheets, formed by two symmetric layers of amylin molecules. The molecular structure of amylin protofilaments in striated ribbons closely resembles the protofilament in amyloid fibrils with similar morphology formed by the 40-residue β-amyloid peptide that is associated with Alzheimer's disease. PMID:17979302

  10. Dimensional control of supramolecular assemblies of diacetylene-derived peptide gemini amphiphile: from spherical micelles to foamlike networks.

    PubMed

    Jiang, Hao; Ehlers, Martin; Hu, Xiao-Yu; Zellermann, Elio; Schmuck, Carsten

    2018-05-22

    Peptide amphiphiles capable of assembling into multidimensional nanostructures have attracted much attention over the past decade due to their potential applications in materials science. Herein, a novel diacetylene-derived peptide gemini amphiphile with a fluorenylmethyloxycarbonyl (Fmoc) group at the N-terminus is reported to hierarchically assemble into spherical micelles, one-dimensional nanorods, two-dimensional foamlike networks and lamellae. Solvent polarity shows a remarkable effect on the self-assembled structures by changing the balance of four weak noncovalent interactions (hydrogen-bonding, π-π stacking, hydrophobic interaction, and electrostatic repulsion). We also show the time-evolution not only from spherical micelles to helical nanofibers in aqueous solution, but also from branched wormlike micelles to foamlike networks in methanol solution. In this work, the presence of the Fmoc group plays a key role in the self-assembly process. This work provides an efficient strategy for precise morphological control, aiding the future development in materials science.

  11. Biogelx: Cell Culture on Self-Assembling Peptide Gels.

    PubMed

    Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V

    2018-01-01

    Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.

  12. Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Sprenger, Richard R; Speijer, Dave; Back, Jaap Willem; De Koster, Chris G; Pannekoek, Hans; Horrevoets, Anton J G

    2004-01-01

    The human endothelial cell plasma membrane harbors two subdomains of similar lipid composition, caveolae and rafts, both crucially involved in various essential cellular processes like transcytosis, signal transduction and cholesterol homeostasis. Caveolin-enriched membranes, isolated by either cationic silica or buoyant density methods, were explored by comparing large series of two-dimensional (2-D) maps and subsequent identification of over 100 protein spots by matrix-assisted laser desorption/ionization (MALDI) peptide mass fingerprinting. Improved representation and identification of membrane proteins and valuable information on various post-translational modifications was achieved by the presented optimized procedures for solubilization, destaining and database searching/computing. Whereas the cationic silica purification yielded predominantly known endoplasmic reticulum residents, the cold-detergent method yielded a large number of known caveolae residents, including caveolin-1. Thus, a large part of this subproteome was established, including known (trans-)membrane, signal transduction and glycosyl phosphatidylinositol (GPI)-anchored proteins. Several predicted proteins from the human genome were isolated for the first time from biological samples, including SGRP58, SLP-2, C8ORF2, and XRP-2. These findings and various optimized procedures can serve as a reference to study the differential composition of endothelial cell caveolae and rafts, known to be involved in pathologies like cancer and cardiovascular disease.

  13. Structure of glycosylated and unglycosylated gag polyproteins of Rauscher murine leukemia virus: carbohydrate attachment sites.

    PubMed Central

    Schultz, A M; Lockhart, S M; Rabin, E M; Oroszlan, S

    1981-01-01

    The structural relationships among the gag polyproteins Pr65gag, Pr75gag, and gPr80gag of Rauscher murine leukemia virus were studied by endoglycosidase H digestion and formic acid cleavage. Fragments were identified by precipitation with specific antisera to constituent virion structural proteins followed by one-dimensional mapping. Endoglycosidase H reduced the size of gPr80gag to that of Pr75gag. By comparing fragments of gPr80gag and the apoprotein Pr75gag, the former was shown to contain two mannose-rich oligosaccharide units. By comparing fragments of Pr65gag and Pr75gag, the latter was shown to differ from Pr65gag at the amino terminus by the presence of a leader peptide approximately 7,000 daltons in size. The internal and carboxyl-terminal peptides of the two unglycosylated polyproteins were not detectably different. The location of the two N-linked carbohydrate chains in gPr80gag has been specified. One occurs in the carboxyl-terminal half of the polyprotein at asparagine177 of the p30 sequence and the other is found in a 23,000-dalton fragment located in the amino-terminal region of gPr80gag and containing the additional amino acid sequences not found in Pr65gag plus a substantial portion of p15. Images PMID:7241663

  14. Effortless assignment with 4D covariance sequential correlation maps.

    PubMed

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effortless assignment with 4D covariance sequential correlation maps

    NASA Astrophysics Data System (ADS)

    Harden, Bradley J.; Mishra, Subrata H.; Frueh, Dominique P.

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase.

  16. High-throughput screening in two dimensions: binding intensity and off-rate on a peptide microarray.

    PubMed

    Greving, Matthew P; Belcher, Paul E; Cox, Conor D; Daniel, Douglas; Diehnelt, Chris W; Woodbury, Neal W

    2010-07-01

    We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background. We show that most peptides with the slowest off-rates on the microarray also have the slowest off-rates when measured by surface plasmon resonance (SPR). 2010 Elsevier Inc. All rights reserved.

  17. Epitope mapping and evaluation of specificity of T-helper sites in four major antigenic peptides of chicken riboflavin carrier protein in outbred rats.

    PubMed

    Subramanian, Sarada; Andal, S; Karande, Anjali A; Radhakantha Adiga, P

    2003-11-07

    This paper reviews our studies on synthetic peptides spanning the major antigenic determinants of the chicken riboflavin carrier protein (RCP; 219 AA). These determinants are composed of residues 4-24 (YGC), 64-83 (CED), 130-147 (GEN), and 200-219 (HAC) and function as minivaccines in terms of eliciting anti-peptide antibodies which recognize the native protein and are particularly promising contraceptive vaccine candidates. We have used 15-residue synthetic peptides to define short sequences involved in interaction with antibody and with T-cells. We have mapped the boundaries of T-cell epitopes of these peptides in outbred rats by immunizing the animals with each peptide and assaying the popliteal lymph node cell proliferation against a series of overlapping synthetic 15-mers covering the entire length of the individual peptides. The peptides YGC, GEN, and HAC harboured a single T-cell epitope each whereas the peptide CED exhibited bimodal response possessing two epitopes, one at N-terminus and the other at the C-terminus. These studies provide insight into the way in which an immunogen is viewed by the immune system. In addition, preferential T-cell helper function for B cells recognizing unique determinants on the same molecule was demonstrated. This information helps in exploiting synthetic peptides in the construction of designer immunogens which have potential as candidate vaccines.

  18. An Interdisciplinary Theme: Topographic Maps and Plate Tectonics

    ERIC Educational Resources Information Center

    Concannon, James P.; Aulgur, Linda

    2011-01-01

    This is an interdisciplinary lesson designed for middle school students studying landforms and geological processes. Students create a two-dimensional topographic map from a three-dimensional landform that they create using clay. Students then use other groups' topographic maps to re-create landforms. Following this, students explore some basic…

  19. A replaceable microreactor for on-line protein digestion in a two-dimensional capillary electrophoresis system with tandem mass spectrometry detection

    PubMed Central

    Li, Yihan; Wojcik, Roza; Dovichi, Norman J.

    2010-01-01

    We describe a two-dimensional capillary electrophoresis system that incorporates a replaceable enzymatic microreactor for on-line protein digestion. In this system, trypsin is immobilized on magnetic beads. At the start of each experiment, old beads are flushed to waste and replaced with a fresh plug of beads, which is captured by a pair of magnets at the distal tip of the first capillary. For analysis, proteins are separated in the first capillary. A fraction is then parked in the reactor to create peptides. Digested peptides are periodically transferred to the second capillary for separation; a fresh protein fraction is simultaneously moved to the reactor for digestion. An electrospray interface is used to introduce peptides into a mass spectrometer for analysis. This procedure is repeated for several dozen fractions under computer control. The system was demonstrated by the separation and digestion of insulin chain b oxidized and β-casein as model proteins. PMID:21030030

  20. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  1. Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides.

    PubMed

    Abb, Sabine; Harnau, Ludger; Gutzler, Rico; Rauschenbach, Stephan; Kern, Klaus

    2016-01-12

    The sequence of a peptide programs its self-assembly and hence the expression of specific properties through non-covalent interactions. A large variety of peptide nanostructures has been designed employing different aspects of these non-covalent interactions, such as dispersive interactions, hydrogen bonding or ionic interactions. Here we demonstrate the sequence-controlled fabrication of molecular nanostructures using peptides as bio-organic building blocks for two-dimensional (2D) self-assembly. Scanning tunnelling microscopy reveals changes from compact or linear assemblies (angiotensin I) to long-range ordered, chiral honeycomb networks (angiotensin II) as a result of removal of steric hindrance by sequence modification. Guided by our observations, molecular dynamic simulations yield atomistic models for the elucidation of interpeptide-binding motifs. This new approach to 2D self-assembly on surfaces grants insight at the atomic level that will enable the use of oligo- and polypeptides as large, multi-functional bio-organic building blocks, and opens a new route towards rationally designed, bio-inspired surfaces.

  2. Comparison of fractionation strategies for offline two-dimensional liquid chromatography tandem mass spectrometry analysis of proteins from mouse adipose tissue.

    PubMed

    Sajic, Tatjana; Varesio, Emmanuel; Szanto, Ildiko; Hopfgartner, Gérard

    2015-09-01

    In the frame of protein identification from mouse adipose tissue, two strategies were compared for the offline elution of peptides from a strong cation exchange (SCX) column in two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) analyses. First, the salt gradient (using K(+) as displacing agent) was evaluated from 25 to 500mM KCl. Then, a less investigated elution mode using a pH gradient (using citric acid and ammonium hydroxide) was carried out from pH 2.5 to 9.0. Equal amounts of peptide digest derived from mouse adipose tissue were loaded onto the SCX column and fractionated according to the two approaches. A total of 15 fractions were collected in two independent experiments for each SCX elution strategy. Then, each fraction was analyzed on a nanoLC-MS/MS platform equipped with a column-switching unit for desalting and enrichment. No substantial differences in peptide quality characteristics (molecular weight, isoelectric point, or GRAVY [grand average of hydropathicity] index distributions) were observed between the two datasets. The pH gradient approach was found to be superior, with 27.5% more unique peptide identifications and 10% more distinct protein identifications compared with the salt-based elution method. In conclusion, our data imply that the pH gradient SCX fractionation is more desirable for proteomics analysis of entire adipose tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cloning and characterization of an 11S legumin, Car i 4, a major allergen in pecan.

    PubMed

    Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K

    2011-09-14

    Among tree nut allergens, pecan allergens remain to be identified and characterized. The objective was to demonstrate the IgE-binding ability of pecan 11S legumin and characterize its sequential IgE-binding epitopes. The 11S legumin gene was amplified from a pecan cDNA library and expressed as a fusion protein in Escherichia coli. The native 11S legumin in pecan extract was identified by mass spectrometry/mass spectrometry (MS/MS). Sequential epitopes were determined by probing the overlapping peptides with three serum pools prepared from different patients' sera. A three-dimensional model was generated using almond legumin as a template and compared with known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot blot, 16 (57%) bound to 11S legumin, designated Car i 4. MS/MS sequencing of native 11S legumin identified 33 kDa acidic and 20-22 kDa basic subunits. Both pecan and walnut seed protein extracts inhibited IgE binding to recombinant Car i 4, suggesting cross-reactivity with Jug r 4. Sequential epitope mapping results of Car i 4 revealed weak, moderate, and strong reactivity of serum pools against 10, 5, and 4 peptides, respectively. Seven peptides were recognized by all three serum pools, of which two were strongly reactive. The strongly reactive peptides were located in three discrete regions of the Car i 4 acidic subunit sequence (residues 118-132, 208-219, and 238-249). Homology modeling of Car i 4 revealed significant overlapping regions shared in common with other tree nut legumins.

  4. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  5. MS/MS library facilitated MRM quantification of native peptides prepared by denaturing ultrafiltration

    PubMed Central

    2012-01-01

    Naturally occurring native peptides provide important information about physiological states of an organism and its changes in disease conditions but protocols and methods for assessing their abundance are not well-developed. In this paper, we describe a simple procedure for the quantification of non-tryptic peptides in body fluids. The workflow includes an enrichment step followed by two-dimensional fractionation of native peptides and MS/MS data management facilitating the design and validation of LC- MRM MS assays. The added value of the workflow is demonstrated in the development of a triplex LC-MRM MS assay used for quantification of peptides potentially associated with the progression of liver disease to hepatocellular carcinoma. PMID:22304756

  6. Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan.

    PubMed

    Sharma, Girdhari M; Irsigler, Andre; Dhanarajan, Pushparani; Ayuso, Rosalia; Bardina, Luda; Sampson, Hugh A; Roux, Kenneth H; Sathe, Shridhar K

    2011-04-27

    Although pecans are associated with IgE-mediated food allergies, the allergens responsible remain to be identified and characterized. The 2S albumin gene was amplified from the pecan cDNA library. Dot-blots were used to screen the recombinant protein with pecan allergic patients' serum. The affinity purified native protein was analyzed by Edman sequencing and mass spectrometry/mass spectrometry (MS/MS) analysis. Cross-reactivity with walnut was determined by inhibition enzyme-linked immunosorbent assay (ELISA). Sequential epitopes were determined by probing the overlapping peptides with three different patients' serum pool. The 3-dimensional homology model was generated, and the locations of the pecan epitopes were compared with those of known sequential epitopes on other allergenic tree nut homologues. Of 28 patients tested by dot-blot, 22 (79%) bound to 2S albumin, designated as Car i 1. Edman sequencing and the MS/MS sequencing of native 2S albumin confirmed the identity of recombinant (r) Car i 1. Both pecan and walnut protein extracts inhibited the IgE-binding to rCar i 1. Sequential epitope mapping indicated weak, moderate, and strong reactivity against 12, 7, and 5 peptides, respectively. Of the 11 peptides recognized by all serum pools, 5 peptides were strongly reactive and located in 3 discrete regions of the Car i 1 (amino acids 43-57, 67-78, and 106-120). Three-dimensional modeling revealed IgE-reactive epitopes to be solvent accessible and share significant homology with other tree nuts providing a possible basis for previously observed cross-reactivity.

  7. Detection of phosphorylated forms of moloney murine leukemia virus major capsid protein p30 by immunoprecipitation and two-dimensional gel electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, K.; Luftig, R.B.

    1988-01-01

    The authors detected phosphorylation of the major Moloney murine leukemia virus (M-MuLV) capsid polypeptide, p30, by using /sup 32/P/sub i/-labeled virions. This was observed both on two-dimensional polyacrylamide gels directly or on one-dimensional gels of viral lysates that had been immunoprecipitated with monospecific goat anti-p30 serum. The phosphorylation event had been difficult to detect because pp12 the major virion phosphoprotein incorporates almost all of the /sup 32/P label added to infected cells. When immunoprecipitates from M-MuLV lysates labeled with /sup 32/P/sub i/ were compared with those labeled with (/sup 35/S)methionine, it was calculated that the degree of phosphorylation at themore » p30 domain of Pr65/sup gag/ was only 0.22 to 0.54% relative to phosphorylation at the p12 domain. Two-dimensional gel electrophoresis of the /sup 32/P-labeled p30 immunoprecipitates showed that there were three phosphorylated p30 forms with isoelectric points (pIs) of 5.7, 5.8, and 6.0. These forms were generally more acidic than the (/sup 35/S) methionine-labeled p30 forms, which had pIs of 6.0, 6.1, 6.3 (the major constituent with > 80% of the label), and 6.6. The predominant phosphoamino acid of the major phosphorylated p30 form (pI 5.8) was phosphoserine. Further, tryptic peptide analysis of this p30 form showed that only one peptide was predominantly phosphorylated. Based on a comparison of specific labeling of p30 tryptic peptides with (/sup 14/C)sesrine, (/sup 35/S)methionine, and /sup 32/P/sub i/, we tentatively assigned the phosphorylation site to a 2.4-kilodalton NH/sub 2/-terminal peptide containing triple tandem serines spanning the region from amino acids 4 to 24.« less

  8. Method for enhanced accuracy in predicting peptides using liquid separations or chromatography

    DOEpatents

    Kangas, Lars J.; Auberry, Kenneth J.; Anderson, Gordon A.; Smith, Richard D.

    2006-11-14

    A method for predicting the elution time of a peptide in chromatographic and electrophoretic separations by first providing a data set of known elution times of known peptides, then creating a plurality of vectors, each vector having a plurality of dimensions, and each dimension representing the elution time of amino acids present in each of these known peptides from the data set. The elution time of any protein is then be predicted by first creating a vector by assigning dimensional values for the elution time of amino acids of at least one hypothetical peptide and then calculating a predicted elution time for the vector by performing a multivariate regression of the dimensional values of the hypothetical peptide using the dimensional values of the known peptides. Preferably, the multivariate regression is accomplished by the use of an artificial neural network and the elution times are first normalized using a transfer function.

  9. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  10. Velocity distributions on two-dimensional wing-duct inlets by conformal mapping

    NASA Technical Reports Server (NTRS)

    Perl, W; Moses, H E

    1948-01-01

    The conformal-mapping method of the Cartesian mapping function is applied to the determination of the velocity distribution on arbitrary two-dimensional duct-inlet shapes such as are used in wing installations. An idealized form of the actual wing-duct inlet is analyzed. The effects of leading edge stagger, inlet-velocity ratio, and section lift coefficients on the velocity distribution are included in the analysis. Numerical examples are given and, in part, compared with experimental data.

  11. Direct visualization of in vitro drug mobilization from Lescol XL tablets using two-dimensional (19)F and (1)H magnetic resonance imaging.

    PubMed

    Chen, Chen; Gladden, Lynn F; Mantle, Michael D

    2014-02-03

    This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.

  12. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  13. Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R.S.; Cameron, P.L.; Castle, J.D.

    1986-10-01

    A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pImore » and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.« less

  14. ACTG: novel peptide mapping onto gene models.

    PubMed

    Choi, Seunghyuk; Kim, Hyunwoo; Paek, Eunok

    2017-04-15

    In many proteogenomic applications, mapping peptide sequences onto genome sequences can be very useful, because it allows us to understand origins of the gene products. Existing software tools either take the genomic position of a peptide start site as an input or assume that the peptide sequence exactly matches the coding sequence of a given gene model. In case of novel peptides resulting from genomic variations, especially structural variations such as alternative splicing, these existing tools cannot be directly applied unless users supply information about the variant, either its genomic position or its transcription model. Mapping potentially novel peptides to genome sequences, while allowing certain genomic variations, requires introducing novel gene models when aligning peptide sequences to gene structures. We have developed a new tool called ACTG (Amino aCids To Genome), which maps peptides to genome, assuming all possible single exon skipping, junction variation allowing three edit distances from the original splice sites, exon extension and frame shift. In addition, it can also consider SNVs (single nucleotide variations) during mapping phase if a user provides the VCF (variant call format) file as an input. Available at http://prix.hanyang.ac.kr/ACTG/search.jsp . eunokpaek@hanyang.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space

    USDA-ARS?s Scientific Manuscript database

    A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...

  16. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  17. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  18. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  19. Molecular immune recognition of botulinum neurotoxin B. The light chain regions that bind human blocking antibodies from toxin-treated cervical dystonia patients. Antigenic structure of the entire BoNT/B molecule.

    PubMed

    Atassi, M Zouhair; Jankovic, Joseph; Steward, Lance E; Aoki, K Roger; Dolimbek, Behzod Z

    2012-01-01

    We recently mapped the regions on the heavy (H) chain of botulinum neurotoxin, type B (BoNT/B) recognized by blocking antibodies (Abs) from cervical dystonia (CD) patients who develop immunoresistance during toxin treatment. Since blocking could also be effected by Abs directed against regions on the light (L) chain, we have mapped here the L chain, using the same 30 CD antisera. We synthesized, purified and characterized 32 19-residue L chain peptides that overlapped successively by 5 residues (peptide L32 overlapped with peptide N1 of the H chain by 12 residues). In a given patient, Abs against the L chain seemed less intense than those against H chain. Most sera recognized a limited set of L chain peptides. The levels of Abs against a given region varied with the patient, consistent with immune responses to each epitope being under separate MHC control. The peptides most frequently recognized were: L13, by 30 of 30 antisera (100%); L22, by 23 of 30 (76.67%); L19, by 15 of 30 (50.00%); L26, by 11 of 30 (36.70%); and L14, by 12 of 30 (40.00%). The activity of L14 probably derives from its overlap with L13. The levels of Ab binding decreased in the following order: L13 (residues 169-187), L22 (295-313), L19 (253-271), and L26 (351-369). Peptides L12 (155-173), L18 (239-257), L15 (197-215), L1 (1-19) and L23 (309-327) exhibited very low Ab binding. The remaining peptides had little or no Ab-binding activity. The antigenic regions are analyzed in terms of their three-dimensional locations and the enzyme active site. With the previous localization of the antigenic regions on the BoNT/B H chain, the human Ab recognition of the entire BoNT/B molecule is presented and compared to the recognition of BoNT/A by human blocking Abs. Copyright © 2011. Published by Elsevier GmbH.

  20. Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential

    PubMed Central

    Gao, Ya; Li, Yongxiu; Mou, Lirong; Lin, Bingbing; Zhang, John Z. H.; Mei, Ye

    2015-01-01

    A new modification to the AMBER force field that incorporates the coupled two-dimensional main chain torsion energy has been evaluated for the balanced representation of secondary structures. In this modified AMBER force field (AMBER032D), the main chain torsion energy is represented by 2-dimensional Fourier expansions with parameters fitted to the potential energy surface generated by high-level quantum mechanical calculations of small peptides in solution. Molecular dynamics simulations are performed to study the folding of two model peptides adopting either α-helix or β-hairpin structures. Both peptides are successfully folded into their native structures using an AMBER032D force field with the implementation of a polarization scheme (AMBER032Dp). For comparison, simulations using a standard AMBER03 force field with and without polarization, as well as AMBER032D without polarization, fail to fold both peptides successfully. The correction to secondary structure propensity in the AMBER03 force field and the polarization effect are critical to folding Trpzip2; without these factors, a helical structure is obtained. This study strongly suggests that this new force field is capable of providing a more balanced preference for helical and extended conformations. The electrostatic polarization effect is shown to be indispensable to the growth of secondary structures. PMID:26039188

  1. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    PubMed

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  2. Optimization of Reversed-Phase Peptide Liquid Chromatography Ultraviolet Mass Spectrometry Analyses Using an Automated Blending Methodology

    PubMed Central

    Chakraborty, Asish B.; Berger, Scott J.

    2005-01-01

    The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described. PMID:16522853

  3. More than the sum of its parts: Coarse-grained peptide-lipid interactions from a simple cross-parametrization

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Wang, Zun-Jing; Deserno, Markus

    2014-03-01

    Interfacial systems are at the core of fascinating phenomena in many disciplines, such as biochemistry, soft-matter physics, and food science. However, the parametrization of accurate, reliable, and consistent coarse-grained (CG) models for systems at interfaces remains a challenging endeavor. In the present work, we explore to what extent two independently developed solvent-free CG models of peptides and lipids—of different mapping schemes, parametrization methods, target functions, and validation criteria—can be combined by only tuning the cross-interactions. Our results show that the cross-parametrization can reproduce a number of structural properties of membrane peptides (for example, tilt and hydrophobic mismatch), in agreement with existing peptide-lipid CG force fields. We find encouraging results for two challenging biophysical problems: (i) membrane pore formation mediated by the cooperative action of several antimicrobial peptides, and (ii) the insertion and folding of the helix-forming peptide WALP23 in the membrane.

  4. Identification of selenium-containing proteins in HEK 293 kidney cells using multiple chromatographies, LC-ICPMS and nano-LC-ESIMS.

    PubMed

    Chitta, Karnakar R; Landero-Figueroa, Julio A; Kodali, Phanichand; Caruso, Joseph A; Merino, Edward J

    2013-09-30

    Our previous studies using HeLa and HEK 293 cells demonstrated that selenomethionine, SeMet, exerts more of an antagonistic effect on arsenic than other selenium species. These studies attributed the antagonistic effect of SeMet to decreased levels of reactive oxygen species, ROS, changes in protein phosphorylation and possible incorporation of SeMet into proteins. The present study employs a metallomics approach to identify the selenium-containing proteins in HEK 293 cells raised with SeMet. The proteins were screened and separated using two dimensional high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICPMS), size exclusion chromatography (SEC) and reversed-phase chromatography (RPC). The Se-containing proteins were identified by peptide mapping using nano-HPLC-Chip-electrospray ionization mass spectrometry (ESIMS). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Novel Inhibitor Cystine Knot Peptides from Momordica charantia

    PubMed Central

    Clark, Richard J.; Tang, Jun; Zeng, Guang-Zhi; Franco, Octavio L.; Cantacessi, Cinzia; Craik, David J.; Daly, Norelle L.; Tan, Ning-Hua

    2013-01-01

    Two new peptides, MCh-1 and MCh-2, along with three known trypsin inhibitors (MCTI-I, MCTI-II and MCTI-III), were isolated from the seeds of the tropical vine Momordica charantia. The sequences of the peptides were determined using mass spectrometry and NMR spectroscopy. Using a strategy involving partial reduction and stepwise alkylation of the peptides, followed by enzymatic digestion and tandem mass spectrometry sequencing, the disulfide connectivity of MCh-1 was elucidated to be CysI-CysIV, CysII-CysV and CysIII-CysVI. The three-dimensional structures of MCh-1 and MCh-2 were determined using NMR spectroscopy and found to contain the inhibitor cystine knot (ICK) motif. The sequences of the novel peptides differ significantly from peptides previously isolated from this plant. Therefore, this study expands the known peptide diversity in M. charantia and the range of sequences that can be accommodated by the ICK motif. Furthermore, we show that a stable two-disulfide intermediate is involved in the oxidative folding of MCh-1. This disulfide intermediate is structurally homologous to the proposed ancestral fold of ICK peptides, and provides a possible pathway for the evolution of this structural motif, which is highly prevalent in nature. PMID:24116036

  6. Function approximation using combined unsupervised and supervised learning.

    PubMed

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  7. A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Jin, Cong

    2017-03-01

    In this paper, a novel algorithm of image encryption based on quantum chaotic is proposed. The keystreams are generated by the two-dimensional logistic map as initial conditions and parameters. And then general Arnold scrambling algorithm with keys is exploited to permute the pixels of color components. In diffusion process, a novel encryption algorithm, folding algorithm, is proposed to modify the value of diffused pixels. In order to get the high randomness and complexity, the two-dimensional logistic map and quantum chaotic map are coupled with nearest-neighboring coupled-map lattices. Theoretical analyses and computer simulations confirm that the proposed algorithm has high level of security.

  8. Analysis of proteomic differences between liquefied after-cataracts and normal lenses using two-dimensional gel electrophoresis and mass spectrometry

    PubMed Central

    Ge, Jia-Jia; Huang, Yu-Sen

    2017-01-01

    AIM To analyze and identify the proteomic differences between liquefied after-cataracts and normal lenses by means of liquefied chromatography-tandem mass spectrometry (LC-MS/MS). METHODS Three normal lenses and three liquefied after-cataracts were exposed to depolymerizing reagents to extract the total proteins. Protein concentrations were separated using two-dimensional gel electrophoresis (2-DE). The digitized images obtained with a GS-800 scanner were then analyzed with PDQuest7.0 software to detect the differentially-expressed protein spots. These protein spots were cut from the gel using a proteome work spot cutter and subjected to in-gel digestion with trypsin. The digested peptide separation was conducted by LC-MS/MS. RESULTS The 2-DE maps showed that lens proteins were in a pH range of 3-10 with a relative molecular weight of 21-70 kD. The relative molecular weight of the more abundant proteins was localized at 25-50 kD, and the isoelectric points were found to lie between PI 4-9. The maps also showed that the protein level within the liquefied after-cataracts was at 29 points and significantly lower than in normal lenses. The 29 points were identified by LC-MS/MS, and ten of these proteins were identified by mass spectrometry and database queries: beta-crystallin B1, glyceraldehyde-3-phosphate dehydrogenase, carbonyl reductase (NADPH) 1, cDNA FLJ55253, gamma-crystallin D, GAS2-like protein 3, sorbitol dehydrogenase, DNA FLJ60282, phosphoglycerate kinase, and filensin. CONCLUSION The level of the ten proteins may play an important role in the development of liquefied after-cataracts. PMID:28944190

  9. High Throughput T Epitope Mapping and Vaccine Development

    PubMed Central

    Li Pira, Giuseppina; Ivaldi, Federico; Moretti, Paolo; Manca, Fabrizio

    2010-01-01

    Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost. PMID:20617148

  10. Two-Year-Old Children Interpret Abstract, Purely Geometric Maps

    ERIC Educational Resources Information Center

    Winkler-Rhoades, Nathan; Carey, Susan C.; Spelke, Elizabeth S.

    2013-01-01

    In two experiments, 2.5-year-old children spontaneously used geometric information from 2D maps to locate objects in a 3D surface layout, without instruction or feedback. Children related maps to their corresponding layouts even though the maps differed from the layouts in size, mobility, orientation, dimensionality, and perspective, and even when…

  11. Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide.

    PubMed

    Jiang, Tao; Xu, Chunfu; Zuo, Xiaobing; Conticello, Vincent P

    2014-08-04

    A collagen-mimetic peptide, NSIII, has been designed with three sequential blocks having positive, neutral, and negative charges, respectively. The non-canonical imino acid, (2S,4S)-4-aminoproline (amp), was used to specify the positive charges at the Xaa positions of (Xaa-Yaa-Gly) triads in the N-terminal domain of NSIII. Peptide NSIII underwent self-assembly from aqueous solution to form a highly homogeneous population of nanosheets. Two-dimensional crystalline sheets formed in which the length of the peptide defined the height of the sheets. These results contrasted with prior results on a similar multi-domain collagen-mimetic polypeptides in which the sheets had highly polydisperse distribution of sizes in the (x/y)- and (z)-dimensions. The structural differences between the two nanosheet assemblies were interpreted in terms of the relative stereoelectronic effects of the different aminoproline derivatives on the local triple helical conformation of the peptides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient, adaptive estimation of two-dimensional firing rate surfaces via Gaussian process methods.

    PubMed

    Rad, Kamiar Rahnama; Paninski, Liam

    2010-01-01

    Estimating two-dimensional firing rate maps is a common problem, arising in a number of contexts: the estimation of place fields in hippocampus, the analysis of temporally nonstationary tuning curves in sensory and motor areas, the estimation of firing rates following spike-triggered covariance analyses, etc. Here we introduce methods based on Gaussian process nonparametric Bayesian techniques for estimating these two-dimensional rate maps. These techniques offer a number of advantages: the estimates may be computed efficiently, come equipped with natural errorbars, adapt their smoothness automatically to the local density and informativeness of the observed data, and permit direct fitting of the model hyperparameters (e.g., the prior smoothness of the rate map) via maximum marginal likelihood. We illustrate the method's flexibility and performance on a variety of simulated and real data.

  13. Skin secretion peptides: the molecular facet of the deimatic behavior of the four-eyed frog, Physalaemus nattereri (Anura, Leptodactylidae).

    PubMed

    Barbosa, Eder Alves; Iembo, Tatiane; Martins, Graciella Ribeiro; Silva, Luciano Paulino; Prates, Maura Vianna; Andrade, Alan Carvalho; Bloch, Carlos

    2015-11-15

    Amphibians can produce a large amount of bioactive peptides over the skin. In order to map the precise tissue localization of these compounds and evaluate their functions, mass spectrometry imaging (MSI) and gene expression studies were used to investigate a possible correlation between molecules involved in the antimicrobial defense mechanisms and anti-predatory behavior by Physalaemus nattereri. Total skin secretion of P. nattereri was analyzed by classical Protein Chemistry and proteomic techniques. Intact inguinal macroglands were dissected from the rest of the skin and both tissues were analyzed by MSI and real-time polymerase chain reaction (RT-PCR) experiments. Peptides were primarily identified by de novo sequencing, automatic Edman degradation and cDNA data. Fifteen bradykinin (BK)-related peptides and two antimicrobial peptides were sequenced and mapped by MSI on the inguinal macrogland and the rest of P. nattereri skin. RT-PCR results revealed that BK-related peptide levels of expression were about 30,000 times higher on the inguinal macroglands than on the any other region of the skin, whilst antimicrobial peptide ions appear to be evenly distributed in both investigated regions. The presence of antimicrobial peptides in all investigated tissue regions is in accordance with the defensive role against microorganisms thoroughly demonstrated in the literature, whereas BK-related molecules are largely found on the inguinal macroglands suggesting an intriguing link between their noxious activities against potential predators of P. nattereri and the frog's deimatic behavior. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Studies of the structure-activity relationships of peptides and proteins involved in growth and development based on their three-dimensional structures.

    PubMed

    Nagata, Koji

    2010-01-01

    Peptides and proteins with similar amino acid sequences can have different biological functions. Knowledge of their three-dimensional molecular structures is critically important in identifying their functional determinants. In this review, I describe the results of our and other groups' structure-based functional characterization of insect insulin-like peptides, a crustacean hyperglycemic hormone-family peptide, a mammalian epidermal growth factor-family protein, and an intracellular signaling domain that recognizes proline-rich sequence.

  15. Phage display and synthetic peptides as promising biotechnological tools for the serological diagnosis of leprosy.

    PubMed

    Alban, Silvana Maria; de Moura, Juliana Ferreira; Thomaz-Soccol, Vanete; Bührer Sékula, Samira; Alvarenga, Larissa Magalhães; Mira, Marcelo Távora; Olortegui, Carlos Chávez; Minozzo, João Carlos

    2014-01-01

    The diagnosis of leprosy is primarily based on clinical manifestations, and there is no widely available laboratory test for the early detection of this disease, which is caused by Mycobacterium leprae. In fact, early detection and treatment are the key elements to the successful control of leprosy. Peptide ligands for antibodies from leprosy patients were selected from phage-displayed peptide libraries. Three peptide sequences expressed by reactive phage clones were chemically synthesized. Serological assays that used synthetic peptides were evaluated using serum samples from leprosy patients, household contacts (HC) of leprosy patients, tuberculosis patients and endemic controls (EC). A pool of three peptides identified 73.9% (17/23) of multibacillary (MB) leprosy patients using an enzyme-linked immunosorbent assay (ELISA). These peptides also showed some seroreactivities to the HC and EC individuals. The peptides were not reactive to rabbit polyclonal antisera against the different environmental mycobacteria. The same peptides that were conjugated to the carrier protein bovine serum albumin (BSA) induced the production of antibodies in the mice. The anti-peptide antibodies that were used in the Western blotting analysis of M. leprae crude extracts revealed a single band of approximately 30 kDa in one-dimensional electrophoresis and four 30 kDa isoforms in the two-dimensional gel. The Western blotting data indicated that the three peptides are derived from the same bacterial protein. These new antigens may be useful in the diagnosis of MB leprosy patients. Their potentials as diagnostic reagents must be more extensively evaluated in future studies using a large panel of positive and negative sera. Furthermore, other test approaches using peptides should be assessed to increase their sensitivity and specificity in detecting leprosy patients. We have revealed evidence in support of phage-displayed peptides as promising biotechnological tools for the design of leprosy diagnostic serological assays.

  16. Selective determination of arginine-containing and tyrosine-containing peptides using capillary electrophoresis and laser-induced fluorescence detection.

    PubMed

    Cobb, K A; Novotny, M V

    1992-01-01

    The use of two different amino acid-selective fluorogenic reagents for the derivatization of peptides is investigated. One such scheme utilizes a selective reaction of benzoin with the guanidine moiety to derivatize arginine residues occurring in a peptide. The second scheme involves the formylation of tyrosine, followed by reaction with 4-methoxy-1,2-phenylenediamine. The use of capillary electrophoresis and laser-induced fluorescence detection allows enhanced efficiencies and sensitivities to be obtained for the separations of either arginine- or tyrosine-containing peptides. A helium-cadmium laser (325 nm) is ideally suited for the laser-based detection system due to a close match of the excitation maxima of derivatized peptides from both reactions. A detection limit of 270 amol is achieved for model arginine-containing peptides, while the detection limit for model tyrosine-containing peptides is measured at 390 amol. Both derivatization reactions are found to be useful for high-sensitivity peptide mapping applications in which only the peptides containing the derivatized amino acids are detected.

  17. A complete mass spectrometric map for the analysis of the yeast proteome and its application to quantitative trait analysis

    PubMed Central

    Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi

    2013-01-01

    Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424

  18. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  19. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state.

    PubMed

    Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank

    2017-09-13

    NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.

  20. Instructor-Led Approach to Integrating an Augmented Reality Sandbox into a Large-Enrollment Introductory Geoscience Course for Nonmajors Produces No Gains

    ERIC Educational Resources Information Center

    Giorgis, Scott; Mahlen, Nancy; Anne, Kirk

    2017-01-01

    The augmented reality (AR) sandbox bridges the gap between two-dimensional (2D) and three-dimensional (3D) visualization by projecting a digital topographic map onto a sandbox landscape. As the landscape is altered, the map dynamically adjusts, providing an opportunity to discover how to read topographic maps. We tested the hypothesis that the AR…

  1. Decoding the Effect of Isobaric Substitutions on Identifying Missing Proteins and Variant Peptides in Human Proteome.

    PubMed

    Choong, Wai-Kok; Lih, Tung-Shing Mamie; Chen, Yu-Ju; Sung, Ting-Yi

    2017-12-01

    To confirm the existence of missing proteins, we need to identify at least two unique peptides with length of 9-40 amino acids of a missing protein in bottom-up mass-spectrometry-based proteomic experiments. However, an identified unique peptide of the missing protein, even identified with high level of confidence, could possibly coincide with a peptide of a commonly observed protein due to isobaric substitutions, mass modifications, alternative splice isoforms, or single amino acid variants (SAAVs). Besides unique peptides of missing proteins, identified variant peptides (SAAV-containing peptides) could also alternatively map to peptides of other proteins due to the aforementioned issues. Therefore, we conducted a thorough comparative analysis on data sets in PeptideAtlas Tiered Human Integrated Search Proteome (THISP, 2017-03 release), including neXtProt (2017-01 release), to systematically investigate the possibility of unique peptides in missing proteins (PE2-4), unique peptides in dubious proteins, and variant peptides affected by isobaric substitutions, causing doubtful identification results. In this study, we considered 11 isobaric substitutions. From our analysis, we found <5% of the unique peptides of missing proteins and >6% of variant peptides became shared with peptides of PE1 proteins after isobaric substitutions.

