Sample records for two-dimensional point-kernel model

  1. The construction of a two-dimensional reproducing kernel function and its application in a biomedical model.

    PubMed

    Guo, Qi; Shen, Shu-Ting

    2016-04-29

    There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.

  2. Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.

    2017-03-01

    Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.

  3. Data-based diffraction kernels for surface waves from convolution and correlation processes through active seismic interferometry

    NASA Astrophysics Data System (ADS)

    Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc

    2018-05-01

    We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.

  4. A shock-capturing SPH scheme based on adaptive kernel estimation

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; López, Hender; Donoso, Arnaldo; Sira, Eloy; Klapp, Jaime

    2006-02-01

    Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations, the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel summation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities, as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular, for the two-dimensional cylindrical Noh's shock implosion and Sedov point explosion problems the present scheme produces much better results than those obtained with conventional SPH codes.

  5. Estimating average growth trajectories in shape-space using kernel smoothing.

    PubMed

    Hutton, Tim J; Buxton, Bernard F; Hammond, Peter; Potts, Henry W W

    2003-06-01

    In this paper, we show how a dense surface point distribution model of the human face can be computed and demonstrate the usefulness of the high-dimensional shape-space for expressing the shape changes associated with growth and aging. We show how average growth trajectories for the human face can be computed in the absence of longitudinal data by using kernel smoothing across a population. A training set of three-dimensional surface scans of 199 male and 201 female subjects of between 0 and 50 years of age is used to build the model.

  6. A 3D Ginibre Point Field

    NASA Astrophysics Data System (ADS)

    Kargin, Vladislav

    2018-06-01

    We introduce a family of three-dimensional random point fields using the concept of the quaternion determinant. The kernel of each field is an n-dimensional orthogonal projection on a linear space of quaternionic polynomials. We find explicit formulas for the basis of the orthogonal quaternion polynomials and for the kernel of the projection. For number of particles n → ∞, we calculate the scaling limits of the point field in the bulk and at the center of coordinates. We compare our construction with the previously introduced Fermi-sphere point field process.

  7. Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.

    2017-12-01

    The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.

  8. Classification of Microarray Data Using Kernel Fuzzy Inference System

    PubMed Central

    Kumar Rath, Santanu

    2014-01-01

    The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function. PMID:27433543

  9. Novel procedure for characterizing nonlinear systems with memory: 2017 update

    NASA Astrophysics Data System (ADS)

    Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.

    2017-05-01

    The present article discusses novel improvements in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra or 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] . The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order and alleviate the Curse of Dimensionality (COD) in order to realize practical nonlinear solutions of scientific and engineering interest.

  10. Bandlimited computerized improvements in characterization of nonlinear systems with memory

    NASA Astrophysics Data System (ADS)

    Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.

    2016-05-01

    The present article discusses some inroads in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] over many years of developmental research. The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms on the system are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order in order to combat and reasonably alleviate the curse of dimensionality.

  11. Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)

    NASA Technical Reports Server (NTRS)

    Warman, E. A.; Lindsey, B. A.

    1972-01-01

    The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.

  12. Improvements to the kernel function method of steady, subsonic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1974-01-01

    The application of a kernel function lifting surface method to three dimensional, thin wing theory is discussed. A technique for determining the influence functions is presented. The technique is shown to require fewer quadrature points, while still calculating the influence functions accurately enough to guarantee convergence with an increasing number of spanwise quadrature points. The method also treats control points on the wing leading and trailing edges. The report introduces and employs an aspect of the kernel function method which apparently has never been used before and which significantly enhances the efficiency of the kernel function approach.

  13. A dose assessment method for arbitrary geometries with virtual reality in the nuclear facilities decommissioning

    NASA Astrophysics Data System (ADS)

    Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu

    2018-03-01

    During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.

  14. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  15. Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.

    PubMed

    Li, Shuang; Liu, Bing; Zhang, Chen

    2016-01-01

    Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.

  16. A solution for two-dimensional Fredholm integral equations of the second kind with periodic, semiperiodic, or nonperiodic kernels. [integral representation of the stationary Navier-Stokes problem

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    A numerical scheme for solving two dimensional Fredholm integral equations of the second kind is developed. The proof of the convergence of the numerical scheme is shown for three cases: the case of periodic kernels, the case of semiperiodic kernels, and the case of nonperiodic kernels. Applications to the incompressible, stationary Navier-Stokes problem are of primary interest.

  17. Implementation of radiation shielding calculation methods. Volume 2: Seminar/Workshop notes

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    Detailed descriptions are presented of the input data for each of the MSFC computer codes applied to the analysis of a realistic nuclear propelled vehicle. The analytical techniques employed include cross section data, preparation, one and two dimensional discrete ordinates transport, point kernel, and single scatter methods.

  18. A numerical solution for two-dimensional Fredholm integral equations of the second kind with kernels of the logarithmic potential form

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.

  19. Kernel-PCA data integration with enhanced interpretability

    PubMed Central

    2014-01-01

    Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge. PMID:25032747

  20. Distributed delays in a hybrid model of tumor-immune system interplay.

    PubMed

    Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto

    2013-02-01

    A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.

  1. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  2. On the Asymptotic Behavior of the Kernel Function in the Generalized Langevin Equation: A One-Dimensional Lattice Model

    NASA Astrophysics Data System (ADS)

    Chu, Weiqi; Li, Xiantao

    2018-01-01

    We present some estimates for the memory kernel function in the generalized Langevin equation, derived using the Mori-Zwanzig formalism from a one-dimensional lattice model, in which the particles interactions are through nearest and second nearest neighbors. The kernel function can be explicitly expressed in a matrix form. The analysis focuses on the decay properties, both spatially and temporally, revealing a power-law behavior in both cases. The dependence on the level of coarse-graining is also studied.

  3. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    PubMed

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  4. Persistence in a Two-Dimensional Moving-Habitat Model.

    PubMed

    Phillips, Austin; Kot, Mark

    2015-11-01

    Environmental changes are forcing many species to track suitable conditions or face extinction. In this study, we use a two-dimensional integrodifference equation to analyze whether a population can track a habitat that is moving due to climate change. We model habitat as a simple rectangle. Our model quickly leads to an eigenvalue problem that determines whether the population persists or declines. After surveying techniques to solve the eigenvalue problem, we highlight three findings that impact conservation efforts such as reserve design and species risk assessment. First, while other models focus on habitat length (parallel to the direction of habitat movement), we show that ignoring habitat width (perpendicular to habitat movement) can lead to overestimates of persistence. Dispersal barriers and hostile landscapes that constrain habitat width greatly decrease the population's ability to track its habitat. Second, for some long-distance dispersal kernels, increasing habitat length improves persistence without limit; for other kernels, increasing length is of limited help and has diminishing returns. Third, it is not always best to orient the long side of the habitat in the direction of climate change. Evidence suggests that the kurtosis of the dispersal kernel determines whether it is best to have a long, wide, or square habitat. In particular, populations with platykurtic dispersal benefit more from a wide habitat, while those with leptokurtic dispersal benefit more from a long habitat. We apply our model to the Rocky Mountain Apollo butterfly (Parnassius smintheus).

  5. Resonance line polarization and the Hanle effect in optically thick media. I - Formulation for the two-level atom

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.

    1990-08-01

    A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).

  6. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval.

    PubMed

    Cai, Jia; Tang, Yi

    2018-02-01

    Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2016-10-03

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less

  8. A Highly Resolved Large-Eddy Simulation of a Wind Turbine using an Actuator Line Model with Optimal Body Force Projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less

  9. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  10. Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data

    NASA Technical Reports Server (NTRS)

    Soderblom, Laurence A.; Kirk, Randolph L.

    2003-01-01

    We have extended our previous efforts to derive through controlled photoclinometry, accurate, calibrated, high-resolution topographic models of the martian surface. The process involves combining MGS MOLA topographic profiles and MGS MOC Narrow Angle images. The earlier work utilized, along with a particular MOC NA image, the MOLA topographic profile that was acquired simultaneously, in order to derive photometric and scattering properties of the surface and atmosphere so as to force the low spatial frequencies of a one-dimensional MOC photoclinometric model to match the MOLA profile. Both that work and the new results reported here depend heavily on successful efforts to: 1) refine the radiometric calibration of MOC NA; 2) register the MOC to MOLA coordinate systems and refine the pointing; and 3) provide the ability to project into a common coordinate system, simultaneously acquired MOC and MOLA with a single set of SPICE kernels utilizing the USGS ISIS cartographic image processing tools. The approach described in this paper extends the MOC-MOLA integration and cross-calibration procedures from one-dimensional profiles to full two-dimensional photoclinometry and image simulations. Included are methods to account for low-frequency albedo variations within the scene.

  11. Sensitivities Kernels of Seismic Traveltimes and Amplitudes for Quality Factor and Boundary Topography

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Zhao, L.; Ma, K.

    2010-12-01

    Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.

  12. Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures.