  2. Fusion of Protegrin-1 and Plectasin to MAP30 Shows Significant Inhibition Activity against Dengue Virus Replication

    PubMed Central

    Rothan, Hussin A.; Bahrani, Hirbod; Mohamed, Zulqarnain; Abd Rahman, Noorsaadah; Yusof, Rohana

    2014-01-01

    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities. PMID:24722532

  3. RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells.

    PubMed

    Burgess, Kyle A; Workman, Victoria L; Elsawy, Mohamed A; Miller, Aline F; Oceandy, Delvac; Saiani, Alberto

    2018-01-01

    Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution-pronase-was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed.

  4. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  5. A two-dimensional lattice equation as an extension of the Heideman-Hogan recurrence

    NASA Astrophysics Data System (ADS)

    Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2018-03-01

    We consider a two dimensional extension of the so-called linearizable mappings. In particular, we start from the Heideman-Hogan recurrence, which is known as one of the linearizable Somos-like recurrences, and introduce one of its two dimensional extensions. The two dimensional lattice equation we present is linearizable in both directions, and has the Laurent and the coprimeness properties. Moreover, its reduction produces a generalized family of the Heideman-Hogan recurrence. Higher order examples of two dimensional linearizable lattice equations related to the Dana Scott recurrence are also discussed.

  6. Participatory three dimensional mapping for the preparation of landslide disaster risk reduction program

    NASA Astrophysics Data System (ADS)

    Kusratmoko, Eko; Wibowo, Adi; Cholid, Sofyan; Pin, Tjiong Giok

    2017-07-01

    This paper presents the results of applications of participatory three dimensional mapping (P3DM) method for fqcilitating the people of Cibanteng' village to compile a landslide disaster risk reduction program. Physical factors, as high rainfall, topography, geology and land use, and coupled with the condition of demographic and social-economic factors, make up the Cibanteng region highly susceptible to landslides. During the years 2013-2014 has happened 2 times landslides which caused economic losses, as a result of damage to homes and farmland. Participatory mapping is one part of the activities of community-based disaster risk reduction (CBDRR)), because of the involvement of local communities is a prerequisite for sustainable disaster risk reduction. In this activity, participatory mapping method are done in two ways, namely participatory two-dimensional mapping (P2DM) with a focus on mapping of disaster areas and participatory three-dimensional mapping (P3DM) with a focus on the entire territory of the village. Based on the results P3DM, the ability of the communities in understanding the village environment spatially well-tested and honed, so as to facilitate the preparation of the CBDRR programs. Furthermore, the P3DM method can be applied to another disaster areas, due to it becomes a medium of effective dialogue between all levels of involved communities.

  7. 2DB: a Proteomics database for storage, analysis, presentation, and retrieval of information from mass spectrometric experiments.

    PubMed

    Allmer, Jens; Kuhlgert, Sebastian; Hippler, Michael

    2008-07-07

    The amount of information stemming from proteomics experiments involving (multi dimensional) separation techniques, mass spectrometric analysis, and computational analysis is ever-increasing. Data from such an experimental workflow needs to be captured, related and analyzed. Biological experiments within this scope produce heterogenic data ranging from pictures of one or two-dimensional protein maps and spectra recorded by tandem mass spectrometry to text-based identifications made by algorithms which analyze these spectra. Additionally, peptide and corresponding protein information needs to be displayed. In order to handle the large amount of data from computational processing of mass spectrometric experiments, automatic import scripts are available and the necessity for manual input to the database has been minimized. Information is in a generic format which abstracts from specific software tools typically used in such an experimental workflow. The software is therefore capable of storing and cross analysing results from many algorithms. A novel feature and a focus of this database is to facilitate protein identification by using peptides identified from mass spectrometry and link this information directly to respective protein maps. Additionally, our application employs spectral counting for quantitative presentation of the data. All information can be linked to hot spots on images to place the results into an experimental context. A summary of identified proteins, containing all relevant information per hot spot, is automatically generated, usually upon either a change in the underlying protein models or due to newly imported identifications. The supporting information for this report can be accessed in multiple ways using the user interface provided by the application. We present a proteomics database which aims to greatly reduce evaluation time of results from mass spectrometric experiments and enhance result quality by allowing consistent data handling. Import functionality, automatic protein detection, and summary creation act together to facilitate data analysis. In addition, supporting information for these findings is readily accessible via the graphical user interface provided. The database schema and the implementation, which can easily be installed on virtually any server, can be downloaded in the form of a compressed file from our project webpage.

  8. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    PubMed

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  9. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Cease, Kemp B

    2010-09-15

    The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.

  10. Music Signal Processing Using Vector Product Neural Networks

    NASA Astrophysics Data System (ADS)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  11. Two dimensional thermal and charge mapping of power thyristors

    NASA Technical Reports Server (NTRS)

    Hu, S. P.; Rabinovici, B. M.

    1975-01-01

    The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.

  12. Near infrared spectroscopy for mastitis diagnosis: Two-dimensional correlation study in short wavelength region

    NASA Astrophysics Data System (ADS)

    Tsenkova, Roumiana; Murayama, Koichi; Kawano, Sumio; Wu, Yuqing; Toyoda, Kiyohiko; Ozaki, Yukihiro

    2000-03-01

    We describe the application of two-dimensional correlation spectroscopic (2DCOS) technique for mastitic diagnosis. Seven average spectra in the short wavelength region (700-1100 nm) of mastitic levels separated from healthy to disease were subjected to 2DCOS analysis. Synchronous correlation map clearly showed water and fat bands. Asynchronous correlation map indicated the dynamical variations of milk constituents in milk occurred when a cow gets mastitis.

  13. XMM Observations of Low Mass Groups

    NASA Technical Reports Server (NTRS)

    Davis, David S.

    2005-01-01

    The contents of this report contains discussion of the two-dimensional XMM-Newton group survey. The analysis of the NGC 2300 and Pavo observations indicated by the azimuthally averaged analysis that the temperature structure is minimal to the NGC2300 system; however, the Pavo system shows signs of a merger in progress. XMM data is used to generate two dimensional maps of the temperature and abundance used to generate maps of pressure and entropy.

  14. Dimensionality reduction of collective motion by principal manifolds

    NASA Astrophysics Data System (ADS)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  15. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip

    USGS Publications Warehouse

    Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.

    2005-01-01

    In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.

  16. Detection of serum antibodies cross-reacting with Mycobacterium avium subspecies paratuberculosis and beta-cell antigen zinc transporter 8 homologous peptides in patients with high-risk proliferative diabetic retinopathy.

    PubMed

    Pinna, Antonio; Masala, Speranza; Blasetti, Francesco; Maiore, Irene; Cossu, Davide; Paccagnini, Daniela; Mameli, Giuseppe; Sechi, Leonardo A

    2014-01-01

    MAP3865c, a Mycobacterium avium subspecies paratuberculosis (MAP) cell membrane protein, has a relevant sequence homology with zinc transporter 8 (ZnT8), a beta-cell membrane protein involved in Zn++ transportation. Recently, antibodies recognizing MAP3865c epitopes have been shown to cross-react with ZnT8 in type 1 diabetes patients. The purpose of this study was to detect antibodies against MAP3865c peptides in patients with high-risk proliferative diabetic retinopathy and speculate on whether they may somehow be involved in the pathogenesis of this severe retinal disorder. Blood samples were obtained from 62 type 1 and 80 type 2 diabetes patients with high-risk proliferative diabetic retinopathy and 81 healthy controls. Antibodies against 6 highly immunogenic MAP3865c peptides were detected by indirect ELISA. Type 1 diabetes patients had significantly higher rates of positive antibodies than controls. Conversely, no statistically significant differences were found between type 2 diabetes patients and controls. After categorization of type 1 diabetes patients into two groups, one with positive, the other with negative antibodies, we found that they had similar mean visual acuity (∼ 0.6) and identical rates of vitreous hemorrhage (28.6%). Conversely, Hashimoto's thyroiditis prevalence was 4/13 (30.7%) in the positive antibody group and 1/49 (2%) in the negative antibody group, a statistically significant difference (P = 0.016). This study confirmed that type 1 diabetes patients have significantly higher rates of positive antibodies against MAP/ZnT8 peptides, but failed to find a correlation between the presence of these antibodies and the severity degree of high-risk proliferative diabetic retinopathy. The significantly higher prevalence of Hashimoto's disease among type 1 diabetes patients with positive antibodies might suggest a possible common environmental trigger for these conditions.

  17. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects

    PubMed Central

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica

    2017-01-01

    Abstract Significance: “Nitroproteomic” is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a “tour de force” for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Critical Issues: Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. Future Directions: The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313–328. PMID:27324931

  18. DD-HDS: A method for visualization and exploration of high-dimensional data.

    PubMed

    Lespinats, Sylvain; Verleysen, Michel; Giron, Alain; Fertil, Bernard

    2007-09-01

    Mapping high-dimensional data in a low-dimensional space, for example, for visualization, is a problem of increasingly major concern in data analysis. This paper presents data-driven high-dimensional scaling (DD-HDS), a nonlinear mapping method that follows the line of multidimensional scaling (MDS) approach, based on the preservation of distances between pairs of data. It improves the performance of existing competitors with respect to the representation of high-dimensional data, in two ways. It introduces (1) a specific weighting of distances between data taking into account the concentration of measure phenomenon and (2) a symmetric handling of short distances in the original and output spaces, avoiding false neighbor representations while still allowing some necessary tears in the original distribution. More precisely, the weighting is set according to the effective distribution of distances in the data set, with the exception of a single user-defined parameter setting the tradeoff between local neighborhood preservation and global mapping. The optimization of the stress criterion designed for the mapping is realized by "force-directed placement" (FDP). The mappings of low- and high-dimensional data sets are presented as illustrations of the features and advantages of the proposed algorithm. The weighting function specific to high-dimensional data and the symmetric handling of short distances can be easily incorporated in most distance preservation-based nonlinear dimensionality reduction methods.

  19. Three-dimensional mapping of the lateral ventricles in autism

    PubMed Central

    Vidal, Christine N.; Nicolsonln, Rob; Boire, Jean-Yves; Barra, Vincent; DeVito, Timothy J.; Hayashi, Kiralee M.; Geaga, Jennifer A.; Drost, Dick J.; Williamson, Peter C.; Rajakumar, Nagalingam; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    In this study, a computational mapping technique was used to examine the three-dimensional profile of the lateral ventricles in autism. T1-weighted three-dimensional magnetic resonance images of the brain were acquired from 20 males with autism (age: 10.1 ± 3.5 years) and 22 male control subjects (age: 10.7 ± 2.5 years). The lateral ventricles were delineated manually and ventricular volumes were compared between the two groups. Ventricular traces were also converted into statistical three-dimensional maps, based on anatomical surface meshes. These maps were used to visualize regional morphological differences in the thickness of the lateral ventricles between patients and controls. Although ventricular volumes measured using traditional methods did not differ significantly between groups, statistical surface maps revealed subtle, highly localized reductions in ventricular size in patients with autism in the left frontal and occipital horns. These localized reductions in the lateral ventricles may result from exaggerated brain growth early in life. PMID:18502618

  20. Phase transitions in coupled map lattices and in associated probabilistic cellular automata.

    PubMed

    Just, Wolfram

    2006-10-01

    Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.

  1. Chimera states in Gaussian coupled map lattices

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  2. Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes.

    PubMed

    McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip; Law, Mansun

    2016-01-01

    With the increasing need for understanding antibody specificity in antibody and vaccine research, pepscan assays provide a rapid method for mapping and profiling antibody responses to continuous epitopes. We have developed a relatively low-cost method to generate peptide microarray slides for studying antibody binding. Using a setup of an IntavisAG MultiPep RS peptide synthesizer, a Digilab MicroGrid II 600 microarray printer robot, and an InnoScan 1100 AL scanner, the method allows the interrogation of up to 1536 overlapping, alanine-scanning, and mutant peptides derived from the target antigens. Each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface.

  3. Large-scale mass spectrometric detection of variant peptides resulting from non-synonymous nucleotide differences

    PubMed Central

    Sheynkman, Gloria M.; Shortreed, Michael R.; Frey, Brian L.; Scalf, Mark; Smith, Lloyd M.

    2013-01-01

    Each individual carries thousands of non-synonymous single nucleotide variants (nsSNVs) in their genome, each corresponding to a single amino acid polymorphism (SAP) in the encoded proteins. It is important to be able to directly detect and quantify these variations at the protein level in order to study post-transcriptional regulation, differential allelic expression, and other important biological processes. However, such variant peptides are not generally detected in standard proteomic analyses, due to their absence from the generic databases that are employed for mass spectrometry searching. Here, we extend previous work that demonstrated the use of customized SAP databases constructed from sample-matched RNA-Seq data. We collected deep coverage RNA-Seq data from the Jurkat cell line, compiled the set of nsSNVs that are expressed, used this information to construct a customized SAP database, and searched it against deep coverage shotgun MS data obtained from the same sample. This approach enabled detection of 421 SAP peptides mapping to 395 nsSNVs. We compared these peptides to peptides identified from a large generic search database containing all known nsSNVs (dbSNP) and found that more than 70% of the SAP peptides from this dbSNP-derived search were not supported by the RNA-Seq data, and thus are likely false positives. Next, we increased the SAP coverage from the RNA-Seq derived database by utilizing multiple protease digestions, thereby increasing variant detection to 695 SAP peptides mapping to 504 nsSNV sites. These detected SAP peptides corresponded to moderate to high abundance transcripts (30+ transcripts per million, TPM). The SAP peptides included 192 allelic pairs; the relative expression levels of the two alleles were evaluated for 51 of those pairs, and found to be comparable in all cases. PMID:24175627

  4. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation.

    PubMed

    Ozgur, Beytullah; Sayar, Mehmet

    2016-10-06

    Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.

  5. Sheep polyclonal antibody to map Haemonchus contortus mimotopes using phage display library.

    PubMed

    Buzatti, Andréia; Fernandez, Arnielis Diaz; Arenal, Amilcar; Pereira, Erlán; Monteiro, Alda Lucia Gomes; Molento, Marcelo Beltrão

    2018-05-24

    The aim of this study was to evaluate phage display technology for mapping Haemonchus contortus mimotopes. We screened the PhD-7 Phage Display Peptide Library Kit with a sheep polyclonal antibody against H. contortus. After four rounds of selection, 50 phage peptide clones were selected by biopanning and sequenced. Two clones displaying peptide mimotopes of H. contortus proteins were chosen for sheep immunization: clone 6 - mimotope of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and clone 17 - mimotope of a disorganized muscle family member (Dim 1). Twelve sheep were allocated into 3 groups of 4 animals as follow: G1: control group; G2/GAPDH: immunized with clone 6; and G3/Dim1: immunized with clone 17. Four immunizations were performed at intervals of seven days (0, 7, 14, and 21 days). On day 28 post initial vaccination, all groups were orally challenged with 2500 H. contortus infective larvae. The mimotope peptides selected by phage display were recognized by IgG from sheep naturaly infected with H. contortus. The immunization protocol showed an increasein IgG anti-M13 phage titers, but no effect was observed in IgG-specific for the anti-mimotope peptides. This is the first report of successful use of a phage display library for the identification of mimotopes of H. contortus proteins.

  6. Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes–Vanstone elliptic curve cryptosystem

    NASA Astrophysics Data System (ADS)

    Liu, Zeyu; Xia, Tiecheng; Wang, Jinbo

    2018-03-01

    We propose a new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference. Moreover, the chaos behaviors of the proposed map are observed and the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits are derived, respectively. Finally, with the secret keys generated by Menezes–Vanstone elliptic curve cryptosystem, we apply the discrete fractional map into color image encryption. After that, the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11271008).

  7. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array

    PubMed Central

    Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong

    2016-01-01

    Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969

  8. The Application of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic Modulators of Protein-Protein Interactions.

    PubMed

    Tan, Yaw Sing; Spring, David R; Abell, Chris; Verma, Chandra S

    2015-07-14

    A computational ligand-mapping approach to detect protein surface pockets that interact with hydrophobic moieties is presented. In this method, we incorporated benzene molecules into explicit solvent molecular dynamics simulations of various protein targets. The benzene molecules successfully identified the binding locations of hydrophobic hot-spot residues and all-hydrocarbon cross-links from known peptidic ligands. They also unveiled cryptic binding sites that are occluded by side chains and the protein backbone. Our results demonstrate that ligand-mapping molecular dynamics simulations hold immense promise to guide the rational design of peptidic modulators of protein-protein interactions, including that of stapled peptides, which show promise as an exciting new class of cell-penetrating therapeutic molecules.

  9. Proteomic profiles in hyperandrogenic syndromes.

    PubMed

    Misiti, S; Stigliano, A; Borro, M; Gentile, G; Michienzi, S; Cerquetti, L; Bucci, B; Argese, N; Brunetti, E; Simmaco, M; Toscano, V

    2010-03-01

    Polycystic ovary syndrome (PCOS) and congenital adrenal hyperplasia (CAH) represent the most common causes of hyperandrogenism. Although the etiopathogeneses of these syndromes are different, they share many clinical and biochemical signs, such as hirsutism, acne, and chronic anovulation. Experimental data have shown that peripheral T-lymphocytes function as molecular sensors, being able to record molecular signals either at staminal and mature cell levels, or hormones at systemic levels. Twenty PCOS women and 10 CAH with 21-hydroxylase deficiency, aged between 18-35 yr, were studied. T-cells purified from all patients and 20 healthy donors have been analyzed by 2-dimensional gel electrophoresis. Silver-stained proteomic map of each patient was compared with a control map obtained by pooling protein samples of the 20 healthy subjects. Spots of interest were identified by peptide mass fingerprint. Computer analysis evidenced several peptidic spots significantly modulated in all patients examined. Some proteins were modulated in both syndromes, others only in PCOS or in CAH. These proteins are involved in many physiological processes as the functional state of immune system, the regulation of the cytoskeleton structure, the oxidative stress, the coagulation process, and the insulin resistance. Identification of the physiological function of these proteins could help to understand ethiopathogenetic mechanisms of hyperandrogenic syndromes and its complications.

  10. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    PubMed

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  12. Computer simulation of the active site of human serum cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kefang Jiao; Song Li; Zhengzheng Lu

    1996-12-31

    The first 3D-structure of acetylchelinesterase from Torpedo California electric organ (T.AChE) was published by JL. Sussman in 1991. We have simulated 3D-structure of human serum cholinesterase (H.BuChE) and the active site of H.BuChE. It is discovered by experiment that the residue of H.BuChE is still active site after a part of H.BuChE is cut. For example, the part of 21KD + 20KD is active site of H.BuChE. The 20KD as it is. Studies on these peptides by Hemelogy indicate that two active peptides have same negative electrostatic potential maps diagram. These negative electrostatic areas attached by acetyl choline with positivemore » electrostatic potency. We predict that 147...236 peptide of AChE could be active site because it was as 20KD as with negative electrostatic potential maps. We look forward to proving from other ones.« less

  13. A microfluidic platform for 3-dimensional cell culture and cell-based assays.

    PubMed

    Kim, Minseok S; Yeon, Ju Hun; Park, Je-Kyun

    2007-02-01

    This paper reports a novel microfluidic platform introducing peptide hydrogel to make biocompatible microenvironment as well as realizing in situ cell-based assays. Collagen composite, OPLA and Puramatrix scaffolds are compared to select good environment for human hepatocellular carcinoma cells (HepG2) by albumin measurement. The selected biocompatible self-assembling peptide hydrogel, Puramatrix, is hydrodynamically focused in the middle of main channel of a microfluidic device, and at the same time the cells are 3-dimensionally immobilized and encapsulated without any additional surface treatment. HepG2 cells have been 3-dimensionally cultured in a poly(dimethylsiloxane) (PDMS) microfluidic device for 4 days. The cells cultured in micro peptide scaffold are compared with those cultured by conventional petri dish in morphology and the rate of albumin secretion. By injection of different reagents into either side of the peptide scaffold, the microfluidic device also forms a linear concentration gradient profile across the peptide scaffold due to molecular diffusion. Based on this characteristic, toxicity tests are performed by Triton X-100. As the higher toxicant concentration gradient forms, the wider dead zone of cells in the peptide scaffold represents. This microfluidic platform facilitates in vivo-like 3-dimensional microenvironment, and have a potential for the applications of reliable cell-based screening and assays including cytotoxicity test, real-time cell viability monitoring, and continuous dose-response assay.

  14. Free energy landscapes of a highly structured β-hairpin peptide and its single mutant

    NASA Astrophysics Data System (ADS)

    Kim, Eunae; Yang, Changwon; Jang, Soonmin; Pak, Youngshang

    2008-10-01

    We investigated the free energy landscapes of a highly structured β-hairpin peptide (MBH12) and a less structured peptide with a single mutation of Tyr6 to Asp6 (MBH10). For the free energy mapping, starting from an extended conformation, the replica exchange molecular dynamic simulations for two β-hairpins were performed using a modified version of an all-atom force field employing an implicit solvation (param99MOD5/GBSA). With the present simulation approach, we demonstrated that detailed stability changes associated with the sequence modification from MBH12 to MBH10 are quantitatively well predicted at the all-atom level.

  15. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    NASA Astrophysics Data System (ADS)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  16. Geochemical surveys in the United States in relation to health.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Geochemical surveys in relation to health may be classified as having one, two or three dimensions. One-dimensional surveys examine relations between concentrations of elements such as Pb in soils and other media and burdens of the same elements in humans, at a given time. The spatial distributions of element concentrations are not investigated. The primary objective of two-dimensional surveys is to map the distributions of element concentrations, commonly according to stratified random sampling designs based on either conceptual landscape units or artificial sampling strata, but systematic sampling intervals have also been used. Political units have defined sample areas that coincide with the units used to accumulate epidemiological data. Element concentrations affected by point sources have also been mapped. Background values, location of natural or technological anomalies and the geographic scale of variation for several elements often are determined. Three-dimensional surveys result when two-dimensional surveys are repeated to detect environmental changes. -Author

  17. Three-dimensional analysis of magnetometer array data

    NASA Technical Reports Server (NTRS)

    Richmond, A. D.; Baumjohann, W.

    1984-01-01

    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  18. Ordered Array of Gold Nanoparticles Promoted by Functional Peptides

    NASA Astrophysics Data System (ADS)

    Matsukawa, Nozomu; Yamashita, Ichiro

    2011-05-01

    It was successfully demonstrated that 5-nm-diameter gold nanoparticles (GNPs) with 15% size distribution, the surface of which was modified by the synthesized peptides composed of the carbonaceous material affinity peptide (NHBP-1), linker of 11 amino acids and C-terminal cysteine, self-assembled into a two-dimensional (2D) ordered array on a silicon substrate in a spin drying process. NHBP-1 generated an attractive force large enough for the GNP to make 2D collections of GNPs in the course of the spin drying process, and the long linker of 11 amino acids cancelled out the ill effect of size distribution of GNP on the 2D ordered array formation.

  19. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    NASA Astrophysics Data System (ADS)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  20. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting.

    PubMed

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-25

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  1. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  2. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants*

    PubMed Central

    Carmona, Santiago J.; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C.; Campetella, Oscar; Buscaglia, Carlos A.; Agüero, Fernán

    2015-01-01

    Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. PMID:25922409

  3. Towards High-throughput Immunomics for Infectious Diseases: Use of Next-generation Peptide Microarrays for Rapid Discovery and Mapping of Antigenic Determinants.

    PubMed

    Carmona, Santiago J; Nielsen, Morten; Schafer-Nielsen, Claus; Mucci, Juan; Altcheh, Jaime; Balouz, Virginia; Tekiel, Valeria; Frasch, Alberto C; Campetella, Oscar; Buscaglia, Carlos A; Agüero, Fernán

    2015-07-01

    Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15 mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15 mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼ threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Analysis of protein glycation products by MALDI-TOF/MS.

    PubMed

    Kislinger, Thomas; Humeny, Andreas; Peich, Carlo C; Becker, Cord-Michael; Pischetsrieder, Monika

    2005-06-01

    Matrix-assisted laser desorption ionization-mass spectrometry with time-of-flight detection (MALDI-TOF/MS) is a promising tool to analyze advanced glycation end product (AGE)-modified proteins. The combination of soft ionization (MALDI) with time-of-flight mass detection allows analysis of peptides and proteins of a molecular mass up to 300 kDa with minimal sample workup. Because the direct structural analysis of intact AGE proteins is not possible due to the formation of broad and poorly resolved peaks, peptide mapping was introduced into the analysis of AGE proteins by MALDI-TOF/MS, allowing site-specific analysis of defined AGEs. When methylglyoxal-modified lysozyme was subjected to MALDI-TOF/MS peptide mapping, methylimidazolone and argpyrimidine attached to the arginine residue and carboxyethyl (CEL) bound to the lysine were detected on peptide(aa1-7) (KVFGRCE). In contrast, only one methylimidazolone was found on peptide(aa8-35) (LAAAMKRHGLDNYRGYSLGNWVCAAKFE) and peptide(aa120-129) (VQAWIRGCRL), respectively. The analysis of AGE protein, which had been incubated with glucose, revealed the presence of an Amadori product and a carboxymethyl residue (CML) on peptide(aa1-7) and peptide(aa8-35), as well as an imidazolone A on peptide(aa120-129). Furthermore, the early Maillard reaction of lysozyme, which had been glycated by seven different sugars, was monitored by MALDI-TOF/MS peptide mapping. Finally, this approach was successfully applied for site- and product-specific relative quantification of AGEs. For example, kinetics of CML and Amadori product formation on peptide(aa1-7), as well as imidazolone A formation on peptide(aa120-129), were determined.

  5. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?

    NASA Astrophysics Data System (ADS)

    Edler, J.; Hamm, P.

    2003-08-01

    Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.

  6. Optimization of Feasibility Stage for Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; Coales, Stephen J.

    2018-03-01

    The practice of HDX-MS remains somewhat difficult, not only for newcomers but also for veterans, despite its increasing popularity. While a typical HDX-MS project starts with a feasibility stage where the experimental conditions are optimized and the peptide map is generated prior to the HDX study stage, the literature usually reports only the HDX study stage. In this protocol, we describe a few considerations for the initial feasibility stage, more specifically, how to optimize quench conditions, how to tackle the carryover issue, and how to apply the pepsin specificity rule. Two sets of quench conditions are described depending on the presence of disulfide bonds to facilitate the quench condition optimization process. Four protocols are outlined to minimize carryover during the feasibility stage: (1) addition of a detergent to the quench buffer, (2) injection of a detergent or chaotrope to the protease column after each sample injection, (3) back-flushing of the trap column and the analytical column with a new plumbing configuration, and (4) use of PEEK (or PEEK coated) frits instead of stainless steel frits for the columns. The application of the pepsin specificity rule after peptide map generation and not before peptide map generation is suggested. The rule can be used not only to remove falsely identified peptides, but also to check the sample purity. A well-optimized HDX-MS feasibility stage makes subsequent HDX study stage smoother and the resulting HDX data more reliable. [Figure not available: see fulltext.

  7. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    PubMed

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism.

    PubMed

    Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Koole, Cassandra; Savage, Emilia E; Pabreja, Kavita; Simms, John; Sridhar, Rohan; Furness, Sebastian G B; Liu, Mengjie; Thompson, Philip E; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-06-16

    Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Structure of the PSD-95/MAP1A complex reveals a unique target recognition mode of the MAGUK GK domain.

    PubMed

    Xia, Yitian; Shang, Yuan; Zhang, Rongguang; Zhu, Jinwei

    2017-08-10

    The PSD-95 family of membrane-associated guanylate kinases (MAGUKs) are major synaptic scaffold proteins and play crucial roles in the dynamic regulation of dendritic remodelling, which is understood to be the foundation of synaptogenesis and synaptic plasticity. The guanylate kinase (GK) domain of MAGUK family proteins functions as a phosphor-peptide binding module. However, the GK domain of PSD-95 has been found to directly bind to a peptide sequence within the C-terminal region of neuronal-specific microtubule-associated protein 1A (MAP1A), although the detailed molecular mechanism governing this phosphorylation-independent interaction at the atomic level is missing. In the present study, we determine the crystal structure of PSD-95 GK in complex with the MAP1A peptide at 2.6-Å resolution. The complex structure reveals that, unlike a linear and elongated conformation in the phosphor-peptide/GK complexes, the MAP1A peptide adopts a unique conformation with a stretch of hydrophobic residues far from each other in the primary sequence clustering and interacting with the 'hydrophobic site' of PSD-95 GK and a highly conserved aspartic acid of MAP1A (D2117) mimicking the phosphor-serine/threonine in binding to the 'phosphor-site' of PSD-95 GK. We demonstrate that the MAP1A peptide may undergo a conformational transition upon binding to PSD-95 GK. Further structural comparison of known DLG GK-mediated complexes reveals the target recognition specificity and versatility of DLG GKs. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Multidimensional generalized-ensemble algorithms for complex systems.

    PubMed

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  11. Conservation of an ATP-binding domain among recA proteins from Proteus vulgaris, erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K.L.; Hess, R.M.; McEntee, K.

    1988-06-01

    The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N/sub 3/ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the (..cap alpha..-/sup 32/P)8N/sub 3/ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in eachmore » of the digests and these peptides eluted identically with the tryptic peptide T/sub 31/ of the E. coli K-12 RecA protein, which was the unique site of 8N/sub 3/ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10/sup 7/ years.« less

  12. Surface Mediated Self-Assembly of Amyloid Peptides

    NASA Astrophysics Data System (ADS)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  13. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.

    PubMed

    Amir, El-ad David; Davis, Kara L; Tadmor, Michelle D; Simonds, Erin F; Levine, Jacob H; Bendall, Sean C; Shenfeld, Daniel K; Krishnaswamy, Smita; Nolan, Garry P; Pe'er, Dana

    2013-06-01

    New high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data. viSNE plots individual cells in a visual similar to a scatter plot, while using all pairwise distances in high dimension to determine each cell's location in the plot. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow automatically maps into a consistent shape, whereas leukemia samples map into malformed shapes that are distinct from healthy bone marrow and from each other. We also use viSNE and mass cytometry to compare leukemia diagnosis and relapse samples, and to identify a rare leukemia population reminiscent of minimal residual disease. viSNE can be applied to any multi-dimensional single-cell technology.

  14. Immune response induced by Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis peptides in current and past infectious mononucleosis: a risk for multiple sclerosis?

    PubMed

    Mameli, G; Madeddu, G; Cossu, D; Galleri, G; Manetti, R; Babudieri, S; Mura, M Stella; Sechi, L A

    2016-01-01

    Infectious mononucleosis (IM) caused by Epstein-Barr virus (EBV) has been associated with increased risk of multiple sclerosis (MS). However, the mechanism linking these pathologies is unclear. Different reports indicate the association of EBV, and recently Mycobacterium avium subsp. paratuberculosis (MAP), with MS. For a better understanding of the role of these pathogens, the host response induced by selected antigenic peptides in subjects with a history of IM that significantly increases the risk of MS was investigated. Both humoral and cell-mediated response against peptides able to induce a specific immune activation in MS patients deriving from lytic and latent EBV antigens BOLF1(305-320), EBNA1(400-413), from MAP MAP_4027(18-32), MAP_0106c(121-132) and from human proteins IRF5(424-434) and MBP(85-98) in subjects with current and past IM were examined. EBNA1 and MAP_0106c peptides were able to induce a humoral immune response in subjects with a history of clinical IM in an independent manner. Moreover, these peptides were capable of inducing pro-inflammatory cytokine interferon γ by CD4+ and CD8+ T lymphocytes and interleukin 6 and tumour necrosis factor α by CD14+ monocyte cells. Our results highlight that EBV and MAP may be involved independently in the same causal process leading to MS in subjects with a history of IM. © 2015 EAN.

  15. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  16. Commercial silicon-on-insulator (SOI) wafers as a versatile substrate for laser desorption/ionization mass spectrometry.

    PubMed

    Kim, Shin Hye; Kim, Jeongkwon; Moon, Dae Won; Han, Sang Yun

    2013-01-01

    We report here that a commercial silicon-on-insulator (SOI) wafer offers an opportunity for laser desorption/ionization (LDI) of peptide molecules, which occurs directly from its flat surface without requiring special surface preparation. The LDI-on-SOI exhibits intact ionization of peptides with a good detection limit of lower than 20 fmol, of which the mass range is demonstrated up to insulin with citric acid additives. The LDI process most likely arises from laser-induced surface heating promoted by two-dimensional thermal confinement in the thin Si surface layer of the SOI wafer. As a consequence of the thermal process, the LDI-on-SOI method is also capable of creating post-source decay (PSD) of the resulting peptide LDI ions, which is suitable for peptide sequencing using conventional TOF/TOF mass spectrometry.

  17. Chymotrypsins from the deer (Cervidae) family. Isolation, partial characterization and primary-structure studies of chymotrypsins A and B from both moose (Alces alces) and elk (Cervus elaphus) pancreas.

    PubMed Central

    Lindsay, R M; Stevenson, K J

    1976-01-01

    1. An anionic and a cationic chymotrypsin (EC 3.4.21.1) were isolated from the pancreas glands of the moose (Alces alces) and elk (Cervus elaphus). The A and B chymotrypsins from each species were purified to homogeneity by (NH4)2SO4 fractionation, affinity chromatography on 4-phenylbutylamine-Sepharose and ion-exchange chromatography on DEAE- and CM-cellulose. 2. The molecular weight and pH optimum of each chymotrypsin were similar to those of the corresponding ox A and B chymotrypsins. 3. The substrate specificities of the chymotrypsins were investigated by digestion of glucagon and the oxidized B chain of insulin. The primary specificity of each chymotrypsin for aromatic amino acid residues was further established by determining the Km and kcat for the hydrolysis of a number of synthetic amino acid ester substrates. 4. The amino acid composition and total number of residues of moose and elk chymotrypsin A were similar to those of ox chymotrypsin A. An even greater similarity was observed among the B chymotrypsins of the three species. 5. The A chymotrypsins of moose and elk were fragmented to their constituent 'A', 'B' and 'C' polypeptide chains by succinylation (3-carboxypropionylation), reduction and alkylation of the native enzymes. In each case, the two major chains ('B' and 'C') were separated and isolated. By comparison of the amino acid compositions of moose, elk and oxy 'B' and 'C' chains, a greater difference was observed among the three A chymotrypsins than was suggested by the amino acid compositions of the native enzymes alone. 6. Peptides were isolated from the disulphide bridge and active-site regions of the A and B chymotrypsins of moose and elk by diagonal peptide-'mapping' techniques. From the amino acid compositions of the isolated peptides (assuming maximum homology) and from a comparison of diagonal peptide 'maps', there was established a high degree of primary-structure identity among the mooae, elk and ox chymotrypsins. Tentative sequences were deduced for the peptides isolated by diagonal peptide 'mapping'. 7. Details of the isolation procedures of the moose and elk chymotrypsins A and B and the amino acid analyses of some peptides obtained by diagonal peptide 'mapping' have been deposited as Supplementary Publication SUP 50064 (27 pages) at the British Library Lending Division, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1976) 153, 5. Images PLATE 1 PMID:949318

  18. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  19. 2D Presentation Techniques of Mind-maps for Blind Meeting Participants.

    PubMed

    Pölzer, Stephan; Miesenberger, Klaus

    2015-01-01

    Mind-maps, used as ideation technique in co-located meetings (e.g. in brainstorming sessions), which meet with increased importance in business and education, show considerably accessibility challenges for blind meeting participants. Besides an overview of general aspects of accessibility issues in co-located meetings, this paper focuses on the design and development of alternative non-visual presentation techniques for mind-maps. The different aspects of serialized presentation techniques (e.g. treeview) for Braille and audio rendering and two dimensional presentation techniques (e.g. tactile two dimensional array matrix and edge-projection method [1]) are discussed based on the user feedback gathered in intermediate tests following a user centered design approach.

  20. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.

    PubMed

    Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F

    2000-07-01

    SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.

  1. SH3 interactome conserves general function over specific form

    PubMed Central

    Xin, Xiaofeng; Gfeller, David; Cheng, Jackie; Tonikian, Raffi; Sun, Lin; Guo, Ailan; Lopez, Lianet; Pavlenco, Alevtina; Akintobi, Adenrele; Zhang, Yingnan; Rual, Jean-François; Currell, Bridget; Seshagiri, Somasekar; Hao, Tong; Yang, Xinping; Shen, Yun A; Salehi-Ashtiani, Kourosh; Li, Jingjing; Cheng, Aaron T; Bouamalay, Dryden; Lugari, Adrien; Hill, David E; Grimes, Mark L; Drubin, David G; Grant, Barth D; Vidal, Marc; Boone, Charles; Sidhu, Sachdev S; Bader, Gary D

    2013-01-01

    Src homology 3 (SH3) domains bind peptides to mediate protein–protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form. PMID:23549480

  2. Regions of botulinum neurotoxin A light chain recognized by human anti-toxin antibodies from cervical dystonia patients immunoresistant to toxin treatment. The antigenic structure of the active toxin recognized by human antibodies.

    PubMed

    Atassi, M Zouhair; Dolimbek, Behzod Z; Jankovic, Joseph; Steward, Lance E; Aoki, K Roger

    2011-07-01

    This work was aimed at determining the BoNT/A L-chain antigenic regions recognized by blocking antibodies in human antisera from cervical dystonia patients who had become immunoresistant to BoNT/A treatment. Antisera from 28 immunoresistant patients were analyzed for binding to each of 32 overlapping synthetic peptides that spanned the entire L-chain. A mixture of the antisera showed that antibodies bound to three peptides, L11 (residues 141-159), L14 (183-201) and L18 (239-257). When mapped separately, the antibodies were bound only by a limited set of peptides. No peptide bound antibodies from all the patients and amounts of antibodies bound to a given peptide varied with the patient. Peptides L11, L14 and L18 were recognized predominantly. A small but significant number of patients had antibodies to peptides L27 (365-383) and L29 (379-397). Other peptides were recognized at very low and perhaps insignificant antibody levels by a minority (15% or less) of patients or had no detectable antibody with any of the sera. In the 3-dimensional structure, antibody-binding regions L11, L14 and L18 of the L-chain occupy surface areas and did not correlate with electrostatic potential, hydrophilicity/hydrophobicity, or temperature factor. These three antigenic regions reside in close proximity to the belt of the heavy chain. The regions L11 and L18 are accessible in both the free light chain and the holotoxin forms, while L14 appears to be less accessible in the holotoxin. Antibodies against these regions could prevent delivery of the L-chain into the neurons by inhibition of the translocation. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.

    PubMed

    Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M

    2008-11-01

    A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.

  4. Antibacterial peptides from plants: what they are and how they probably work.

    PubMed

    Barbosa Pelegrini, Patrícia; Del Sarto, Rafael Perseghini; Silva, Osmar Nascimento; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima

    2011-01-01

    Plant antibacterial peptides have been isolated from a wide variety of species. They consist of several protein groups with different features, such as the overall charge of the molecule, the content of disulphide bonds, and structural stability under environmental stress. Although the three-dimensional structures of several classes of plant peptides are well determined, the mechanism of action of some of these molecules is still not well defined. However, further studies may provide new evidences for their function on bacterial cell wall. Therefore, this paper focuses on plant peptides that show activity against plant-pathogenic and human-pathogenic bacteria. Furthermore, we describe the folding of several peptides and similarities among their three-dimensional structures. Some hypotheses for their mechanisms of action and attack on the bacterial membrane surface are also proposed.

  5. Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy.

    PubMed

    de Medeiros, Luciano Neves; Angeli, Renata; Sarzedas, Carolina G; Barreto-Bergter, Eliana; Valente, Ana Paula; Kurtenbach, Eleonora; Almeida, Fabio C L

    2010-02-01

    Plant defensins are cysteine-rich cationic peptides, components of the innate immune system. The antifungal sensitivity of certain exemplars was correlated to the level of complex glycosphingolipids in the membrane of fungi strains. Psd1 is a 46 amino acid residue defensin isolated from pea seeds which exhibit antifungal activity. Its structure is characterized by the so-called cysteine-stabilized alpha/beta motif linked by three loops as determined by two-dimensional NMR. In the present work we explored the measurement of heteronuclear Nuclear Overhauser Effects, R1 and R2 (15)N relaxation ratios, and chemical shift to probe the backbone dynamics of Psd1 and its interaction with membrane mimetic systems with phosphatidylcholine (PC) or dodecylphosphocholine (DPC) with glucosylceramide (CMH) isolated from Fusarium solani. The calculated R2 values predicted a slow motion around the highly conserved among Gly12 residue and also in the region of the Turn3 His36-Trp38. The results showed that Psd1 interacts with vesicles of PC or PC:CMH in slightly different forms. The interaction was monitored by chemical shift perturbation and relaxation properties. Using this approach we could map the loops as the binding site of Psd1 with the membrane. The major binding epitope showed conformation exchange properties in the mus-ms timescale supporting the conformation selection as the binding mechanism. Moreover, the peptide corresponding to part of Loop1 (pepLoop1: Gly12 to Ser19) is also able to interact with DPC micelles acquiring a stable structure and in the presence of DPC:CMH the peptide changes to an extended conformation, exhibiting NOE mainly with the carbohydrate and ceramide parts of CMH. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  7. Plant peptides in defense and signaling.

    PubMed

    Marmiroli, Nelson; Maestri, Elena

    2014-06-01

    This review focuses on plant peptides involved in defense against pathogen infection and those involved in the regulation of growth and development. Defense peptides, defensins, cyclotides and anti-microbial peptides are compared and contrasted. Signaling peptides are classified according to their major sites of activity. Finally, a network approach to creating an interactomic peptide map is described. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Self-Assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, Elizabeth L.; Hughes, Spencer A.; Dillard, Rebecca S.

    Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonalmore » packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. In conclusion, the resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.« less

  9. Self-Assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework

    DOE PAGES

    Magnotti, Elizabeth L.; Hughes, Spencer A.; Dillard, Rebecca S.; ...

    2016-11-22

    Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonalmore » packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. In conclusion, the resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.« less

  10. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C-H arylation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong

    2018-05-01

    New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.

  11. Paired β-sheet structure of an Aβ(1-40) amyloid fibril revealed by electron microscopy

    PubMed Central

    Sachse, Carsten; Fändrich, Marcus; Grigorieff, Nikolaus

    2008-01-01

    Alzheimer's disease is a neurodegenerative disorder that is characterized by the cerebral deposition of amyloid fibrils formed by Aβ peptide. Despite their prevalence in Alzheimer's and other neurodegenerative diseases, important details of the structure of amyloid fibrils remain unknown. Here, we present a three-dimensional structure of a mature amyloid fibril formed by Aβ(1-40) peptide, determined by electron cryomicroscopy at ≈8-Å resolution. The fibril consists of two protofilaments, each containing ≈5-nm-long regions of β-sheet structure. A local twofold symmetry within each region suggests that pairs of β-sheets are formed from equivalent parts of two Aβ(1-40) peptides contained in each protofilament. The pairing occurs via tightly packed interfaces, reminiscent of recently reported steric zipper structures. However, unlike these previous structures, the β-sheet pairing is observed within an amyloid fibril and includes significantly longer amino acid sequences. PMID:18483195

  12. Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells

    PubMed Central

    Zamuner, Annj; Cavo, Marta; Scaglione, Silvia; Messina, Grazia Maria Lucia; Russo, Teresa; Gloria, Antonio; Marletta, Giovanni; Dettin, Monica

    2016-01-01

    Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK) and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP) motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1). The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate. PMID:28773852

  13. Human Lactoferricin Is Partially Folded in Aqueous Solution and Is Better Stabilized in a Membrane Mimetic Solvent

    PubMed Central

    Hunter, Howard N.; Demcoe, A. Ross; Jenssen, Håvard; Gutteberg, Tore J.; Vogel, Hans J.

    2005-01-01

    Lactoferricins are highly basic bioactive peptides that are released in the stomach through proteolytic cleavage of various lactoferrin proteins. Here we have determined the solution structure of human lactoferricin (LfcinH) by conventional two-dimensional nuclear magnetic resonance methods in both aqueous solution and a membrane mimetic solvent. Unlike the 25-residue bovine lactoferricin (LfcinB), which adopts a somewhat distorted antiparallel β sheet, the longer LfcinH peptide shows a helical content from Gln14 to Lys29 in the membrane mimetic solvent but a nonexistent β-sheet character in either the N- or C-terminal regions of the peptide. The helical characteristic of the LfcinH peptide resembles the conformation that this region adopts in the crystal structure of the intact protein. The LfcinH structure determined in aqueous solution displays a nascent helix in the form of a coiled conformation in the region from Gln14 to Lys29. Numerous hydrophobic interactions create the basis for the better-defined overall structure observed in the membrane mimetic solvent. The 49-residue LfcinH peptide isolated for these studies was found to be slightly longer than previously reported peptide preparations and was found to have an intact peptide bond between residues Ala11 and Val12. The distinct solution structures of LfcinH and LfcinB represent a novel difference in the physical properties of these two peptides, which contributes to their unique physiological activities. PMID:16048952

  14. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    PubMed Central

    Gustafsson, Erika; Haas, Pieter-Jan; Walse, Björn; Hijnen, Marcel; Furebring, Christina; Ohlin, Mats; van Strijp, Jos AG; van Kessel, Kok PM

    2009-01-01

    Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies have been mapped on the CHIPS surface and amino acid residues involved in both antibody and C5aR interaction could be defined. This information has implications for the development of an effective anti-inflammatory agent based on a functional CHIPS molecule with low interaction with human IgG. PMID:19284584

  15. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    NASA Astrophysics Data System (ADS)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  16. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    PubMed

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  17. Caititu: a tool to graphically represent peptide sequence coverage and domain distribution.

    PubMed

    Carvalho, Paulo C; Junqueira, Magno; Valente, Richard H; Domont, Gilberto B

    2008-10-07

    Here we present Caititu, an easy-to-use proteomics software to graphically represent peptide sequence coverage and domain distribution for different correlated samples (e.g. originated from 2D gel spots) relatively to the full-sequence of the known protein they are related to. Although Caititu has a broad applicability, we exemplify its usefulness in Toxinology using snake venom as a model. For example, proteolytic processing may lead to inactivation or loss of domains. Therefore, our proposed graphic representation for peptides identified by two dimensional electrophoresis followed by mass spectrometric identification of excised spots can aid in inferring what kind of processing happened to the toxins, if any. Caititu is freely available to download at: http://pcarvalho.com/things/caititu.

  18. Identification of cross-reactive B-cell epitopes between Bos d 9.0101(Bos Taurus) and Gly m 5.0101 (Glycine max) by epitope mapping MALDI-TOF MS.

    PubMed

    Candreva, Ángela María; Ferrer-Navarro, Mario; Bronsoms, Silvia; Quiroga, Alejandra; Curciarello, Renata; Cauerhff, Ana; Petruccelli, Silvana; Docena, Guillermo Horacio; Trejo, Sebastián Alejandro

    2017-08-01

    Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross-allergenicity described between soy and milk proteins. We have previously identified several cross-reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1-casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α-casein-specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross-reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI-TOF MS analysis. On a second approach, the peptide mixture was resolved by RP-HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI-TOF MS. This novel MS based approach led us to identify and characterize four peptides on α-casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross-reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross-reactivity, to further develop new and more effective vaccines for food allergy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita; ITEP, Moscow; Shatashvili, Samson

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence ismore » the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.« less

  20. Processing of the precursor of protamine P2 in mouse. Peptide mapping and N-terminal sequence analysis of intermediates.

    PubMed Central

    Carré-Eusèbe, D; Lederer, F; Lê, K H; Elsevier, S M

    1991-01-01

    Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid. Images Fig. 1. Fig. 3. Fig. 4. PMID:1854346

  1. Calculating Lyapunov Exponents: Applying Products and Evaluating Integrals

    ERIC Educational Resources Information Center

    McCartney, Mark

    2010-01-01

    Two common examples of one-dimensional maps (the tent map and the logistic map) are generalized to cases where they have more than one control parameter. In the case of the tent map, this still allows the global Lyapunov exponent to be found analytically, and permits various properties of the resulting global Lyapunov exponents to be investigated…

  2. Two-dimensional periodic structures in solid state laser resonator

    NASA Astrophysics Data System (ADS)

    Okulov, Alexey Y.

    1991-07-01

    Transverse effects in nonlinear optical devices are being widely investigated. Recently, synchronization of a laser set by means of the Talbot effect has been demonstrated experimentally. This paper considers a Talbot cavity formed by a solid-state amplifying laser separated from the output mirror by a free space interval. This approach involves the approximation of the nonlinear medium as a thin layer, within which the diffraction is negligible. The other part of a resonator is empty, and the wave field is transformed by the Fresnel-Kirchoff integral. As a result, the dynamics of the transverse (and temporal) structure is computed by a successively iterated nonlinear local map (one- or two-dimensional) and a linear nonlocal map (generally speaking, infinitely dimensional).

  3. Studies of the Cognitive Representation of Spatial Relations: I. Overview.

    ERIC Educational Resources Information Center

    Baird, John C.

    1979-01-01

    This article reviews two experiments on the mapping and planning of actual (campus buildings) and hypothetical (ideal town facilities) items in a two-dimensional space. Direct mapping (planning) techniques are preferred over the method of pair comparisons, especially for the actual environment. (See TM 504 879-880) (Author/CTM)

  4. Computer modelling of grain microstructure in three dimensions

    NASA Astrophysics Data System (ADS)

    Narayan, K. Lakshmi

    We present a program that generates the two-dimensional micrographs of a three dimensional grain microstructure. The code utilizes a novel scanning, pixel mapping technique to secure statistical distributions of surface areas, grain sizes, aspect ratios, perimeters, number of nearest neighbors and volumes of the randomly nucleated particles. The program can be used for comparing the existing theories of grain growth, and interpretation of two-dimensional microstructure of three-dimensional samples. Special features have been included to minimize the computation time and resource requirements.

  5. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    PubMed

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  6. NMR structures in different membrane environments of three ocellatin peptides isolated from Leptodactylus labyrinthicus.

    PubMed

    Gomes, Karla A G G; Dos Santos, Daniel M; Santos, Virgílio M; Piló-Veloso, Dorila; Mundim, Higor M; Rodrigues, Leticia V; Lião, Luciano M; Verly, Rodrigo M; de Lima, Maria Elena; Resende, Jarbas M

    2018-05-01

    The peptides ocellatin-LB1, -LB2 and -F1 have previously been isolated from anurans of the Leptodactylus genus and the sequences are identical from residue 1-22, which correspond to ocellatin-LB1 sequence (GVVDILKGAAKDIAGHLASKVM-NH 2 ), whereas ocellatin-LB2 carries an extra N and ocellatin-F1 extra NKL residues at their C-termini. These peptides showed different spectra of activities and biophysical investigations indicated a direct correlation between membrane-disruptive properties and antimicrobial activities, i.e. ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. To better characterize their membrane interactions, we report here the detailed three-dimensional NMR structures of these peptides in TFE-d 2 :H 2 O (60:40) and in the presence of zwitterionic DPC-d 38 and anionic SDS-d 25 micellar solutions. Although the three peptides showed significant helical contents in the three mimetic environments, structural differences were noticed. When the structures of the three peptides in the presence of DPC-d 38 micelles are compared to each other, a more pronounced curvature is observed for ocellatin-F1 and the bent helix, with the concave face composed mostly of hydrophobic residues, is consistent with the micellar curvature and the amphipathic nature of the molecule. Interestingly, an almost linear helical segment was observed for ocellatin-F1 in the presence of SDS-d 25 micelles and the conformational differences in the two micellar environments are possibly related to the presence of the extra Lys residue near the peptide C-terminus, which increases the affinity of ocellatin-F1 to anionic membranes in comparison with ocellatin-LB1 and -LB2, as proved by isothermal titration calorimetry. To our knowledge, this work reports for the first time the three-dimensional structures of ocellatin peptides. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Expression, purification and characterization of recombinant mitogen-activated protein kinase kinases.

    PubMed

    Dent, P; Chow, Y H; Wu, J; Morrison, D K; Jove, R; Sturgill, T W

    1994-10-01

    Mitogen-activated protein (MAP) kinase kinases (MKKs) are dual-specificity protein kinases which activate p42mapk and p44mapk by phosphorylation of regulatory tyrosine and threonine residues. cDNAs for two isotypes of MKK, MKK1 and MKK2, have been isolated from several species. Here we describe construction of recombinant baculoviruses for high-level expression of histidine-tagged rat MKK1 and MKK2, and procedures for production of nearly homogeneous MKK1 and MKK2 fusion proteins, in both inactive and active forms. Co-infection of Sf9 cells with either MKK1 or MKK2 virus together with recombinant viruses for Raf-1, pp60src (Y527F) and c-Ha-Ras resulted in activations of 250-fold and 150-fold for MKK1 and MKK2 respectively. Specific activities towards kinase-defective p42mapk were of the order of several hundred nanomoles of phosphate transferred/min per mg of MKK protein. The Michaelis constants for both enzymes were approx. 1 microM. Preparations of activated MKK were apparently free of Raf-1 as assessed by Western blotting. Raf-1 phosphorylated MKK1 on one major tryptic phosphopeptide, the phosphorylation of which increased with time. This phosphopeptide contained only phosphoserine and possessed neutral overall charge at pH 1.9 on two-dimensional peptide mapping. Phosphorylation of MKK1 by Raf-1 correlated with activation and reached a plateau of approximately 2 mol/mol.

  8. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    NASA Astrophysics Data System (ADS)

    Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-01

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.

  9. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    PubMed Central

    Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-01

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays. PMID:28102305

  10. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin.

    PubMed

    Verly, Rodrigo M; Resende, Jarbas M; Junior, Eduardo F C; de Magalhães, Mariana T Q; Guimarães, Carlos F C R; Munhoz, Victor H O; Bemquerer, Marcelo Porto; Almeida, Fábio C L; Santoro, Marcelo M; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-19

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.

  11. The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery.

    PubMed

    Luo, Zhao; Cao, Xue-Wei; Li, Chen; Wu, Miao-Dan; Yang, Xu-Zhong; Zhao, Jian; Wang, Fu-Jun

    2016-11-01

    Cell-penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human-derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin-binding domain of HB-EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30-HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C-terminus of MAP30 promoted the cellular uptake of recombinant MAP30-HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30-induced apoptosis through the activation of the mitochondrial- and death receptor-mediated signaling pathways. In addition, the MAP30-HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30-HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB-EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  12. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  13. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less

  14. Existence of Lipschitz selections of the Steiner map

    NASA Astrophysics Data System (ADS)

    Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.

    2018-02-01

    This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.

  15. Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique

    NASA Astrophysics Data System (ADS)

    Tianmin, Wu; Tianjun, Wang; Xian, Chen; Bin, Fang; Ruiting, Zhang; Wei, Zhuang

    2016-01-01

    We herein review our studies on simulating the thermal unfolding Fourier transform infrared and two-dimensional infrared spectra of peptides. The peptide-water configuration ensembles, required forspectrum modeling, aregenerated at a series of temperatures using the GBOBC implicit solvent model and the integrated tempering sampling technique. The fluctuating vibrational Hamiltonians of the amide I vibrational band are constructed using the Frenkel exciton model. The signals are calculated using nonlinear exciton propagation. The simulated spectral features such as the intensity and ellipticity are consistent with the experimental observations. Comparing the signals for two beta-hairpin polypeptides with similar structures suggests that this technique is sensitive to peptide folding landscapes. Project supported by the National Natural Science Foundation of China (Grant No. 21203178), the National Natural Science Foundation of China (Grant No. 21373201), the National Natural Science Foundation of China (Grant No. 21433014), the Science and Technological Ministry of China (Grant No. 2011YQ09000505), and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB10040304 and XDB100202002).

  16. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  17. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  18. Using three-dimensional imaging to assess treatment outcomes in orthodontics: a progress report from the University of the Pacific.

    PubMed

    Baumrind, S; Carlson, S; Beers, A; Curry, S; Norris, K; Boyd, R L

    2003-01-01

    Past research in integrated three-dimensional (3D) craniofacial mapping at the Craniofacial Research Instrumentation Laboratory (CRIL) of the University of the Pacific is summarized in narrative form. The advantages and limitations of recent commercial developments in the application of cone beam geometry volumetric X-ray scanners in dentistry and surface digital mapping of study casts are discussed. The rationale for methods currently in development at CRIL for merging longitudinal information from existing 3D study casts and two-dimensional lateral X-ray cephalograms in studies of orthodontic treatment outcome is presented.

  19. Evaluation of separation properties of a modified strong cation exchange material named MEX and its application in 2D-MEX × C18 system to separate peptides from scorpion venom.

    PubMed

    Chen, Bo; Xu, Junyan; Fu, Qing; Dong, Xuefang; Guo, Zhimou; Jin, Yu; Liang, Xinmiao

    2015-07-07

    Peptides from scorpion venom represent one of the most promising drug sources for drug discovery for some specific diseases. Current challenges in their separation include high complexity, high homologies and the huge range of peptides. In this paper, a modified strong cation exchange material, named MEX, was utilised for the two-dimensional separation of peptides from complex scorpion venom. The silica-based MEX column was bonded with two functional groups; benzenesulfonic acid and cyanopropyl. To better understand its separation mechanisms, seven standard peptides with different properties were employed in an evaluation study, the results of which showed that two interactions were involved in the MEX column: electrostatic interactions based on benzenesulfonic acid groups dominated the separation of peptides; weak hydrophobic interactions introduced by cyanopropyl groups increased the column's selectivity for peptides with the same charge. This characteristic allowed the MEX column to overcome some of the drawbacks of traditional strong cation exchange (SCX) columns. Furthermore, the study showed the great effects of the acetonitrile (ACN) content, the sodium perchlorate (NaClO4) concentration and the buffer pH in the mobile phase on the peptides' retention and separation selectivity on the MEX column. Subsequently, the MEX column was combined with a C18 column to establish an off-line 2D-MEX × C18 system to separate peptides from scorpion Buthus martensi Karsch (BmK) venom. Due to complementary separation mechanisms in each dimension, a high orthogonality of 47.62% was achieved. Moreover, a good loading capacity, excellent stability and repeatability were exhibited by the MEX column, which are beneficial for its use in future preparation experiments. Therefore, the MEX column could be an alternative to the traditional SCX columns for the separation of peptides from scorpion venom.

  20. Dinosaur peptides suggest mechanisms of protein survival.

    PubMed

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manem, V; Paganetti, H

    Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a functionmore » of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.« less

  2. Mapping of epitopes for autoantibodies to the type 1 diabetes autoantigen IA-2 by peptide phage display and molecular modeling: overlap of antibody and T cell determinants.

    PubMed

    Dromey, James A; Weenink, Sarah M; Peters, Günther H; Endl, Josef; Tighe, Patrick J; Todd, Ian; Christie, Michael R

    2004-04-01

    IA-2 is a major target of autoimmunity in type 1 diabetes. IA-2 responsive T cells recognize determinants within regions represented by amino acids 787-817 and 841-869 of the molecule. Epitopes for IA-2 autoantibodies are largely conformational and not well defined. In this study, we used peptide phage display and homology modeling to characterize the epitope of a monoclonal IA-2 Ab (96/3) from a human type 1 diabetic patient. This Ab competes for IA-2 binding with Abs from the majority of patients with type 1 diabetes and therefore binds a region close to common autoantibody epitopes. Alignment of peptides obtained after screening phage-displayed peptide libraries with purified 96/3 identified a consensus binding sequence of Asn-x-Glu-x-x-(aromatic)-x-x-Gly. The predicted surface on a three-dimensional homology model of the tyrosine phosphatase domain of IA-2 was analyzed for clusters of Asn, Glu, and aromatic residues and amino acids contributing to the epitope investigated using site-directed mutagenesis. Mutation of each of amino acids Asn(858), Glu(836), and Trp(799) reduced 96/3 Ab binding by >45%. Mutations of these residues also inhibited binding of serum autoantibodies from IA-2 Ab-positive type 1 diabetic patients. This study identifies a region commonly recognized by autoantibodies in type 1 diabetes that overlaps with dominant T cell determinants.

  3. Demonstration of a Strategy to Perform Two-Dimensional Diode Laser Tomography

    DTIC Science & Technology

    2008-03-01

    training set allows interpolation between beam paths resulting in temperature and density maps. Finally, the TDLAS temperature and density maps are... TDLAS and Tomography Results .................................................................. 38 Introduction...38 vii Page TDLAS Burner Setup

  4. Reconstruction of phase maps from the configuration of phase singularities in two-dimensional manifolds.

    PubMed

    Herlin, Antoine; Jacquemet, Vincent

    2012-05-01

    Phase singularity analysis provides a quantitative description of spiral wave patterns observed in chemical or biological excitable media. The configuration of phase singularities (locations and directions of rotation) is easily derived from phase maps in two-dimensional manifolds. The question arises whether one can construct a phase map with a given configuration of phase singularities. The existence of such a phase map is guaranteed provided that the phase singularity configuration satisfies a certain constraint associated with the topology of the supporting medium. This paper presents a constructive mathematical approach to numerically solve this problem in the plane and on the sphere as well as in more general geometries relevant to atrial anatomy including holes and a septal wall. This tool can notably be used to create initial conditions with a controllable spiral wave configuration for cardiac propagation models and thus help in the design of computer experiments in atrial electrophysiology.

  5. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.

    PubMed

    Nelson, Nathaniel; Schwartz, Daniel K

    2018-06-05

    The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm 2 /s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm 2 /s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties. Copyright © 2018 Biophysical Society. All rights reserved.

  6. Geological mapping goes 3-D in response to societal needs

    USGS Publications Warehouse

    Thorleifson, H.; Berg, R.C.; Russell, H.A.J.

    2010-01-01

    The transition to 3-D mapping has been made possible by technological advances in digital cartography, GIS, data storage, analysis, and visualization. Despite various challenges, technological advancements facilitated a gradual transition from 2-D maps to 2.5-D draped maps to 3-D geological mapping, supported by digital spatial and relational databases that can be interrogated horizontally or vertically and viewed interactively. Challenges associated with data collection, human resources, and information management are daunting due to their resource and training requirements. The exchange of strategies at the workshops has highlighted the use of basin analysis to develop a process-based predictive knowledge framework that facilitates data integration. Three-dimensional geological information meets a public demand that fills in the blanks left by conventional 2-D mapping. Two-dimensional mapping will, however, remain the standard method for extensive areas of complex geology, particularly where deformed igneous and metamorphic rocks defy attempts at 3-D depiction.

  7. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A nano particle vector comprised of poly lactic-co-glycolic acid and monophosphoryl lipid A and recombinant Mycobacterium avium subsp paratuberculosis peptides stimulate a pro-immune profile in bovine macrophages.

    PubMed

    Souza, Cleverson D; Bannantine, John P; Brown, Wendy C; Norton, M Grant; Davis, William C; Hwang, Julianne K; Ziaei, Parissa; Abdellrazeq, Gaber S; Eren, Meaghan V; Deringer, James R; Laws, Elizabeth; Cardieri, Maria Clara D

    2017-05-14

    We evaluated the potential of a nanoparticle (NP) delivery system to improve methods of delivery of candidate peptide-based vaccines for Paratuberculosis in cattle. Peptides derived from Mycobacterium avium subsp. paratuberculosis (Map), and the pro-inflammatory monophosphoryl lipid A (MPLA) were incorporated in polymeric NPs based on poly (d,l-lactide-co-glycolide) (PLGA). The PLGA/MPLA NPs carriers were incubated with macrophages to examine their effects on survival and function. PLGA/MPLA NPs, with and without Map antigens, are efficiently phagocytized by macrophages with no evidence of toxicity. PLGA/MPLA NP formulations did not alter the level of expression of MHC I or II molecules. Expression of TNFα and IL12p40 was increased in Map-loaded NPs. T-cell proliferation studies using a model peptide from Anaplasma marginale demonstrated that a CD4 T-cell recall response could be elicited with macrophages pulsed with the peptide encapsulated in the PLGA/MPLA NP. These findings indicate PLGA/MPLA NPs can be used as a vehicle for delivery and testing of candidate peptide-based vaccines. These results will assist on more in depth studies on PLGA NP delivery systems that may lead to the development of a peptide-based vaccine for cattle. © 2017 The Society for Applied Microbiology.

  9. Structural and Functional Characterization of a Multifunctional Alanine-Rich Peptide Analogue from Pleuronectes americanus

    PubMed Central

    Migliolo, Ludovico; Silva, Osmar N.; Silva, Paula A.; Costa, Maysa P.; Costa, Carolina R.; Nolasco, Diego O.; Barbosa, João A. R. G.; Silva, Maria R. R.; Bemquerer, Marcelo P.; Lima, Lidia M. P.; Romanos, Maria T. V.; Freitas, Sonia M.; Magalhães, Beatriz S.; Franco, Octavio L.

    2012-01-01

    Recently, defense peptides that are able to act against several targets have been characterized. The present work focuses on structural and functional evaluation of the peptide analogue Pa-MAP, previously isolated as an antifreeze peptide from Pleuronectes americanus. Pa-MAP showed activities against different targets such as tumoral cells in culture (CACO-2, MCF-7 and HCT-116), bacteria (Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25923), viruses (HSV-1 and HSV-2) and fungi (Candida parapsilosis ATCC 22019, Trichophyton mentagrophytes (28d&E) and T. rubrum (327)). This peptide did not show toxicity against mammalian cells such as erythrocytes, Vero and RAW 264.7 cells. Molecular mechanism of action was related to hydrophobic residues, since only the terminal amino group is charged at pH 7 as confirmed by potentiometric titration. In order to shed some light on its structure-function relations, in vitro and in silico assays were carried out using circular dichroism and molecular dynamics. Furthermore, Pa-MAP showed partial unfolding of the peptide changes in a wide pH (3 to 11) and temperature (25 to 95°C) ranges, although it might not reach complete unfolding at 95°C, suggesting a high conformational stability. This peptide also showed a conformational transition with a partial α-helical fold in water and a full α-helical core in SDS and TFE environments. These results were corroborated by spectral data measured at 222 nm and by 50 ns dynamic simulation. In conclusion, data reported here show that Pa-MAP is a potential candidate for drug design against pathogenic microorganisms due to its structural stability and wide activity against a range of targets. PMID:23056574

  10. XGlycScan: An Open-source Software For N-linked Glycosite Assignment, Quantification and Quality Assessment of Data from Mass Spectrometry-based Glycoproteomic Analysis.

    PubMed

    Aiyetan, Paul; Zhang, Bai; Zhang, Zhen; Zhang, Hui

    2014-01-01

    Mass spectrometry based glycoproteomics has become a major means of identifying and characterizing previously N-linked glycan attached loci (glycosites). In the bottom-up approach, several factors which include but not limited to sample preparation, mass spectrometry analyses, and protein sequence database searches result in previously N-linked peptide spectrum matches (PSMs) of varying lengths. Given that multiple PSM scan map to a glycosite, we reason that identified PSMs are varying length peptide species of a unique set of glycosites. Because associated spectra of these PSMs are typically summed separately, true glycosite associated spectra counts are lost or complicated. Also, these varying length peptide species complicate protein inference as smaller sized peptide sequences are more likely to map to more proteins than larger sized peptides or actual glycosite sequences. Here, we present XGlycScan. XGlycScan maps varying length peptide species to glycosites to facilitate an accurate quantification of glycosite associated spectra counts. We observed that this reduced the variability in reported identifications of mass spectrometry technical replicates of our sample dataset. We also observed that mapping identified peptides to glycosites provided an assessment of search-engine identification. Inherently, XGlycScan reported glycosites reduce the complexity in protein inference. We implemented XGlycScan in the platform independent Java programing language and have made it available as open source. XGlycScan's source code is freely available at https://bitbucket.org/paiyetan/xglycscan/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/xglycscan/downloads. The graphical user interface version can also be found at https://bitbucket.org/paiyetan/xglycscangui/src and https://bitbucket.org/paiyetan/xglycscangui/downloads respectively.

  11. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel.

    PubMed

    Hogrebe, Nathaniel J; Gooch, Keith J

    2016-09-01

    Much is unknown about the effects of culture dimensionality on cell behavior due to the lack of biomimetic substrates that are suitable for directly comparing cells grown on two-dimensional (2D) and encapsulated within three-dimensional (3D) matrices of the same stiffness and biochemistry. To overcome this limitation, we used a self-assembling peptide hydrogel system that has tunable stiffness and cell-binding site density as well as a fibrous microarchitecture resembling the structure of collagen. We investigated the effect of culture dimensionality on human mesenchymal stem cell differentiation at different values of matrix stiffness (G' = 0.25, 1.25, 5, and 10 kPa) and a constant RGD (Arg-Gly-Asp) binding site concentration. In the presence of the same soluble induction factors, culture on top of stiff gels facilitated the most efficient osteogenesis, while encapsulation within the same stiff gels resulted in a switch to predominantly terminal chondrogenesis. Adipogenesis dominated at soft conditions, and 3D culture induced better adipogenic differentiation than 2D culture at a given stiffness. Interestingly, initial matrix-induced cell morphology was predictive of these end phenotypes. Furthermore, optimal culture conditions corresponded to each cell type's natural niche within the body, highlighting the importance of incorporating native matrix dimensionality and stiffness into tissue engineering strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2356-2368, 2016. © 2016 Wiley Periodicals, Inc.

  12. Mapping Protein Surface Accessibility via an Electron Transfer Dissociation Selectively Cleavable Hydrazone Probe*

    PubMed Central

    Vasicek, Lisa; O'Brien, John P.; Browning, Karen S.; Tao, Zhihua; Liu, Hung-Wen; Brodbelt, Jennifer S.

    2012-01-01

    A protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides. Here a novel hydrazone reagent (NN) is presented that allows facile identification of all modified surface residues through a preferential cleavage upon activation by electron transfer dissociation coupled with a collision activation scan to pinpoint the modified residue in the peptide sequence. Using this approach, the correlation between percent reactivity and surface accessibility is demonstrated for two biologically active proteins, wheat eIF4E and PARP-1 Domain C. PMID:22393264

  13. Mapping the Postmodern Turn in Comparative Education.

    ERIC Educational Resources Information Center

    Liebman, Martin; Paulston, Rolland

    This paper advocates the use of cognitive maps by researchers in comparative education. Cognitive maps are defined as "visual imageries depicting on the two dimensional surface of a screen or paper the researcher's perceived application, allocation, or appropriation of social space by social groups at a given time and in a given place." The use of…

  14. Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH. Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs.

    PubMed

    Aletras, A; Barlos, K; Gatos, D; Koutsogianni, S; Mamos, P

    1995-05-01

    N alpha-9-Fluorenylmethoxycarbonyl-N epsilon-4=methyltrityl-lysine, [Fmoc-Lys(Mtt)-OH], was prepared in two steps from lysine, in 42% overall yield. The N epsilon-Mtt function can be quantitatively removed upon treatment with 1% TFA in dichloromethane or with a 1:2:7 mixture of acetic acid/trifluoroethanol/dichloromethane for 30 min and 1 h at room temperature, respectively. Under these conditions, groups of the tert-butyl type and peptide ester bonds to TFA-labile resins, such as the 2-chlorodiphenylmethyl- and the Wang-resin, remained intact. The utility of the new derivative in peptide synthesis has been exemplified with the synthesis of a cyclic cholecystokinin analog. As an example of further application, five types of lysine cores suitable for the solid-phase synthesis of one, two or three epitopes containing antigenic peptides or template-assembled synthetic proteins have been synthesized on Merrifield, Wang and 2-chlorodiphenylmethyl resin.

  15. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  16. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1973-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media, and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential, The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  17. Application of Generative Topographic Mapping to Gear Failures Monitoring

    NASA Astrophysics Data System (ADS)

    Liao, Guanglan; Li, Weihua; Shi, Tielin; Rao, Raj B. K. N.

    2002-07-01

    The Generative Topographic Mapping (GTM) model is introduced as a probabilistic re-formation of the self-organizing map and has already been used in a variety of applications. This paper presents a study of the GTM in industrial gear failures monitoring. Vibration signals are analyzed using the GTM model, and the results show that gear feature data sets can be projected into a two-dimensional space and clustered in different areas according to their conditions, which can classify and identify clearly a gear work condition with cracked or broken tooth compared with the normal condition. With the trace of the image points in the two-dimensional space, the variation of gear work conditions can be observed visually, therefore, the occurrence and varying trend of gear failures can be monitored in time.

  18. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    PubMed Central

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-01-01

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies. PMID:28347059

  19. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  20. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  1. Phosphorylation of Dopamine Transporter Serine 7 Modulates Cocaine Analog Binding*

    PubMed Central

    Moritz, Amy E.; Foster, James D.; Gorentla, Balachandra K.; Mazei-Robison, Michelle S.; Yang, Jae-Won; Sitte, Harald H.; Blakely, Randy D.; Vaughan, Roxanne A.

    2013-01-01

    As an approach to elucidating dopamine transporter (DAT) phosphorylation characteristics, we examined in vitro phosphorylation of a recombinant rat DAT N-terminal peptide (NDAT) using purified protein kinases. We found that NDAT becomes phosphorylated at single distinct sites by protein kinase A (Ser-7) and calcium-calmodulin-dependent protein kinase II (Ser-13) and at multiple sites (Ser-4, Ser-7, and Ser-13) by protein kinase C (PKC), implicating these residues as potential sites of DAT phosphorylation by these kinases. Mapping of rat striatal DAT phosphopeptides by two-dimensional thin layer chromatography revealed basal and PKC-stimulated phosphorylation of the same peptide fragments and comigration of PKC-stimulated phosphopeptide fragments with NDAT Ser-7 phosphopeptide markers. We further confirmed by site-directed mutagenesis and mass spectrometry that Ser-7 is a site for PKC-stimulated phosphorylation in heterologously expressed rat and human DATs. Mutation of Ser-7 and nearby residues strongly reduced the affinity of rat DAT for the cocaine analog (−)-2β-carbomethoxy-3β-(4-fluorophenyl) tropane (CFT), whereas in rat striatal tissue, conditions that promote DAT phosphorylation caused increased CFT affinity. Ser-7 mutation also affected zinc modulation of CFT binding, with Ala and Asp substitutions inducing opposing effects. These results identify Ser-7 as a major site for basal and PKC-stimulated phosphorylation of native and expressed DAT and suggest that Ser-7 phosphorylation modulates transporter conformational equilibria, shifting the transporter between high and low affinity cocaine binding states. PMID:23161550

  2. Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides.

    PubMed

    Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm

    2010-03-01

    Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.

  3. Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility-Mass Spectrometry: Lessons from a Collection of Representatives

    NASA Astrophysics Data System (ADS)

    Fouque, Kevin Jeanne Dit; Lavanant, Hélène; Zirah, Séverine; Hegemann, Julian D.; Zimmermann, Marcel; Marahiel, Mohamed A.; Rebuffat, Sylvie; Afonso, Carlos

    2017-02-01

    Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies.

  4. Considerations of solar wind dynamics in mapping of Jupiter's auroral features to magnetospheric sources

    NASA Astrophysics Data System (ADS)

    Gyalay, S.; Vogt, M.; Withers, P.

    2015-12-01

    Previous studies have mapped locations from the magnetic equator to the ionosphere in order to understand how auroral features relate to magnetospheric sources. Vogt et al. (2011) in particular mapped equatorial regions to the ionosphere by using a method of flux equivalence—requiring that the magnetic flux in a specified region at the equator is equal to the magnetic flux in the region to which it maps in the ionosphere. This is preferred to methods relying on tracing field lines from global Jovian magnetic field models, which are inaccurate beyond 30 Jupiter radii from the planet. That previous study produced a two-dimensional model—accounting for changes with radial distance and local time—of the normal component of the magnetic field in the equatorial region. However, this two-dimensional fit—which aggregated all equatorial data from Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Ulysses, and Galileo—did not account for temporal variability resulting from changing solar wind conditions. Building off of that project, this study aims to map the Jovian aurora to the magnetosphere for two separate cases: with a nominal magnetosphere, and with a magnetosphere compressed by high solar wind dynamic pressure. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, intervals of high solar wind dynamic pressure were separated from intervals of low solar wind dynamic pressure—thus creating two datasets of magnetometer measurements to be used for two separate 2D fits, and two separate mappings.