    PubMed

    Cao, Peng; Liu, Xiaoli; Yang, Jinzhu; Zhao, Dazhe; Huang, Min; Zhang, Jian; Zaiane, Osmar

    2017-12-01

    Alzheimer's disease (AD) has been not only a substantial financial burden to the health care system but also an emotional burden to patients and their families. Making accurate diagnosis of AD based on brain magnetic resonance imaging (MRI) is becoming more and more critical and emphasized at the earliest stages. However, the high dimensionality and imbalanced data issues are two major challenges in the study of computer aided AD diagnosis. The greatest limitations of existing dimensionality reduction and over-sampling methods are that they assume a linear relationship between the MRI features (predictor) and the disease status (response). To better capture the complicated but more flexible relationship, we propose a multi-kernel based dimensionality reduction and over-sampling approaches. We combined Marginal Fisher Analysis with ℓ 2,1 -norm based multi-kernel learning (MKMFA) to achieve the sparsity of region-of-interest (ROI), which leads to simultaneously selecting a subset of the relevant brain regions and learning a dimensionality transformation. Meanwhile, a multi-kernel over-sampling (MKOS) was developed to generate synthetic instances in the optimal kernel space induced by MKMFA, so as to compensate for the class imbalanced distribution. We comprehensively evaluate the proposed models for the diagnostic classification (binary class and multi-class classification) including all subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results not only demonstrate the proposed method has superior performance over multiple comparable methods, but also identifies relevant imaging biomarkers that are consistent with prior medical knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On the Floating Point Performance of the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1997-01-01

    The i860 microprocessor is a pipelined processor that can deliver two double precision floating point results every clock. It is being used in the Touchstone project to develop a teraflop computer by the year 2000. With such high computational capabilities it was expected that memory bandwidth would limit performance on many kernels. Measured performance of three kernels showed performance is less than what memory bandwidth limitations would predict. This paper develops a model that explains the discrepancy in terms of memory latencies and points to some problems involved in moving data from memory to the arithmetic pipelines.

  14. A Reduced Order Model of the Linearized Incompressible Navier-Strokes Equations for the Sensor/Actuator Placement Problem

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.

    2000-01-01

    A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.

  15. A method of smoothed particle hydrodynamics using spheroidal kernels

    NASA Technical Reports Server (NTRS)

    Fulbright, Michael S.; Benz, Willy; Davies, Melvyn B.

    1995-01-01

    We present a new method of three-dimensional smoothed particle hydrodynamics (SPH) designed to model systems dominated by deformation along a preferential axis. These systems cause severe problems for SPH codes using spherical kernels, which are best suited for modeling systems which retain rough spherical symmetry. Our method allows the smoothing length in the direction of the deformation to evolve independently of the smoothing length in the perpendicular plane, resulting in a kernel with a spheroidal shape. As a result the spatial resolution in the direction of deformation is significantly improved. As a test case we present the one-dimensional homologous collapse of a zero-temperature, uniform-density cloud, which serves to demonstrate the advantages of spheroidal kernels. We also present new results on the problem of the tidal disruption of a star by a massive black hole.

  16. Proteome analysis of the almond kernel (Prunus dulcis).

    PubMed

    Li, Shugang; Geng, Fang; Wang, Ping; Lu, Jiankang; Ma, Meihu

    2016-08-01

    Almond (Prunus dulcis) is a popular tree nut worldwide and offers many benefits to human health. However, the importance of almond kernel proteins in the nutrition and function in human health requires further evaluation. The present study presents a systematic evaluation of the proteins in the almond kernel using proteomic analysis. The nutrient and amino acid content in almond kernels from Xinjiang is similar to that of American varieties; however, Xinjiang varieties have a higher protein content. Two-dimensional electrophoresis analysis demonstrated a wide distribution of molecular weights and isoelectric points of almond kernel proteins. A total of 434 proteins were identified by LC-MS/MS, and most were proteins that were experimentally confirmed for the first time. Gene ontology (GO) analysis of the 434 proteins indicated that proteins involved in primary biological processes including metabolic processes (67.5%), cellular processes (54.1%), and single-organism processes (43.4%), the main molecular function of almond kernel proteins are in catalytic activity (48.0%), binding (45.4%) and structural molecule activity (11.9%), and proteins are primarily distributed in cell (59.9%), organelle (44.9%), and membrane (22.8%). Almond kernel is a source of a wide variety of proteins. This study provides important information contributing to the screening and identification of almond proteins, the understanding of almond protein function, and the development of almond protein products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Application of stochastic weighted algorithms to a multidimensional silica particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang

    2013-09-01

    Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less

  18. A comparison of skyshine computational methods.

    PubMed

    Hertel, Nolan E; Sweezy, Jeremy E; Shultis, J Kenneth; Warkentin, J Karl; Rose, Zachary J

    2005-01-01

    A variety of methods employing radiation transport and point-kernel codes have been used to model two skyshine problems. The first problem is a 1 MeV point source of photons on the surface of the earth inside a 2 m tall and 1 m radius silo having black walls. The skyshine radiation downfield from the point source was estimated with and without a 30-cm-thick concrete lid on the silo. The second benchmark problem is to estimate the skyshine radiation downfield from 12 cylindrical canisters emplaced in a low-level radioactive waste trench. The canisters are filled with ion-exchange resin with a representative radionuclide loading, largely 60Co, 134Cs and 137Cs. The solution methods include use of the MCNP code to solve the problem by directly employing variance reduction techniques, the single-scatter point kernel code GGG-GP, the QADMOD-GP point kernel code, the COHORT Monte Carlo code, the NAC International version of the SKYSHINE-III code, the KSU hybrid method and the associated KSU skyshine codes.

  19. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    PubMed

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Observation of a 3D Magnetic Null Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, P.; Falco, M.; Guglielmino, S. L.

    2017-03-10

    We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1)more » a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″–2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.« less

  1. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.

    PubMed

    Marmarelis, V Z; Berger, T W

    2005-07-01

    This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.

  2. Point kernel calculations of skyshine exposure rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseberry, M.L.; Shultis, J.K.

    1982-02-01

    A simple point kernel model is presented for the calculation of skyshine exposure rates arising from the atmospheric reflection of gamma radiation produced by a vertically collimated or a shielded point source. This model is shown to be in good agreement with benchmark experimental data from a /sup 60/Co source for distances out to 700 m.

  3. A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.

    PubMed

    Nakarmi, Ukash; Wang, Yanhua; Lyu, Jingyuan; Liang, Dong; Ying, Leslie

    2017-11-01

    While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.

  4. A high-order strong stability preserving Runge-Kutta method for three-dimensional full waveform modeling and inversion of anelastic models

    NASA Astrophysics Data System (ADS)

    Wang, N.; Shen, Y.; Yang, D.; Bao, X.; Li, J.; Zhang, W.

    2017-12-01

    Accurate and efficient forward modeling methods are important for high resolution full waveform inversion. Compared with the elastic case, solving anelastic wave equation requires more computational time, because of the need to compute additional material-independent anelastic functions. A numerical scheme with a large Courant-Friedrichs-Lewy (CFL) condition number enables us to use a large time step to simulate wave propagation, which improves computational efficiency. In this work, we apply the fourth-order strong stability preserving Runge-Kutta method with an optimal CFL coeffiecient to solve the anelastic wave equation. We use a fourth order DRP/opt MacCormack scheme for the spatial discretization, and we approximate the rheological behaviors of the Earth by using the generalized Maxwell body model. With a larger CFL condition number, we find that the computational efficient is significantly improved compared with the traditional fourth-order Runge-Kutta method. Then, we apply the scattering-integral method for calculating travel time and amplitude sensitivity kernels with respect to velocity and attenuation structures. For each source, we carry out one forward simulation and save the time-dependent strain tensor. For each station, we carry out three `backward' simulations for the three components and save the corresponding strain tensors. The sensitivity kernels at each point in the medium are the convolution of the two sets of the strain tensors. Finally, we show several synthetic tests to verify the effectiveness of the strong stability preserving Runge-Kutta method in generating accurate synthetics in full waveform modeling, and in generating accurate strain tensors for calculating sensitivity kernels at regional and global scales.

  5. Leptokurtic portfolio theory

    NASA Astrophysics Data System (ADS)

    Kitt, R.; Kalda, J.

    2006-03-01

    The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem becomes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has been tested with MSCI North America, Europe and Pacific total return stock indices.

  6. Modeling utilization distributions in space and time

    USGS Publications Warehouse

    Keating, K.A.; Cherry, S.

    2009-01-01

    W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.