  5. Effect of the urease-derived peptide Jaburetox on the central nervous system of Triatoma infestans (Insecta: Heteroptera).

    PubMed

    Galvani, Gerónimo L; Fruttero, Leonardo L; Coronel, María F; Nowicki, Susana; Demartini, Diogo R; Defferrari, Marina S; Postal, Melissa; Canavoso, Lilián E; Carlini, Célia R; Settembrini, Beatriz P

    2015-02-01

    Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species. Immunohistochemistry, Western blots, immunoprecipitation, two-dimensional electrophoresis, tandem mass spectrometry and enzymatic assays were performed. Anti-Jbtx antibody labeled somata of the antennal lobe only in Jbtx-treated insects. Western blot assays of nervous tissue using the same antibody reacted with a 61kDa protein band only in peptide-injected insects. Combination of immunoprecipitation, two-dimensional electrophoresis and tandem mass spectrometry identified UDP-N-acetylglucosamine pyrophosphorylase (UDP-GlcNAcP) as a molecular target for Jbtx. The activity of UDP-GlcNAcP increased significantly in the CNS of Jbtx-treated insects. The effect of Jbtx on the activity of nitric oxide synthase (NOS) and NO production was investigated as NO is a recognized messenger molecule in the CNS of T. infestans. NOS activity and NO levels decreased significantly in CNS homogenates of Jbtx-treated insects. UDP-GlcNAcP is a molecular target of Jbtx. Jbtx impaired the activity of T. infestans nitrergic system, which may be related with early behavioral effects. We report that the CNS of Triatoma infestans is a target for the entomotoxic peptide and propose that a specific area of the brain is involved. Besides potentially providing tools for control strategies of Chagas' disease vectors our data may be relevant in various fields of research as insect physiology, neurobiology and protein function. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The singular behavior of a β-type semi-synthetic two branched polypeptide: three-dimensional structure and mode of action.

    PubMed

    Manzo, Giorgia; Serra, Ilaria; Pira, Alessandro; Pintus, Manuela; Ceccarelli, Matteo; Casu, Mariano; Rinaldi, Andrea C; Scorciapino, Mariano Andrea

    2016-11-16

    Dendrimeric peptides make a versatile group of bioactive peptidomimetics and a potential new class of antimicrobial agents to tackle the pressing threat of multi-drug resistant pathogens. These are branched supramolecular assemblies where multiple copies of the bioactive unit are linked to a central core. Beyond their antimicrobial activity, dendrimeric peptides could also be designed to functionalize the surface of nanoparticles or materials for other medical uses. Despite these properties, however, little is known about the structure-function relationship of such compounds, which is key to unveil the fundamental physico-chemical parameters and design analogues with desired attributes. To close this gap, we focused on a semi-synthetic, two-branched peptide, SB056, endowed with remarkable activity against both Gram-positive and Gram-negative bacteria and limited cytotoxicity. SB056 can be considered the smallest prototypical dendrimeric peptide, with the core restricted to a single lysine residue and only two copies of the same highly cationic 10-mer polypeptide; an octanamide tail is present at the C-terminus. Combining NMR and Molecular Dynamics simulations, we have determined the 3D structure of two analogues. Fluorescence spectroscopy was applied to investigate the water-bilayer partition in the presence of vesicles of variable charge. Vesicle leakage assays were also performed and the experimental data were analyzed by applying an iterative Monte Carlo scheme to estimate the minimum number of bound peptides needed to achieve the release. We unveiled a singular beta hairpin-type structure determined by the peptide chains only, with the octanamide tail available for further functionalization to add new potential properties without affecting the structure.

  7. The characterisation of novel secreted Ly-6 proteins from rat urine by the combined use of two-dimensional gel electrophoresis, microbore high performance liquid chromatography and expressed sequence tag data.

    PubMed

    Southan, Christopher; Cutler, Paul; Birrell, Helen; Connell, John; Fantom, Kenneth G M; Sims, Matthew; Shaikh, Narjis; Schneider, Klaus

    2002-02-01

    A proteomic study of rat urine was undertaken using two-dimensional gel electrophoresis, microbore high performance liquid chromatography, mass spectrometry and N-terminal sequencing. Five known urinary proteins were identified but two novel peptide fragments matched a large number of rat expressed sequence tags (ESTs) from a liver library. By combining protein chemical and nucleotide data, two 101-residue open reading frames with 90% amino acid identity were determined, rat urinary protein 1 (RUP-1) and RUP-2. The data established signal peptide removal and provided evidence for N-glycosylation. A third related sequence, rat spleen protein (RSP-1) was confirmed from EST searches. These three proteins have been submitted to SWISS-PROT as P81827, P81828 and Q9QXN2, respectively. A fourth novel homologue was found in porcine and bovine ESTs from embryo libraries. Alignment with known homologues showed conserved cysteine positions characteristic of a secreted subfamily of Ly-6 proteins. In two cases, antineoplastic urinary protein and caltrin, these homologues have unverified functional annotations. The RUP sequences showed high scoring matches to three unrelated rat mRNAs subsequently established to be chimeric. Two of these share extended sectional identity to RUP-1 but the third may represent another novel Ly-6 homologue. These chimeras have caused serious annotation errors in secondary databases.

  8. A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Applications

    NASA Technical Reports Server (NTRS)

    Phan, Minh Q.

    1998-01-01

    This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.

  9. A Multi-Resolution Nonlinear Mapping Technique for Design and Analysis Application

    NASA Technical Reports Server (NTRS)

    Phan, Minh Q.

    1997-01-01

    This report describes a nonlinear mapping technique where the unknown static or dynamic system is approximated by a sum of dimensionally increasing functions (one-dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions are synthesized from a set of multi-resolution basis functions, where the resolutions specify the level of details at which the nonlinear system is approximated. The basis functions also cause the parameter estimation step to become linear. This feature is taken advantage of to derive a systematic procedure to determine and eliminate basis functions that are less significant for the particular system under identification. The number of unknown parameters that must be estimated is thus reduced and compact models obtained. The lower dimensional functions (identified curves and surfaces) permit a kind of "visualization" into the complexity of the nonlinearity itself.

  10. X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.

    2013-07-01

    This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.

  11. A financial market model with two discontinuities: Bifurcation structures in the chaotic domain

    NASA Astrophysics Data System (ADS)

    Panchuk, Anastasiia; Sushko, Iryna; Westerhoff, Frank

    2018-05-01

    We continue the investigation of a one-dimensional piecewise linear map with two discontinuity points. Such a map may arise from a simple asset-pricing model with heterogeneous speculators, which can help us to explain the intricate bull and bear behavior of financial markets. Our focus is on bifurcation structures observed in the chaotic domain of the map's parameter space, which is associated with robust multiband chaotic attractors. Such structures, related to the map with two discontinuities, have been not studied before. We show that besides the standard bandcount adding and bandcount incrementing bifurcation structures, associated with two partitions, there exist peculiar bandcount adding and bandcount incrementing structures involving all three partitions. Moreover, the map's three partitions may generate intriguing bistability phenomena.

  12. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-06-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed "maps," which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm-1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.

  13. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    PubMed Central

    Carr, J. K.; Zabuga, A. V.; Roy, S.; Rizzo, T. R.; Skinner, J. L.

    2014-01-01

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental and theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala)5-Lys-H+ in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly 13C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and 13C18O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm−1 for both frequencies and couplings, having larger errors only for the frequencies of terminal amides. PMID:24929378

  14. Computer-assisted techniques to evaluate fringe patterns

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1992-01-01

    Strain measurement using interferometry requires an efficient way to extract the desired information from interferometric fringes. Availability of digital image processing systems makes it possible to use digital techniques for the analysis of fringes. In the past, there have been several developments in the area of one dimensional and two dimensional fringe analysis techniques, including the carrier fringe method (spatial heterodyning) and the phase stepping (quasi-heterodyning) technique. This paper presents some new developments in the area of two dimensional fringe analysis, including a phase stepping technique supplemented by the carrier fringe method and a two dimensional Fourier transform method to obtain the strain directly from the discontinuous phase contour map.

  15. The Penicillium Chrysogenum Extracellular Proteome. Conversion from a Food-rotting Strain to a Versatile Cell Factory for White Biotechnology*

    PubMed Central

    Jami, Mohammad-Saeid; García-Estrada, Carlos; Barreiro, Carlos; Cuadrado, Abel-Alberto; Salehi-Najafabadi, Zahra; Martín, Juan-Francisco

    2010-01-01

    The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54–1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54–1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology. PMID:20823121

  16. Limitation of predictive 2-D liquid chromatography in reducing the database search space in shotgun proteomics: in silico studies.

    PubMed

    Moskovets, Eugene; Goloborodko, Anton A; Gorshkov, Alexander V; Gorshkov, Mikhail V

    2012-07-01

    A two-dimensional (2-D) liquid chromatography (LC) separation of complex peptide mixtures that combines a normal phase utilizing hydrophilic interactions and a reversed phase offers reportedly the highest level of 2-D LC orthogonality by providing an even spread of peptides across multiple LC fractions. Matching experimental peptide retention times to those predicted by empirical models describing chromatographic separation in each LC dimension leads to a significant reduction in a database search space. In this work, we calculated the retention times of tryptic peptides separated in the C18 reversed phase at different separation conditions (pH 2 and pH 10) and in TSK gel Amide-80 normal phase. We show that retention times calculated for different 2-D LC separation schemes utilizing these phases start to correlate once the mass range of peptides under analysis becomes progressively narrow. This effect is explained by high degree of correlation between retention coefficients in the considered phases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Infrared signatures of the peptide dynamical transition: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Kobus, Maja; Nguyen, Phuong H.; Stock, Gerhard

    2010-07-01

    Recent two-dimensional infrared (2D-IR) experiments on a short peptide 310-helix in chloroform solvent [E. H. G. Backus et al., J. Phys. Chem. B 113, 13405 (2009)] revealed an intriguing temperature dependence of the homogeneous line width, which was interpreted in terms of a dynamical transition of the peptide. To explain these findings, extensive molecular dynamics simulations at various temperatures were performed in order to construct the free energy landscape of the system. The study recovers the familiar picture of a glass-forming system, which below the glass transition temperature Tg is trapped in various energy basins, while it diffuses freely between these basins above Tg. In fact, one finds at Tg≈270 K a sharp rise of the fluctuations of the backbone dihedral angles, which reflects conformational transitions of the peptide. The corresponding CO frequency fluctuations are found to be a sensitive probe of the peptide conformational dynamics from femtosecond to nanosecond time scales and lead to 2D-IR spectra that qualitatively match the experiment. The calculated homogeneous line width, however, does not show the biphasic temperature dependence observed in experiment.

  18. Nuclear Localizing Peptide-Conjugated, Redox-Sensitive Polymersomes for Delivering Curcumin and Doxorubicin to Pancreatic Cancer Microtumors.

    PubMed

    Anajafi, Tayebeh; Yu, Junru; Sedigh, Abbas; Haldar, Manas K; Muhonen, Wallace W; Oberlander, Seth; Wasness, Heather; Froberg, Jamie; Molla, Md Shahjahan; Katti, Kalpana S; Choi, Yongki; Shabb, John B; Srivastava, D K; Mallik, Sanku

    2017-06-05

    Improving the therapeutic index of anticancer agents is an enormous challenge. Targeting decreases the side effects of the therapeutic agents by delivering the drugs to the intended destination. Nanocarriers containing the nuclear localizing peptide sequences (NLS) translocate to the cell nuclei. However, the nuclear localization peptides are nonselective and cannot distinguish the malignant cells from the healthy counterparts. In this study, we designed a "masked" NLS peptide which is activated only in the presence of overexpressed matrix metalloproteinase-7 (MMP-7) enzyme in the pancreatic cancer microenvironment. This peptide is conjugated to the surface of redox responsive polymersomes to deliver doxorubicin and curcumin to the pancreatic cancer cell nucleus. We have tested the formulation in both two- and three-dimensional cultures of pancreatic cancer and normal cells. Our studies revealed that the drug-encapsulated polymeric vesicles are significantly more toxic toward the cancer cells (shrinking the spheroids up to 49%) compared to the normal cells (shrinking the spheroids up to 24%). This study can lead to the development of other organelle targeted drug delivery systems for various human malignancies.

  19. The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays.

    PubMed

    Schwenk, Jochen M; Omenn, Gilbert S; Sun, Zhi; Campbell, David S; Baker, Mark S; Overall, Christopher M; Aebersold, Ruedi; Moritz, Robert L; Deutsch, Eric W

    2017-12-01

    Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ∼43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely mapping peptides of nine amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ∼2000 proteins. Finally, we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.

  20. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    PubMed

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  1. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    PubMed Central

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P. R. O.

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival. PMID:21687667

  2. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results showmore » empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.« less

  3. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.

  4. Interval data clustering using self-organizing maps based on adaptive Mahalanobis distances.

    PubMed

    Hajjar, Chantal; Hamdan, Hani

    2013-10-01

    The self-organizing map is a kind of artificial neural network used to map high dimensional data into a low dimensional space. This paper presents a self-organizing map for interval-valued data based on adaptive Mahalanobis distances in order to do clustering of interval data with topology preservation. Two methods based on the batch training algorithm for the self-organizing maps are proposed. The first method uses a common Mahalanobis distance for all clusters. In the second method, the algorithm starts with a common Mahalanobis distance per cluster and then switches to use a different distance per cluster. This process allows a more adapted clustering for the given data set. The performances of the proposed methods are compared and discussed using artificial and real interval data sets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Concept Maps as Tools for Teaching.

    ERIC Educational Resources Information Center

    Moreira, Marco A.

    1979-01-01

    Discusses how concept maps with two dimensional diagrams which show hierarchical relationships among concepts of a discipline can be used in teaching physics. An example for teaching a course in electromagnetism at the Federal University of Rio Grande do Sul, Brazil is presented. (HM)

  6. On applications of chimera grid schemes to store separation

    NASA Technical Reports Server (NTRS)

    Cougherty, F. C.; Benek, J. A.; Steger, J. L.

    1985-01-01

    A finite difference scheme which uses multiple overset meshes to simulate the aerodynamics of aircraft/store interaction and store separation is described. In this chimera, or multiple mesh, scheme, a complex configuration is mapped using a major grid about the main component of the configuration, and minor overset meshes are used to map each additional component such as a store. As a first step in modeling the aerodynamics of store separation, two dimensional inviscid flow calculations were carried out in which one of the minor meshes is allowed to move with respect to the major grid. Solutions of calibrated two dimensional problems indicate that allowing one mesh to move with respect to another does not adversely affect the time accuracy of an unsteady solution. Steady, inviscid three dimensional computations demonstrate the capability to simulate complex configurations, including closely packed multiple bodies.

  7. Mapping of epitopes for monoclonal antibodies against human platelet thrombospondin with electron microscopy and high sensitivity amino acid sequencing

    PubMed Central

    1985-01-01

    A panel of monoclonal antibodies (Mab's) has been raised against human platelet thrombospondin (TSP). One Mab, designated A2.5, inhibits the hemagglutinating activity of TSP and immunoprecipitates the NH2 terminal 25 kD heparin binding domain of TSP (Dixit, V.M., D. M. Haverstick, K. M. O'Rourke, S. W. Hennessy, G. A. Grant, S. A. Santoro, and W. A. Frazier, 1985, Biochemistry, in press). Another Mab, C6.7, blocks the thrombin-stimulated aggregation of live platelets and immunoprecipitates an 18-kD fragment distinct from the heparin binding domain (Dixit, V. M., D. M. Haverstick, K. M. O'Rourke, S. W. Hennessy, G. A. Grant, S. A. Santoro, and W. A. Frazier, 1985, Proc. Natl. Acad. Sci. 82: 3472-3476). To determine the relative locations of the epitopes for these Mabs in the three-dimensional structure of TSP, we have examined TSP-Mab complexes by electron microscopy of rotary- shadowed proteins. The TSP molecule is composed of three 180-kD subunits, each of which consists of a small globular domain (approximately 8 nm diam) and a larger globular domain (approximately 16 nm diam) connected by a thin, flexible strand. The subunit interaction site is on the thin connecting strands, nearer the small globular domains. Mab A2.5 binds to the cluster of three small domains, indicating that this region contains the heparin binding domain and thus represents the NH2 termini of the TSP peptide chains. Mab C6.7 binds to the large globular domains on the side opposite the point at which the connecting strand enters the domain, essentially the maximum possible distance from the A2.5 epitope. Using high sensitivity automated NH2 terminal sequencing of TSP chymotryptic peptides we have ordered these fragments within the TSP peptide chain and have confirmed that the epitope for C6.7 in fact lies near the extreme COOH terminus of the peptide chain. In combination with other data, we have been able to construct a map of the linear order of the identified domains of TSP that indicates that to a large extent, the domains are arranged co- linearly with the peptide chain. PMID:2413043

  8. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide.

    PubMed

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B; Holo, Helge; Nes, Ingolf F

    2010-11-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota.

  9. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-07

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  10. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  11. Investigation of the relative orientation of the system of optical sensors to monitor the technosphere objects

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrey; Konyakhin, Igor

    2017-06-01

    In connection with the development of robotics have become increasingly popular variety of three-dimensional reconstruction of the system mapping and image-set received from the optical sensors. The main objective of technical and robot vision is the detection, tracking and classification of objects of the space in which these systems and robots operate [15,16,18]. Two-dimensional images sometimes don't contain sufficient information to address those or other problems: the construction of the map of the surrounding area for a route; object identification, tracking their relative position and movement; selection of objects and their attributes to complement the knowledge base. Three-dimensional reconstruction of the surrounding space allows you to obtain information on the relative positions of objects, their shape, surface texture. Systems, providing training on the basis of three-dimensional reconstruction of the results of the comparison can produce two-dimensional images of three-dimensional model that allows for the recognition of volume objects on flat images. The problem of the relative orientation of industrial robots with the ability to build threedimensional scenes of controlled surfaces is becoming actual nowadays.

  12. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  13. Functional-to-form mapping for assembly design automation

    NASA Astrophysics Data System (ADS)

    Xu, Z. G.; Liu, W. M.; Shen, W. D.; Yang, D. Y.; Liu, T. T.

    2017-11-01

    Assembly-level function-to-form mapping is the most effective procedure towards design automation. The research work mainly includes: the assembly-level function definitions, product network model and the two-step mapping mechanisms. The function-to-form mapping is divided into two steps, i.e. mapping of function-to-behavior, called the first-step mapping, and the second-step mapping, i.e. mapping of behavior-to-structure. After the first step mapping, the three dimensional transmission chain (or 3D sketch) is studied, and the feasible design computing tools are developed. The mapping procedure is relatively easy to be implemented interactively, but, it is quite difficult to finish it automatically. So manual, semi-automatic, automatic and interactive modification of the mapping model are studied. A mechanical hand F-F mapping process is illustrated to verify the design methodologies.

  14. A new hyperchaotic map and its application for image encryption

    NASA Astrophysics Data System (ADS)

    Natiq, Hayder; Al-Saidi, N. M. G.; Said, M. R. M.; Kilicman, Adem

    2018-01-01

    Based on the one-dimensional Sine map and the two-dimensional Hénon map, a new two-dimensional Sine-Hénon alteration model (2D-SHAM) is hereby proposed. Basic dynamic characteristics of 2D-SHAM are studied through the following aspects: equilibria, Jacobin eigenvalues, trajectory, bifurcation diagram, Lyapunov exponents and sensitivity dependence test. The complexity of 2D-SHAM is investigated using Sample Entropy algorithm. Simulation results show that 2D-SHAM is overall hyperchaotic with the high complexity, and high sensitivity to its initial values and control parameters. To investigate its performance in terms of security, a new 2D-SHAM-based image encryption algorithm (SHAM-IEA) is also proposed. In this algorithm, the essential requirements of confusion and diffusion are accomplished, and the stochastic 2D-SHAM is used to enhance the security of encrypted image. The stochastic 2D-SHAM generates random values, hence SHAM-IEA can produce different encrypted images even with the same secret key. Experimental results and security analysis show that SHAM-IEA has strong capability to withstand statistical analysis, differential attack, chosen-plaintext and chosen-ciphertext attacks.

  15. Changes in inflorescence protein during advanced stages of floret development in Buchloe dactyloides (Poaceae).

    PubMed

    Zhou, Y-J; Xue, J-G; Wang, X-G; Zhang, X-Q

    2012-11-12

    Buffalograss, Buchloe dactyloides, is a dioecious species native to the Great Plains of North America. The florets at the early stages of development possess both gynoecium and androecium organ primordia but later become unisexual. Very little is known about the proteomic changes that occur when the florets change from hermaphroditism to unisexuality. We compared the protein composition of florets at the hermaphroditic stage with that at the unisexual stage. The development stage of the floret was determined by stereomicroscopic observation. Two-dimensional gel electrophoresis was used to separate the proteins extracted from female and male inflorescences. Stage- specific protein maps, with an average of about 400 spots per map, were analyzed with the protein analysis software. Eighteen spots were found to be differentially expressed between the hermaphrodite and unisexual stages. Of these, 12 were present at both stages but with a different expression value. Four specific spots appeared at the hermaphrodite stage and disappeared at the unisexual stage. Two specific protein spots were associated with female and male floret differentiation. One appears to be associated with contabescence in the female floret and the final protein appears to lead to the abortion of gynoecium in the male floret. The MALDI TOF/TOF technique was used for peptide mass fingerprinting of the differentially expressed proteins and the MASCOT software was used to search the protein database. However, only two protein spots were identified from the database. These were aldolase1 and Os05g0574400 (similar to malate dehydrogenase). This type of proteomic study can help to identify novel protein products and determine the mechanisms involved in the floral sex differentiation process in buffalo grass.

  16. Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor.

    PubMed

    Sintsova, Oksana; Gladkikh, Irina; Chausova, Victoria; Monastyrnaya, Margarita; Anastyuk, Stanislav; Chernikov, Oleg; Yurchenko, Ekaterina; Aminin, Dmitriy; Isaeva, Marina; Leychenko, Elena; Kozlovskaya, Emma

    2018-02-20

    Sea anemone mucus, due to its multiple and vital functions, is a valuable substance for investigation of new biologically active peptides. In this work, compounds of Heteractis magnifica mucus were separated by multistage liquid chromatography and resulting fractions were analyzed by MALDI-TOF MS. Peptide maps constructed according to the molecular masses and hydrophobicity showed presence of 326 both new and known peptides. Several major peptides from mucus were identified, including the sodium channel toxin RpII isolated earlier from H. magnifica, and four Kunitz-type proteinase inhibitors identical to H. crispa ones. Kunitz-type transcript diversity was studied and sequences of mature peptides were deduced. New β-defensin α-amylase inhibitor, a homolog of helianthamide from Stichodactyla helianthus, was isolated and structurally characterized. Overall, H. magnifica is a source of biologically active peptides with great pharmacological potential. Proteinase and α-amylase inhibitors along with toxins are major components of H. magnifica mucus which play an important role in the successful existence of sea anemones. Obtained peptide maps create a basis for more accurate identification of peptides during future transcriptomic/genomic studies of sea anemone H. magnifica. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain

    NASA Astrophysics Data System (ADS)

    Cai, Xingyu; Zhou, Wujie; Cen, Gang; Qiu, Weiwei

    2018-06-01

    Recent studies have shown that a remarkable distinction exists between human binocular and monocular viewing behaviors. Compared with two-dimensional (2D) saliency detection models, stereoscopic three-dimensional (S3D) image saliency detection is a more challenging task. In this paper, we propose a saliency detection model for S3D images. The final saliency map of this model is constructed from the local quaternion Fourier transform (QFT) sparse feature and global QFT log-Gabor feature. More specifically, the local QFT feature measures the saliency map of an S3D image by analyzing the location of a similar patch. The similar patch is chosen using a sparse representation method. The global saliency map is generated by applying the wake edge-enhanced gradient QFT map through a band-pass filter. The results of experiments on two public datasets show that the proposed model outperforms existing computational saliency models for estimating S3D image saliency.

  18. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    PubMed Central

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  19. A polyalanine peptide derived from polar fish with anti-infectious activities

    NASA Astrophysics Data System (ADS)

    Cardoso, Marlon H.; Ribeiro, Suzana M.; Nolasco, Diego O.; de La Fuente-Núñez, César; Felício, Mário R.; Gonçalves, Sónia; Matos, Carolina O.; Liao, Luciano M.; Santos, Nuno C.; Hancock, Robert E. W.; Franco, Octávio L.; Migliolo, Ludovico

    2016-02-01

    Due to the growing concern about antibiotic-resistant microbial infections, increasing support has been given to new drug discovery programs. A promising alternative to counter bacterial infections includes the antimicrobial peptides (AMPs), which have emerged as model molecules for rational design strategies. Here we focused on the study of Pa-MAP 1.9, a rationally designed AMP derived from the polar fish Pleuronectes americanus. Pa-MAP 1.9 was active against Gram-negative planktonic bacteria and biofilms, without being cytotoxic to mammalian cells. By using AFM, leakage assays, CD spectroscopy and in silico tools, we found that Pa-MAP 1.9 may be acting both on intracellular targets and on the bacterial surface, also being more efficient at interacting with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts α-helical conformations, than cholesterol-enriched LUVs mimicking mammalian cells. Thus, as bacteria present varied physiological features that favor antibiotic-resistance, Pa-MAP 1.9 could be a promising candidate in the development of tools against infections caused by pathogenic bacteria.

  20. Multiple attractors and boundary crises in a tri-trophic food chain.

    PubMed

    Boer, M P; Kooi, B W; Kooijman, S A

    2001-02-01

    The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension by 1 for the study of the asymptotic dynamic behaviour. The intersections of the orbits with a Poincaré plane, after the transient has died out, yield a two-dimensional Poincaré next-return map. When chaotic behaviour occurs, all image points of this next-return map appear to lie close to a single curve in the intersection plane. This motivated the study of a one-dimensional bi-modal, non-invertible map of which the graph resembles this curve. We will show that the bifurcation structure of the food chain model can be understood in terms of the local and global bifurcations of this one-dimensional map. Homoclinic and heteroclinic connecting orbits and their global bifurcations are discussed also by relating them to their counterparts for a two-dimensional map which is invertible like the next-return map. In the global bifurcations two homoclinic or two heteroclinic orbits collide and disappear. In the food chain model two attractors coexist; a stable limit cycle where the top-predator is absent and an interior attractor. In addition there is a saddle cycle. The stable manifold of this limit cycle forms the basin boundary of the interior attractor. We will show that this boundary has a complicated structure when there are heteroclinic orbits from a saddle equilibrium to this saddle limit cycle. A homoclinic bifurcation to a saddle limit cycle will be associated with a boundary crisis where the chaotic attractor disappears suddenly when a bifurcation parameter is varied. Thus, similar to a tangent local bifurcation for equilibria or limit cycles, this homoclinic global bifurcation marks a region in the parameter space where the top-predator goes extinct. The 'Paradox of Enrichment' says that increasing the concentration of nutrient input can cause destabilization of the otherwise stable interior equilibrium of a bi-trophic food chain. For a tri-trophic food chain enrichment of the environment can even lead to extinction of the highest trophic level.

  1. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry

    PubMed Central

    Xenopoulos, Alex; Fadgen, Keith; Murphy, Jim; Skilton, St. John; Prentice, Holly; Stapels, Martha

    2012-01-01

    Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry. PMID:22327428

  2. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.

  3. New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps

    NASA Astrophysics Data System (ADS)

    Bukh, Andrei; Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-11-01

    We study numerically the dynamics of a network made of two coupled one-dimensional ensembles of discrete-time systems. The first ensemble is represented by a ring of nonlocally coupled Henon maps and the second one by a ring of nonlocally coupled Lozi maps. We find that the network of coupled ensembles can realize all the spatio-temporal structures which are observed both in the Henon map ensemble and in the Lozi map ensemble while uncoupled. Moreover, we reveal a new type of spatiotemporal structure, a solitary state chimera, in the considered network. We also establish and describe the effect of mutual synchronization of various complex spatiotemporal patterns in the system of two coupled ensembles of Henon and Lozi maps.

  4. Structure and Uncoating of Immature Adenovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Berna, A.J.; Mangel, W.; Marabini, R.

    2009-09-18

    Maturation via proteolytic processing is a common trait in the viral world and is often accompanied by large conformational changes and rearrangements in the capsid. The adenovirus protease has been shown to play a dual role in the viral infectious cycle: (a) in maturation, as viral assembly starts with precursors to several of the structural proteins but ends with proteolytically processed versions in the mature virion, and (b) in entry, because protease-impaired viruses have difficulties in endosome escape and uncoating. Indeed, viruses that have not undergone proteolytic processing are not infectious. We studied the three-dimensional structure of immature adenovirus particlesmore » as represented by the adenovirus type 2 thermosensitive mutant ts1 grown under non-permissive conditions and compared it with the mature capsid. Our three-dimensional electron microscopy maps at subnanometer resolution indicate that adenovirus maturation does not involve large-scale conformational changes in the capsid. Difference maps reveal the locations of unprocessed peptides pIIIa and pVI and help define their role in capsid assembly and maturation. An intriguing difference appears in the core, indicating a more compact organization and increased stability of the immature cores. We have further investigated these properties by in vitro disassembly assays. Fluorescence and electron microscopy experiments reveal differences in the stability and uncoating of immature viruses, both at the capsid and core levels, as well as disassembly intermediates not previously imaged.« less

  5. Casimir interaction of rodlike particles in a two-dimensional critical system.

    PubMed

    Eisenriegler, E; Burkhardt, T W

    2016-09-01

    We consider the fluctuation-induced interaction of two thin, rodlike particles, or "needles," immersed in a two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of elementary functions, and we also obtain analytical results for the force and torque between needles of finite length with separation much greater than their length. Evaluating formulas in our approach numerically for several needle geometries and surface universality classes, we study the full crossover from small to large values of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long needles and with predictions of the small-particle operator expansion, respectively.

  6. Magnetic resonance imaging and three-dimensional ultrasound of carotid atherosclerosis: mapping regional differences.

    PubMed

    Krasinski, Adam; Chiu, Bernard; Fenster, Aaron; Parraga, Grace

    2009-04-01

    To evaluate differences in carotid atherosclerosis measured using magnetic resonance imaging (MRI) and three-dimensional ultrasound (3DUS). Ten subject volunteers underwent carotid 3DUS and MRI (multislice black blood fast spin echo, T1-weighted contrast, double inversion recovery, 0.5 mm in-plane resolution, 2 mm slice, 3.0 T) within 1 hour. 3DUS and MR images were manually segmented by two observers providing vessel wall and lumen contours for quantification of vessel wall volume (VWV) and generation of carotid thickness maps. MRI VWV (1040 +/- 210 mm(3)) and 3DUS VWV (540 +/- 110 mm(3)) were significantly different (P < 0.0001). When normalized for the estimated adventitia volume, mean MRI VWV decreased 240 +/- 50 mm(3) and was significantly different from 3DUS VWV (P < 0.001). Two-dimensional carotid maps showed qualitative evidence of regional differences in the plaque and vessel wall thickness between MR and 3DUS in all subjects. Power Doppler US confirmed that heterogeneity in the common carotid artery in all patients resulted from apparent flow disturbances, not atherosclerotic plaque. MRI and 3DUS VWV were significantly different and carotid maps showed homogeneous thickness differences and heterogeneity in specific regions of interest identified as MR flow artifacts in the common carotid artery.

  7. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  8. The relationship of acquisition systems to automated stereo correlation.

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1983-01-01

    Today a concerted effort is being made to expedite the mapping process through automated correlation of stereo data. Stereo correlation involves the comparison of radiance (brightness) signals or patterns recorded by sensors. Conventionally, two-dimensional area correlation is utilized but this is a rather slow and cumbersome procedure. Digital correlation can be performed in only one dimension where suitable signal patterns exist, and the one-dimensional mode is much faster. Electro-optical (EO) systems, suitable for space use, also have much greater flexibility than film systems. Thus, an EO space system can be designed which will optimize one-dimensional stereo correlation and lead toward the automation of topographic mapping.-from Author

  9. Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction*

    PubMed Central

    Rahman, Kh. Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard

    2016-01-01

    X-ray crystallography has shown that an antibody paratope typically binds 15–22 amino acids (aa) of an epitope, of which 2–5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6–11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7–12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16–30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences. PMID:27189949

  10. Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J. K.; Roy, S.; Skinner, J. L.

    2014-06-14

    The spectroscopy of amide I vibrations has become a powerful tool for exploring protein structure and dynamics. To help with spectral interpretation, it is often useful to perform molecular dynamics (MD) simulations. To connect spectroscopic experiments to simulations in an efficient manner, several researchers have proposed “maps,” which relate observables in classical MD simulations to quantum spectroscopic variables. It can be difficult to discern whether errors in the theoretical results (compared to experiment) arise from inaccuracies in the MD trajectories or in the maps themselves. In this work, we evaluate spectroscopic maps independently from MD simulations by comparing experimental andmore » theoretical spectra for a single conformation of the α-helical model peptide Ac-Phe-(Ala){sub 5}-Lys-H{sup +} in the gas phase. Conformation-specific experimental spectra are obtained for the unlabeled peptide and for several singly and doubly {sup 13}C-labeled variants using infrared-ultraviolet double-resonance spectroscopy, and these spectra are found to be well-modeled by density functional theory (DFT) calculations at the B3LYP/6-31G** level. We then compare DFT results for the deuterated and {sup 13}C{sup 18}O-labeled peptide with those from spectroscopic maps developed and used previously by the Skinner group. We find that the maps are typically accurate to within a few cm{sup −1} for both frequencies and couplings, having larger errors only for the frequencies of terminal amides.« less

  11. Robust PRNG based on homogeneously distributed chaotic dynamics

    NASA Astrophysics Data System (ADS)

    Garasym, Oleg; Lozi, René; Taralova, Ina

    2016-02-01

    This paper is devoted to the design of new chaotic Pseudo Random Number Generator (CPRNG). Exploring several topologies of network of 1-D coupled chaotic mapping, we focus first on two dimensional networks. Two topologically coupled maps are studied: TTL rc non-alternate, and TTL SC alternate. The primary idea of the novel maps has been based on an original coupling of the tent and logistic maps to achieve excellent random properties and homogeneous /uniform/ density in the phase plane, thus guaranteeing maximum security when used for chaos base cryptography. In this aim two new nonlinear CPRNG: MTTL 2 sc and NTTL 2 are proposed. The maps successfully passed numerous statistical, graphical and numerical tests, due to proposed ring coupling and injection mechanisms.

  12. Accurate Prediction of Protein Contact Maps by Coupling Residual Two-Dimensional Bidirectional Long Short-Term Memory with Convolutional Neural Networks.

    PubMed

    Hanson, Jack; Paliwal, Kuldip; Litfin, Thomas; Yang, Yuedong; Zhou, Yaoqi

    2018-06-19

    Accurate prediction of a protein contact map depends greatly on capturing as much contextual information as possible from surrounding residues for a target residue pair. Recently, ultra-deep residual convolutional networks were found to be state-of-the-art in the latest Critical Assessment of Structure Prediction techniques (CASP12, (Schaarschmidt et al., 2018)) for protein contact map prediction by attempting to provide a protein-wide context at each residue pair. Recurrent neural networks have seen great success in recent protein residue classification problems due to their ability to propagate information through long protein sequences, especially Long Short-Term Memory (LSTM) cells. Here we propose a novel protein contact map prediction method by stacking residual convolutional networks with two-dimensional residual bidirectional recurrent LSTM networks, and using both one-dimensional sequence-based and two-dimensional evolutionary coupling-based information. We show that the proposed method achieves a robust performance over validation and independent test sets with the Area Under the receiver operating characteristic Curve (AUC)>0.95 in all tests. When compared to several state-of-the-art methods for independent testing of 228 proteins, the method yields an AUC value of 0.958, whereas the next-best method obtains an AUC of 0.909. More importantly, the improvement is over contacts at all sequence-position separations. Specifically, a 8.95%, 5.65% and 2.84% increase in precision were observed for the top L∕10 predictions over the next best for short, medium and long-range contacts, respectively. This confirms the usefulness of ResNets to congregate the short-range relations and 2D-BRLSTM to propagate the long-range dependencies throughout the entire protein contact map 'image'. SPOT-Contact server url: http://sparks-lab.org/jack/server/SPOT-Contact/. Supplementary data is available at Bioinformatics online.

  13. Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

    PubMed Central

    Imholte, Gregory; Gottardo, Raphael

    2017-01-01

    Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097

  14. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    PubMed

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: Use of a photoactivatable reagent

    PubMed Central

    Cai, Kewen; Itoh, Yoshiki; Khorana, H. Gobind

    2001-01-01

    Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by a disulfide-exchange reaction with the pyridylthio group, and the derivatized rhodopsin then is complexed with T by illumination at λ >495 nm. Subsequent irradiation of the complex at λ310 nm generates covalent crosslinks between the two proteins. Crosslinking was demonstrated between T and a number of single cysteine rhodopsin mutants. However, sites of crosslinks were investigated in detail only between T and the rhodopsin mutant S240C (cytoplasmic loop V-VI). Crosslinking occurred predominantly with Tα. For identification of the sites of crosslinks in Tα, the strategy used involved: (i) derivatization of all of the free cysteines in the crosslinked proteins with N-ethylmaleimide; (ii) reduction of the disulfide bond linking the two proteins and isolation of all of the Tα species carrying the crosslinked moiety with a free SH group; (iii) adduct formation of the latter with the N-maleimide moiety of the reagent, maleimido-butyryl-biocytin, containing a biotinyl group; (iv) trypsin degradation of the resulting Tα derivatives and isolation of Tα peptides carrying maleimido-butyryl-biocytin by avidin-agarose chromatography; and (v) identification of the isolated peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We found that crosslinking occurred mainly to two C-terminal peptides in Tα containing the amino acid sequences 310–313 and 342–345. PMID:11320237

  16. One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions

    Treesearch

    Rohan Benjankar; Daniele Tonina; James McKean

    2014-01-01

    Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...