  7. Sparse kernel methods for high-dimensional survival data.

    PubMed

    Evers, Ludger; Messow, Claudia-Martina

    2008-07-15

    Sparse kernel methods like support vector machines (SVM) have been applied with great success to classification and (standard) regression settings. Existing support vector classification and regression techniques however are not suitable for partly censored survival data, which are typically analysed using Cox's proportional hazards model. As the partial likelihood of the proportional hazards model only depends on the covariates through inner products, it can be 'kernelized'. The kernelized proportional hazards model however yields a solution that is dense, i.e. the solution depends on all observations. One of the key features of an SVM is that it yields a sparse solution, depending only on a small fraction of the training data. We propose two methods. One is based on a geometric idea, where-akin to support vector classification-the margin between the failed observation and the observations currently at risk is maximised. The other approach is based on obtaining a sparse model by adding observations one after another akin to the Import Vector Machine (IVM). Data examples studied suggest that both methods can outperform competing approaches. Software is available under the GNU Public License as an R package and can be obtained from the first author's website http://www.maths.bris.ac.uk/~maxle/software.html.

  8. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.

  9. New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.

    PubMed

    Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-06-21

    We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

  10. Phase quality map based on local multi-unwrapped results for two-dimensional phase unwrapping.

    PubMed

    Zhong, Heping; Tang, Jinsong; Zhang, Sen

    2015-02-01

    The efficiency of a phase unwrapping algorithm and the reliability of the corresponding unwrapped result are two key problems in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) or interferometric synthetic aperture sonar (InSAS) data. In this paper, a new phase quality map is designed and implemented in a graphic processing unit (GPU) environment, which greatly accelerates the unwrapping process of the quality-guided algorithm and enhances the correctness of the unwrapped result. In a local wrapped phase window, the center point is selected as the reference point, and then two unwrapped results are computed by integrating in two different simple ways. After the two local unwrapped results are computed, the total difference of the two unwrapped results is regarded as the phase quality value of the center point. In order to accelerate the computing process of the new proposed quality map, we have implemented it in a GPU environment. The wrapped phase data are first uploaded to the memory of a device, and then the kernel function is called in the device to compute the phase quality in parallel by blocks of threads. Unwrapping tests performed on the simulated and real InSAS data confirm the accuracy and efficiency of the proposed method.

  11. Three-dimensional waveform sensitivity kernels

    NASA Astrophysics Data System (ADS)

    Marquering, Henk; Nolet, Guust; Dahlen, F. A.

    1998-03-01

    The sensitivity of intermediate-period (~10-100s) seismic waveforms to the lateral heterogeneity of the Earth is computed using an efficient technique based upon surface-wave mode coupling. This formulation yields a general, fully fledged 3-D relationship between data and model without imposing smoothness constraints on the lateral heterogeneity. The calculations are based upon the Born approximation, which yields a linear relation between data and model. The linear relation ensures fast forward calculations and makes the formulation suitable for inversion schemes; however, higher-order effects such as wave-front healing are neglected. By including up to 20 surface-wave modes, we obtain Fréchet, or sensitivity, kernels for waveforms in the time frame that starts at the S arrival and which includes direct and surface-reflected body waves. These 3-D sensitivity kernels provide new insights into seismic-wave propagation, and suggest that there may be stringent limitations on the validity of ray-theoretical interpretations. Even recently developed 2-D formulations, which ignore structure out of the source-receiver plane, differ substantially from our 3-D treatment. We infer that smoothness constraints on heterogeneity, required to justify the use of ray techniques, are unlikely to hold in realistic earth models. This puts the use of ray-theoretical techniques into question for the interpretation of intermediate-period seismic data. The computed 3-D sensitivity kernels display a number of phenomena that are counter-intuitive from a ray-geometrical point of view: (1) body waves exhibit significant sensitivity to structure up to 500km away from the source-receiver minor arc; (2) significant near-surface sensitivity above the two turning points of the SS wave is observed; (3) the later part of the SS wave packet is most sensitive to structure away from the source-receiver path; (4) the sensitivity of the higher-frequency part of the fundamental surface-wave mode is wider than for its faster, lower-frequency part; (5) delayed body waves may considerably influence fundamental Rayleigh and Love waveforms. The strong sensitivity of waveforms to crustal structure due to fundamental-mode-to-body-wave scattering precludes the use of phase-velocity filters to model body-wave arrivals. Results from the 3-D formulation suggest that the use of 2-D and 1-D techniques for the interpretation of intermediate-period waveforms should seriously be reconsidered.

  12. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  13. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.

  14. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  15. Travel-time sensitivity kernels in long-range propagation.

    PubMed

    Skarsoulis, E K; Cornuelle, B D; Dzieciuch, M A

    2009-11-01

    Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.

  16. Graph embedding and extensions: a general framework for dimensionality reduction.

    PubMed

    Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen

    2007-01-01

    Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.

  17. Selection and evaluation of optimal two-dimensional CAIPIRINHA kernels applied to time-resolved three-dimensional CE-MRA.

    PubMed

    Weavers, Paul T; Borisch, Eric A; Riederer, Stephen J

    2015-06-01

    To develop and validate a method for choosing the optimal two-dimensional CAIPIRINHA kernel for subtraction contrast-enhanced MR angiography (CE-MRA) and estimate the degree of image quality improvement versus that of some reference acceleration parameter set at R ≥ 8. A metric based on patient-specific coil calibration information was defined for evaluating optimality of CAIPIRINHA kernels as applied to subtraction CE-MRA. Evaluation in retrospective studies using archived coil calibration data from abdomen, calf, foot, and hand CE-MRA exams was accomplished with an evaluation metric comparing the geometry factor (g-factor) histograms. Prospective calf, foot, and hand CE-MRA studies were evaluated with vessel signal-to-noise ratio (SNR). Retrospective studies show g-factor improvement for the selected CAIPIRINHA kernels was significant in the feet, moderate in the abdomen, and modest in the calves and hands. Prospective CE-MRA studies using optimal CAIPIRINHA show reduced noise amplification with identical acquisition time in studies of the feet, with minor improvements in the hands and calves. A method for selection of the optimal CAIPIRINHA kernel for high (R ≥ 8) acceleration CE-MRA exams given a specific patient and receiver array was demonstrated. CAIPIRINHA optimization appears valuable in accelerated CE-MRA of the feet and to a lesser extent in the abdomen. © 2014 Wiley Periodicals, Inc.

  18. A survey of kernel-type estimators for copula and their applications

    NASA Astrophysics Data System (ADS)

    Sumarjaya, I. W.

    2017-10-01

    Copulas have been widely used to model nonlinear dependence structure. Main applications of copulas include areas such as finance, insurance, hydrology, rainfall to name but a few. The flexibility of copula allows researchers to model dependence structure beyond Gaussian distribution. Basically, a copula is a function that couples multivariate distribution functions to their one-dimensional marginal distribution functions. In general, there are three methods to estimate copula. These are parametric, nonparametric, and semiparametric method. In this article we survey kernel-type estimators for copula such as mirror reflection kernel, beta kernel, transformation method and local likelihood transformation method. Then, we apply these kernel methods to three stock indexes in Asia. The results of our analysis suggest that, albeit variation in information criterion values, the local likelihood transformation method performs better than the other kernel methods.

  19. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

  20. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Nigg, D. W.; Wheeler, F. J.

    1981-01-01

    A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and the capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.

  1. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and themore » capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.« less

  2. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  3. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.

  5. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    PubMed

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Voronoi cell patterns: Theoretical model and applications

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  7. Brownian motion of a nano-colloidal particle: the role of the solvent.

    PubMed

    Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón

    2015-07-15

    Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the explicit inclusion of the solvent in the description of Brownian motion allows us to better understand the behaviour of the memory kernel at those thermodynamic states near the critical region without any further approximation. This information is useful to elaborate more realistic descriptions of Brownian motion that take into account the particular details of the host medium.

  8. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  9. Reduced order surrogate modelling (ROSM) of high dimensional deterministic simulations

    NASA Astrophysics Data System (ADS)

    Mitry, Mina

    Often, computationally expensive engineering simulations can prohibit the engineering design process. As a result, designers may turn to a less computationally demanding approximate, or surrogate, model to facilitate their design process. However, owing to the the curse of dimensionality, classical surrogate models become too computationally expensive for high dimensional data. To address this limitation of classical methods, we develop linear and non-linear Reduced Order Surrogate Modelling (ROSM) techniques. Two algorithms are presented, which are based on a combination of linear/kernel principal component analysis and radial basis functions. These algorithms are applied to subsonic and transonic aerodynamic data, as well as a model for a chemical spill in a channel. The results of this thesis show that ROSM can provide a significant computational benefit over classical surrogate modelling, sometimes at the expense of a minor loss in accuracy.

  10. Cepstrum based feature extraction method for fungus detection

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Onur; Pearson, Tom C.; Çetin, A. Enis

    2011-06-01

    In this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%.

  11. Richardson-Lucy deblurring for the star scene under a thinning motion path

    NASA Astrophysics Data System (ADS)

    Su, Laili; Shao, Xiaopeng; Wang, Lin; Wang, Haixin; Huang, Yining

    2015-05-01

    This paper puts emphasis on how to model and correct image blur that arises from a camera's ego motion while observing a distant star scene. Concerning the significance of accurate estimation of point spread function (PSF), a new method is employed to obtain blur kernel by thinning star motion path. In particular, how the blurred star image can be corrected to reconstruct the clear scene with a thinning motion blur model which describes the camera's path is presented. This thinning motion path to build blur kernel model is more effective at modeling the spatially motion blur introduced by camera's ego motion than conventional blind estimation of kernel-based PSF parameterization. To gain the reconstructed image, firstly, an improved thinning algorithm is used to obtain the star point trajectory, so as to extract the blur kernel of the motion-blurred star image. Then how motion blur model can be incorporated into the Richardson-Lucy (RL) deblurring algorithm, which reveals its overall effectiveness, is detailed. In addition, compared with the conventional estimated blur kernel, experimental results show that the proposed method of using thinning algorithm to get the motion blur kernel is of less complexity, higher efficiency and better accuracy, which contributes to better restoration of the motion-blurred star images.

  12. Single kernel ionomic profiles are highly heritable indicators of genetic and environmental influences on elemental accumulation in maize grain (Zea mays)

    USDA-ARS?s Scientific Manuscript database

    The ionome, or elemental profile, of a maize kernel represents at least two distinct ideas. First, the collection of elements within the kernel are food, feed and feedstocks for people, animals and industrial processes. Second, the ionome of the kernel represents a developmental end point that can s...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO 2 and UC x) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required tomore » maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.« less

  14. Chimera states in two-dimensional networks of locally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  15. Chimera states in two-dimensional networks of locally coupled oscillators.

    PubMed

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  16. Mixed kernel function support vector regression for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  17. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  18. Triso coating development progress for uranium nitride kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-08-01

    In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less

  19. Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao

    2017-10-18

    Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less

  20. redNumerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods.

    PubMed

    Köppl, Tobias; Santin, Gabriele; Haasdonk, Bernard; Helmig, Rainer

    2018-05-06

    In this work, we consider two kinds of model reduction techniques to simulate blood flow through the largest systemic arteries, where a stenosis is located in a peripheral artery i.e. in an artery that is located far away from the heart. For our simulations we place the stenosis in one of the tibial arteries belonging to the right lower leg (right post tibial artery). The model reduction techniques that are used are on the one hand dimensionally reduced models (1-D and 0-D models, the so-called mixed-dimension model) and on the other hand surrogate models produced by kernel methods. Both methods are combined in such a way that the mixed-dimension models yield training data for the surrogate model, where the surrogate model is parametrised by the degree of narrowing of the peripheral stenosis. By means of a well-trained surrogate model, we show that simulation data can be reproduced with a satisfactory accuracy and that parameter optimisation or state estimation problems can be solved in a very efficient way. Furthermore it is demonstrated that a surrogate model enables us to present after a very short simulation time the impact of a varying degree of stenosis on blood flow, obtaining a speedup of several orders over the full model. This article is protected by copyright. All rights reserved.

  1. Application of the matrix exponential kernel

    NASA Technical Reports Server (NTRS)

    Rohach, A. F.

    1972-01-01

    A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.

  2. LoCoH: Non-parameteric kernel methods for constructing home ranges and utilization distributions

    USGS Publications Warehouse

    Getz, Wayne M.; Fortmann-Roe, Scott; Cross, Paul C.; Lyons, Andrew J.; Ryan, Sadie J.; Wilmers, Christopher C.

    2007-01-01

    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: ‘‘fixed sphere-of-influence,’’ or r -LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an ‘‘adaptive sphere-of-influence,’’ or a -LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a ), and compare them to the original ‘‘fixed-number-of-points,’’ or k -LoCoH (all kernels constructed from k -1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a -LoCoH is generally superior to k - and r -LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu).

  3. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  4. The gravitational potential of axially symmetric bodies from a regularized green kernel

    NASA Astrophysics Data System (ADS)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  5. Semisupervised kernel marginal Fisher analysis for face recognition.

    PubMed

    Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun

    2013-01-01

    Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.

  6. The spatial sensitivity of Sp converted waves-kernels and their applications

    NASA Astrophysics Data System (ADS)

    Mancinelli, N. J.; Fischer, K. M.

    2017-12-01

    We have developed a framework for improved imaging of strong lateral variations in crust and upper mantle seismic discontinuity structure using teleseismic S-to-P (Sp) scattered waves. In our framework, we rapidly compute scattered wave sensitivities to velocity perturbations in a one-dimensional background model using ray-theoretical methods to account for timing, scattering, and geometrical spreading effects. The kernels accurately describe the amplitude and phase information of a scattered waveform, which we confirm by benchmarking against kernels derived from numerical solutions of the wave equation. The kernels demonstrate that the amplitude of an Sp converted wave at a given time is sensitive to structure along a quasi-hyperbolic curve, such that structure far from the direct ray path can influence the measurements. We use synthetic datasets to explore two potential applications of the scattered wave sensitivity kernels. First, we back-project scattered energy back to its origin using the kernel adjoint operator. This approach successfully images mantle interfaces at depths of 120-180 km with up to 20 km of vertical relief over lateral distances of 100 km (i.e., undulations with a maximal 20% grade) when station spacing is 10 km. Adjacent measurements sum coherently at nodes where gradients in seismic properties occur, and destructively interfere at nodes lacking gradients. In cases where the station spacing is greater than 10 km, the destructive interference can be incomplete, and smearing along the isochrons can occur. We demonstrate, however, that model smoothing can dampen these artifacts. This method is relatively fast, and accurately retrieves the positions of the interfaces, but it generally does not retrieve the strength of the velocity perturbations. Therefore, in our second approach, we attempt to invert directly for velocity perturbations from our reference model using an iterative conjugate-directions scheme.

  7. Graviton 1-loop partition function for 3-dimensional massive gravity

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.; Grumiller, Daniel; Vassilevich, Dmitri

    2010-11-01

    Thegraviton1-loop partition function in Euclidean topologically massivegravity (TMG) is calculated using heat kernel techniques. The partition function does not factorize holomorphically, and at the chiral point it has the structure expected from a logarithmic conformal field theory. This gives strong evidence for the proposal that the dual conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize our results to new massive gravity.

  8. HBTprogs Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D; Danielewicz, P

    2002-03-15

    This is the manual for a collection of programs that can be used to invert angled-averaged (i.e. one dimensional) two-particle correlation functions. This package consists of several programs that generate kernel matrices (basically the relative wavefunction of the pair, squared), programs that generate test correlation functions from test sources of various types and the program that actually inverts the data using the kernel matrix.

  9. Generalized time-dependent Schrödinger equation in two dimensions under constraints

    NASA Astrophysics Data System (ADS)

    Sandev, Trifce; Petreska, Irina; Lenzi, Ervin K.

    2018-01-01

    We investigate a generalized two-dimensional time-dependent Schrödinger equation on a comb with a memory kernel. A Dirac delta term is introduced in the Schrödinger equation so that the quantum motion along the x-direction is constrained at y = 0. The wave function is analyzed by using Green's function approach for several forms of the memory kernel, which are of particular interest. Closed form solutions for the cases of Dirac delta and power-law memory kernels in terms of Fox H-function, as well as for a distributed order memory kernel, are obtained. Further, a nonlocal term is also introduced and investigated analytically. It is shown that the solution for such a case can be represented in terms of infinite series in Fox H-functions. Green's functions for each of the considered cases are analyzed and plotted for the most representative ones. Anomalous diffusion signatures are evident from the presence of the power-law tails. The normalized Green's functions obtained in this work are of broader interest, as they are an important ingredient for further calculations and analyses of some interesting effects in the transport properties in low-dimensional heterogeneous media.

  10. 3D local feature BKD to extract road information from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Dong, Zhen; Liang, Fuxun; Li, Bijun; Peng, Xiangyang

    2017-08-01

    Extracting road information from point clouds obtained through mobile laser scanning (MLS) is essential for autonomous vehicle navigation, and has hence garnered a growing amount of research interest in recent years. However, the performance of such systems is seriously affected due to varying point density and noise. This paper proposes a novel three-dimensional (3D) local feature called the binary kernel descriptor (BKD) to extract road information from MLS point clouds. The BKD consists of Gaussian kernel density estimation and binarization components to encode the shape and intensity information of the 3D point clouds that are fed to a random forest classifier to extract curbs and markings on the road. These are then used to derive road information, such as the number of lanes, the lane width, and intersections. In experiments, the precision and recall of the proposed feature for the detection of curbs and road markings on an urban dataset and a highway dataset were as high as 90%, thus showing that the BKD is accurate and robust against varying point density and noise.

  11. The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations

    NASA Astrophysics Data System (ADS)

    Chen, L.; Cheng, Y. M.