  17. Posterosuperior Placement of a Standard-Sized Cup at the True Acetabulum in Acetabular Reconstruction of Developmental Dysplasia of the Hip With High Dislocation.

    PubMed

    Xu, Jiawei; Xu, Chen; Mao, Yuanqing; Zhang, Jincheng; Li, Huiwu; Zhu, Zhenan

    2016-06-01

    We sought to evaluate posterosuperior placement of the acetabular component at the true acetabulum during acetabular reconstruction in patients with Crowe type-IV developmental dysplasia of the hip. Using pelvic computed tomography and image processing, we developed a two-dimensional mapping technique to demonstrate the distribution of preoperative three-dimensional cup coverage at the true acetabulum, determined the postoperative location of the acetabular cup, and calculated postoperative three-dimensional coverage for 16 Crowe type-IV dysplastic hips in 14 patients with a mean age of 52 years (33-78 years) who underwent total hip arthroplasty. Mean follow-up was 6.3 years (5.5-7.3 years). On preoperative mapping, the maximum three-dimensional coverage using a 44-mm cup was 87.31% (77.36%-98.14%). Mapping enabled the successful replacement of 16 hips using a mean cup size of 44.13 mm (42-46 mm) with posterosuperior placement of the cup. Early weight-bearing and no prosthesis revision or loosening during follow-up were achieved in all patients. The postoperative two-dimensional coverage on anteroposterior radiographs and three-dimensional coverage were 96.15% (89.49%-100%) and 83.42% (71.81%-98.50%), respectively. This technique may improve long-term implant survival in patients with Crowe-IV developmental dysplasia of the hip undergoing total hip arthroplasty by allowing the use of durable bearings, increasing host bone coverage, ensuring initial stability, and restoring the normal hip center. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. ANALYSIS OF PROTEIN DIGESTS BY nano- SCX/RP/MSMS WITH pH SALT GRADIENT SCX ELUTION

    EPA Science Inventory

    The objective of this study was to optimize chromatographic parameters for complex peptide mixture analyses using two dimensional nano-LC/MSMS system. It used a strong cation exchange (SCX) and reversed phase chromatography (RP). The SCX solvent system was designed to promote pep...

  19. Optimum aerodynamic design via boundary control

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    These lectures describe the implementation of optimization techniques based on control theory for airfoil and wing design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. Recently the method has been implemented in an alternative formulation which does not depend on conformal mapping, so that it can more easily be extended to treat general configurations. The method has also been extended to treat the Euler equations, and results are presented for both two and three dimensional cases, including the optimization of a swept wing.

  20. An open-source computational and data resource to analyze digital maps of immunopeptidomes

    DOE PAGES

    Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J.; ...

    2015-07-08

    We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.

  1. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine.

    PubMed

    Tipu, Hamid Nawaz

    2016-02-01

    To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Cross-sectional study. Combined Military Hospital, Khuzdar Cantt, in May 2015. Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLAclass I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. HLAA*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. Atotal of 35 nanomers from GP1, and 3 from GP2 were identified. HLAB*0702 bound maximum number of peptides (6), while HLAB*4001 showed strongest binding affinity. HLAspecific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates.

  2. Ferrate oxidation of murine leukemia virus reverse transcriptase: identification of the template-primer binding domain.

    PubMed

    Reddy, G; Nanduri, V B; Basu, A; Modak, M J

    1991-08-20

    Treatment of murine leukemia virus reverse transcriptase (MuLV RT) with potassium ferrate, an oxidizing agent known to oxidize amino acids involved in phosphate binding domains of proteins, results in the irreversible inactivation of both the DNA polymerase and the RNase H activities. Significant protection from ferrate-mediated inactivation is observed in the presence of template-primer but not in the presence of substrate deoxynucleoside triphosphates. Furthermore, ferrate-treated enzyme loses template-primer binding activity as judged by UV-mediated cross-linking of radiolabeled DNA. Comparative tryptic peptide mapping by reverse-phase HPLC of native and ferrate-oxidized enzyme indicated the presence of two new peptides eluting at 38 and 57 min and a significant loss of a peptide eluting at 74 min. Purification, amino acid composition, and sequencing of these affected peptides revealed that they correspond to amino acid residues 285-295, 630-640, and 586-599, respectively, in the primary amino acid sequence of MuLV RT. These results indicate that the domains constituted by the above peptides are important for the template-primer binding function in MuLV RT. Peptide I is located in the polymerase domain whereas peptides II and III are located in the RNase H domain. Amino acid sequence analysis of peptides I and II suggested Lys-285 and Cys-635 as the probable sites of ferrate action.

  3. Adaptive DSPI phase denoising using mutual information and 2D variational mode decomposition

    NASA Astrophysics Data System (ADS)

    Xiao, Qiyang; Li, Jian; Wu, Sijin; Li, Weixian; Yang, Lianxiang; Dong, Mingli; Zeng, Zhoumo

    2018-04-01

    In digital speckle pattern interferometry (DSPI), noise interference leads to a low peak signal-to-noise ratio (PSNR) and measurement errors in the phase map. This paper proposes an adaptive DSPI phase denoising method based on two-dimensional variational mode decomposition (2D-VMD) and mutual information. Firstly, the DSPI phase map is subjected to 2D-VMD in order to obtain a series of band-limited intrinsic mode functions (BLIMFs). Then, on the basis of characteristics of the BLIMFs and in combination with mutual information, a self-adaptive denoising method is proposed to obtain noise-free components containing the primary phase information. The noise-free components are reconstructed to obtain the denoising DSPI phase map. Simulation and experimental results show that the proposed method can effectively reduce noise interference, giving a PSNR that is higher than that of two-dimensional empirical mode decomposition methods.

  4. Peptide-directed self-assembly of hydrogels

    PubMed Central

    Kopeček, Jindřich; Yang, Jiyuan

    2009-01-01

    This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513

  5. Triple Resonance Solid State NMR Experiments with Reduced Dimensionality Evolution Periods

    NASA Astrophysics Data System (ADS)

    Astrof, Nathan S.; Lyon, Charles E.; Griffin, Robert G.

    2001-10-01

    Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CON CA experiment establishes the correlation of 13Ci-1 to 13Cαi and 15Ni by simultaneously encoding the 13COi-1 and 15Ni chemical shifts. The CAN COCA experiment establishes the correlation 13Cai and 15COi to 13Cαi-1 and 15Ni-1 within a single experiment by simultaneous encoding of the 13Cαi and 15Ni chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.

  6. Three-dimensional Speckle Tracking Echocardiography in Light Chain Cardiac Amyloidosis: Examination of Left and Right Ventricular Myocardial Mechanics Parameters.

    PubMed

    Urbano-Moral, Jose Angel; Gangadharamurthy, Dakshin; Comenzo, Raymond L; Pandian, Natesa G; Patel, Ayan R

    2015-08-01

    The study of myocardial mechanics has a potential role in the detection of cardiac involvement in patients with amyloidosis. This study aimed to characterize 3-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics in light chain amyloidosis and examine their relationship with brain natriuretic peptide. In patients with light chain amyloidosis, left ventricular longitudinal and circumferential strain (n=40), and right ventricular longitudinal strain and radial displacement (n=26) were obtained by 3-dimensional-speckle tracking echocardiography. Brain natriuretic peptide levels were determined. All myocardial mechanics measurements showed differences when compared by brain natriuretic peptide level tertiles. Left and right ventricular longitudinal strain were highly correlated (r=0.95, P<.001). Left ventricular longitudinal and circumferential strain were reduced in patients with cardiac involvement (-9±4 vs -16±2; P<.001, and -24±6 vs -29±4; P=.01, respectively), with the most prominent impairment at the basal segments. Right ventricular longitudinal strain and radial displacement were diminished in patients with cardiac involvement (-9±3 vs -17±3; P<.001, and 2.7±0.8 vs 3.8±0.3; P=.002). On multivariate analysis, left ventricular longitudinal strain was associated with the presence of cardiac involvement (odds ratio = 1.6; 95% confidence interval, 1.04 to 2.37; P=.03) independent of the presence of brain natriuretic peptide and troponin I criteria for cardiac amyloidosis. Three-dimensional-speckle tracking echocardiography-derived left and right ventricular myocardial mechanics are increasingly altered as brain natriuretic peptide increases in light chain amyloidosis. There appears to be a strong association between left ventricular longitudinal strain and cardiac involvement, beyond biomarkers such as brain natriuretic peptide and troponin I. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  7. Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping.

    PubMed

    Frickenhaus, Stephan; Kannan, Srinivasaraghavan; Zacharias, Martin

    2009-02-01

    A direct conformational clustering and mapping approach for peptide conformations based on backbone dihedral angles has been developed and applied to compare conformational sampling of Met-enkephalin using two molecular dynamics (MD) methods. Efficient clustering in dihedrals has been achieved by evaluating all combinations resulting from independent clustering of each dihedral angle distribution, thus resolving all conformational substates. In contrast, Cartesian clustering was unable to accurately distinguish between all substates. Projection of clusters on dihedral principal component (PCA) subspaces did not result in efficient separation of highly populated clusters. However, representation in a nonlinear metric by Sammon mapping was able to separate well the 48 highest populated clusters in just two dimensions. In addition, this approach also allowed us to visualize the transition frequencies between clusters efficiently. Significantly, higher transition frequencies between more distinct conformational substates were found for a recently developed biasing-potential replica exchange MD simulation method allowing faster sampling of possible substates compared to conventional MD simulations. Although the number of theoretically possible clusters grows exponentially with peptide length, in practice, the number of clusters is only limited by the sampling size (typically much smaller), and therefore the method is well suited also for large systems. The approach could be useful to rapidly and accurately evaluate conformational sampling during MD simulations, to compare different sampling strategies and eventually to detect kinetic bottlenecks in folding pathways.

  8. Mapping owl's eye cells of patients with cytomegalovirus corneal endotheliitis using in vivo laser confocal microscopy.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Sugiyama, Kazuhisa

    2013-01-01

    To produce a two-dimensional reconstruction map of owl's eye cells using in vivo laser confocal microscopy in patients with cytomegalovirus (CMV) corneal endotheliitis, and to demonstrate any association between owl's eye cells and coin-shaped lesions observed with slit-lamp biomicroscopy. Two patients (75- and 77-year-old men) with polymerase chain reaction-proven CMV corneal endotheliitis were evaluated in this study. Slit-lamp biomicroscopy and in vivo laser confocal microscopy were performed. Images of owl's eye cells in the endothelial cell layer were arranged and mapped into subconfluent montages. Montage images of owl's eye cells were then superimposed on a slit-lamp photo of the corresponding coin-shaped lesion. Degree of concordance between the confocal microscopic images and slit-lamp photos was evaluated. In both eyes, a two-dimensional reconstruction map of the owl's eye cells was created by computer software using acquired confocal images; the maps showed circular patterns. Superimposing montage images of owl's eye cells onto the photos of a coin-shaped lesion showed good concordance in the two eyes. This study suggests that there is an association between owl's eye cells observed by confocal microscopy and coin-shaped lesions observed by slit-lamp biomicroscopy in patients with CMV corneal endotheliitis. The use of in vivo laser confocal microscopy may provide clues as to the underlying causes of CMV corneal endotheliitis.

  9. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  10. Composition and method for self-assembly and mineralization of peptide amphiphiles

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  11. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    PubMed

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  12. A 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi.

    PubMed

    Login, Frédéric H; Fries, Markus; Wang, Xiaohui; Pickersgill, Richard W; Shevchik, Vladimir E

    2010-05-01

    The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20-residue peptide named OutCsip (secretin interacting peptide, residues 139-158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2-N3' subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine.

  13. Specific Degradation of the Mucus Adhesion-Promoting Protein (MapA) of Lactobacillus reuteri to an Antimicrobial Peptide ▿

    PubMed Central

    Bøhle, Liv Anette; Brede, Dag Anders; Diep, Dzung B.; Holo, Helge; Nes, Ingolf F.

    2010-01-01

    The intestinal flora of mammals contains lactic acid bacteria (LAB) that may provide positive health effects for the host. Such bacteria are referred to as probiotic bacteria. From a pig, we have isolated a Lactobacillus reuteri strain that produces an antimicrobial peptide (AMP). The peptide was purified and characterized, and it was unequivocally shown that the AMP was a well-defined degradation product obtained from the mucus adhesion-promoting protein (MapA); it was therefore termed AP48-MapA. This finding demonstrates how large proteins might inherit unexpected pleiotropic functions by conferring antimicrobial capacities on the producer. The MapA/AP48-MapA system is the first example where a large protein of an intestinal LAB is shown to give rise to such an AMP. It is also of particular interest that the protein that provides this AMP is associated with the binding of the bacterium producing it to the surface/lining of the gut. This finding gives us new perspective on how some probiotic bacteria may successfully compete in this environment and thereby contribute to a healthy microbiota. PMID:20833791

  14. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  15. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An Example of Unsupervised Networks Kohonen's Self-Organizing Feature Map

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    Kohonen's self-organizing feature map belongs to a class of unsupervised artificial neural network commonly referred to as topographic maps. It serves two purposes, the quantization and dimensionality reduction of date. A short description of its history and its biological context is given. We show that the inherent classification properties of the feature map make it a suitable candidate for solving the classification task in power system areas like load forecasting, fault diagnosis and security assessment.

  17. CE-microreactor-CE-MS/MS for protein analysis

    PubMed Central

    Schoenherr, Regine M.; Ye, Mingliang; Vannatta, Michael

    2008-01-01

    We present a proof-of-principle for a fully automated bottom-up approach to protein characterization. Proteins are first separated by capillary electrophoresis. A pepsin microreactor is incorporated into the distal end of this capillary. Peptides formed in the reactor are transferred to a second capillary, where they are separated by capillary electrophoresis and characterized by mass spectrometry. While peptides generated from one digestion are being separated in the second capillary, the next protein fraction undergoes digestion in the microreactor. The migration time in the first dimension capillary is characteristic of the protein while migration time in the second dimension is characteristic of the peptide. Spot capacity for the two-dimensional separation is 590. A MS/MS analysis of a mixture of cytochrome C and myoglobin generated Mascot MOWSE scores of 107 for cytochrome C and 58 for myoglobin. The sequence coverages were 48% and 22%, respectively. PMID:17295444

  18. Electrical detection of the biological interaction of a charged peptide via gallium arsenide junction-field-effect transistors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Alam, Muhammad A.; Janes, David B.; Wampler, Heeyeon P.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2008-01-01

    GaAs junction-field-effect transistors (JFETs) are utilized to achieve label-free detection of biological interaction between a probe transactivating transcriptional activator (TAT) peptide and the target trans-activation-responsive (TAR) RNA. The TAT peptide is a short sequence derived from the human immunodeficiency virus-type 1 TAT protein. The GaAs JFETs are modified with a mixed adlayer of 1-octadecanethiol (ODT) and TAT peptide, with the ODT passivating the GaAs surface from polar ions in physiological solutions and the TAT peptide providing selective binding sites for TAR RNA. The devices modified with the mixed adlayer exhibit a negative pinch-off voltage (VP) shift, which is attributed to the fixed positive charges from the arginine-rich regions in the TAT peptide. Immersing the modified devices into a TAR RNA solution results in a large positive VP shift (>1 V) and a steeper subthreshold slope (∼80 mV∕decade), whereas “dummy” RNA induced a small positive VP shift (∼0.3 V) without a significant change in subthreshold slopes (∼330 mV∕decade). The observed modulation of device characteristics is analyzed with analytical modeling and two-dimensional numerical device simulations to investigate the electronic interactions between the GaAs JFETs and biological molecules. PMID:19484151

  19. Design and application of a data-independent precursor and product ion repository.

    PubMed

    Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J

    2012-10-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.

  20. Towards the chemometric dissection of peptide - HLA-A*0201 binding affinity: comparison of local and global QSAR models

    NASA Astrophysics Data System (ADS)

    Doytchinova, Irini A.; Walshe, Valerie; Borrow, Persephone; Flower, Darren R.

    2005-03-01

    The affinities of 177 nonameric peptides binding to the HLA-A*0201 molecule were measured using a FACS-based MHC stabilisation assay and analysed using chemometrics. Their structures were described by global and local descriptors, QSAR models were derived by genetic algorithm, stepwise regression and PLS. The global molecular descriptors included molecular connectivity χ indices, κ shape indices, E-state indices, molecular properties like molecular weight and log P, and three-dimensional descriptors like polarizability, surface area and volume. The local descriptors were of two types. The first used a binary string to indicate the presence of each amino acid type at each position of the peptide. The second was also position-dependent but used five z-scales to describe the main physicochemical properties of the amino acids forming the peptides. The models were developed using a representative training set of 131 peptides and validated using an independent test set of 46 peptides. It was found that the global descriptors could not explain the variance in the training set nor predict the affinities of the test set accurately. Both types of local descriptors gave QSAR models with better explained variance and predictive ability. The results suggest that, in their interactions with the MHC molecule, the peptide acts as a complicated ensemble of multiple amino acids mutually potentiating each other.

  1. Trypanosoma cruzi. Surface antigens of blood and culture forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogueira, N.; Chaplan, S.; Tydings, J.D.

    1981-03-01

    The surface polypeptides of both cultured and blood forms of Trypanosoma cruzi were iodinated by the glucose oxidase-lactoperoxidase technique. Blood-form trypomastigotes (BFT) isolated form infected mice displayed a major 90,000-Mr component. In contrast, both epimastigotes and trypomastigotes obtained form acellular cultures expressed a smaller 75,000-Mr peptide. Both major surface components were presumably glycoproteins in terms of their binding to concanavalin A-Sepharose 4B. Within a 3-h period, both blood and culture forms synthesized their respective surface glycoproteins (90,000 Mr and 75,000 Mr, respectively in vitro. (/sub 35/S)methionine-labeled surface peptides were immunoprecipitated with immune sera of both human and murine origin. Amore » panel of sera form patients with chronic Chagas' disease and hyperimmunized mice recognized similar surface peptides. These immunogens were the same components as the major iodinated species. The major BFT surface peptide was readily removed by trypsin treatment of the parasites, although the procedure did not affect the 75,000-Mr peptide from the culture forms. Two-dimensional polyacrylamide gel electrophoresis revealed that the 90,000-Mr peptide found on BFT was an acidic protein of isoelectric point (pI) 5.0, whereas, the 75,000-Mr peptide form culture-form trypomastigotes has a pI of 7.2. The 90,000-Mr component is thought to be responsible for the anti-phagocytic properties of the BFT (1).« less

  2. Accurate de novo design of hyperstable constrained peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Bahl, Christopher D.

    Covalently-crosslinked peptides present attractive opportunities for developing new therapeutics. Lying between small molecule and protein therapeutics in size, natural crosslinked peptides play critical roles in signaling, virulence and immunity. Engineering novel peptides with precise control over their three-dimensional structures is a significant challenge. Here we describe the development of computational methods for de novo design of conformationally-restricted peptides, and the use of these methods to design hyperstable disulfide-stabilized miniproteins, heterochiral peptides, and N-C cyclic peptides. Experimentally-determined X-ray and NMR structures for 12 of the designs are nearly identical to the computational models. The computational design methods and stable scaffolds providemore » the basis for a new generation of peptide-based drugs.« less

  3. The influence of percutaneous closure of patent ductus arteriosus on left ventricular size and function: a prospective study using two- and three-dimensional echocardiography and measurements of serum natriuretic peptides.

    PubMed

    Eerola, Anneli; Jokinen, Eero; Boldt, Talvikki; Pihkala, Jaana

    2006-03-07

    We aimed to evaluate the effect of percutaneous closure of patent ductus arteriosus (PDA) on left ventricular (LV) hemodynamics. Today, most PDAs are closed percutaneously. Little is known, however, about hemodynamic changes after the procedure. Of 37 children (ages 0.6 to 10.6 years) taken to the catheterization laboratory for percutaneous PDA closure, the PDA was closed in 33. Left ventricular diastolic and systolic dimensions, volumes, and function were examined by two-dimensional (2D) and three-dimensional (3D) echocardiography and serum concentrations of natriuretic peptides measured before PDA closure, on the following day, and 6 months thereafter. Control subjects comprised 36 healthy children of comparable ages. At baseline, LV diastolic diameter measured >+2 SD in 5 of 33 patients. In 3D echocardiography, a median LV diastolic volume measured 54.0 ml/m2 in the control subjects and 58.4 ml/m2 (p < 0.05) in the PDA group before closure and 57.2 ml/m2 (p = NS) 6 months after closure. A median N-terminal brain natriuretic peptide (pro-BNP) concentration measured 72 ng/l in the control group and 141 ng/l in the PDA group before closure (p = 0.001) and 78.5 ng/l (p = NS) 6 months after closure. Patients differed from control subjects in indices of LV systolic and diastolic function at baseline. By the end of follow-up, all these differences had disappeared. Even in the subgroup of patients with normal-sized LV at baseline, the LV diastolic volume decreased significantly during follow-up. Changes in LV volume and function caused by PDA disappear by 6 months after percutaneous closure. Even the children with normal-sized LV benefit from the procedure.

  4. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    PubMed

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Epitope mapping of the domains of human angiotensin converting enzyme.

    PubMed

    Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E

    2006-06-01

    Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.

  6. Two-dimensional correlation spectroscopy — Biannual survey 2007-2009

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2010-06-01

    The publication activities in the field of 2D correlation spectroscopy are surveyed with the emphasis on papers published during the last two years. Pertinent review articles and conference proceedings are discussed first, followed by the examination of noteworthy developments in the theory and applications of 2D correlation spectroscopy. Specific topics of interest include Pareto scaling, analysis of randomly sampled spectra, 2D analysis of data obtained under multiple perturbations, evolution of 2D spectra along additional variables, comparison and quantitative analysis of multiple 2D spectra, orthogonal sample design to eliminate interfering cross peaks, quadrature orthogonal signal correction and other data transformation techniques, data pretreatment methods, moving window analysis, extension of kernel and global phase angle analysis, covariance and correlation coefficient mapping, variant forms of sample-sample correlation, and different display methods. Various static and dynamic perturbation methods used in 2D correlation spectroscopy, e.g., temperature, composition, chemical reactions, H/D exchange, physical phenomena like sorption, diffusion and phase transitions, optical and biological processes, are reviewed. Analytical probes used in 2D correlation spectroscopy include IR, Raman, NIR, NMR, X-ray, mass spectrometry, chromatography, and others. Application areas of 2D correlation spectroscopy are diverse, encompassing synthetic and natural polymers, liquid crystals, proteins and peptides, biomaterials, pharmaceuticals, food and agricultural products, solutions, colloids, surfaces, and the like.

  7. Critical behavior of two-dimensional vesicles in the deflated regime

    NASA Technical Reports Server (NTRS)

    Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio

    1991-01-01

    The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.

  8. Automatic poisson peak harvesting for high throughput protein identification.

    PubMed

    Breen, E J; Hopwood, F G; Williams, K L; Wilkins, M R

    2000-06-01

    High throughput identification of proteins by peptide mass fingerprinting requires an efficient means of picking peaks from mass spectra. Here, we report the development of a peak harvester to automatically pick monoisotopic peaks from spectra generated on matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometers. The peak harvester uses advanced mathematical morphology and watershed algorithms to first process spectra to stick representations. Subsequently, Poisson modelling is applied to determine which peak in an isotopically resolved group represents the monoisotopic mass of a peptide. We illustrate the features of the peak harvester with mass spectra of standard peptides, digests of gel-separated bovine serum albumin, and with Escherictia coli proteins prepared by two-dimensional polyacrylamide gel electrophoresis. In all cases, the peak harvester proved effective in its ability to pick similar monoisotopic peaks as an experienced human operator, and also proved effective in the identification of monoisotopic masses in cases where isotopic distributions of peptides were overlapping. The peak harvester can be operated in an interactive mode, or can be completely automated and linked through to peptide mass fingerprinting protein identification tools to achieve high throughput automated protein identification.

  9. Evidence for tyrosine-linked glycosaminoglycan in a bacterial surface protein.

    PubMed

    Peters, J; Rudolf, S; Oschkinat, H; Mengele, R; Sumper, M; Kellermann, J; Lottspeich, F; Baumeister, W

    1992-04-01

    The S-layer protein of Acetogenium kivui was subjected to proteolysis with different proteases and several high molecular mass glycosaminoglycan peptides containing glucose, galactosamine and an unidentified sugar-related component were separated by molecular sieve chromatography and reversed-phase HPLC and subjected to N-terminal sequence analysis. By methylation analysis glucose was found to be uniformly 1,6-linked, whereas galactosamine was exclusively 1,4-linked. Hydrazinolysis and subsequent amino-acid analysis as well as two-dimensional NMR spectroscopy were used to demonstrate that in these peptides carbohydrate was covalently linked to tyrosine. As all of the four Tyr-glycosylation sites were found to be preceded by valine, a new recognition sequence for glycosylation is suggested.

  10. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  11. Symmetry restoring bifurcations and quasiperiodic chaos induced by a new intermittency in a vibro-impact system.

    PubMed

    Yue, Yuan; Miao, Pengcheng; Xie, Jianhua; Celso, Grebogi

    2016-11-01

    Quasiperiodic chaos (QC), which is a combination of quasiperiodic sets and a chaotic set, is uncovered in the six dimensional Poincaré map of a symmetric three-degree of freedom vibro-impact system. Accompanied by symmetry restoring bifurcation, this QC is the consequence of a novel intermittency that occurs between two conjugate quasiperiodic sets and a chaotic set. The six dimensional Poincaré map P is the 2-fold composition of another virtual implicit map Q, yielding the symmetry of the system. Map Q can capture two conjugate attractors, which is at the core of the dynamics of the vibro-impact system. Three types of symmetry restoring bifurcations are analyzed in detail. First, if two conjugate chaotic attractors join together, the chaos-chaos intermittency induced by attractor-merging crisis takes place. Second, if two conjugate quasiperiodic sets are suddenly embedded in a chaotic one, QC is induced by a new intermittency between the three attractors. Third, if two conjugate quasiperiodic attractors connect with each other directly, they merge to form a single symmetric quasiperiodic one. For the second case, the new intermittency is caused by the collision of two conjugate quasiperiodic attractors with an unstable symmetric limit set. As the iteration number is increased, the largest finite-time Lyapunov exponent of the QC does not converge to a constant, but fluctuates in the positive region.

  12. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    PubMed

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  13. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    PubMed Central

    Wang, Guangshun

    2013-01-01

    Antimicrobial peptides (AMPs), small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1) or methicillin-resistant Staphylococcus aureus (MRSA). While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells. PMID:24276259

  14. Exploration of the Medicinal Peptide Space.

    PubMed

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.

  15. A 2.5-D Representation of the Human Hand

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Haggard, Patrick

    2012-01-01

    Primary somatosensory maps in the brain represent the body as a discontinuous, fragmented set of two-dimensional (2-D) skin regions. We nevertheless experience our body as a coherent three-dimensional (3-D) volumetric object. The links between these different aspects of body representation, however, remain poorly understood. Perceiving the body's…

  16. Seafarers, Great Circles, and a Tad of Rhumb: Understanding the Mercator Misconception

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2010-01-01

    Being flat, Mercator maps inherently misrepresent some aspects of Earth's geography. That's because there is absolutely no way to simultaneously conserve all of the elements of three-dimensional space in a two-dimensional model. To dispel misconceptions, check out the Activity Worksheet and the website resources included in this article. Along…

  17. Electromagnetic analysis of arbitrarily shaped pinched carpets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan

    2010-09-15

    We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less

  18. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  19. Using Molecular Models To Show Steric Clash in Peptides: An Illustration of Two Disallowed Regions in the Ramachandran Diagram

    ERIC Educational Resources Information Center

    Halkides, Christopher J.

    2013-01-01

    In this activity, students manipulate three-dimensional molecular models of the Ala-Ala-Ala tripeptide, where Ala is alanine. They rotate bonds to show that the pairs of dihedral angles phi = 0 degrees, psi = 180 degrees, and phi = 0 degrees, psi = 0 degrees lead to unfavorable interactions among the main chain atoms of the tripeptide. This…

  20. Three-Particle Complexes in Two-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Ganchev, Bogdan; Drummond, Neil; Aleiner, Igor; Fal'ko, Vladimir

    2015-03-01

    We evaluate binding energies of trions X±, excitons bound by a donor or acceptor charge XD (A ) , and overcharged acceptors or donors in two-dimensional atomic crystals by mapping the three-body problem in two dimensions onto one particle in a three-dimensional potential treatable by a purposely developed boundary-matching-matrix method. We find that in monolayers of transition metal dichalcogenides the dissociation energy of X± is typically much larger than that of localized exciton complexes, so that trions are more resilient to heating, despite the fact that their recombination line in optics is less redshifted from the exciton line than the line of XD (A ) .

  1. Analysis of terrain map matching using multisensing techniques for applications to autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Page, Lance; Shen, C. N.

    1991-01-01

    This paper describes skyline-based terrain matching, a new method for locating the vantage point of laser range-finding measurements on a global map previously prepared by satellite or aerial mapping. Skylines can be extracted from the range-finding measurements and modelled from the global map, and are represented in parametric, cylindrical form with azimuth angle as the independent variable. The three translational parameters of the vantage point are determined with a three-dimensional matching of these two sets of skylines.

  2. Nonalgebraic integrability of one reversible dynamical system of the Cremona type

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    1998-05-01

    A reversible dynamical system (RDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions [the Chew-Low-type equations with crossing-symmetry matrix A(l,1)], are considered. This RDS is split into one- and two-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous three-point functional equation. Nonalgebraic integrability of RDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a nonresonant fixed point.

  3. Design and Characterization of a Peptide Mimotope of the HIV-1 gp120 Bridging Sheet

    PubMed Central

    Schiavone, Marco; Fiume, Giuseppe; Caivano, Antonella; de Laurentiis, Annamaria; Falcone, Cristina; Masci, Francesca Fasanella; Iaccino, Enrico; Mimmi, Selena; Palmieri, Camillo; Pisano, Antonio; Pontoriero, Marilena; Rossi, Annalisa; Scialdone, Annarita; Vecchio, Eleonora; Andreozzi, Concetta; Trovato, Maria; Rafay, Jan; Ferko, Boris; Montefiori, David; Lombardi, Angela; Morsica, Giulia; Poli, Guido; Quinto, Ileana; Pavone, Vincenzo; de Berardinis, Piergiuseppe; Scala, Giuseppe

    2012-01-01

    The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV+ broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine. PMID:22754323

  4. QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Savcheva, Antonia

    2017-05-01

    Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.

  5. Piloting the membranolytic activities of peptides with a self-organizing map.

    PubMed

    Lin, Yen-Chu; Hiss, Jan A; Schneider, Petra; Thelesklaf, Peter; Lim, Yi Fan; Pillong, Max; Koehler, Fabian M; Dittrich, Petra S; Halin, Cornelia; Wessler, Silja; Schneider, Gisbert

    2014-10-13

    Antimicrobial peptides (AMPs) show remarkable selectivity toward lipid membranes and possess promising antibiotic potential. Their modes of action are diverse and not fully understood, and innovative peptide design strategies are needed to generate AMPs with improved properties. We present a de novo peptide design approach that resulted in new AMPs possessing low-nanomolar membranolytic activities. Thermal analysis revealed an entropy-driven mechanism of action. The study demonstrates sustained potential of advanced computational methods for designing peptides with the desired activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enrichment of Cross-Linked Peptides Using Charge-Based Fractional Diagonal Chromatography (ChaFRADIC).

    PubMed

    Tinnefeld, Verena; Venne, A Saskia; Sickmann, Albert; Zahedi, René P

    2017-02-03

    Chemical cross-linking of proteins is an emerging field with huge potential for the structural investigation of proteins and protein complexes. Owing to the often relatively low yield of cross-linking products, their identification in complex samples benefits from enrichment procedures prior to mass spectrometry analysis. So far, this is mainly accomplished by using biotin moieties in specific cross-linkers or by applying strong cation exchange chromatography (SCX) for a relatively crude enrichment. We present a novel workflow to enrich cross-linked peptides by utilizing charge-based fractional diagonal chromatography (ChaFRADIC). On the basis of two-dimensional diagonal SCX separation, we could increase the number of identified cross-linked peptides for samples of different complexity: pure cross-linked BSA, cross-linked BSA spiked into a simple protein mixture, and cross-linked BSA spiked into a HeLa lysate. We also compared XL-ChaFRADIC with size exclusion chromatography-based enrichment of cross-linked peptides. The XL-ChaFRADIC approach is straightforward, reproducible, and independent of the cross-linking chemistry and cross-linker properties.

  7. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software.

    PubMed

    Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E

    2016-10-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Unbiased in-depth characterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry.

    PubMed

    Griaud, François; Denefeld, Blandine; Lang, Manuel; Hensinger, Héloïse; Haberl, Peter; Berg, Matthias

    2017-07-01

    Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.

  9. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine

    PubMed Central

    Poh, Chit Laa; Kirk, Kristin; McBride, William John Hannan; Aaskov, John; Grollo, Lara

    2016-01-01

    Dengue virus (DENV) is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine. PMID:27223692

  10. Comparison of cryoablation with 3D mapping versus conventional mapping for the treatment of atrioventricular re-entrant tachycardia and right-sided paraseptal accessory pathways.

    PubMed

    Russo, Mario S; Drago, Fabrizio; Silvetti, Massimo S; Righi, Daniela; Di Mambro, Corrado; Placidi, Silvia; Prosperi, Monica; Ciani, Michele; Naso Onofrio, Maria T; Cannatà, Vittorio

    2016-06-01

    Aim Transcatheter cryoablation is a well-established technique for the treatment of atrioventricular nodal re-entry tachycardia and atrioventricular re-entry tachycardia in children. Fluoroscopy or three-dimensional mapping systems can be used to perform the ablation procedure. The aim of this study was to compare the success rate of cryoablation procedures for the treatment of right septal accessory pathways and atrioventricular nodal re-entry circuits in children using conventional or three-dimensional mapping and to evaluate whether three-dimensional mapping was associated with reduced patient radiation dose compared with traditional mapping. In 2013, 81 children underwent transcatheter cryoablation at our institution, using conventional mapping in 41 children - 32 atrioventricular nodal re-entry tachycardia and nine atrioventricular re-entry tachycardia - and three-dimensional mapping in 40 children - 24 atrioventricular nodal re-entry tachycardia and 16 atrioventricular re-entry tachycardia. Using conventional mapping, the overall success rate was 78.1 and 66.7% in patients with atrioventricular nodal re-entry tachycardia or atrioventricular re-entry tachycardia, respectively. Using three-dimensional mapping, the overall success rate was 91.6 and 75%, respectively (p=ns). The use of three-dimensional mapping was associated with a reduction in cumulative air kerma and cumulative air kerma-area product of 76.4 and 67.3%, respectively (p<0.05). The use of three-dimensional mapping compared with the conventional fluoroscopy-guided method for cryoablation of right septal accessory pathways and atrioventricular nodal re-entry circuits in children was associated with a significant reduction in patient radiation dose without an increase in success rate.

  11. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    PubMed Central

    Waghu, Faiza H.; Joseph, Shaini; Ghawali, Sanket; Martis, Elvis A.; Madan, Taruna; Venkatesh, Kareenhalli V.; Idicula-Thomas, Susan

    2018-01-01

    Antimicrobial peptides (AMPs) are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP) family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD) simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide. PMID:29527201

  12. Peptides designed to spatially depict the Epstein-Barr virus major virion glycoprotein gp350 neutralization epitope elicit antibodies that block virus-neutralizing antibody 72A1 interaction with the native gp350 molecule.

    PubMed

    Tanner, Jerome E; Coinçon, Mathieu; Leblond, Valérie; Hu, Jing; Fang, Janey M; Sygusch, Jurgen; Alfieri, Caroline

    2015-05-01

    Epstein-Barr virus (EBV) is the etiologic agent of infectious mononucleosis and the root cause of B-cell lymphoproliferative disease in individuals with a weakened immune system, as well as a principal cofactor in nasopharyngeal carcinoma, various lymphomas, and other cancers. The EBV major virion surface glycoprotein gp350 is viewed as the best vaccine candidate to prevent infectious mononucleosis in healthy EBV-naive persons and EBV-related cancers in at-risk individuals. Previous epitope mapping of gp350 revealed only one dominant neutralizing epitope, which has been shown to be the target of the monoclonal antibody 72A1. Computer modeling of the 72A1 antibody interaction with the gp350 amino terminus was used to identify gp350 amino acids that could form strong ionic, electrostatic, or hydrogen bonds with the 72A1 antibody. Peptide DDRTTLQLAQNPVYIPETYPYIKWDN (designated peptide 2) and peptide GSAKPGNGSYFASVKTEMLGNEID (designated peptide 3) were designed to spatially represent the gp350 amino acids predicted to interact with the 72A1 antibody paratope. Peptide 2 bound to the 72A1 antibody and blocked 72A1 antibody recognition of the native gp350 molecule. Peptide 2 and peptide 3 were recognized by human IgG and shown to elicit murine antibodies that could target gp350 and block its recognition by the 72A1 antibody. This work provides a structural mapping of the interaction between the EBV-neutralizing antibody 72A1 and the major virion surface protein gp350. gp350 mimetic peptides that spatially depict the EBV-neutralizing epitope would be useful as a vaccine to focus the immune system exclusively to this important virus epitope. The production of virus-neutralizing antibodies targeting the Epstein-Barr virus (EBV) major surface glycoprotein gp350 is important for the prevention of infectious mononucleosis and EBV-related cancers. The data presented here provide the first in silico map of the gp350 interaction with a virus-blocking monoclonal antibody. Immunization with gp350 peptides identified by in silico mapping generated antibodies that cross-react with the EBV gp350 molecule and block recognition of the gp350 molecule by a virus-neutralizing antibody. Through its ability to focus the immune system exclusively on the gp350 sequence important for viral entry, these peptides may form the basis of an EBV vaccine candidate. This strategy would sidestep the production of other irrelevant gp350 antibodies that divert the immune system from generating a protective antiviral response or that impede access to the virus-blocking epitope by protective antibodies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Visualizing the Topical Structure of the Medical Sciences: A Self-Organizing Map Approach

    PubMed Central

    Skupin, André; Biberstine, Joseph R.; Börner, Katy

    2013-01-01

    Background We implement a high-resolution visualization of the medical knowledge domain using the self-organizing map (SOM) method, based on a corpus of over two million publications. While self-organizing maps have been used for document visualization for some time, (1) little is known about how to deal with truly large document collections in conjunction with a large number of SOM neurons, (2) post-training geometric and semiotic transformations of the SOM tend to be limited, and (3) no user studies have been conducted with domain experts to validate the utility and readability of the resulting visualizations. Our study makes key contributions to all of these issues. Methodology Documents extracted from Medline and Scopus are analyzed on the basis of indexer-assigned MeSH terms. Initial dimensionality is reduced to include only the top 10% most frequent terms and the resulting document vectors are then used to train a large SOM consisting of over 75,000 neurons. The resulting two-dimensional model of the high-dimensional input space is then transformed into a large-format map by using geographic information system (GIS) techniques and cartographic design principles. This map is then annotated and evaluated by ten experts stemming from the biomedical and other domains. Conclusions Study results demonstrate that it is possible to transform a very large document corpus into a map that is visually engaging and conceptually stimulating to subject experts from both inside and outside of the particular knowledge domain. The challenges of dealing with a truly large corpus come to the fore and require embracing parallelization and use of supercomputing resources to solve otherwise intractable computational tasks. Among the envisaged future efforts are the creation of a highly interactive interface and the elaboration of the notion of this map of medicine acting as a base map, onto which other knowledge artifacts could be overlaid. PMID:23554924

  14. Enhanced Conformational Sampling in Molecular Dynamics Simulations of Solvated Peptides: Fragment-Based Local Elevation Umbrella Sampling.

    PubMed

    Hansen, Halvor S; Daura, Xavier; Hünenberger, Philippe H

    2010-09-14

    A new method, fragment-based local elevation umbrella sampling (FB-LEUS), is proposed to enhance the conformational sampling in explicit-solvent molecular dynamics (MD) simulations of solvated polymers. The method is derived from the local elevation umbrella sampling (LEUS) method [ Hansen and Hünenberger , J. Comput. Chem. 2010 , 31 , 1 - 23 ], which combines the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single scheme. In LEUS, an initial (relatively short) LE build-up (searching) phase is used to construct an optimized (grid-based) biasing potential within a subspace of conformationally relevant degrees of freedom, which is then frozen and used in a (comparatively longer) US sampling phase. This combination dramatically enhances the sampling power of MD simulations but, due to computational and memory costs, is only applicable to relevant subspaces of low dimensionalities. As an attempt to expand the scope of the LEUS approach to solvated polymers with more than a few relevant degrees of freedom, the FB-LEUS scheme involves an US sampling phase that relies on a superposition of low-dimensionality biasing potentials optimized using LEUS at the fragment level. The feasibility of this approach is tested using polyalanine (poly-Ala) and polyvaline (poly-Val) oligopeptides. Two-dimensional biasing potentials are preoptimized at the monopeptide level, and subsequently applied to all dihedral-angle pairs within oligopeptides of 4,  6,  8, or 10 residues. Two types of fragment-based biasing potentials are distinguished: (i) the basin-filling (BF) potentials act so as to "fill" free-energy basins up to a prescribed free-energy level above the global minimum; (ii) the valley-digging (VD) potentials act so as to "dig" valleys between the (four) free-energy minima of the two-dimensional maps, preserving barriers (relative to linearly interpolated free-energy changes) of a prescribed magnitude. The application of these biasing potentials may lead to an impressive enhancement of the searching power (volume of conformational space visited in a given amount of simulation time). However, this increase is largely offset by a deterioration of the statistical efficiency (representativeness of the biased ensemble in terms of the conformational distribution appropriate for the physical ensemble). As a result, it appears difficult to engineer FB-LEUS schemes representing a significant improvement over plain MD, at least for the systems considered here.

  15. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    PubMed

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  16. Mapping of IgE and IgG4 antibody-binding epitopes in Cyn d 1, the major allergen of Bermuda grass pollen.

    PubMed

    Yuan, Han-Chih; Wu, Keh-Gong; Chen, Chun-Jen; Su, Song-Nan; Shen, Horng-Der; Chen, Yann-Jang; Peng, Ho-Jen

    2012-01-01

    Bermuda grass pollen (BGP) is an important seasonal aeroallergen worldwide which induces allergic disorders such as allergic rhinitis, conjunctivitis and asthma. Cyn d 1 is the major allergen of BGP. This study is aimed to map human IgE and IgG(4) antibody-binding sequential epitopes on Cyn d 1 by dot immunoblotting. Synthetic peptides (10-mers; 5 overlapping residues) spanning the full length of Cyn d 1 were used for dot immunoblotting to map human IgE and IgG(1-4) antibody-binding regions with sera from BGP-allergic patients. Synthetic peptides with more overlapping residues were used for further mapping. Essential amino acids in each epitope were examined by single amino acid substitution with alanine. Peptides with sequence polymorphism of epitopes of Cyn d 1 were also synthesized to extrapolate their differences in binding capability. Four major IgE-binding epitopes (peptides 15(-1), 21, 33(-2) and 35(+1), corresponding to amino acids 70-79, 101-110, 159-167 and 172-181) and 5 major IgG(4)-binding epitopes (peptides 15(-1), 30(-2), 33(-2), 35(+1) and 39, corresponding to amino acids 70-79, 144-153, 159-167, 172-181 and 192-200) were identified. They are all located on the surface of the simulated Cyn d 1 molecule, and three of them are major epitopes for both IgE and IgG(4). Their critical amino acids were all characterized. Major epitopes for human IgG(1) to IgG(4) are almost identical. This is the first study to map the sequential epitopes for human IgE and IgG(4) subclasses in Cyn d 1. It will be helpful for future development in immunotherapy and diagnosis. Copyright © 2011 S. Karger AG, Basel.

  17. Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae.

    PubMed

    Montone, Carmela Maria; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2018-06-01

    Microalgae are unicellular marine organisms that have promoted complex biochemical pathways to survive in greatly competitive marine environments. They could contain significant amounts of high-quality proteins which, because of their structural diversity, contain a range of yet undiscovered novel bioactive peptides. In this work, a peptidomic platform was developed for the separation and identification of bioactive peptides in protein hydrolysates. In this work, a peptidomic platform was developed for the extraction, separation, and identification of bioactive peptides in protein hydrolysates. Indeed, extraction of proteins from recalcitrant tissues is still a challenge due to their strong cell walls and high levels of non-protein interfering compounds. Therefore, seven different protein extraction protocols, based on mechanical and chemical methods, were tested in order to produce high-quality protein extracts. Proteins obtained by means of the best protocol, consisting of milling the recalcitrant tissue with glass beads, were subjected to enzymatic digestion with Alcalase® and subsequently the hydrolysate was purified by two-dimensional semi-preparative reversed phase liquid chromatography. Fractions were assayed for antioxidant and antihypertensive activities and only the most active ones were finally analyzed by RP nanoHPLC-MS/MS. Around 500 peptide sequences were identified in these fractions. The identified peptides were subjected to an in silico analysis by PeptideRanker algorithm in order to assign a score of bioactivity probability. Twenty-five sequenced peptides were found with potential antioxidant and angiotensin-converting-enzyme-inhibitory activities. Four of these peptides, WPRGYFL, GPDRPKFLGPF, WYGPDRPKFL, SDWDRF, were selected for synthesis and in vitro tested for specific bioactivity, exhibiting good values of antioxidant and ACE-inhibitory activity. Graphical abstract Workflow showing the entire peptidomic approach developed for identification of bioactive peptides in microalgae.

  18. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    PubMed Central

    Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie

    2016-01-01

    Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122

  19. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories inmore » a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.« less

  1. Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk.

    PubMed

    Chen, Y F; Zhao, W J; Wu, R N; Sun, Z H; Zhang, W Y; Wang, J C; Bilige, M; Zhang, H P

    2014-12-01

    Lactobacillus helveticus H9 was isolated from traditionally fermented yak milk in Tibet (China) with the ability to produce the antihypertensive peptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) during milk fermentation. To understand the changes in the protein expression of L. helveticus H9, proteome analysis was performed at 3 different growth stages, lag phase (pH 6.1), log phase (pH 5.1), and stationary phase (pH 4.5) using 2-dimensional electrophoresis (2-DE). Further analysis showed that 257 differential protein spots were found and 214 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). The cellular functions of the differentially expressed proteins were complex. Interestingly, the proteolytic system-related proteins aminopeptidase N (PepN), aminopeptidase E (PepE), endopeptidase O2 (PepO2), and oligopeptide transport system permease protein (OppC) were observed only on the maps of pH 5.1 and pH 4.5, which was consistent with the presence of angiotensin I-converting enzyme (ACE)-inhibitory peptides VPP and IPP during these 2 growth stages (log phase and stationary phase). These results, combined with a previous study of gene expression of the proteolytic system, led us to conclude that the Opp transport system, pepE, and pepO2 are likely related to the production of ACE-inhibitory peptides. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. The mzqLibrary – An open source Java library supporting the HUPO‐PSI quantitative proteomics standard

    PubMed Central

    Zhang, Huaizhong; Fan, Jun; Perkins, Simon; Pisconti, Addolorata; Simpson, Deborah M.; Bessant, Conrad; Hubbard, Simon; Jones, Andrew R.

    2015-01-01

    The mzQuantML standard has been developed by the Proteomics Standards Initiative for capturing, archiving and exchanging quantitative proteomic data, derived from mass spectrometry. It is a rich XML‐based format, capable of representing data about two‐dimensional features from LC‐MS data, and peptides, proteins or groups of proteins that have been quantified from multiple samples. In this article we report the development of an open source Java‐based library of routines for mzQuantML, called the mzqLibrary, and associated software for visualising data called the mzqViewer. The mzqLibrary contains routines for mapping (peptide) identifications on quantified features, inference of protein (group)‐level quantification values from peptide‐level values, normalisation and basic statistics for differential expression. These routines can be accessed via the command line, via a Java programming interface access or a basic graphical user interface. The mzqLibrary also contains several file format converters, including import converters (to mzQuantML) from OpenMS, Progenesis LC‐MS and MaxQuant, and exporters (from mzQuantML) to other standards or useful formats (mzTab, HTML, csv). The mzqViewer contains in‐built routines for viewing the tables of data (about features, peptides or proteins), and connects to the R statistical library for more advanced plotting options. The mzqLibrary and mzqViewer packages are available from https://code.google.com/p/mzq‐lib/. PMID:26037908

  3. What a Relief: Using Paper Relief Sculpture to Teach Topographic Map Skills

    ERIC Educational Resources Information Center

    Price, Kelly

    2005-01-01

    While the struggle persists in science classes to help students visualize in three dimensions, art classes are creating unique sculptures out of paper that produce three-dimensional displays from two-dimensional resources. The translation of paper relief sculpting from the art classroom to the science classroom adds dimension to the teaching of…

  4. The potential clinical impact of the release of two drafts of the human proteome

    PubMed Central

    Ezkurdia, Iakes; Calvo, Enrique; Del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    The authors have carried out an investigation of the two “draft maps of the human proteome” published in 2014 in Nature. The findings include an abundance of poor spectra, low-scoring peptide-spectrum matches and incorrectly identified proteins in both these studies, highlighting clear issues with the application of false discovery rates. This noise means that the claims made by the two papers – the identification of high numbers of protein coding genes, the detection of novel coding regions and the draft tissue maps themselves – should be treated with considerable caution. The authors recommend that clinicians and researchers do not use the unfiltered data from these studies. Despite this these studies will inspire further investigation into tissue-based proteomics. As long as this future work has proper quality controls, it could help produce a consensus map of the human proteome and improve our understanding of the processes that underlie health and disease. PMID:26496066

  5. Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes

    PubMed Central

    Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam

    2003-01-01

    We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433

  6. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  7. Advancement and applications of peptide phage display technology in biomedical science.

    PubMed

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-19

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  8. Effects of calorie restriction on the zebrafish liver proteome

    PubMed Central

    Jury, David R.; Kaveti, Suma; Duan, Zhong-Hui; Willard, Belinda; Kinter, Michael; Londraville, Richard

    2012-01-01

    A proteomic approach was taken to study how fish respond to changes in calorie availability, with the longer-term goal of understanding the evolution of lipid metabolism in vertebrates. Zebrafish (Danio rerio) were fed either high (3 rations/day) or low (1 ration/7 days) calorie diets for 5 weeks and liver proteins extracted for proteomic analyses. Proteins were separated on two-dimensional electrophoresis gels and homologous spots compared between treatments to determine which proteins were up-regulated with high-calorie diet. Fifty-five spots were excised from the gel and analyzed via LC–ESI MS/MS, which resulted in the identification of 69 unique proteins (via multiple peptides). Twenty-nine of these proteins were differentially expressed between treatments. Differentially expressed proteins were mapped to Gene Ontology (GO) terms, and these terms compared to the entire zebrafish GO annotation set by Fisher's exact test. The most significant GO terms associated with high-calorie diet are related to a decrease in oxygen-binding activity in the high-calorie treatment. This response is consistent with a well-characterized response in obese humans, indicating there may be a link between lipid storage and hypoxia sensitivity in vertebrates. PMID:20494847

  9. An embodied perspective on expertise in solving the problem of making a geologic map

    NASA Astrophysics Data System (ADS)

    Callahan, Caitlin Norah

    The task of constructing a geologic map is a cognitively and physically demanding field-based problem. The map produced is understood to be an individual's two-dimensional interpretation or mental model of the three-dimensional underlying geology. A popular view within the geoscience community is that teaching students how to make a geologic map is valuable for preparing them to deal with disparate and incomplete data sets, for helping them develop problem-solving skills, and for acquiring expertise in geology. Few previous studies have focused specifically on expertise in geologic mapping. Drawing from literature related to expertise, to problem solving, and to mental models, two overarching research questions were identified: How do geologists of different levels of expertise constrain and solve an ill-structured problem such as making a geologic map? How do geologists address the uncertainties inherent to the processes and interpretations involved in solving a geologic mapping problem? These questions were answered using a methodology that captured the physical actions, expressed thoughts, and navigation paths of geologists as they made a geologic map. Eight geologists, from novice to expert, wore a head-mounted video camera with an attached microphone to record those actions and thoughts, creating "video logs" while in the field. The video logs were also time-stamped, which allowed the visual and audio data to be synchronized with the GPS data that tracked participants' movements in the field. Analysis of the video logs yielded evidence that all eight participants expressed thoughts that reflected the process of becoming mentally situated in the mapping task (e.g. relating between distance on a map and distance in three-dimensional space); the prominence of several of these early thoughts waned in the expressed thoughts later in the day. All participants collected several types of data while in the field; novices, however, did so more continuously throughout the day whereas the experts collected more of their data earlier in the day. Experts and novices also differed in that experts focused more on evaluating certainty in their interpretations; the novices focused more on evaluating the certainty of their observations and sense of location.

  10. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.

    1990-01-01

    An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.

  11. Protein Changes in Macrophages Induced by Plasma from Rats Exposed to 35-GHz Millimeter Waves

    DTIC Science & Technology

    2010-12-01

    HumanEffectiveness Directorate, Air Force Research Laboratory, Brooks City-Base,Texas A macrophage assay and proteomic screening were used to...mW/cm2 until core temperature reached 41.0 8C. Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to...stimulation. Proteins of interest were identified using peptide mass fingerprinting. Compared to plasma from sham- exposed rats, plasma from

  12. Mapping protease substrates using a biotinylated phage substrate library.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholle, M. D.; Kriplani, U.; Pabon, A.

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobicmore » is the scissile bond.« less

  13. An open-source computational and data resource to analyze digital maps of immunopeptidomes

    PubMed Central

    Caron, Etienne; Espona, Lucia; Kowalewski, Daniel J; Schuster, Heiko; Ternette, Nicola; Alpízar, Adán; Schittenhelm, Ralf B; Ramarathinam, Sri H; Lindestam Arlehamn, Cecilia S; Chiek Koh, Ching; Gillet, Ludovic C; Rabsteyn, Armin; Navarro, Pedro; Kim, Sangtae; Lam, Henry; Sturm, Theo; Marcilla, Miguel; Sette, Alessandro; Campbell, David S; Deutsch, Eric W; Moritz, Robert L; Purcell, Anthony W; Rammensee, Hans-Georg; Stevanovic, Stefan; Aebersold, Ruedi

    2015-01-01

    We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies. DOI: http://dx.doi.org/10.7554/eLife.07661.001 PMID:26154972

  14. Structural formation of huntingtin-like aggregates probed by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Christopher B; Perevozchikova, Tatiana; Berthelier-Jung, Valerie M

    2011-01-01

    In several neurodegenerative disorders, including Huntington s disease (HD), aspects concerning the earliest of protein structures that form along the aggregation pathway have increasingly gained attention since these particular species are likely to be neurotoxic. We used time-resolved small-angle neutron scattering (SANS) to probe in solution these transient structures formed by peptides having the N-terminal sequence context of mutant huntingtin (Htt) exon 1. We obtained snapshots of the formed aggregates as the kinetic reaction ensued to yield quantitative information on their size and mass. At the early stage, small precursor species with an initial radius of gyration (Rg) of 16.1more » 5.9 and average mass of a dimer to trimer were monitored. Structural growth was treated as two modes with a transition from three-dimensional early aggregate formation to two-dimensional fibril growth and association. Our SANS results on the internal structure of the mature fibrils demonstrate loose packing with about 1 peptide per 4.75 -sheet repeat distance, which is shown to be quantitatively consistent with a -helix model. This research provides new insights into the structures forming along the pathway of Htt exon 1 aggregation and should assist in determining the role that precursors play in neuronal toxicity.« less

  15. C terminal retroviral-type zinc finger domain from the HIV-1 nucleocapsid protein is structurally similar to the N-terminal zinc finger domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    South, T.L.; Blake, P.R.; Hare, D.R.

    Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhausermore » effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.« less

  16. Fine mapping of canine parvovirus B cell epitopes.

    PubMed

    López de Turiso, J A; Cortés, E; Ranz, A; García, J; Sanz, A; Vela, C; Casal, J I

    1991-10-01

    In this report we describe the topological mapping of neutralizing domains of canine parvovirus (CPV). We obtained 11 CPV-specific monoclonal antibodies (MAbs), six of which are neutralizing. The reactivities were as determined by ELISA and Western blot (immunoblot) analysis. VP2, the most abundant protein of the CPV capsid, seemed to contain all the neutralization sites. Also, an almost full-length genomic clone of CPV was constructed in the bacterial plasmid pUC18 to enable expression of CPV proteins. All the neutralizing MAbs recognized recombinant VP2 when it was expressed as a free protein in Escherichia coli but not when expressed as a fusion protein with glutathione-S-transferase. When two large fragments containing about 85% and 67% of the C terminus of VP2 were expressed, no neutralization sites were detected. When fusion proteins containing the N terminus were expressed, two linear determinants were mapped, one between residues 1 to 10 of VP2, and the other between amino acids 11 and 23. The peptide 11 GQPAVRNERATGS 23, recognized by MAb 3C9, was synthesized chemically and checked for immunogenicity, not being able to induce neutralizing activity. Although the antibody response in rabbits to all the fusion proteins was uniformly high, the anti-CPV response was very variable. Protein from pCPVEx11, which contains a T cell epitope (peptide PKIFINLAKKKKAG) present in the VP1-specific region as well as the B cell epitopes, seemed to be the most effective in inducing virus neutralization.

  17. Getting the Big Picture: Development of Spatial Scaling Abilities

    ERIC Educational Resources Information Center

    Frick, Andrea; Newcombe, Nora S.

    2012-01-01

    Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3-6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference…

  18. Using the global positioning system to map disturbance patterns of forest harvesting machinery

    Treesearch

    T.P. McDonald; E.A. Carter; S.E. Taylor

    2002-01-01

    Abstract: A method was presented to transform sampled machine positional data obtained from a global positioning system (GPS) receiver into a two-dimensional raster map of number of passes as a function of location. The effect of three sources of error in the transformation process were investigated: path sampling rate (receiver sampling frequency);...

  19. Short cell-penetrating peptides: a model of interactions with gene promoter sites.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Linkova, N S; Pronyaeva, V E; Shataeva, L K; Yakutseni, P P

    2013-01-01

    Analysis of the main parameters of molecular mechanics (number of hydrogen bonds, hydrophobic and electrostatic interactions, DNA-peptide complex minimization energy) provided the data to validate the previously proposed qualitative models of peptide-DNA interactions and to evaluate their quantitative characteristics. Based on these estimations, a three-dimensional model of Lys-Glu and Ala-Glu-Asp-Gly peptide interactions with DNA sites (GCAG and ATTTC) located in the promoter zones of genes encoding CD5, IL-2, MMP2, and Tram1 signal molecules.

  20. Liposomes containing NY‑ESO‑1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines.

    PubMed

    Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C

    2014-04-01

    To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.

  1. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel I. A.; Cukalevski, Risto; Michaels, Thomas C. T.; Šarić, Andela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M.; Buell, Alexander K.; Knowles, Tuomas P. J.; Linse, Sara

    2018-05-01

    Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.

  2. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide.

    PubMed

    Cohen, Samuel I A; Cukalevski, Risto; Michaels, Thomas C T; Šarić, Anđela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M; Buell, Alexander K; Knowles, Tuomas P J; Linse, Sara

    2018-05-01

    Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.

  3. 1831: the map that launched the idea of global health.

    PubMed

    Koch, Tom

    2014-08-01

    Today we take for granted the idea of global health, of disease as an international event. Increasingly, we assume as well that the international spread of disease can be traced to human travel patterns as well as to recurring environmental conditions. Perversely, the idea of ‘global health’ and its inverse, global disease, owes little to the three-dimensional imaging of the planet and almost everything to the two-dimensional plane of the map. Here the idea of global disease is traced from its beginnings in the 18th century to its 19th-century introduction in maps of the first cholera pandemic. This global perspective, and the responsibilities it promoted among civil officials, can be seen in modern studies of cancer, influenza and other conditions with both environmental foundations and international presence.

  4. Solution structures of the linear leaderless bacteriocins enterocin 7A and 7B resemble carnocyclin A, a circular antimicrobial peptide.

    PubMed

    Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; McKay, Ryan T; van Belkum, Marco J; McMullen, Lynn M; Vederas, John C

    2013-06-11

    Leaderless bacteriocins are a class of ribosomally synthesized antimicrobial peptides that are produced by certain Gram-positive bacteria without an N-terminal leader section. These bacteriocins are of great interest due to their potent inhibition of many Gram-positive organisms, including food-borne pathogens such as Listeria and Clostridium spp. We now report the NMR solution structures of enterocins 7A and 7B, leaderless bacteriocins recently isolated from Enterococcus faecalis 710C. These are the first three-dimensional structures to be reported for bacteriocins of this class. Unlike most other linear Gram-positive bacteriocins, enterocins 7A and 7B are highly structured in aqueous conditions. Both peptides are primarily α-helical, adopting a similar overall fold. The structures can be divided into three separate α-helical regions: the N- and C-termini are both α-helical, separated by a central kinked α-helix. The overall structures bear an unexpected resemblance to carnocyclin A, a 60-residue peptide that is cyclized via an amide bond between the C- and N-termini and has a saposin fold. Because of synergism observed for other two-peptide leaderless bacteriocins, it was of interest to probe possible binding interactions between enterocins 7A and 7B. However, despite synergistic activity observed between these peptides, no significant binding interaction was observed based on NMR and isothermal calorimetry.

  5. Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells

    PubMed Central

    Seidel, Lisa; Zarzycka, Barbara; Zaidi, Saheem A; Katritch, Vsevolod; Coin, Irene

    2017-01-01

    The activation mechanism of class B G-protein-coupled receptors (GPCRs) remains largely unknown. To characterize conformational changes induced by peptide hormones, we investigated interactions of the class B corticotropin-releasing factor receptor type 1 (CRF1R) with two peptide agonists and three peptide antagonists obtained by N-truncation of the agonists. Surface mapping with genetically encoded photo-crosslinkers and pair-wise crosslinking revealed distinct footprints of agonists and antagonists on the transmembrane domain (TMD) of CRF1R and identified numerous ligand-receptor contact sites, directly from the intact receptor in live human cells. The data enabled generating atomistic models of CRF- and CRF(12-41)-bound CRF1R, further explored by molecular dynamics simulations. We show that bound agonist and antagonist adopt different folds and stabilize distinct TMD conformations, which involves bending of helices VI and VII around flexible glycine hinges. Conservation of these glycine hinges among all class B GPCRs suggests their general role in activation of these receptors. DOI: http://dx.doi.org/10.7554/eLife.27711.001 PMID:28771403

  6. Dimensional reduction of a general advection–diffusion equation in 2D channels

    NASA Astrophysics Data System (ADS)

    Kalinay, Pavol; Slanina, František

    2018-06-01

    Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.

  7. Dynamic colloidal assembly pathways via low dimensional models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu; Thyagarajan, Raghuram

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterizedmore » by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.« less

  8. Periodicity and Chaos Amidst Twisting and Folding in Two-Dimensional Maps

    NASA Astrophysics Data System (ADS)

    Garst, Swier; Sterk, Alef E.

    We study the dynamics of three planar, noninvertible maps which rotate and fold the plane. Two maps are inspired by real-world applications whereas the third map is constructed to serve as a toy model for the other two maps. The dynamics of the three maps are remarkably similar. A stable fixed point bifurcates through a Hopf-Neĭmark-Sacker which leads to a countably infinite set of resonance tongues in the parameter plane of the map. Within a resonance tongue a periodic point can bifurcate through a period-doubling cascade. At the end of the cascade we detect Hénon-like attractors which are conjectured to be the closure of the unstable manifold of a saddle periodic point. These attractors have a folded structure which can be explained by means of the concept of critical lines. We also detect snap-back repellers which can either coexist with Hénon-like attractors or which can be formed when the saddle-point of a Hénon-like attractor becomes a source.

  9. Parity and cobordism of free knots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manturov, Vassily O

    2012-02-28

    A simple invariant is constructed which obstructs a free knot to be truncated. In particular, this invariant provides an obstruction to the truncatedness of curves immersed in two-dimensional surfaces. A curve on an oriented two-dimensional surface S{sub g} is referred to as truncated (null-cobordant) if there exists a three-dimensional manifold M with boundary S{sub g} and a smooth proper map of a two-disc to M such that the image of the boundary of the disc coincides with the curve. The problem of truncatedness for free knots is solved in this paper using the notion of parity recently introduced by themore » author. Bibliography: 12 titles.« less

  10. Needles in the blue sea: sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome.

    PubMed

    Saito, Mak A; Dorsk, Alexander; Post, Anton F; McIlvin, Matthew R; Rappé, Michael S; DiTullio, Giacomo R; Moran, Dawn M

    2015-10-01

    Proteomics has great potential for studies of marine microbial biogeochemistry, yet high microbial diversity in many locales presents us with unique challenges. We addressed this challenge with a targeted metaproteomics workflow for NtcA and P-II, two nitrogen regulatory proteins, and demonstrated its application for cyanobacterial taxa within microbial samples from the Central Pacific Ocean. Using METATRYP, an open-source Python toolkit, we examined the number of shared (redundant) tryptic peptides in representative marine microbes, with the number of tryptic peptides shared between different species typically being 1% or less. The related cyanobacteria Prochlorococcus and Synechococcus shared an average of 4.8 ± 1.9% of their tryptic peptides, while shared intraspecies peptides were higher, 13 ± 15% shared peptides between 12 Prochlorococcus genomes. An NtcA peptide was found to target multiple cyanobacteria species, whereas a P-II peptide showed specificity to the high-light Prochlorococcus ecotype. Distributions of NtcA and P-II in the Central Pacific Ocean were similar except at the Equator likely due to differential nitrogen stress responses between Prochlorococcus and Synechococcus. The number of unique tryptic peptides coded for within three combined oceanic microbial metagenomes was estimated to be ∼4 × 10(7) , 1000-fold larger than an individual microbial proteome and 27-fold larger than the human proteome, yet still 20 orders of magnitude lower than the peptide diversity possible in all protein space, implying that peptide mapping algorithms should be able to withstand the added level of complexity in metaproteomic samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Two fast approximate wavelet algorithms for image processing, classification, and recognition

    NASA Astrophysics Data System (ADS)

    Wickerhauser, Mladen V.

    1994-07-01

    We use large libraries of template waveforms with remarkable orthogonality properties to recast the relatively complex principal orthogonal decomposition (POD) into an optimization problem with a fast solution algorithm. Then it becomes practical to use POD to solve two related problems: recognizing or classifying images, and inverting a complicated map from a low-dimensional configuration space to a high-dimensional measurement space. In the case where the number N of pixels or measurements is more than 1000 or so, the classical O(N3) POD algorithms becomes very costly, but it can be replaced with an approximate best-basis method that has complexity O(N2logN). A variation of POD can also be used to compute an approximate Jacobian for the complicated map.

  12. A tool for teaching three-dimensional dermatomes combined with distribution of cutaneous nerves on the limbs.

    PubMed

    Kooloos, Jan G M; Vorstenbosch, Marc A T M

    2013-01-01

    A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models. © 2013 American Association of Anatomists.

  13. Molecular interactions between single layered MoS2 and biological molecules† †Electronic supplementary information (ESI) available: SFG data analysis methods, spectral fitting parameters, additional spectra, CD spectrum, and details about MD simulation methods. See DOI: 10.1039/c7sc04884j

    PubMed Central

    Xiao, Minyu; Wei, Shuai; Li, Yaoxin; Jasensky, Joshua; Chen, Junjie; Brooks, Charles L.

    2017-01-01

    Two-dimensional (2D) materials such as graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and black phosphorous are being developed for sensing applications with excellent selectivity and high sensitivity. In such applications, 2D materials extensively interact with various analytes including biological molecules. Understanding the interfacial molecular interactions of 2D materials with various targets becomes increasingly important for the progression of better-performing 2D-material based sensors. In this research, molecular interactions between several de novo designed alpha-helical peptides and monolayer MoS2 have been studied. Molecular dynamics simulations were used to validate experimental data. The results suggest that, in contrast to peptide–graphene interactions, peptide aromatic residues do not interact strongly with the MoS2 surface. It is also found that charged amino acids are important for ensuring a standing-up pose for peptides interacting with MoS2. By performing site-specific mutations on the peptide, we could mediate the peptide–MoS2 interactions to control the peptide orientation on MoS2. PMID:29675220

  14. DeMix Workflow for Efficient Identification of Cofragmented Peptides in High Resolution Data-dependent Tandem Mass Spectrometry*

    PubMed Central

    Zhang, Bo; Pirmoradian, Mohammad; Chernobrovkin, Alexey; Zubarev, Roman A.

    2014-01-01

    Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs. PMID:25100859

  15. Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve μ2=νn-1, n∈Z: Ergodicity, isochrony and fractals

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.

    2007-08-01

    We study the complexification of the one-dimensional Newtonian particle in a monomial potential. We discuss two classes of motions on the associated Riemann surface: the rectilinear and the cyclic motions, corresponding to two different classes of real and autonomous Newtonian dynamics in the plane. The rectilinear motion has been studied in a number of papers, while the cyclic motion is much less understood. For small data, the cyclic time trajectories lead to isochronous dynamics. For bigger data the situation is quite complicated; computer experiments show that, for sufficiently small degree of the monomial, the motion is generically isochronous with integer period, which depends in a quite sensitive way on the initial data. If the degree of the monomial is sufficiently high, computer experiments show essentially chaotic behavior. We suggest a possible theoretical explanation of these different behaviors. We also introduce a two-parameter family of two-dimensional mappings, describing the motion of the center of the circle, as a convenient representation of the cyclic dynamics; we call such a mapping the center map. Computer experiments for the center map show a typical multifractal behavior with periodicity islands. Therefore the above complexification procedure generates dynamics amenable to analytic treatment and possessing a high degree of complexity.

  16. Accuracy of three-dimensional multislice view Doppler in diagnosis of morbid adherent placenta

    PubMed Central

    Abdel Moniem, Alaa M.; Ibrahim, Ahmed; Akl, Sherif A.; Aboul-Enen, Loay; Abdelazim, Ibrahim A.

    2015-01-01

    Objective To detect the accuracy of the three-dimensional multislice view (3D MSV) Doppler in the diagnosis of morbid adherent placenta (MAP). Material and Methods Fifty pregnant women at ≥28 weeks gestation with suspected MAP were included in this prospective study. Two dimensional (2D) trans-abdominal gray-scale ultrasound scan was performed for the subjects to confirm the gestational age, placental location, and findings suggestive of MAP, followed by the 3D power Doppler and then the 3D MSV Doppler to confirm the diagnosis of MAP. Intraoperative findings and histopathology results of removed uteri in cases managed by emergency hysterectomy were compared with preoperative sonographic findings to detect the accuracy of the 3D MSV Doppler in the diagnosis of MAP. Results The 3D MSV Doppler increased the accuracy and predictive values of the diagnostic criteria of MAP compared with the 3D power Doppler. The sensitivity and negative predictive value (NPV) (79.6% and 82.2%, respectively) of crowded vessels over the peripheral sub-placental zone to detect difficult placental separation and considerable intraoperative blood loss in cases of MAP using the 3D power Doppler was increased to 82.6% and 84%, respectively, using the 3D MSV Doppler. In addition, the sensitivity, specificity, and positive predictive value (PPV) (90.9%, 68.8%, and 47%, respectively) of the disruption of the uterine serosa-bladder interface for the detection of emergency hysterectomy in cases of MAP using the 3D power Doppler was increased to 100%, 71.8%, and 50%, respectively, using the 3D MSV Doppler. Conclusion The 3D MSV Doppler is a useful adjunctive tool to the 3D power Doppler or color Doppler to refine the diagnosis of MAP. PMID:26401104

  17. Growing a hypercubical output space in a self-organizing feature map.

    PubMed

    Bauer, H U; Villmann, T

    1997-01-01

    Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.

  18. Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen

    PubMed Central

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-01-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yingying; Triscari, Joseph M.; Tseng, George C.

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides,more » a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion intensities.« less

  20. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.

    PubMed

    Langley, Jason; Zhao, Qun

    2009-09-07

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.

  1. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.

    PubMed

    Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.

  2. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    PubMed Central

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  3. Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry.

    PubMed

    Freudenmann, Lena Katharina; Marcu, Ana; Stevanović, Stefan

    2018-07-01

    The entirety of human leukocyte antigen (HLA)-presented peptides is referred to as the HLA ligandome of a cell or tissue, in tumours often termed immunopeptidome. Mapping the tumour immunopeptidome by mass spectrometry (MS) comprehensively views the pathophysiologically relevant antigenic signature of human malignancies. MS is an unbiased approach stringently filtering the candidates to be tested as opposed to epitope prediction algorithms. In the setting of peptide-specific immunotherapies, MS-based strategies significantly diminish the risk of lacking clinical benefit, as they yield highly enriched amounts of truly presented peptides. Early immunopeptidomic efforts were severely limited by technical sensitivity and manual spectra interpretation. The technological progress with development of orbitrap mass analysers and enhanced chromatographic performance led to vast improvements in mass accuracy, sensitivity, resolution, and speed. Concomitantly, bioinformatic tools were developed to process MS data, integrate sequencing results, and deconvolute multi-allelic datasets. This enabled the immense advancement of tumour immunopeptidomics. Studying the HLA-presented peptide repertoire bears high potential for both answering basic scientific questions and translational application. Mapping the tumour HLA ligandome has started to significantly contribute to target identification for the design of peptide-specific cancer immunotherapies in clinical trials and compassionate need treatments. In contrast to prediction algorithms, rare HLA allotypes and HLA class II can be adequately addressed when choosing MS-guided target identification platforms. Herein, we review the identification of tumour HLA ligands focusing on sources, methods, bioinformatic data analysis, translational application, and provide an outlook on future developments. © 2018 John Wiley & Sons Ltd.

  4. Eye Tracking to Explore the Impacts of Photorealistic 3d Representations in Pedstrian Navigation Performance

    NASA Astrophysics Data System (ADS)

    Dong, Weihua; Liao, Hua

    2016-06-01

    Despite the now-ubiquitous two-dimensional (2D) maps, photorealistic three-dimensional (3D) representations of cities (e.g., Google Earth) have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users' eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  5. TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.

    PubMed

    Nam, Julia EunJu; Mueller, Klaus

    2013-02-01

    Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

  6. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  7. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization

    PubMed Central

    Wojcik, Roza; Vannatta, Michael

    2010-01-01

    Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram. Analytes that undergo enzymatic modification in the reactor will have a different migration time in the second capillary and will generate spots that fall off the diagonal in the electropherogram. We demonstrate the system with immobilized alkaline phosphatase to monitor the phosphorylation status of a mixture of peptides. This enzyme-based diagonal capillary electrophoresis assay appears to be generalizable; any post-translational modification can be detected as long as an immobilized enzyme is available that reacts with the modification under electrophoretic conditions. PMID:20099889

  8. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites.

    PubMed

    Qin, Chunlin; Brunn, Jan C; Cook, Richard G; Orkiszewski, Ralph S; Malone, James P; Veis, Arthur; Butler, William T

    2003-09-05

    Full-length cDNA coding for dentin matrix protein 1 (DMP1) has been cloned and sequenced, but the corresponding complete protein has not been isolated. In searching for naturally occurring DMP1, we recently discovered that the extracellular matrix of bone contains fragments originating from DMP1. Shortened forms of DMP1, termed 37K and 57K fragments, were treated with alkaline phosphatase and then digested with trypsin. The resultant peptides were purified by a two-dimensional method: size exclusion followed by reversed-phase high performance liquid chromatography. Purified peptides were sequenced by Edman degradation and mass spectrometry, and the sequences compared with the DMP1 sequence predicted from cDNA. Extensive sequencing of tryptic peptides revealed that the 37K fragments originated from the NH2-terminal region, and the 57K fragments were from the COOH-terminal part of DMP1. Phosphate analysis indicated that the 37K fragments contained 12 phosphates, and the 57K fragments had 41. From 37K fragments, two peptides lacked a COOH-terminal lysine or arginine; instead they ended at Phe173 and Ser180 and were thus COOH termini of 37K fragments. Two peptides were from the NH2 termini of 57K fragments, starting at Asp218 and Asp222. These findings indicated that DMP1 is proteolytically cleaved at four bonds, Phe173-Asp174, Ser180-Asp181, Ser217-Asp218, and Gln221-Asp222, forming eight fragments. The uniformity of cleavages at the NH2-terminal peptide bonds of aspartyl residues suggests that a single proteinase is involved. Based on its reported specificity, we hypothesize that these scissions are catalyzed by PHEX protein. We envision that the proteolytic processing of DMP1 plays a crucial role during osteogenesis and dentinogenesis.