    2018-07-01

    In this paper, the complex variable reproducing kernel particle method (CVRKPM) for solving the bending problems of isotropic thin plates on elastic foundations is presented. In CVRKPM, one-dimensional basis function is used to obtain the shape function of a two-dimensional problem. CVRKPM is used to form the approximation function of the deflection of the thin plates resting on elastic foundation, the Galerkin weak form of thin plates on elastic foundation is employed to obtain the discretized system equations, the penalty method is used to apply the essential boundary conditions, and Winkler and Pasternak foundation models are used to consider the interface pressure between the plate and the foundation. Then the corresponding formulae of CVRKPM for thin plates on elastic foundations are presented in detail. Several numerical examples are given to discuss the efficiency and accuracy of CVRKPM in this paper, and the corresponding advantages of the present method are shown.

  12. Modelling of Time-Variant Flows Using Vortex Dynamics.

    DTIC Science & Technology

    1987-02-01

    eopennage.... ) avec nappes enroul~es et d~ chir ~cs. REFERENCES Ji .T. BEALE, A. MAJDA "Nigh order accurate vortex methods with explicit velocity kernel...discrete vortices. Two papers, Longuet- Higgins (37) and Smith and Stansby (38) deal with the problem. In (37) conformal transformation is used for the...Longuet- Higgins (37). Most experiments on separated flows undoubtedly contain three-dimensional effects and again vortex decay is occasionally put into the

  13. Numerical simulation of two-dimensional combustion process in a spark ignition engine with a prechamber using k-. epsilon. turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, H.; Asanuma, T.

    1989-01-01

    Two-dimensional combustion processes in a spark ignition engine with and without an unscavenged horizontal prechamber are calculated numerically using a {kappa}-{epsilon} turbulence model, a flame kernel ignition model and an irreversible reaction model to obtain a better understanding of the spatial and temporal distributions of flow and combustion. The simulation results are compared with the measured results under the same operating conditions of experiments, that is, the minimum spark advance for best torque (MBT), volumetric efficiency of 80 +- 2%, air-fuel ratio of 15 and engine speed of 1000 rpm, with various torch nozzle areas and an open chamber. Consequently,more » the flow and combustion characteristics calculated for the S.I. engine with and without prechamber are discussed to examine the effect of torch jet on the velocity vectors, contour maps of turbulence and gas temperature.« less

  14. Accurate interatomic force fields via machine learning with covariant kernels

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro

    2017-06-01

    We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.

  15. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  16. Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction

    NASA Astrophysics Data System (ADS)

    Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc

    2018-02-01

    Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.

  17. Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2017-10-01

    FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.

  18. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    PubMed

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A GPU-accelerated implicit meshless method for compressible flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  20. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.

    PubMed

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-12-02

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.

  1. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Lévy processes on a generalized fractal comb

    NASA Astrophysics Data System (ADS)

    Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç

    2016-09-01

    Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.

  3. Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites

    PubMed Central

    Meinicke, Peter; Tech, Maike; Morgenstern, Burkhard; Merkl, Rainer

    2004-01-01

    Background Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the learnt representations in terms of positional and compositional variability of the underlying biological signals. Results We propose a kernel-based approach to datamining on biological sequences. With our method it is possible to model and analyze positional variability of oligomers of any length in a natural way. On one hand this is achieved by mapping the sequences to an intuitive but high-dimensional feature space, well-suited for interpretation of the learnt models. On the other hand, by means of the kernel trick we can provide a general learning algorithm for that high-dimensional representation because all required statistics can be computed without performing an explicit feature space mapping of the sequences. By introducing a kernel parameter that controls the degree of position-dependency, our feature space representation can be tailored to the characteristics of the biological problem at hand. A regularized learning scheme enables application even to biological problems for which only small sets of example sequences are available. Our approach includes a visualization method for transparent representation of characteristic sequence features. Thereby importance of features can be measured in terms of discriminative strength with respect to classification of the underlying sequences. To demonstrate and validate our concept on a biochemically well-defined case, we analyze E. coli translation initiation sites in order to show that we can find biologically relevant signals. For that case, our results clearly show that the Shine-Dalgarno sequence is the most important signal upstream a start codon. The variability in position and composition we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems. PMID:15511290

  4. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  5. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  6. Brachypodium distachyon-Cochliobolus sativus pathosystem is a new model for studying plant-fungal interactions in cereal crops

    USDA-ARS?s Scientific Manuscript database

    Cochliobolus sativus (anamorph: Bipolaris sorokiniana) causes three major diseases in barley and wheat, including spot blotch, common root rot and kernel blight or black point. These diseases significantly reduce the yield and quality of the two most important cereal crops in the US and other region...

  7. Computing the Sensitivity Kernels for 2.5-D Seismic Waveform Inversion in Heterogeneous, Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-10-01

    2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called `the perturbation method' and `the matrix method', to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green's function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green's function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green's function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.

  8. Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Bordes, Julien; Incerti, Sébastien; Lampe, Nathanael; Bardiès, Manuel; Bordage, Marie-Claude

    2017-05-01

    When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (;option 2; and its improved version, ;option 4;). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as ;Geant4-DNA-CPA100;. In this study, ;Geant4-DNA-CPA100; was used to calculate low-energy electron dose-point kernels (DPKs) between 1 keV and 200 keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (;option 2; and ;option 4;), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with ;Geant4-DNA-CPA100; - the first set using Geant4‧s default settings, and the second using CPA100‧s original code default settings. A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1 keV and 10 keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA's existing models were always broader than those generated with ;Geant4-DNA-CPA100;. The discrepancies observed between the DPKs generated using Geant4-DNA's existing models and ;Geant4-DNA-CPA100; were caused solely by their different cross sections. The different scoring and interpolation methods used in CPA100 and Geant4 to calculate DPKs showed differences close to 3.0% near the source.

  9. Many Molecular Properties from One Kernel in Chemical Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less

  10. Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration

    PubMed Central

    Liu, Bo; Chen, Sanfeng; Li, Shuai; Liang, Yongsheng

    2012-01-01

    In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces. PMID:22736969

  11. Two-stage autoignition and edge flames in a high pressure turbulent jet

    DOE PAGES

    Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.

    2017-07-04

    A three-dimensional direct numerical simulation is conducted for a temporally evolving planar jet of n-heptane at a pressure of 40 atmospheres and in a coflow of air at 1100 K. At these conditions, n-heptane exhibits a two-stage ignition due to low- and high-temperature chemistry, which is reproduced by the global chemical model used in this study. The results show that ignition occurs in several overlapping stages and multiple modes of combustion are present. Low-temperature chemistry precedes the formation of multiple spatially localised high-temperature chemistry autoignition events, referred to as ‘kernels’. These kernels form within the shear layer and core ofmore » the jet at compositions with short homogeneous ignition delay times and in locations experiencing low scalar dissipation rates. An analysis of the kernel histories shows that the ignition delay time is correlated with the mixing rate history and that the ignition kernels tend to form in vortically dominated regions of the domain, as corroborated by an analysis of the topology of the velocity gradient tensor. Once ignited, the kernels grow rapidly and establish edge flames where they envelop the stoichiometric isosurface. A combination of kernel formation (autoignition) and the growth of existing burning surface (via edge-flame propagation) contributes to the overall ignition process. In conclusion, an analysis of propagation speeds evaluated on the burning surface suggests that although the edge-flame speed is promoted by the autoignitive conditions due to an increase in the local laminar flame speed, edge-flame propagation of existing burning surfaces (triggered initially by isolated autoignition kernels) is the dominant ignition mode in the present configuration.« less

  12. Rapid simulation of spatial epidemics: a spectral method.

    PubMed

    Brand, Samuel P C; Tildesley, Michael J; Keeling, Matthew J

    2015-04-07

    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended 'image' of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. An evaluation of potential sampling locations in a reservoir with emphasis on conserved spatial correlation structure.

    PubMed

    Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül

    2015-01-01

    In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.

  14. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  15. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  16. Phase diagram and quantum criticality of disordered Majorana-Weyl fermions

    NASA Astrophysics Data System (ADS)

    Wilson, Justin; Pixley, Jed; Goswami, Pallab

    A three-dimensional px + ipy superconductor hosts gapless Bogoliubov-de Gennes (BdG) quasiparticles which provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI), and (ii) a thermal Anderson insulator (AI). We also discuss the experimental relevance of our results for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  17. An Ensemble Approach to Building Mercer Kernels with Prior Information

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2005-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.

  18. Putting Priors in Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.

  19. Identification of Kernel Proteins Associated with the Resistance to Fusarium Head Blight in Winter Wheat (Triticum aestivum L.)

    PubMed Central

    Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz

    2014-01-01

    Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB. PMID:25340555

  20. Identification of kernel proteins associated with the resistance to fusarium head blight in winter wheat (Triticum aestivum L.).

    PubMed

    Perlikowski, Dawid; Wiśniewska, Halina; Góral, Tomasz; Kwiatek, Michał; Majka, Maciej; Kosmala, Arkadiusz

    2014-01-01

    Numerous potential components involved in the resistance to Fusarium head blight (FHB) in cereals have been indicated, however, our knowledge regarding this process is still limited and further work is required. Two winter wheat (Triticum aestivum L.) lines differing in their levels of resistance to FHB were analyzed to identify the most crucial proteins associated with resistance in this species. The presented work involved analysis of protein abundance in the kernel bulks of more resistant and more susceptible wheat lines using two-dimensional gel electrophoresis and mass spectrometry identification of proteins, which were differentially accumulated between the analyzed lines, after inoculation with F. culmorum under field conditions. All the obtained two-dimensional patterns were demonstrated to be well-resolved protein maps of kernel proteomes. Although, 11 proteins were shown to have significantly different abundance between these two groups of plants, only two are likely to be crucial and have a potential role in resistance to FHB. Monomeric alpha-amylase and dimeric alpha-amylase inhibitors, both highly accumulated in the more resistant line, after inoculation and in the control conditions. Fusarium pathogens can use hydrolytic enzymes, including amylases to colonize kernels and acquire nitrogen and carbon from the endosperm and we suggest that the inhibition of pathogen amylase activity could be one of the most crucial mechanisms to prevent infection progress in the analyzed wheat line with a higher resistance. Alpha-amylase activity assays confirmed this suggestion as it revealed the highest level of enzyme activity, after F. culmorum infection, in the line more susceptible to FHB.

  1. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    PubMed

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    NASA Astrophysics Data System (ADS)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.

  3. GKS utilities for FORTRAN-77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.C.

    1992-01-01

    This document describes a number of subroutines that can be useful in GKS graphic applications programmed in FORTRAN-77. The algorithms described here include subroutines to do the following: (1) Draw text characters in a more flexible manner than is possible with basic GKS. (2) Project two-dimensional and three-dimensional space onto two-dimensional space. (3) Draw smooth curves. (4) Draw two-dimensional projections of complex three-dimensional objects. FORTRAN-77 is described in American National Standard, Programming Language, FORTRAN. GKS is described in American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) Functional Description and the FORTRAN-77 interface is described inmore » American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) FORTRAN Binding. All of the subroutine names and additional enumeration types that will be described in this document begin with the letters ``GZ.`` Since GKS itself does not have any subroutine names or enumeration types that begin with these letters, no confusion between the usual GKS subroutines and the ones described here should occur. Many concepts will have to be defined in the following chapters. When a concept is first encountered, it will be given in italics. The information around the italicized word or phrase may be taken as its definition.« less

  4. GKS utilities for FORTRAN-77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.C.

    1992-01-01

    This document describes a number of subroutines that can be useful in GKS graphic applications programmed in FORTRAN-77. The algorithms described here include subroutines to do the following: (1) Draw text characters in a more flexible manner than is possible with basic GKS. (2) Project two-dimensional and three-dimensional space onto two-dimensional space. (3) Draw smooth curves. (4) Draw two-dimensional projections of complex three-dimensional objects. FORTRAN-77 is described in American National Standard, Programming Language, FORTRAN. GKS is described in American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) Functional Description and the FORTRAN-77 interface is described inmore » American National Standard for Information Systems: Computer Graphics -- Graphical Kernel System (GKS) FORTRAN Binding. All of the subroutine names and additional enumeration types that will be described in this document begin with the letters GZ.'' Since GKS itself does not have any subroutine names or enumeration types that begin with these letters, no confusion between the usual GKS subroutines and the ones described here should occur. Many concepts will have to be defined in the following chapters. When a concept is first encountered, it will be given in italics. The information around the italicized word or phrase may be taken as its definition.« less

  5. Oil point and mechanical behaviour of oil palm kernels in linear compression

    NASA Astrophysics Data System (ADS)

    Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi

    2017-07-01

    The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.

  6. Noise kernels of stochastic gravity in conformally-flat spacetimes

    NASA Astrophysics Data System (ADS)

    Cho, H. T.; Hu, B. L.

    2015-03-01

    The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.

  7. DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Ke, Xiaoping; Wang, Yong

    2018-04-01

    This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.

  8. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    PubMed

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  9. Confidence intervals for the first crossing point of two hazard functions.

    PubMed

    Cheng, Ming-Yen; Qiu, Peihua; Tan, Xianming; Tu, Dongsheng

    2009-12-01

    The phenomenon of crossing hazard rates is common in clinical trials with time to event endpoints. Many methods have been proposed for testing equality of hazard functions against a crossing hazards alternative. However, there has been relatively few approaches available in the literature for point or interval estimation of the crossing time point. The problem of constructing confidence intervals for the first crossing time point of two hazard functions is considered in this paper. After reviewing a recent procedure based on Cox proportional hazard modeling with Box-Cox transformation of the time to event, a nonparametric procedure using the kernel smoothing estimate of the hazard ratio is proposed. The proposed procedure and the one based on Cox proportional hazard modeling with Box-Cox transformation of the time to event are both evaluated by Monte-Carlo simulations and applied to two clinical trial datasets.

  10. Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection

    DTIC Science & Technology

    2008-05-01

    with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale

  11. Knowledge Driven Image Mining with Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels; which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper, we present the theory of Mercer Kernels, describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.

  12. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  13. Application of two-dimensional binary fingerprinting methods for the design of selective Tankyrase I inhibitors.

    PubMed

    Muddukrishna, B S; Pai, Vasudev; Lobo, Richard; Pai, Aravinda

    2017-11-22

    In the present study, five important binary fingerprinting techniques were used to model novel flavones for the selective inhibition of Tankyrase I. From the fingerprints used: the fingerprint atom pairs resulted in a statistically significant 2D QSAR model using a kernel-based partial least square regression method. This model indicates that the presence of electron-donating groups positively contributes to activity, whereas the presence of electron withdrawing groups negatively contributes to activity. This model could be used to develop more potent as well as selective analogues for the inhibition of Tankyrase I. Schematic representation of 2D QSAR work flow.

  14. Equation for the Nakanishi Weight Function Using the Inverse Stieltjes Transform

    NASA Astrophysics Data System (ADS)

    Karmanov, V. A.; Carbonell, J.; Frederico, T.

    2018-05-01

    The bound state Bethe-Salpeter amplitude was expressed by Nakanishi in terms of a smooth weight function g. By using the generalized Stieltjes transform, we derive an integral equation for the Nakanishi function g for a bound state case. It has the standard form g= \\hat{V} g, where \\hat{V} is a two-dimensional integral operator. The prescription for obtaining the kernel V starting with the kernel K of the Bethe-Salpeter equation is given.

  15. Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.

    PubMed

    Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui

    2018-03-01

    Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.

  16. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  17. Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah

    2017-02-01

    Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.

  18. Two-dimensional model of the interaction of a plane acoustic wave with nozzle edge and wing trailing edge.

    PubMed

    Faranosov, Georgy A; Bychkov, Oleg P

    2017-01-01

    The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.

  19. The use of kernel local Fisher discriminant analysis for the channelization of the Hotelling model observer

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.

    2015-03-01

    It is resource-intensive to conduct human studies for task-based assessment of medical image quality and system optimization. Thus, numerical model observers have been developed as a surrogate for human observers. The Hotelling observer (HO) is the optimal linear observer for signal-detection tasks, but the high dimensionality of imaging data results in a heavy computational burden. Channelization is often used to approximate the HO through a dimensionality reduction step, but how to produce channelized images without losing significant image information remains a key challenge. Kernel local Fisher discriminant analysis (KLFDA) uses kernel techniques to perform supervised dimensionality reduction, which finds an embedding transformation that maximizes betweenclass separability and preserves within-class local structure in the low-dimensional manifold. It is powerful for classification tasks, especially when the distribution of a class is multimodal. Such multimodality could be observed in many practical clinical tasks. For example, primary and metastatic lesions may both appear in medical imaging studies, but the distributions of their typical characteristics (e.g., size) may be very different. In this study, we propose to use KLFDA as a novel channelization method. The dimension of the embedded manifold (i.e., the result of KLFDA) is a counterpart to the number of channels in the state-of-art linear channelization. We present a simulation study to demonstrate the potential usefulness of KLFDA for building the channelized HOs (CHOs) and generating reliable decision statistics for clinical tasks. We show that the performance of the CHO with KLFDA channels is comparable to that of the benchmark CHOs.

  20. New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems.

    PubMed

    Thomas, Minta; De Brabanter, Kris; De Moor, Bart

    2014-05-10

    DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.

  1. A system for extracting 3-dimensional measurements from a stereo pair of TV cameras

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Cunningham, R.

    1976-01-01

    Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system which models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented. This system is operating and provides three-dimensional measurements resolution of + or - mm at distances of about 2 m.

  2. Generation and optimization of superpixels as image processing kernels for Jones matrix optical coherence tomography

    PubMed Central

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-01-01

    Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels’ spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels. PMID:29082073

  3. SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL

    PubMed Central

    Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan

    2013-01-01

    Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108

  4. Full Three-Dimensional Tomography Experiments in the Western Pacific Region

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Chen, L.; Jordan, T. H.