  9. Identification of Fur, Aconitase, and Other Proteins Expressed by Mycobacterium tuberculosis under Conditions of Low and High Concentrations of Iron by Combined Two-Dimensional Gel Electrophoresis and Mass Spectrometry

    PubMed Central

    Wong, Diane K.; Lee, Bai-Yu; Horwitz, Marcus A.; Gibson, Bradford W.

    1999-01-01

    Iron plays a critical role in the pathophysiology of Mycobacterium tuberculosis. To gain a better understanding of iron regulation by this organism, we have used two-dimensional (2-D) gel electrophoresis, mass spectrometry, and database searching to study protein expression in M. tuberculosis under conditions of high and low iron concentration. Proteins in cellular extracts from M. tuberculosis Erdman strain grown under low-iron (1 μM) and high-iron (70 μM) conditions were separated by 2-D polyacrylamide gel electrophoresis, which allowed high-resolution separation of several hundred proteins, as visualized by Coomassie staining. The expression of at least 15 proteins was induced, and the expression of at least 12 proteins was decreased under low-iron conditions. In-gel trypsin digestion was performed on these differentially expressed proteins, and the digestion mixtures were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the molecular masses of the resulting tryptic peptides. Partial sequence data on some of the peptides were obtained by using after source decay and/or collision-induced dissociation. The fragmentation data were used to search computerized peptide mass and protein sequence databases for known proteins. Ten iron-regulated proteins were identified, including Fur and aconitase proteins, both of which are known to be regulated by iron in other bacterial systems. Our study shows that, where large protein sequence databases are available from genomic studies, the combined use of 2-D gel electrophoresis, mass spectrometry, and database searching to analyze proteins expressed under defined environmental conditions is a powerful tool for identifying expressed proteins and their physiologic relevance. PMID:9864233

  10. Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12-28) Peptides.

    PubMed

    Lin, Yi-Chih; Li, Chen; Fakhraai, Zahra

    2018-04-17

    Surfaces or interfaces are considered to be key factors in facilitating the formation of amyloid fibrils under physiological conditions. In this report, we study the kinetics of the surface-mediated fibrillization (SMF) of an amyloid-β fragment (Aβ 12-28 ) on mica. We employ a spin-coating-based drying procedure to control the exposure time of the substrate to a low-concentration peptide solution and then monitor the fibril growth as a function of time via atomic force microscopy (AFM). The evolution of surface-mediated fibril growth is quantitatively characterized in terms of the length histogram of imaged fibrils and their surface concentration. A two-dimensional (2D) kinetic model is proposed to numerically simulate the length evolution of surface-mediated fibrils by assuming a diffusion-limited aggregation (DLA) process along with size-dependent rate constants. We find that both monomer and fibril diffusion on the surface are required to obtain length histograms as a function of time that resemble those observed in experiments. The best-fit simulated data can accurately describe the key features of experimental length histograms and suggests that the mobility of loosely bound amyloid species is crucial in regulating the kinetics of SMF. We determine that the mobility exponent for the size dependence of the DLA rate constants is α = 0.55 ± 0.05, which suggests that the diffusion of loosely bound surface fibrils roughly depends on the inverse of the square root of their size. These studies elucidate the influence of deposition rate and surface diffusion on the formation of amyloid fibrils through SMF. The method used here can be broadly adopted to study the diffusion and aggregation of peptides or proteins on various surfaces to investigate the role of chemical interactions in two-dimensional fibril formation and diffusion.

  11. Bacterial community structure analysis of sediment in the Sagami River, Japan using a rapid approach based on two-dimensional DNA gel electrophoresis mapping with selective primer pairs.

    PubMed

    Liu, Guo-hua; Rajendran, Narasimmalu; Amemiya, Takashi; Itoh, Kiminori

    2011-11-01

    A rapid approach based on two-dimensional DNA gel electrophroesis (2-DGE) mapping with selective primer pairs was employed to analyze bacterial community structure in sediments from upstream, midstream and downstream of Sagami River in Japan. The 2-DGE maps indicated that Alpha- and Delta-proteobacteria were major bacterial populations in the upstream and midstream sediments. Further bacterial community structure analysis showed that richness proportion of Alpha- and Delta-proteobacterial groups reflected a trend toward decreasing from the upstream to downstream sediments. The biomass proportion of bacterial populations in the midstream sediment showed a significantly difference from that in the other sediments, suggesting that there may be an environmental pressure on the midstream bacterial community. Lorenz curves, together with Gini coefficients were successfully applied to the 2-DGE mapping data for resolving evenness of bacterial populations, and showed that the plotted curve from high-resolution 2-DGE mapping became less linear and more an exponential function than that of the 1-DGE methods such as chain length analysis and denaturing gradient gel electrophoresis, suggesting that the 2-DGE mapping may achieve a more detailed evaluation of bacterial community. In conclusion, the 2-DGE mapping combined with the selective primer pairs enables bacterial community structure analysis in river sediment and thus it can also monitor sediment pollution based on the change of bacterial community structure.

  12. Characterization of a fused protein specified by the adenovirus type 2-simian virus 40 hybrid Ad2+ND1 dp2.

    PubMed Central

    Fey, G; Lewis, J B; Grodzicker, T; Bothwell, A

    1979-01-01

    The adenovirus type 2-simian virus 40 (SV40) hybrid virus Ad2+ND1 dp2 (E. Lukanidin, manuscript in preparation) specified two proteins (molecular weights, 24,000 and 23,000) that are, in part, products of an insertion of SV40 early DNA sequences. This was demonstrated by translation in vitro from viral mRNA that had been selected by hybridization to SV40 DNA. These two phosphorylated, nonvirion proteins were produced late in infection in amounts similar to adenovirus 2 structural proteins and were closely related to each other in tryptic peptide composition. The portion of SV40 DNA (map units 0.17 to 0.22 on the SV40 genome) coding for these proteins was joined to sequences coding for the amino-terminal part of the adenovirus type 2 structural protein IV (fiber). The Ad2+ND1 dp2 23,000- and 24,000-molecular-weight proteins were hybrid polypeptides, with about two-thirds of their tryptic peptides contributed by the fiber protein and the remainder contributed by SV40 T-antigen. They shared with T-antigen (molecular weight, 96,000) a carboxy-terminal proline-rich tryptic peptide. Together, the tryptic peptide composition of these proteins and the known SV40 DNA sequences suggested the reading frame for the translation of T-antigen. The carboxy terminus for T-anigen would then be located on the SV40 genome map next to the TAA terminator triplet at position 0.175, 910 bases away from the cleavage site of the restriction endonuclease EcoRI. Seven host range mutants from Ad2+ND1 dp2 were isolated that had lost the capacity to propagate on monkey cells. They did not induce detectable levels of the hybrid proteins. Three of these mutants had lost the SV40 DNA insertion that codes in part for these proteins. Thus, in analogy to the Ad2+ND1 30,000-molecular-weight protein, the presence of these proteins correlates with the presence of the helper function for adenovirus replication on monkey cells. Images PMID:225516

  13. Sonification as a possible stroke rehabilitation strategy

    PubMed Central

    Scholz, Daniel S.; Wu, Liming; Pirzer, Jonas; Schneider, Johann; Rollnik, Jens D.; Großbach, Michael; Altenmüller, Eckart O.

    2014-01-01

    Despite cerebral stroke being one of the main causes of acquired impairments of motor skills worldwide, well-established therapies to improve motor functions are sparse. Recently, attempts have been made to improve gross motor rehabilitation by mapping patient movements to sound, termed sonification. Sonification provides additional sensory input, supplementing impaired proprioception. However, to date no established sonification-supported rehabilitation protocol strategy exists. In order to examine and validate the effectiveness of sonification in stroke rehabilitation, we developed a computer program, termed “SonicPointer”: Participants' computer mouse movements were sonified in real-time with complex tones. Tone characteristics were derived from an invisible parameter mapping, overlaid on the computer screen. The parameters were: tone pitch and tone brightness. One parameter varied along the x, the other along the y axis. The order of parameter assignment to axes was balanced in two blocks between subjects so that each participant performed under both conditions. Subjects were naive to the overlaid parameter mappings and its change between blocks. In each trial a target tone was presented and subjects were instructed to indicate its origin with respect to the overlaid parameter mappings on the screen as quickly and accurately as possible with a mouse click. Twenty-six elderly healthy participants were tested. Required time and two-dimensional accuracy were recorded. Trial duration times and learning curves were derived. We hypothesized that subjects performed in one of the two parameter-to-axis–mappings better, indicating the most natural sonification. Generally, subjects' localizing performance was better on the pitch axis as compared to the brightness axis. Furthermore, the learning curves were steepest when pitch was mapped onto the vertical and brightness onto the horizontal axis. This seems to be the optimal constellation for this two-dimensional sonification. PMID:25368548

  14. The fate of b-ions in the two worlds of collision-induced dissociation.

    PubMed

    Waldera-Lupa, Daniel M; Stefanski, Anja; Meyer, Helmut E; Stühler, Kai

    2013-12-01

    Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss. © 2013.

  15. Evolution of a mass spectrometry-grade protease with PTM-directed specificity.

    PubMed

    Tran, Duc T; Cavett, Valerie J; Dang, Vuong Q; Torres, Héctor L; Paegel, Brian M

    2016-12-20

    Mapping posttranslational modifications (PTMs), which diversely modulate biological functions, represents a significant analytical challenge. The centerpiece technology for PTM site identification, mass spectrometry (MS), requires proteolytic cleavage in the vicinity of a PTM to yield peptides for sequencing. This requirement catalyzed our efforts to evolve MS-grade mutant PTM-directed proteases. Citrulline, a PTM implicated in epigenetic and immunological function, made an ideal first target, because citrullination eliminates arginyl tryptic sites. Bead-displayed trypsin mutant genes were translated in droplets, the mutant proteases were challenged to cleave bead-bound fluorogenic probes of citrulline-dependent proteolysis, and the resultant beads (1.3 million) were screened. The most promising mutant efficiently catalyzed citrulline-dependent peptide bond cleavage (k cat /K M = 6.9 × 10 5 M -1 ⋅s -1 ). The resulting C-terminally citrullinated peptides generated characteristic isotopic patterns in MALDI-TOF MS, and both a fragmentation product y 1 ion corresponding to citrulline (176.1030 m/z) and diagnostic peak pairs in the extracted ion chromatograms of LC-MS/MS analysis. Using these signatures, we identified citrullination sites in protein arginine deiminase 4 (12 sites) and in fibrinogen (25 sites, two previously unknown). The unique mass spectral features of PTM-dependent proteolytic digest products promise a generalized PTM site-mapping strategy based on a toolbox of such mutant proteases, which are now accessible by laboratory evolution.

  16. The conformational preferences of γ-lactam and its role in constraining peptide structure

    NASA Astrophysics Data System (ADS)

    Paul, P. K. C.; Burney, P. A.; Campbell, M. M.; Osguthorpe, D. J.

    1990-09-01

    The conformational constraints imposed by γ-lactams in peptides have been studied using valence force field energy calculations and flexible geometry maps. It has been found that while cyclisation restrains the Ψ of the lactam, non-bonded interactions contribute to the constraints on ϕ of the lactam. The γ-lactam also affects the (ϕ,Ψ) of the residue after it in a peptide sequence. For an l-lactam, the ring geometry restricts Ψ to about-120°, and ϕ has two minima, the lowest energy around-140° and a higher minimum (5 kcal/mol higher) at 60°, making an l-γ-lactam more favourably accommodated in a near extended conformation than in position 2 of a type II' β-turn. The energy of the ϕ˜+60° minimum can be lowered substantially until it is more favoured than the-140° minimum by progressive substitution of bulkier groups on the amide N of the l-γ-lactam. The (ϕ,Ψ) maps of the residue succeeding a γ-lactam show subtle differences from those of standard N-methylated residues. The dependence of the constraints on the chirality of γ-lactams and N-substituted γ-lactams, in terms of the formation of secondary structures like β-turns is discussed and the comparison of the theoretical conformations with experimental results is highlighted.

  17. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    PubMed

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  18. The influence of solvent on conformational properties of peptides with Aib residue-a DFT study.

    PubMed

    Wałęsa, Roksana; Broda, Małgorzata A

    2017-11-21

    The conformational propensities of the Aib residue on the example of two model peptides Ac-Aib-NHMe (1) and Ac-Aib-NMe 2 (2), were studied by B3LYP and M06-2X functionals, in the gas phase and in the polar solvents. To verify the reliability of selected functionals, we also performed MP2 calculations for the tested molecules in vacuum. Polarizable continuum models (PCM and SMD) were used to estimate the solvent effect. Ramachandran maps were calculated to find all energy minima. Noncovalent intramolecular interactions due to hydrogen-bonds and dipole attractions between carbonyl groups are responsible for the relative stabilities of the conformers. In order to verify the theoretical results, the available conformations of similar X-ray structures from the Cambridge Crystallographic Data Center (CCDC) were analyzed. The results of the calculations show that both derivatives with the Aib residue in the gas phase prefer structures stabilized by intramolecular N-H⋯O hydrogen bonds, i.e., C 5 and C 7 conformations, while polar solvent promotes helical conformation with φ, ψ values equal to +/-60°, +/-40°. In addition, in the case of molecule 2, the helical conformation is the only one available in the polar environment. This result is fully consistent with the X-ray data. Graphical abstract Effect of solvent on the Ramachandran maps of the model peptides with Aib residue.

  19. Development of self-assembling nanowires containing electronically active oligothiophenes

    NASA Astrophysics Data System (ADS)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without any twisting, left-handed helices with smaller pitches (40 +/- 6 nm), or aggregates without regular shapes. We believe these effects are steric in nature that changes the beta-sheet sub-structure within the nanofibers. These principles could be utilized as strategies to optimize the morphologies and properties of nanostructures based on these amphiphilic molecules.

  20. Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-02-01

    We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.

  1. a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra

    NASA Astrophysics Data System (ADS)

    Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.

    Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.

  2. Model studies of laser absorption computed tomography for remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Wolfe, D. C., Jr.; Byer, R. L.

    1982-01-01

    Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.

  3. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS.

    PubMed

    Tang, Chang-Bo; Zhang, Wan-Gang; Wang, Yao-Song; Xing, Lu-Juan; Xu, Xing-Lian; Zhou, Guang-Hong

    2016-08-24

    Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation.

  4. Fast Shear Compounding Using Robust Two-dimensional Shear Wave Speed Calculation and Multi-directional Filtering

    PubMed Central

    Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636

  5. O-GlcNAc site-mapping of liver X receptor-α and O-GlcNAc transferase.

    PubMed

    Fan, Qiong; Moen, Anders; Anonsen, Jan Haug; Bindesbøll, Christian; Sæther, Thomas; Carlson, Cathrine Rein; Grønning-Wang, Line M

    2018-05-05

    The Liver X Receptor α (LXRα) belongs to the nuclear receptor superfamily and plays an essential role in regulating cholesterol, lipid and glucose metabolism and inflammatory responses. We have previously shown that LXRα is post-translationally modified by O-linked β-N-acetyl-glucosamine (O-GlcNAc) with increased transcriptional activity. Moreover, we showed that LXRα associates with O-GlcNAc transferase (OGT) in vitro and in vivo in mouse liver. In this study, we report that human LXRα is O-GlcNAc modified in its N-terminal domain (NTD) by identifying a specific O-GlcNAc site S49 and a novel O-GlcNAc modified peptide 20 LWKPGAQDASSQAQGGSSCILRE 42 . However, O-GlcNAc site-mutations did not modulate LXRα transactivation of selected target gene promoters in vitro. Peptide array and co-immunoprecipitation assays demonstrate that LXRα interacts with OGT in its NTD and ligand-binding domain (LBD) in a ligand-independent fashion. Moreover, we map two new O-GlcNAc sites in the longest OGT isoform (ncOGT): S437 in the tetratricopeptide repeat (TPR) 13 domain and T1043 in the far C-terminus, and a new O-GlcNAc modified peptide (amino acids 826-832) in the intervening region (Int-D) within the catalytic domain. We also map four new O-GlcNAc sites in the short isoform sOGT: S391, T393, S399 and S437 in the TPRs 11-13 domain. Future studies will reveal the biological role of identified O-GlcNAc sites in LXRα and OGT. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Improving Mixed Variable Optimization of Computational and Model Parameters Using Multiple Surrogate Functions

    DTIC Science & Technology

    2008-03-01

    multiplicative corrections as well as space mapping transformations for models defined over a lower dimensional space. A corrected surrogate model for the...correction functions used in [72]. If the low fidelity model g(x̃) is defined over a lower dimensional space then a space mapping transformation is...required. As defined in [21, 72], space mapping is a method of mapping between models of different dimensionality or fidelity. Let P denote the space

  7. Immobilized Pepsin Microreactor for Rapid Peptide Mapping with Nanoelectrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Long, Ying; Wood, Troy D.

    2015-01-01

    Most enzymatic microreactors for protein digestion are based on trypsin, but proteins with hydrophobic segments may be difficult to digest because of the paucity of Arg and Lys residues. Microreactors based on pepsin, which is less specific than trypsin, can overcome this challenge. Here, an integrated immobilized pepsin microreactor (IPMR)/nanoelectrospray emitter is examined for its potential for peptide mapping. For myoglobin, equivalent sequence coverage is obtained in a thousandth the time of solution digestion with better sequence coverage. While sequence coverage of cytochrome c is lesser than solution in this short duration, more highly-charged peptic peptides are produced and a number of peaks are unidentified at low-resolution, suggesting that high-resolution mass spectrometry is needed to take full advantage of integrated IPMR/nanoelectrospray devices.

  8. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of N-palmitoylated human growth hormone by in situ liquid-liquid extraction and MALDI tandem mass spectrometry.

    PubMed

    Sachon, Emmanuelle; Nielsen, Per Franklin; Jensen, Ole Nørregaard

    2007-06-01

    Acylation is a common post-translational modification found in secreted proteins and membrane-associated proteins, including signal transducing and regulatory proteins. Acylation is also explored in the pharmaceutical and biotechnology industry to increase the stability and lifetime of protein-based products. The presence of acyl moieties in proteins and peptides affects the physico-chemical properties of these species, thereby modulating protein stability, function, localization and molecular interactions. Characterization of protein acylation is a challenging analytical task, which includes the precise definition of the acylation sites in proteins and determination of the identity and molecular heterogeneity of the acyl moiety at each individual site. In this study, we generated a chemically modified human growth hormone (hGH) by incorporation of a palmitoyl moiety on the N(epsilon) group of a lysine residue. Monoacylation of the hGH protein was confirmed by determination of the intact molecular weight by mass spectrometry. Detailed analysis of protein acylation was achieved by analysis of peptides derived from hGH by protease treatment. However, peptide mass mapping by MALDI MS using trypsin and AspN proteases and standard sample preparation methods did not reveal any palmitoylated peptides. In contrast, in situ liquid-liquid extraction (LLE) performed directly on the MALDI MS metal target enabled detection of acylated peptide candidates by MALDI MS and demonstrated that hGH was N-palmitoylated at multiple lysine residues. MALDI MS and MS/MS analysis of the modified peptides mapped the N-palmitoylation sites to Lys158, Lys172 and Lys140 or Lys145. This study demonstrates the utility of LLE/MALDI MS/MS for mapping and characterization of acylation sites in proteins and peptides and the importance of optimizing sample preparation methods for mass spectrometry-based determination of substoichiometric, multi-site protein modifications.

  10. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  11. Identification of OppA2 Linear Epitopes as Serodiagnostic Markers for Lyme Disease

    PubMed Central

    Signorino, Giacomo; Arnaboldi, Paul M.; Petzke, Mary M.

    2014-01-01

    Laboratory diagnosis of Lyme disease is based on the serological detection of antibodies against the etiologic agent Borrelia burgdorferi. Current diagnostics are insensitive at detecting early infection, when treatment is most effective. This deficiency results from the limited number of B. burgdorferi antigens expressed in early infection and the use of an insensitive two-tier paradigm, put in place to deal with insufficient specificity associated with the use of whole-protein antigens and/or bacterial lysates as serodiagnostic targets. Whole-protein antigens contain epitopes that are unique to B. burgdorferi as well as cross-reactive epitopes found in other bacteria. One method for overcoming the limitations imposed by cross-reactive epitopes is the use of short peptides containing epitopes unique to B. burgdorferi as antigen targets. This eliminates nonspecific epitopes. Using overlapping peptide libraries, we performed epitope mapping of linear epitopes in oligopeptide permease A2 (OppA2), a member of the oligopeptide permease (Opp) family of peptide transporters, expressed during early B. burgdorferi infection. We identified 9 epitopes, synthesized peptides containing these epitopes, and screened those using panels of blood from patients with early Lyme disease, rheumatoid arthritis (RA), or syphilis or from healthy individuals. Two of the peptides, OppA2 (191-225) (amino acids comprising the peptide are shown in parentheses) and OppA2 (381-400), are highly conserved among the three major pathogenic Borrelia species responsible for most Lyme disease cases in North America and Europe. They detected antibodies in Lyme disease patient sera with sufficient sensitivity and specificity to indicate that they could have value in a serological assay for Lyme disease. PMID:24623628

  12. Intravitreal injection or topical eye-drop application of a μ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons' rats, a model of retinitis pigmentosa.

    PubMed

    Ozaki, Taku; Nakazawa, Mitsuru; Yamashita, Tetsuro; Sorimachi, Hiroyuki; Hata, Shoji; Tomita, Hiroshi; Isago, Hitomi; Baba, Ayaka; Ishiguro, Sei-Ichi

    2012-11-01

    Mitochondrial μ-calpain initiates apoptosis-inducing factor (AIF)-dependent apoptosis in retinal photoreceptor degeneration. Mitochondrial μ-calpain inhibitors may represent therapeutic targets for the disease. Therefore, we sought to identify inhibitors of mitochondrial calpains and determine their effects in Royal College of Surgeons' (RCS) rats, an animal model of retinitis pigmentosa (RP). We synthesized 20-mer peptides of the C2-like (C2L) domain of μ-calpain. Two μ-calpain peptides N2 and N9 inhibited mitochondrial μ-calpain activity (IC(50); 892 and 498nM, respectively), but not other proteases. Western blotting showed that 50μM of both μ-calpain peptides caused specific degradation of mitochondrial μ-calpain. Three-dimensional structure of calpains suggested that the peptides N2 and N9 corresponded to the regions forming salt bridges between the protease core domain 2 and the C2L domain. We determined the inhibitory regions of μ-calpain peptides N2 and N9 using 10-mers, and one peptide, N2-10-2, inhibited the activity of mitochondrial μ-calpain (IC(50); 112nM). We next conjugated the peptide N2-10-2 to the C-terminal of HIV-1 tat (HIV), a cell-penetrating peptide. Using isolated rat liver mitochondria, 50μM HIV-conjugated μ-calpain N2-10-2 peptide (HIV-Nμ, IC(50); 285nM) significantly inhibited AIF truncation. The intravitreal injection of 20mM HIV-Nμ also prevented retinal photoreceptor apoptosis determined by TUNEL staining, and preserved retinal function assessed by electroretinography in RCS rats. Topical application of 40mM HIV-Nμ also prevented apoptosis of retinal photoreceptors in RCS rats. Our results demonstrate that HIV-Nμ, a peptide inhibitor of mitochondrial μ-calpain, offers a new modality for treating RP. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    PubMed

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. NMR investigations of the dual targeting peptide of Thr-tRNA synthetase and its interaction with the mitochondrial Tom20 receptor in Arabidopsis thaliana.

    PubMed

    Ye, Weihua; Spånning, Erika; Unnerståle, Sofia; Gotthold, David; Glaser, Elzbieta; Mäler, Lena

    2012-10-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. © 2012 The Authors Journal compilation © 2012 FEBS.

  15. VizieR Online Data Catalog: Diffuse ionized gas in the Antennae galaxy (Weilbacher+, 2018)

    NASA Astrophysics Data System (ADS)

    Weilbacher, P. M.; Monreal-Ibero, A.; Verhamme, A.; Sandin, C.; Steinmetz, M.; Kollatschny, W.; Krajnovic, D.; Kamann, S.; Roth, M. M.; Erroz-Ferrer, S.; Marino, R. A.; Maseda, M. V.; Wendt, M.; Bacon, R.; Dreizler, S.; Richard, J.; Wisotzki, L.

    2017-11-01

    We provide two-dimensional maps of two different ways to measure the diffuse ionized gas as traced by the Halpha emission line in the Antennae Galaxy, both for the central field and the field at the end of the southern tidal tail. We provide a velocity map derived from the Halpha emission line, binned to a S/N~30. Finally, we provide line measurements and derived properties for all HII regions discussed in the paper. (4 data files).

  16. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  17. Assessment of a User Guide for One Semi-Automated Forces (OneSAF) Version 2.0

    DTIC Science & Technology

    2009-09-01

    OneSAF uses a two-dimensional feature named a Plan View Display ( PVD ) as the primary graphical interface. The PVD replicates a map with a series...primary interface, the PVD is how the user watches the scenario unfold and requires the most interaction with the user. As seen in Table 3, all...participant indicated never using these seven map-related functions. Graphic control measures. Graphic control measures are applied to the PVD map to

  18. Recent advancement in the field of two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2008-07-01

    The recent advancement in the field of 2D correlation spectroscopy is reviewed with the emphasis on a number of papers published during the last two years. Topics covered by this comprehensive review include books, review articles, and noteworthy developments in the theory and applications of 2D correlation spectroscopy. New 2D correlation techniques are discussed, such as kernel analysis and augmented 2D correlation, model-based correlation, moving window analysis, global phase angle, covariance and correlation coefficient mapping, sample-sample correlation, hybrid and hetero correlation, pretreatment and transformation of data, and 2D correlation combined with other chemometrics techniques. Perturbation methods of both static (e.g., temperature, composition, pressure and stress, spatial distribution and orientation) and dynamic types (e.g., rheo-optical and acoustic, chemical reactions and kinetics, H/D exchange, sorption and diffusion) currently in use are examined. Analytical techniques most commonly employed in 2D correlation spectroscopy are IR, Raman, and NIR, but the growing use of other probes is also noted, including fluorescence, emission, Raman optical activity and vibrational circular dichroism, X-ray absorption and scattering, NMR, mass spectrometry, and even chromatography. The field of applications for 2D correlation spectroscopy is very diverse, encompassing synthetic polymers, liquid crystals, Langmuir-Blodgett films, proteins and peptides, natural polymers and biomaterials, pharmaceuticals, food and agricultural products, water, solutions, inorganic, organic, hybrid or composite materials, and many more.

  19. MHC class I-associated peptides derive from selective regions of the human genome.

    PubMed

    Pearson, Hillary; Daouda, Tariq; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Mader, Sylvie; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude

    2016-12-01

    MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.

  20. MHC class I–associated peptides derive from selective regions of the human genome

    PubMed Central

    Pearson, Hillary; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Thibault, Pierre

    2016-01-01

    MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology. PMID:27841757

  1. Shearlet-based measures of entropy and complexity for two-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Brazhe, Alexey

    2018-06-01

    New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an understanding of the level of order or randomness is desired.

  2. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Chen, Qian; Gu, Guohua; Feng, Shijie; Feng, Fangxiaoyu; Li, Rubin; Shen, Guochen

    2013-08-01

    This paper introduces a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes by using bi-frequency tripolar pulse-width-modulation (TPWM) fringe projection. Two wrapped phase maps with different wavelengths can be obtained simultaneously by our bi-frequency phase-shifting algorithm. Then the two phase maps are unwrapped using a simple look-up-table based number-theoretical approach. To guarantee the robustness of phase unwrapping as well as the high sinusoidality of projected patterns, TPWM technique is employed to generate ideal fringe patterns with slight defocus. We detailed our technique, including its principle, pattern design, and system setup. Several experiments on dynamic scenes were performed, verifying that our method can achieve a speed of 1250 frames per second for fast, dense, and accurate 3-D measurements.

  3. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  4. Unbiased in-depth characterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry

    PubMed Central

    Griaud, François; Denefeld, Blandine; Lang, Manuel; Hensinger, Héloïse; Haberl, Peter; Berg, Matthias

    2017-01-01

    ABSTRACT Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner. PMID:28379786

  5. Three-dimensional mapping of the local interstellar medium with composite data

    NASA Astrophysics Data System (ADS)

    Capitanio, L.; Lallement, R.; Vergely, J. L.; Elyajouri, M.; Monreal-Ibero, A.

    2017-10-01

    Context. Three-dimensional maps of the Galactic interstellar medium are general astrophysical tools. Reddening maps may be based on the inversion of color excess measurements for individual target stars or on statistical methods using stellar surveys. Three-dimensional maps based on diffuse interstellar bands (DIBs) have also been produced. All methods benefit from the advent of massive surveys and may benefit from Gaia data. Aims: All of the various methods and databases have their own advantages and limitations. Here we present a first attempt to combine different datasets and methods to improve the local maps. Methods: We first updated our previous local dust maps based on a regularized Bayesian inversion of individual color excess data by replacing Hipparcos or photometric distances with Gaia Data Release 1 values when available. Secondly, we complemented this database with a series of ≃5000 color excess values estimated from the strength of the λ15273 DIB toward stars possessing a Gaia parallax. The DIB strengths were extracted from SDSS/APOGEE spectra. Third, we computed a low-resolution map based on a grid of Pan-STARRS reddening measurements by means of a new hierarchical technique and used this map as the prior distribution during the inversion of the two other datasets. Results: The use of Gaia parallaxes introduces significant changes in some areas and globally increases the compactness of the structures. Additional DIB-based data make it possible to assign distances to clouds located behind closer opaque structures and do not introduce contradictory information for the close structures. A more realistic prior distribution instead of a plane-parallel homogeneous distribution helps better define the structures. We validated the results through comparisons with other maps and with soft X-ray data. Conclusions: Our study demonstrates that the combination of various tracers is a potential tool for more accurate maps. An online tool makes it possible to retrieve maps and reddening estimations. Our online tool is available at http://stilism.obspm.fr

  6. Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.

    PubMed

    Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher

    2017-09-26

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  7. Can natural proteins designed with 'inverted' peptide sequences adopt native-like protein folds?

    PubMed

    Sridhar, Settu; Guruprasad, Kunchur

    2014-01-01

    We have carried out a systematic computational analysis on a representative dataset of proteins of known three-dimensional structure, in order to evaluate whether it would possible to 'swap' certain short peptide sequences in naturally occurring proteins with their corresponding 'inverted' peptides and generate 'artificial' proteins that are predicted to retain native-like protein fold. The analysis of 3,967 representative proteins from the Protein Data Bank revealed 102,677 unique identical inverted peptide sequence pairs that vary in sequence length between 5-12 and 18 amino acid residues. Our analysis illustrates with examples that such 'artificial' proteins may be generated by identifying peptides with 'similar structural environment' and by using comparative protein modeling and validation studies. Our analysis suggests that natural proteins may be tolerant to accommodating such peptides.

  8. Blocking the association of HDAC4 with MAP1S accelerates autophagy clearance of mutant Huntingtin

    PubMed Central

    Yue, Fei; Li, Wenjiao; Zou, Jing; Chen, Qi; Xu, Guibin; Huang, Hai; Xu, Zhen; Zhang, Sheng; Gallinari, Paola; Wang, Fen; McKeehan, Wallace L.; Liu, Leyuan

    2015-01-01

    Autophagy controls and executes the turnover of abnormally aggregated proteins. MAP1S interacts with the autophagy marker LC3 and positively regulates autophagy flux. HDAC4 associates with the aggregation-prone mutant huntingtin protein (mHTT) that causes Huntington's disease, and colocalizes with it in cytosolic inclusions. It was suggested HDAC4 interacts with MAP1S in a yeast two-hybrid screening. Here, we found that MAP1S interacts with HDAC4 via a HDAC4-binding domain (HBD). HDAC4 destabilizes MAP1S, suppresses autophagy flux and promotes the accumulation of mHTT aggregates. This occurs by an increase in the deacetylation of the acetylated MAP1S. Either suppression of HDAC4 with siRNA or overexpression of the MAP1S HBD leads to stabilization of MAP1S, activation of autophagy flux and clearance of mHTT aggregates. Therefore, specific interruption of the HDAC4-MAP1S interaction with short peptides or small molecules to enhance autophagy flux may relieve the toxicity of mHTT associated with Huntington's disease and improve symptoms of HD patients. PMID:26540094

  9. Co-treatment with a C1B5 peptide of protein kinase Cγ and a low dose of gemcitabine strongly attenuated pancreatic cancer growth in mice through T cell activation.

    PubMed

    Ishiguro, Susumu; Kawabata, Atsushi; Zulbaran-Rojas, Alejandro; Monson, Kelsey; Uppalapati, Deepthi; Ohta, Naomi; Inui, Makoto; Pappas, Charalampos G; Tzakos, Andreas G; Tamura, Masaaki

    2018-01-01

    Although gemcitabine is an effective chemotherapeutic for pancreatic cancer, severe side effects often accompany its use. Since we have discovered that locally administered C1B domain peptides effectively control tumor growth without any side effects, the efficacy of co-treatment with this peptide and a low dose of gemcitabine on the growth of pancreatic cancer was examined. Two- and three-dimensional cell culture studies clarified that a co-treatment with C1B5 peptide and gemcitabine significantly attenuated growth of PAN02 mouse and PANC-1 human pancreatic cancer cells in 2D and 3D cultures. Although treatment with the low dose of gemcitabine alone (76%) or the C1B5 peptide alone (39%) inhibited tumor growth moderately, a co-treatment with C1B5 peptide and a low dose of gemcitabine markedly inhibited the growth of PAN02 autografts in the mouse peritoneal cavity (94% inhibition) without any noticeable adverse effect. The number of peritoneal cavity-infiltrating neutrophils and granzyme B + lymphocytes was significantly higher in the co-treatment group than in the control group. A significant increase of granzyme B mRNA expression was also detected in human T cells by the co-treatment. Taken together, the current study suggests that C1B5 peptide offers a remarkably effective combination treatment strategy to reduce side effects associated with gemcitabine, without losing its tumoricidal effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  11. QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassev, Svetlin; Savcheva, Antonia, E-mail: svetlin.tassev@cfa.harvard.edu

    Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both twomore » and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.« less

  12. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    NASA Astrophysics Data System (ADS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.

  13. Simulations of a Membrane-Anchored Peptide: Structure, Dynamics, and Influence on Bilayer Properties

    PubMed Central

    Jensen, Morten Ø.; Mouritsen, Ole G.; Peters, Günther H.

    2004-01-01

    A three-dimensional structure of a model decapeptide is obtained by performing molecular dynamics simulations of the peptide in explicit water. Interactions between an N-myristoylated form of the folded peptide anchored to dipalmitoylphosphatidylcholine fluid phase lipid membranes are studied at different applied surface tensions by molecular dynamics simulations. The lipid membrane environment influences the conformational space explored by the peptide. The overall secondary structure of the anchored peptide is found to deviate at times from its structure in aqueous solution through reversible conformational transitions. The peptide is, despite the anchor, highly mobile at the membrane surface with the peptide motion along the bilayer normal being integrated into the collective modes of the membrane. Peptide anchoring moderately alters the lateral compressibility of the bilayer by changing the equilibrium area of the membrane. Although membrane anchoring moderately affects the elastic properties of the bilayer, the model peptide studied here exhibits conformational flexibility and our results therefore suggest that peptide acylation is a feasible way to reinforce peptide-membrane interactions whereby, e.g., the lifetime of receptor-ligand interactions can be prolonged. PMID:15189854

  14. A designed beta-hairpin forming peptide undergoes a consecutive stepwise process for self-assembly into nanofibrils.

    PubMed

    Wang, Chong; Sha, Yinlin

    2010-04-01

    We used a de novo designed, beta-hairpin forming T1 peptide as a model to investigate the kinetics of peptide fibrogenesis by a combination of light scattering (LS), circular dichroism (CD), fluorescence, and atomic force microscopy (AFM). The results demonstrate that the T1 fibrogenesis undergoes a consecutive stepwise process, with a high degree of cooperation, presenting sigmoidal time-courses of the peptide aggregation, the subsequent conformational conversion of the backbone, and the peptide sidechains' rearrangement. We suggest that the conformational conversion was initiated after the peptide aggregates reach a dimensional size threshold, which could be a key step in the formation of beta-structural nuclei that catalyze the subsequent reactions. Furthermore, besides triggering the peptide aggregation, the interactions between the peptide sidechains predominately facilitate the regular alignment of the peptide molecules and the formation of a well-defined suprastructure. This work provides an insight of the hierarchical self-assembly of beta-hairpin forming peptides. It is helpful for designing beta-structural peptides for self-assembly into nanowires, which would have potential applications in the construction of nano-materials.

  15. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  16. Inhibition of trypanosomal cysteine proteinases by their propeptides.