    2001-12-01

    Two decades of seismic tomography studies have yielded earth models with three-dimensional (3-D) velocity heterogeneities in the mantle on both global and regional scales. With the continuing improvements in inversion techniques, station coverage and computational facilities, seismic tomography has reached a stage at which higher resolution to the structure can only be achieved reliably by employing accurate descriptions between observables and structural parameters, especially in the upper mantle. With this in mind, we have conducted a tomography experiment for the mantle structure beneath the Western Pacific with a full 3-D approach: imaging the 3-D structure using true 3-D Fréchet kernels. In our experiment, we use nearly 20,000 delay times measured at eight discrete frequencies between 10mHz and 45mHz from three-component regional {S} waves, including its multiple reflections from the surface and the CMB. The 3-D Fréchet kernels for these delay times are computed by a normal-mode approach (Zhao, Jordan & Chapman 2000) in which coupling between each pair of modes is accounted for with the exception of cross coupling between spheroidal and toroidal modes. The algorithm is implemented with MPI on the 192-node (and expanding) dual-processor Linux-PC cluster at the University of Southern California. The 3-D radially anisotropic shear-speed model is obtained through a Gaussian-Bayesian inversion. A full description of features in our model will be given in a separate presentation (Chen, Zhao & Jordan, this meeting). Here we discuss in detail the issues related to the calculation of a large number of coupled-mode 3-D kernels for the frequency-dependent delay times and their inversion. We also examine the efficacy of this full 3-D approach in regional high-resolution tomography studies by comparing the results with those in our previous work in which the 3-D structure was obtained by inverting the same delay-time measurements but using computationally more efficient 2-D Fréchet kernels approximated from 3-D by an asymptotic stationary-phase integration across the great-circle plane.

  5. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  6. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  7. Joint and collaborative representation with local Volterra kernels convolution feature for face recognition

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Li, Hengjian; Dong, Jiwen; Chen, Xi; Yang, Huiru

    2018-04-01

    In this paper, we proposed a joint and collaborative representation with Volterra kernel convolution feature (JCRVK) for face recognition. Firstly, the candidate face images are divided into sub-blocks in the equal size. The blocks are extracted feature using the two-dimensional Voltera kernels discriminant analysis, which can better capture the discrimination information from the different faces. Next, the proposed joint and collaborative representation is employed to optimize and classify the local Volterra kernels features (JCR-VK) individually. JCR-VK is very efficiently for its implementation only depending on matrix multiplication. Finally, recognition is completed by using the majority voting principle. Extensive experiments on the Extended Yale B and AR face databases are conducted, and the results show that the proposed approach can outperform other recently presented similar dictionary algorithms on recognition accuracy.

  8. Heat kernel for the elliptic system of linear elasticity with boundary conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Justin; Kim, Seick; Brown, Russell

    2014-10-01

    We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.

  9. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  10. Electron beam lithographic modeling assisted by artificial intelligence technology

    NASA Astrophysics Data System (ADS)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  11. Multiple kernel learning using single stage function approximation for binary classification problems

    NASA Astrophysics Data System (ADS)

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  12. Applications of the line-of-response probability density function resolution model in PET list mode reconstruction.

    PubMed

    Jian, Y; Yao, R; Mulnix, T; Jin, X; Carson, R E

    2015-01-07

    Resolution degradation in PET image reconstruction can be caused by inaccurate modeling of the physical factors in the acquisition process. Resolution modeling (RM) is a common technique that takes into account the resolution degrading factors in the system matrix. Our previous work has introduced a probability density function (PDF) method of deriving the resolution kernels from Monte Carlo simulation and parameterizing the LORs to reduce the number of kernels needed for image reconstruction. In addition, LOR-PDF allows different PDFs to be applied to LORs from different crystal layer pairs of the HRRT. In this study, a thorough test was performed with this new model (LOR-PDF) applied to two PET scanners-the HRRT and Focus-220. A more uniform resolution distribution was observed in point source reconstructions by replacing the spatially-invariant kernels with the spatially-variant LOR-PDF. Specifically, from the center to the edge of radial field of view (FOV) of the HRRT, the measured in-plane FWHMs of point sources in a warm background varied slightly from 1.7 mm to 1.9 mm in LOR-PDF reconstructions. In Minihot and contrast phantom reconstructions, LOR-PDF resulted in up to 9% higher contrast at any given noise level than image-space resolution model. LOR-PDF also has the advantage in performing crystal-layer-dependent resolution modeling. The contrast improvement by using LOR-PDF was verified statistically by replicate reconstructions. In addition, [(11)C]AFM rats imaged on the HRRT and [(11)C]PHNO rats imaged on the Focus-220 were utilized to demonstrated the advantage of the new model. Higher contrast between high-uptake regions of only a few millimeter diameter and the background was observed in LOR-PDF reconstruction than in other methods.

  13. Applications of the line-of-response probability density function resolution model in PET list mode reconstruction

    PubMed Central

    Jian, Y; Yao, R; Mulnix, T; Jin, X; Carson, R E

    2016-01-01

    Resolution degradation in PET image reconstruction can be caused by inaccurate modeling of the physical factors in the acquisition process. Resolution modeling (RM) is a common technique that takes into account the resolution degrading factors in the system matrix. Our previous work has introduced a probability density function (PDF) method of deriving the resolution kernels from Monte Carlo simulation and parameterizing the LORs to reduce the number of kernels needed for image reconstruction. In addition, LOR-PDF allows different PDFs to be applied to LORs from different crystal layer pairs of the HRRT. In this study, a thorough test was performed with this new model (LOR-PDF) applied to two PET scanners - the HRRT and Focus-220. A more uniform resolution distribution was observed in point source reconstructions by replacing the spatially-invariant kernels with the spatially-variant LOR-PDF. Specifically, from the center to the edge of radial field of view (FOV) of the HRRT, the measured in-plane FWHMs of point sources in a warm background varied slightly from 1.7 mm to 1.9 mm in LOR-PDF reconstructions. In Minihot and contrast phantom reconstructions, LOR-PDF resulted in up to 9% higher contrast at any given noise level than image-space resolution model. LOR-PDF also has the advantage in performing crystal-layer-dependent resolution modeling. The contrast improvement by using LOR-PDF was verified statistically by replicate reconstructions. In addition, [11C]AFM rats imaged on the HRRT and [11C]PHNO rats imaged on the Focus-220 were utilized to demonstrated the advantage of the new model. Higher contrast between high-uptake regions of only a few millimeter diameter and the background was observed in LOR-PDF reconstruction than in other methods. PMID:25490063

  14. Direct Measurement of Wave Kernels in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.

    2006-01-01

    Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.

  15. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press. With a CD: data, software, guides. (2009). 2. Kanevski M. Spatial Predictions of Soil Contamination Using General Regression Neural Networks. Systems Research and Information Systems, Volume 8, number 4, 1999. 3. Robert S., Foresti L., Kanevski M. Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. International Journal of Climatology, 33 pp. 1793-1804, 2013.

  16. Kernel-Based Sensor Fusion With Application to Audio-Visual Voice Activity Detection

    NASA Astrophysics Data System (ADS)

    Dov, David; Talmon, Ronen; Cohen, Israel

    2016-12-01

    In this paper, we address the problem of multiple view data fusion in the presence of noise and interferences. Recent studies have approached this problem using kernel methods, by relying particularly on a product of kernels constructed separately for each view. From a graph theory point of view, we analyze this fusion approach in a discrete setting. More specifically, based on a statistical model for the connectivity between data points, we propose an algorithm for the selection of the kernel bandwidth, a parameter, which, as we show, has important implications on the robustness of this fusion approach to interferences. Then, we consider the fusion of audio-visual speech signals measured by a single microphone and by a video camera pointed to the face of the speaker. Specifically, we address the task of voice activity detection, i.e., the detection of speech and non-speech segments, in the presence of structured interferences such as keyboard taps and office noise. We propose an algorithm for voice activity detection based on the audio-visual signal. Simulation results show that the proposed algorithm outperforms competing fusion and voice activity detection approaches. In addition, we demonstrate that a proper selection of the kernel bandwidth indeed leads to improved performance.

  17. An SVM model with hybrid kernels for hydrological time series

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, H.; Zhao, X.; Xie, Q.

    2017-12-01

    Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.

  18. Single scan parameterization of space-variant point spread functions in image space via a printed array: the impact for two PET/CT scanners.