    PubMed

    Lalmanach, G; Lecaille, F; Chagas, J R; Authié, E; Scharfstein, J; Juliano, M A; Gauthier, F

    1998-09-25

    The ability of the prodomains of trypanosomal cysteine proteinases to inhibit their active form was studied using a set of 23 overlapping 15-mer peptides covering the whole prosequence of congopain, the major cysteine proteinase of Trypanosoma congolense. Three consecutive peptides with a common 5-mer sequence YHNGA were competitive inhibitors of congopain. A shorter synthetic peptide consisting of this 5-mer sequence flanked by two Ala residues (AYHNGAA) also inhibited purified congopain. No residue critical for inhibition was identified in this sequence, but a significant improvement in Ki value was obtained upon N-terminal elongation. Procongopain-derived peptides did not inhibit lysosomal cathepsins B and L but did inhibit native cruzipain (from Dm28c clone epimastigotes), the major cysteine proteinase of Trypanosoma cruzi, the proregion of which also contains the sequence YHNGA. The positioning of the YHNGA inhibitory sequence within the prosegment of trypanosomal proteinases is similar to that covering the active site in the prosegment of cysteine proteinases, the three-dimensional structure of which has been resolved. This strongly suggests that trypanosomal proteinases, despite their long C-terminal extension, have a prosegment that folds similarly to that in related mammal and plant cysteine proteinases, resulting in reverse binding within the active site. Such reverse binding could also occur for short procongopain-derived inhibitory peptides, based on their resistance to proteolysis and their ability to retain inhibitory activity after prolonged incubation. In contrast, homologous peptides in related cysteine proteinases did not inhibit trypanosomal proteinases and were rapidly cleaved by these enzymes.

  17. Conformation, orientation, and adsorption kinetics of dermaseptin B2 onto synthetic supports at aqueous/solid interface.

    PubMed

    Noinville, S; Bruston, F; El Amri, C; Baron, D; Nicolas, P

    2003-08-01

    The antimicrobial activity of cationic amphipathic peptides is due mainly to the adsorption of peptides onto target membranes, which can be modulated by such physicochemical parameters as charge and hydrophobicity. We investigated the structure of dermaseptin B2 (Drs B2) at the aqueous/synthetic solid support interface and its adsorption kinetics using attenuated total reflection Fourier transform infrared spectroscopy and surface plasmon resonance. We determined the conformation and affinity of Drs B2 adsorbed onto negatively charged (silica or dextran) and hydrophobic supports. Synthetic supports of differing hydrophobicity were obtained by modifying silica or gold with omega-functionalized alkylsilanes (bromo, vinyl, phenyl, methyl) or alkylthiols. The peptide molecules adsorbed onto negatively charged supports mostly had a beta-type conformation. In contrast, a monolayer of Drs B2, mainly in the alpha-helical conformation, was adsorbed irreversibly onto the hydrophobic synthetic supports. The conformational changes during formation of the adsorbed monolayer were monitored by two-dimensional Fourier transform infrared spectroscopy correlation; they showed the influence of peptide-peptide interactions on alpha-helix folding on the most hydrophobic support. The orientation of the alpha-helical Drs B2 with respect to the hydrophobic support was determined by polarized attenuated total reflection; it was around 15 +/- 5 degrees. This orientation was confirmed and illustrated by a molecular dynamics study. These combined data demonstrate that specific chemical environments influence the structure of Drs B2, which could explain the many functions of antimicrobial peptides.

  18. Binding Properties of a Peptide Derived from β-Lactamase Inhibitory Protein

    PubMed Central

    Rudgers, Gary W.; Huang, Wanzhi; Palzkill, Timothy

    2001-01-01

    To overcome the antibiotic resistance mechanism mediated by β-lactamases, small-molecule β-lactamase inhibitors, such as clavulanic acid, have been used. This approach, however, has applied selective pressure for mutations that result in β-lactamases no longer sensitive to β-lactamase inhibitors. On the basis of the structure of β-lactamase inhibitor protein (BLIP), novel peptide inhibitors of β-lactamase have been constructed. BLIP is a 165-amino-acid protein that is a potent inhibitor of TEM-1 β-lactamase (Ki = 0.3 nM). The cocrystal structure of TEM-1 β-lactamase and BLIP indicates that residues 46 to 51 of BLIP make critical interactions with the active site of TEM-1 β-lactamase. A peptide containing this six-residue region of BLIP was found to retain sufficient binding energy to interact with TEM-1 β-lactamase. Inhibition assays with the BLIP peptide reveal that, in addition to inhibiting TEM-1 β-lactamase, the peptide also inhibits a class A β-lactamase and a class C β-lactamase that are not inhibited by BLIP. The crystal structures of class A and C β-lactamases and two penicillin-binding proteins (PBPs) reveal that the enzymes have similar three-dimensional structures in the vicinity of the active site. This similarity suggests that the BLIP peptide inhibitor may have a broad range of activity that can be used to develop novel small-molecule inhibitors of various classes of β-lactamases and PBPs. PMID:11709298

  19. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

    PubMed Central

    de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-01-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  20. Protein and gene model inference based on statistical modeling in k-partite graphs.

    PubMed

    Gerster, Sarah; Qeli, Ermir; Ahrens, Christian H; Bühlmann, Peter

    2010-07-06

    One of the major goals of proteomics is the comprehensive and accurate description of a proteome. Shotgun proteomics, the method of choice for the analysis of complex protein mixtures, requires that experimentally observed peptides are mapped back to the proteins they were derived from. This process is also known as protein inference. We present Markovian Inference of Proteins and Gene Models (MIPGEM), a statistical model based on clearly stated assumptions to address the problem of protein and gene model inference for shotgun proteomics data. In particular, we are dealing with dependencies among peptides and proteins using a Markovian assumption on k-partite graphs. We are also addressing the problems of shared peptides and ambiguous proteins by scoring the encoding gene models. Empirical results on two control datasets with synthetic mixtures of proteins and on complex protein samples of Saccharomyces cerevisiae, Drosophila melanogaster, and Arabidopsis thaliana suggest that the results with MIPGEM are competitive with existing tools for protein inference.

  1. Desulfurization of Cysteine-Containing Peptides Resulting from Sample Preparation for Protein Characterization by MS

    PubMed Central

    Wang, Zhouxi; Rejtar, Tomas; Zhou, Zhaohui Sunny; Karger, Barry L.

    2010-01-01

    In this paper, we have examined two cysteine modifications resulting from sample preparation for protein characterization by MS: (1) a previously observed conversion of cysteine to dehydroalanine, now found in the case of disulfide mapping and (2) a novel modification corresponding to conversion of cysteine to alanine. Using model peptides, the conversion of cysteine to dehydroalanine via β-elimination of a disulfide bond was seen to result from the conditions of typical tryptic digestion (37 °C, pH 7.0– 9.0) without disulfide reduction and alkylation.. Furthermore, the surprising conversion of cysteine to alanine was shown to occur by heating cysteine containing peptides in the presence of a phosphine (TCEP). The formation of alanine from cysteine, investigated by performing experiments in H2O or D2O, suggested a radical-based desulfurization mechanism unrelated to β-elimination. Importantly, an understanding of the mechanism and conditions favorable for cysteine desulfurization provides insight for the establishment of improved sample preparation procedures of protein analysis. PMID:20049891

  2. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC-MS/MS.

    PubMed

    Ghorab, Hamida; Lammi, Carmen; Arnoldi, Anna; Kabouche, Zahia; Aiello, Gilda

    2018-01-15

    An investigation on the proteome of the sweet kernel of apricot, based on equalisation with combinatorial peptide ligand libraries (CPLLs), SDS-PAGE, nLC-ESI-MS/MS, and database search, permitted identifying 175 proteins. Gene ontology analysis indicated that their main molecular functions are in nucleotide binding (20.9%), hydrolase activities (10.6%), kinase activities (7%), and catalytic activity (5.6%). A protein-protein association network analysis using STRING software permitted to build an interactomic map of all detected proteins, characterised by 34 interactions. In order to forecast the potential health benefits deriving from the consumption of these proteins, the two most abundant, i.e. Prunin 1 and 2, were enzymatically digested in silico predicting 10 and 14 peptides, respectively. Searching their sequences in the database BIOPEP, it was possible to suggest a variety of bioactivities, including dipeptidyl peptidase-IV (DPP-IV) and angiotensin converting enzyme I (ACE) inhibition, glucose uptake stimulation and antioxidant properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A comprehensive three-dimensional cortical map of vowel space.

    PubMed

    Scharinger, Mathias; Idsardi, William J; Poe, Samantha

    2011-12-01

    Mammalian cortex is known to contain various kinds of spatial encoding schemes for sensory information including retinotopic, somatosensory, and tonotopic maps. Tonotopic maps are especially interesting for human speech sound processing because they encode linguistically salient acoustic properties. In this study, we mapped the entire vowel space of a language (Turkish) onto cortical locations by using the magnetic N1 (M100), an auditory-evoked component that peaks approximately 100 msec after auditory stimulus onset. We found that dipole locations could be structured into two distinct maps, one for vowels produced with the tongue positioned toward the front of the mouth (front vowels) and one for vowels produced in the back of the mouth (back vowels). Furthermore, we found spatial gradients in lateral-medial, anterior-posterior, and inferior-superior dimensions that encoded the phonetic, categorical distinctions between all the vowels of Turkish. Statistical model comparisons of the dipole locations suggest that the spatial encoding scheme is not entirely based on acoustic bottom-up information but crucially involves featural-phonetic top-down modulation. Thus, multiple areas of excitation along the unidimensional basilar membrane are mapped into higher dimensional representations in auditory cortex.

  4. Fracture mechanism maps in unirradiated and irradiated metals and alloys

    NASA Astrophysics Data System (ADS)

    Li, Meimei; Zinkle, S. J.

    2007-04-01

    This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed.

  5. Mapping ionospheric observations using combined techniques for Europe region

    NASA Astrophysics Data System (ADS)

    Tomasik, Lukasz; Gulyaeva, Tamara; Stanislawska, Iwona; Swiatek, Anna; Pozoga, Mariusz; Dziak-Jankowska, Beata

    An k nearest neighbours algorithm (KNN) was used for filling the gaps of the missing F2-layer critical frequency is proposed and applied. This method uses TEC data calculated from EGNOS Vertical Delay Estimate (VDE ≈0.78 TECU) and several GNSS stations and its spatial correlation whit data from selected ionosondes. For mapping purposes two-dimensional similarity function in KNN method was proposed.

  6. Shuttle Topography Data Inform Solar Power Analysis

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The next time you flip on a light switch, there s a chance that you could be benefitting from data originally acquired during the Space Shuttle Program. An effort spearheaded by Jet Propulsion Laboratory (JPL) and the National Geospatial-Intelligence Agency (NGA) in 2000 put together the first near-global elevation map of the Earth ever assembled, which has found use in everything from 3D terrain maps to models that inform solar power production. For the project, called the Shuttle Radar Topography Mission (SRTM), engineers at JPL designed a 60-meter mast that was fitted onto Shuttle Endeavour. Once deployed in space, an antenna attached to the end of the mast worked in combination with another antenna on the shuttle to simultaneously collect data from two perspectives. Just as having two eyes makes depth perception possible, the SRTM data sets could be combined to form an accurate picture of the Earth s surface elevations, the first hight-detail, near-global elevation map ever assembled. What made SRTM unique was not just its surface mapping capabilities but the completeness of the data it acquired. Over the course of 11 days, the shuttle orbited the Earth nearly 180 times, covering everything between the 60deg north and 54deg south latitudes, or roughly 80 percent of the world s total landmass. Of that targeted land area, 95 percent was mapped at least twice, and 24 percent was mapped at least four times. Following several years of processing, NASA released the data to the public in partnership with NGA. Robert Crippen, a member of the SRTM science team, says that the data have proven useful in a variety of fields. "Satellites have produced vast amounts of remote sensing data, which over the years have been mostly two-dimensional. But the Earth s surface is three-dimensional. Detailed topographic data give us the means to visualize and analyze remote sensing data in their natural three-dimensional structure, facilitating a greater understanding of the features and processes taking place on Earth."

  7. Humoral immune response against two surface antigens of Chlamydia pecorum in vaccinated and naturally infected sheep.

    PubMed

    Bommana, Sankhya; Walker, Evelyn; Desclozeaux, Marion; Timms, Peter; Polkinghorne, Adam

    2017-01-01

    Chlamydia pecorum is a globally recognised livestock pathogen due to the significant clinical and economic impact it poses to livestock producers. Routine serological diagnosis is through a complement fixation test (CFT), which is often criticised for cross-reactivity, poor sensitivity and specificity. Although serology remains the preferred method in veterinary diagnostic laboratories, serological assays based on surface antigens of C. pecorum have not been established until now. In this study, we evaluated the use of two chlamydial recombinant protein antigens (PmpG and MOMP-G) by a direct IgG ELISA method for detection of ovine anti-chlamydial antibodies. Using the Pepscan method we then identified B cell epitopes across PmpG and MOMP-G proteins, in lambs with (a) naturally occurring asymptomatic C. pecorum infections (b) C. pecorum-associated polyarthritis and (c) recombinant PmpG and MOMP-G vaccine. Plasma IgG antibodies to PmpG in natural infection of lambs were detected earlier in infection than CFT and served as an acute phase marker. Antibodies to MOMP-G IgG were significantly heightened in lambs with C. pecorum-associated polyarthritis. PmpG and MOMP-G specific B-cell epitope mapping revealed epitope responses in immunised lambs cluster with some of the epitope responses in naturally infected lambs. B-cell epitope mapping further revealed that lambs with polyarthritis recognised several unique PmpG (50% frequency, peptide 8, 25, 40, 41 and 50) and MOMP (50% frequency, peptide 50) epitopes in comparison to asymptomatic infections. The findings of this study will have implications towards improved serodiagnosis of C. pecorum infections in livestock and inform the downstream development of alternative peptide-based antigens for future C. pecorum vaccine studies.

  8. Interferon regulatory factor 5 is a potential target of autoimmune response triggered by Epstein-barr virus and Mycobacterium avium subsp. paratuberculosis in rheumatoid arthritis: investigating a mechanism of molecular mimicry.

    PubMed

    Bo, Marco; Erre, Gian Luca; Niegowska, Magdalena; Piras, Marco; Taras, Loredana; Longu, Maria Giovanna; Passiu, Giuseppe; Sechi, Leonardo A

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic disease characterised by a pro-inflammatory cytokines linked erosive joint damage and by humoral and cellular response against a broad range of self-peptides. Molecular mimicry between Epstein-Barr virus (EBV), Mycobacterium avium subsp. paratuberculosis (MAP) and host peptides has long been regarded as an RA pathogenetic mechanism. Using bioinformatic analysis we identified high sequence homology among interferon regulatory factor 5 (IRF5), EBV antigen BOLF1 and MAP antigen MAP_4027. Our objective was to evaluate the presence in sera of RA patients of antibodies (Abs) directed against human homologous IRF5 cross-reacting with BOLF1 and MAP_4027. Frequency of reactivity against IRF5424-434, BOLF1305-320 and MAP_402718-32 was tested by indirect ELISA in sera from 71 RA patients and 60 healthy controls (HCs). RA sera show a remarkable high frequency of reactivity against IRF5424-434 in comparison to HCs (69% vs. 8%; p<0.0001). Similarly, seroreactivity against BOLF1305-320 was more frequently detected in RA sera than in HCs counterpart (58% vs. 8%; p<0.0001). Frequency of Abs against MAP_402718-32 was 17% in RA sera vs. 5% in HCs with a p-value at the threshold level (p<0.051). Prevalence of Abs against at least one of the assessed epitopes reached 72% in RA patients and 15% among HCs. Levels of Abs in RA patients were significantly related to systemic inflammation. IRF5 is a potential autoimmune target of RA. Our results support the hypothesis that EBV and MAP infections may be involved in the pathogenesis of RA, igniting a secondary immune response that cross-reacts against RA self-peptides.

  9. Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes

    PubMed Central

    Ruwona, Tinashe B; Mcbride, Ryan; Chappel, Rebecca; Head, Steven R; Ordoukhanian, Phillip; Burton, Dennis R.; Law, Mansun

    2014-01-01

    Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology, improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays were confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research. PMID:24269751

  10. Joint two dimensional inversion of gravity and magnetotelluric data using correspondence maps

    NASA Astrophysics Data System (ADS)

    Carrillo Lopez, J.; Gallardo, L. A.

    2016-12-01

    Inverse problems in Earth sciences are inherently non-unique. To improve models and reduce the number of solutions we need to provide extra information. In geological context, this information could be a priori information, for example, geological information, well log data, smoothness, or actually, information of measures of different kind of data. Joint inversion provides an approach to improve the solution and reduce the errors due to suppositions of each method. To do that, we need a link between two or more models. Some approaches have been explored successfully in recent years. For example, Gallardo and Meju (2003), Gallardo and Meju (2004, 2011), and Gallardo et. al. (2012) used the directions of properties to measure the similarity between models minimizing their cross gradients. In this work, we proposed a joint iterative inversion method that use spatial distribution of properties as a link. Correspondence maps could be better characterizing specific Earth systems due they consider the relation between properties. We implemented a code in Fortran to do a two dimensional inversion of magnetotelluric and gravity data, which are two of the standard methods in geophysical exploration. Synthetic tests show the advantages of joint inversion using correspondence maps against separate inversion. Finally, we applied this technique to magnetotelluric and gravity data in the geothermal zone located in Cerro Prieto, México.

  11. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides.

    PubMed

    Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F

    2016-06-01

    Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.

  12. Spatial mapping and statistical reproducibility of an array of 256 one-dimensional quantum wires

    NASA Astrophysics Data System (ADS)

    Al-Taie, H.; Smith, L. W.; Lesage, A. A. J.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2015-08-01

    We utilize a multiplexing architecture to measure the conductance properties of an array of 256 split gates. We investigate the reproducibility of the pinch off and one-dimensional definition voltage as a function of spatial location on two different cooldowns, and after illuminating the device. The reproducibility of both these properties on the two cooldowns is high, the result of the density of the two-dimensional electron gas returning to a similar state after thermal cycling. The spatial variation of the pinch-off voltage reduces after illumination; however, the variation of the one-dimensional definition voltage increases due to an anomalous feature in the center of the array. A technique which quantifies the homogeneity of split-gate properties across the array is developed which captures the experimentally observed trends. In addition, the one-dimensional definition voltage is used to probe the density of the wafer at each split gate in the array on a micron scale using a capacitive model.

  13. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    PubMed

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  14. Secure positioning technique based on encrypted visible light map for smart indoor service

    NASA Astrophysics Data System (ADS)

    Lee, Yong Up; Jung, Gillyoung

    2018-03-01

    Indoor visible light (VL) positioning systems for smart indoor services are negatively affected by both cochannel interference from adjacent light sources and VL reception position irregularity in the three-dimensional (3-D) VL channel. A secure positioning methodology based on a two-dimensional (2-D) encrypted VL map is proposed, implemented in prototypes of the specific positioning system, and analyzed based on performance tests. The proposed positioning technique enhances the positioning performance by more than 21.7% compared to the conventional method in real VL positioning tests. Further, the pseudonoise code is found to be the optimal encryption key for secure VL positioning for this smart indoor service.

  15. Modeling and Analysis of Large Amplitude Flight Maneuvers

    NASA Technical Reports Server (NTRS)

    Anderson, Mark R.

    2004-01-01

    Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.

  16. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  17. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.

    PubMed

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C

    2011-12-21

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.

  18. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    2012-09-01

    A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step, a one-dimensional system is examined: two written texts by one author (Lewis Carroll) are considered, together with one translation into an artificial language (i.e., Esperanto) are mapped into time series. Their corresponding shuffled versions are used for obtaining a baseline. Two different one-dimensional time series are used here: one based on word lengths (LTS), the other on word frequencies (FTS). It is shown that the generalized Hurst exponent h(q) and the derived f(α) curves of the original and translated texts show marked differences. The original texts are far from giving a parabolic f(α) function, in contrast to the shuffled texts. Moreover, the Esperanto text has more extreme values. This suggests cascade model-like, with multiscale time-asymmetric features as finally written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented. The FTS f(α) curves are more opened than the LTS ones.

  19. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series.

    PubMed

    Ausloos, M

    2012-09-01

    A nonlinear dynamics approach can be used in order to quantify complexity in written texts. As a first step, a one-dimensional system is examined: two written texts by one author (Lewis Carroll) are considered, together with one translation into an artificial language (i.e., Esperanto) are mapped into time series. Their corresponding shuffled versions are used for obtaining a baseline. Two different one-dimensional time series are used here: one based on word lengths (LTS), the other on word frequencies (FTS). It is shown that the generalized Hurst exponent h(q) and the derived f(α) curves of the original and translated texts show marked differences. The original texts are far from giving a parabolic f(α) function, in contrast to the shuffled texts. Moreover, the Esperanto text has more extreme values. This suggests cascade model-like, with multiscale time-asymmetric features as finally written texts. A discussion of the difference and complementarity of mapping into a LTS or FTS is presented. The FTS f(α) curves are more opened than the LTS ones.

  20. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling.

    PubMed

    Patra, Sarbani; Keshavamurthy, Srihari

    2018-02-14

    It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.

  1. Rational variety mapping for contrast-enhanced nonlinear unsupervised segmentation of multispectral images of unstained specimen.

    PubMed

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-08-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II

    PubMed Central

    Chuang, Crystal K.; Rockel, Beate; Seyit, Gönül; Walian, Peter J.; Schönegge, Anne–Marie; Peters, Jürgen; Zwart, Petrus H.; Baumeister, Wolfgang; Jap, Bing K.

    2010-01-01

    Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6MDa). It is believed to act downstream of the 26S proteasome cleaving tripeptides from the N– termini of longer peptides and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach: The structure of the dimer was solved by x–ray crystallography and docked into the three– dimensional map of the holocomplex obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active–site serine, coupling it to holocomplex assembly and active site sequestration. PMID:20676100

  3. Structural Basis of Substrate Recognition by Hematopoietic Tyrosine Phosphatase (HePTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critton, D.; Tortajada, A; Stetson, G

    2008-01-01

    Hematopoietic tyrosine phosphatase (HePTP) is one of three members of the kinase interaction motif (KIM) phosphatase family which also includes STEP and PCPTP1. The KIM-PTPs are characterized by a 15 residue sequence, the KIM, which confers specific high-affinity binding to their only known substrates, the MAP kinases Erk and p38, an interaction which is critical for their ability to regulate processes such as T cell differentiation (HePTP) and neuronal signaling (STEP). The KIM-PTPs are also characterized by a unique set of residues in their PTP substrate binding loops, where 4 of the 13 residues are differentially conserved among the KIM-PTPsmore » as compared to more than 30 other class I PTPs. One of these residues, T106 in HePTP, is either an aspartate or asparagine in nearly every other PTP. Using multiple techniques, we investigate the role of these KIM-PTP specific residues in order to elucidate the molecular basis of substrate recognition by HePTP. First, we used NMR spectroscopy to show that Erk2-derived peptides interact specifically with HePTP at the active site. Next, to reveal the molecular details of this interaction, we solved the high-resolution three-dimensional structures of two distinct HePTP-Erk2 peptide complexes. Strikingly, we were only able to obtain crystals of these transient complexes using a KIM-PTP specific substrate-trapping mutant, in which the KIM-PTP specific residue T106 was mutated to an aspartic acid (T106D). The introduced aspartate side chain facilitates the coordination of the bound peptides, thereby stabilizing the active dephosphorylation complex. These structures establish the essential role of HePTP T106 in restricting HePTP specificity to only those substrates which are able to interact with KIM-PTPs via the KIM (e.g., Erk2, p38). Finally, we describe how this interaction of the KIM is sufficient for overcoming the otherwise weak interaction at the active site of KIM-PTPs.« less

  4. Generalized exact holographic mapping with wavelets

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  5. Real three-dimensional objects: effects on mental rotation.

    PubMed

    Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I

    2011-08-01

    The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.

  6. Comparability analysis of protein therapeutics by bottom-up LC-MS with stable isotope-tagged reference standards

    PubMed Central

    Manuilov, Anton V; Radziejewski, Czeslaw H

    2011-01-01

    Comparability studies lie at the heart of assessments that evaluate differences amongst manufacturing processes and stability studies of protein therapeutics. Low resolution chromatographic and electrophoretic methods facilitate quantitation, but do not always yield detailed insight into the effect of the manufacturing change or environmental stress. Conversely, mass spectrometry (MS) can provide high resolution information on the molecule, but conventional methods are not very quantitative. This gap can be reconciled by use of a stable isotope-tagged reference standard (SITRS), a version of the analyte protein that is uniformly labeled with 13C6-arginine and 13C6-lysine. The SITRS serves as an internal control that is trypsin-digested and analyzed by liquid chromatography (LC)-MS with the analyte sample. The ratio of the ion intensities of each unlabeled and labeled peptide pair is then compared to that of other sample(s). A comparison of these ratios provides a readily accessible way to spot even minute differences among samples. In a study of a monoclonal antibody (mAb) spiked with varying amounts of the same antibody bearing point mutations, peptides containing the mutations were readily identified and quantified at concentrations as low as 2% relative to unmodified peptides. The method was robust, reproducible and produced a linear response for every peptide that was monitored. The method was also successfully used to distinguish between two batches of a mAb that were produced in two different cell lines while two batches produced from the same cell line were found to be highly comparable. Finally, the use of the SITRS method in the comparison of two stressed mAb samples enabled the identification of sites susceptible to deamidation and oxidation, as well as their quantitation. The experimental results indicate that use of a SITRS in a peptide mapping experiment with MS detection enables sensitive and quantitative comparability studies of proteins at high resolution. PMID:21654206

  7. Comparability analysis of protein therapeutics by bottom-up LC-MS with stable isotope-tagged reference standards.

    PubMed

    Manuilov, Anton V; Radziejewski, Czeslaw H; Lee, David H

    2011-01-01

    Comparability studies lie at the heart of assessments that evaluate differences amongst manufacturing processes and stability studies of protein therapeutics. Low resolution chromatographic and electrophoretic methods facilitate quantitation, but do not always yield detailed insight into the effect of the manufacturing change or environmental stress. Conversely, mass spectrometry (MS) can provide high resolution information on the molecule, but conventional methods are not very quantitative. This gap can be reconciled by use of a stable isotope-tagged reference standard (SITRS), a version of the analyte protein that is uniformly labeled (13)C6-arginine and (13)C6-lysine. The SITRS serves as an internal control that is trypsin-digested and analyzed by liquid chromatography (LC)-MS with the analyte sample. The ratio of the ion intensities of each unlabeled and labeled peptide pair is then compared to that of other sample(s). A comparison of these ratios provides a readily accessible way to spot even minute differences among samples. In a study of a monoclonal antibody (mAb) spiked with varying amounts of the same antibody bearing point mutations, peptides containing the mutations were readily identified and quantified at concentrations as low as 2% relative to unmodified peptides. The method is robust, reproducible and produced a linear response for every peptide that was monitored. The method was also successfully used to distinguish between two batches of a mAb that were produced in two different cell lines while two batches produced from the same cell line were found to be highly comparable. Finally, the use of the SITRS method in the comparison of two stressed mAb samples enabled the identification of sites susceptible to deamidation and oxidation, as well as their quantitation. The experimental results indicate that use of a SITRS in a peptide mapping experiment with MS detection enables sensitive and quantitative comparability studies of proteins at high resolution.

  8. Preliminary data on Pemphigus vulgaris treatment by a proteomics-defined peptide: a case report

    PubMed Central

    Angelini, Giovanni; Bonamonte, Domenico; Lucchese, Alberta; Favia, Gianfranco; Serpico, Rosario; Mittelman, Abraham; Simone, Simone; Sinha, Animesh A; Kanduc, Darja

    2006-01-01

    Background Although described by Hippocrates in 400 B.C., pemphigus disease still needs a safe therapeutical approach, given that the currently used therapies (i.e. corticosteroids and immunosuppressive drugs) often provoke collateral effects. Here we present preliminary data on the possible use of a proteomics derived desmoglein peptide which appears promising in halting disease progression without adverse effects. Methods The low-similarity Dsg349–60REWVKFAKPCRE peptide was topically applied for 1 wk onto a lesion in a patient with a late-stage Pemphigus vulgaris (PV) complicated by diabetes and cataract disease. The peptide was applied as an adjuvant in combination with the standard corticosteroid-based immunosuppressive treatment. Results After 1 wk, the treated PV eroded lesion appeared dimensionally reduced and with an increased rate of re-epithelization when compared to adjacent non-treated lesions. Short-term benefits were: decrease of anti-Dsg antibody titer and reduction of the corticosteroid dosage. Long-term benefits: after two years following the unique 1-wk topical treatment, the decrease of anti-Dsg antibody titer persists. The patient is still at the low cortisone dosage. Adverse effects: no adverse effect could be monitored. Conclusion With the limits inherent to any preliminary study, this case report indicates that topical treatment with Dsg349–60REWVKFAKPCRE peptide may represent a feasible first step in the search for a simple, effective and safe treatment of PV. PMID:17062151

  9. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS

    PubMed Central

    OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES

    2016-01-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028

  10. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    PubMed

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  11. Static vs. dynamic decoding algorithms in a non-invasive body-machine interface

    PubMed Central

    Seáñez-González, Ismael; Pierella, Camilla; Farshchiansadegh, Ali; Thorp, Elias B.; Abdollahi, Farnaz; Pedersen, Jessica; Mussa-Ivaldi, Ferdinando A.

    2017-01-01

    In this study, we consider a non-invasive body-machine interface that captures body motions still available to people with spinal cord injury (SCI) and maps them into a set of signals for controlling a computer user interface while engaging in a sustained level of mobility and exercise. We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-signal vector into a lower dimensional control vector on 6 subjects with high-level SCI and 8 controls. One algorithm is based on a static map from current body signals to the current value of the control vector set through principal component analysis (PCA), the other on dynamic mapping a segment of body signals to the value and the temporal derivatives of the control vector set through a Kalman filter. SCI and control participants performed straighter and smoother cursor movements with the Kalman algorithm during center-out reaching, but their movements were faster and more precise when using PCA. All participants were able to use the BMI’s continuous, two-dimensional control to type on a virtual keyboard and play pong, and performance with both algorithms was comparable. However, seven of eight control participants preferred PCA as their method of virtual wheelchair control. The unsupervised PCA algorithm was easier to train and seemed sufficient to achieve a higher degree of learnability and perceived ease of use. PMID:28092564

  12. A Conserved p38 Mitogen-Activated Protein Kinase Pathway Regulates Drosophila Immunity Gene Expression

    PubMed Central

    Han, Zhiqiang Stanley; Enslen, Hervé; Hu, Xiaodi; Meng, Xiangjun; Wu, I-Huan; Barrett, Tamera; Davis, Roger J.; Ip, Y. Tony

    1998-01-01

    Accumulating evidence suggests that the insect and mammalian innate immune response is mediated by homologous regulatory components. Proinflammatory cytokines and bacterial lipopolysaccharide stimulate mammalian immunity by activating transcription factors such as NF-κB and AP-1. One of the responses evoked by these stimuli is the initiation of a kinase cascade that leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase on Thr and Tyr within the motif Thr-Gly-Tyr, which is located within subdomain VIII. We have investigated the possible involvement of the p38 MAP kinase pathway in the Drosophila immune response. Two genes that are highly homologous to the mammalian p38 MAP kinase were molecularly cloned and characterized. Furthermore, genes that encode two novel Drosophila MAP kinase kinases, D-MKK3 and D-MKK4, were identified. D-MKK3 is an efficient activator of both Drosophila p38 MAP kinases, while D-MKK4 is an activator of D-JNK but not D-p38. These data establish that Drosophila indeed possesses a conserved p38 MAP kinase signaling pathway. We have examined the role of the D-p38 MAP kinases in the regulation of insect immunity. The results revealed that one of the functions of D-p38 is to attenuate antimicrobial peptide gene expression following exposure to lipopolysaccharide. PMID:9584193

  13. Persistent infection of chimpanzees with human immunodeficiency virus: serological responses and properties of reisolated viruses.

    PubMed Central

    Nara, P L; Robey, W G; Arthur, L O; Asher, D M; Wolff, A V; Gibbs, C J; Gajdusek, D C; Fischinger, P J

    1987-01-01

    Persistent infection by human immunodeficiency virus (HIV-1) in the chimpanzee may be valuable for immunopathologic and potential vaccine evaluation. Two HIV strains, the tissue culture-derived human T-cell lymphotropic virus type IIIB (HTLV-IIIB) and in vivo serially passaged lymphadenopathy-associated virus type 1 (LAV-1), were injected intravenously into chimpanzees. Two animals received HTLV-IIIB as either virus-infected H9 cells or cell-free virus. A third animal received chimpanzee-passaged LAV-1. Evaluation of their sera for virus-specific serologic changes, including neutralizations, was done during a 2-year period. During this period all animals had persistently high titers of antibodies to viral core and envelope antigens. All three animals developed a progressively increasing type-specific neutralizing LAV-1 versus HTLV-IIIB antibody titer during the 2-year observation period which broadened in specificity to include HTLV-HIRF, HTLV-IIIMN, and HTLV-IIICC after 6 to 12 months. The antibody titers against both viruses were still increasing by 2 years after experimental virus inoculation. Sera from all animals were capable of neutralizing both homologously and heterologously reisolated virus from chimpanzees. A slightly more rapid type-specific neutralizing response was noted for the animal receiving HTLV-IIIB-infected cells compared with that for cell-free HTLV-IIIB. Sera from all persistently infected chimpanzees were capable of mediating group-specific antibody-mediated complement-dependent cytolysis of HIV-infected cells derived from all isolates tested. Viruses reisolated from all three animals at 20 months after inoculation revealed very similar peptide maps of their respective envelope gp120s, as determined by two-dimensional chymotrypsin oligopeptide analysis. One peptide, however, from the original HTLV-IIIB-inoculated virus was deleted in viruses from all three animals, and in addition, we noted the appearance of a new or modified peptide which was common to LAV-1 as well as to HTLV-IIIB reisolated from infected chimpanzees. It thus appears that a group-specific neutralizing antibody response as well as a group-specific cytotoxic response can develop in chimpanzees after an inoculation of a single HIV variant. This finding suggests that a common, less immunodominant determinant(s) is present on a single HIV strain which could induce group-specific antibodies during viral infection and replication. The identification of this group-specific epitope and the induction of analogous immunity may be relevant to vaccine development against human acquired immunodeficiency syndrome. Images PMID:2442411

  14. Deep circulations under simple classes of stratification

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    1989-01-01

    Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.

  15. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds,more » (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.« less

  16. Euclidean sections of protein conformation space and their implications in dimensionality reduction

    PubMed Central

    Duan, Mojie; Li, Minghai; Han, Li; Huo, Shuanghong

    2014-01-01

    Dimensionality reduction is widely used in searching for the intrinsic reaction coordinates for protein conformational changes. We find the dimensionality–reduction methods using the pairwise root–mean–square deviation as the local distance metric face a challenge. We use Isomap as an example to illustrate the problem. We believe that there is an implied assumption for the dimensionality–reduction approaches that aim to preserve the geometric relations between the objects: both the original space and the reduced space have the same kind of geometry, such as Euclidean geometry vs. Euclidean geometry or spherical geometry vs. spherical geometry. When the protein free energy landscape is mapped onto a 2D plane or 3D space, the reduced space is Euclidean, thus the original space should also be Euclidean. For a protein with N atoms, its conformation space is a subset of the 3N-dimensional Euclidean space R3N. We formally define the protein conformation space as the quotient space of R3N by the equivalence relation of rigid motions. Whether the quotient space is Euclidean or not depends on how it is parameterized. When the pairwise root–mean–square deviation is employed as the local distance metric, implicit representations are used for the protein conformation space, leading to no direct correspondence to a Euclidean set. We have demonstrated that an explicit Euclidean-based representation of protein conformation space and the local distance metric associated to it improve the quality of dimensionality reduction in the tetra-peptide and β–hairpin systems. PMID:24913095

  17. Born-Infeld corrections to Coulombian interactions.

    PubMed

    Ferraro, Rafael; Lipchak, María Evangelina

    2008-04-01

    Two-dimensional Born-Infeld electrostatic fields behaving as the superposition of two pointlike charges in the linearized (Maxwellian) limit are investigated by means of a nonholomorphic mapping of the complex plane. The changes in the Coulombian interaction between two charges in Born-Infeld theory are computed. Remarkably, the force between equal charges goes to zero as they approach each other.

  18. A three dimensional Dirichlet-to-Neumann map for surface waves over topography

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre; Andrade, David

    2016-11-01

    We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.

  19. Reliable two-dimensional phase unwrapping method using region growing and local linear estimation.

    PubMed

    Zhou, Kun; Zaitsev, Maxim; Bao, Shanglian

    2009-10-01

    In MRI, phase maps can provide useful information about parameters such as field inhomogeneity, velocity of blood flow, and the chemical shift between water and fat. As phase is defined in the (-pi,pi] range, however, phase wraps often occur, which complicates image analysis and interpretation. This work presents a two-dimensional phase unwrapping algorithm that uses quality-guided region growing and local linear estimation. The quality map employs the variance of the second-order partial derivatives of the phase as the quality criterion. Phase information from unwrapped neighboring pixels is used to predict the correct phase of the current pixel using a linear regression method. The algorithm was tested on both simulated and real data, and is shown to successfully unwrap phase images that are corrupted by noise and have rapidly changing phase. (c) 2009 Wiley-Liss, Inc.

  20. Relationship Among Tau Antigens Isolated from Various Lines of Simian Virus 40-Transformed Cells

    PubMed Central

    Simmons, Daniel T.; Martin, Malcolm A.; Mora, Peter T.; Chang, Chungming

    1980-01-01

    In addition to the virus-specified tumor antigens, simian virus 40-transformed cells contain at least one other protein which can be immunoprecipitated with serum from animals bearing simian virus 40-induced tumors. This protein, which is designated Tau antigen, has an apparent molecular weight of 56,000 as determined by electrophoresis on acrylamide gels. The relationship among Tau antigens isolated from different lines of simian virus 40-transformed cells was examined by comparing the methionine-labeled tryptic peptides of these proteins by two-dimensional fingerprinting on thin-layer cellulose plates. In this fashion, we initially determined that the Tau antigens isolated from three different lines of transformed mouse cells were very similar. Second, we found that Tau antigen isolated from a line of rat transformants was closely related, but not identical, to the mouse cell Tau antigens. Approximately 70% of their methionine peptides comigrated in two dimensions. Finally, we showed that Tau antigen isolated from a line of transformed human cells was only partially related to the mouse and rat proteins. About 40% of the methionine peptides of the human protein were also contained in the Tau antigens from the other two species. These results strongly indicate that the Tau antigens isolated from these various simian virus 40-transformed cell lines contain common amino acid sequences. Images PMID:6247503

Top