    PubMed

    Kotasidis, F A; Matthews, J C; Angelis, G I; Noonan, P J; Jackson, A; Price, P; Lionheart, W R; Reader, A J

    2011-05-21

    Incorporation of a resolution model during statistical image reconstruction often produces images of improved resolution and signal-to-noise ratio. A novel and practical methodology to rapidly and accurately determine the overall emission and detection blurring component of the system matrix using a printed point source array within a custom-made Perspex phantom is presented. The array was scanned at different positions and orientations within the field of view (FOV) to examine the feasibility of extrapolating the measured point source blurring to other locations in the FOV and the robustness of measurements from a single point source array scan. We measured the spatially-variant image-based blurring on two PET/CT scanners, the B-Hi-Rez and the TruePoint TrueV. These measured spatially-variant kernels and the spatially-invariant kernel at the FOV centre were then incorporated within an ordinary Poisson ordered subset expectation maximization (OP-OSEM) algorithm and compared to the manufacturer's implementation using projection space resolution modelling (RM). Comparisons were based on a point source array, the NEMA IEC image quality phantom, the Cologne resolution phantom and two clinical studies (carbon-11 labelled anti-sense oligonucleotide [(11)C]-ASO and fluorine-18 labelled fluoro-l-thymidine [(18)F]-FLT). Robust and accurate measurements of spatially-variant image blurring were successfully obtained from a single scan. Spatially-variant resolution modelling resulted in notable resolution improvements away from the centre of the FOV. Comparison between spatially-variant image-space methods and the projection-space approach (the first such report, using a range of studies) demonstrated very similar performance with our image-based implementation producing slightly better contrast recovery (CR) for the same level of image roughness (IR). These results demonstrate that image-based resolution modelling within reconstruction is a valid alternative to projection-based modelling, and that, when using the proposed practical methodology, the necessary resolution measurements can be obtained from a single scan. This approach avoids the relatively time-consuming and involved procedures previously proposed in the literature.

  19. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  20. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  1. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    NASA Astrophysics Data System (ADS)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.

  2. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    PubMed

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced. © 2017 American Association of Physicists in Medicine.

  3. Role of dimensionality in Axelrod's model for the dissemination of culture

    NASA Astrophysics Data System (ADS)

    Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San

    2003-09-01

    We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.

  4. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  5. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  6. Assessing intraspecific variation in effective dispersal along an altitudinal gradient: a test in two Mediterranean high-mountain plants.

    PubMed

    Lara-Romero, Carlos; Robledo-Arnuncio, Juan J; García-Fernández, Alfredo; Iriondo, Jose M

    2014-01-01

    Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming. We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain). We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal. No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m) in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape. This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a case-by-case analysis in a wider range of plant taxa and environments to assess the prevalence and magnitude of intraspecific dispersal variation.

  7. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  8. Quantum entanglement in photoactive prebiotic systems.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  9. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS

    NASA Astrophysics Data System (ADS)

    Tehrany, Mahyat Shafapour; Pradhan, Biswajeet; Jebur, Mustafa Neamah

    2014-05-01

    Flood is one of the most devastating natural disasters that occur frequently in Terengganu, Malaysia. Recently, ensemble based techniques are getting extremely popular in flood modeling. In this paper, weights-of-evidence (WoE) model was utilized first, to assess the impact of classes of each conditioning factor on flooding through bivariate statistical analysis (BSA). Then, these factors were reclassified using the acquired weights and entered into the support vector machine (SVM) model to evaluate the correlation between flood occurrence and each conditioning factor. Through this integration, the weak point of WoE can be solved and the performance of the SVM will be enhanced. The spatial database included flood inventory, slope, stream power index (SPI), topographic wetness index (TWI), altitude, curvature, distance from the river, geology, rainfall, land use/cover (LULC), and soil type. Four kernel types of SVM (linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG)) were used to investigate the performance of each kernel type. The efficiency of the new ensemble WoE and SVM method was tested using area under curve (AUC) which measured the prediction and success rates. The validation results proved the strength and efficiency of the ensemble method over the individual methods. The best results were obtained from RBF kernel when compared with the other kernel types. Success rate and prediction rate for ensemble WoE and RBF-SVM method were 96.48% and 95.67% respectively. The proposed ensemble flood susceptibility mapping method could assist researchers and local governments in flood mitigation strategies.

  10. Influence of host diversity on development of epidemics: an evaluation and elaboration of mixture theory.

    PubMed

    Skelsey, P; Rossing, W A H; Kessel, G J T; Powell, J; van der Werf, W

    2005-04-01

    ABSTRACT A spatiotemporal/integro-difference equation model was developed and utilized to study the progress of epidemics in spatially heterogeneous mixtures of susceptible and resistant host plants. The effects of different scales and patterns of host genotypes on the development of focal and general epidemics were investigated using potato late blight as a case study. Two different radial Laplace kernels and a two-dimensional Gaussian kernel were used for modeling the dispersal of spores. An analytical expression for the apparent infection rate, r, in general epidemics was tested by comparison with dynamic simulations. A genotype connectivity parameter, q, was introduced into the formula for r. This parameter quantifies the probability of pathogen inoculum produced on a certain host genotype unit reaching the same or another unit of the same genotype. The analytical expression for the apparent infection rate provided accurate predictions of realized r in the simulations of general epidemics. The relationship between r and the radial velocity of focus expansion, c, in focal epidemics, was linear in accordance with theory for homogeneous genotype mixtures. The findings suggest that genotype mixtures that are effective in reducing general epidemics of Phytophthora infestans will likewise curtail focal epidemics and vice versa.

  11. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-03-01

    We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.

  12. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  13. Variable importance in nonlinear kernels (VINK): classification of digitized histopathology.

    PubMed

    Ginsburg, Shoshana; Ali, Sahirzeeshan; Lee, George; Basavanhally, Ajay; Madabhushi, Anant

    2013-01-01

    Quantitative histomorphometry is the process of modeling appearance of disease morphology on digitized histopathology images via image-based features (e.g., texture, graphs). Due to the curse of dimensionality, building classifiers with large numbers of features requires feature selection (which may require a large training set) or dimensionality reduction (DR). DR methods map the original high-dimensional features in terms of eigenvectors and eigenvalues, which limits the potential for feature transparency or interpretability. Although methods exist for variable selection and ranking on embeddings obtained via linear DR schemes (e.g., principal components analysis (PCA)), similar methods do not yet exist for nonlinear DR (NLDR) methods. In this work we present a simple yet elegant method for approximating the mapping between the data in the original feature space and the transformed data in the kernel PCA (KPCA) embedding space; this mapping provides the basis for quantification of variable importance in nonlinear kernels (VINK). We show how VINK can be implemented in conjunction with the popular Isomap and Laplacian eigenmap algorithms. VINK is evaluated in the contexts of three different problems in digital pathology: (1) predicting five year PSA failure following radical prostatectomy, (2) predicting Oncotype DX recurrence risk scores for ER+ breast cancers, and (3) distinguishing good and poor outcome p16+ oropharyngeal tumors. We demonstrate that subsets of features identified by VINK provide similar or better classification or regression performance compared to the original high dimensional feature sets.

  14. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.

    PubMed

    Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A

    2015-07-01

    Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  16. Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)

    2002-01-01

    We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.

  17. An Adaptive Genetic Association Test Using Double Kernel Machines.

    PubMed

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  18. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  19. Quantum phases of disordered three-dimensional Majorana-Weyl fermions

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Pixley, J. H.; Goswami, Pallab; Das Sarma, S.

    2017-04-01

    The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three-dimensional spinless px+i py superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions; such a phase can support a large anomalous thermal Hall conductivity and protected surface Majorana-Fermi arcs at zero energy. We study the effects of quenched disorder on such a gapless topological phase by carrying out extensive numerical and analytical calculations on a lattice model for a disordered, spinless px+i py superconductor. Using the kernel polynomial method, we compute both average and typical density of states for the BdG quasiparticles, from which we construct the phase diagram of three-dimensional dirty px+i py superconductors as a function of disorder strength and chemical potential of the underlying normal state. We establish that the power law quasilocalized states induced by rare statistical fluctuations of the disorder potential give rise to an exponentially small density of states at zero energy, and even infinitesimally weak disorder converts the ThSM into a thermal diffusive Hall metal (ThDM). Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. We show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI) [or BEC phase] with a smeared gap that can occur for suitable band parameters and all strengths of disorder, supporting only exponentially localized Lifshitz states (at low energy) and (ii) a thermal Anderson insulator that only exists for large disorder strengths compared to all band parameters. We determine the nature of the two distinct localization-delocalization transitions between these two types of insulators and ThDM. Additionally, we establish the scaling properties of an avoided (or hidden) quantum critical point for moderate disorder strengths, which govern the crossover between ThSM and ThDM phases over a wide range of energy scales. We also discuss the experimental relevance of our findings for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  20. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  1. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Ostriker, Eve C.

    2006-07-01

    We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  2. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    PubMed

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.

  3. Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Melson, N. Duane

    1998-01-01

    We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.

  4. A comparison of explosive cyclone characteristics in recent reanalyses: NCEP CFSR, JRA-55, and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Kita, Y.; Waseda, T.

    2016-12-01

    Explosive cyclones (EXPCs) were investigated in three recent reanalyses. Their tracking methods is diverse among researchers, and additionally reanalysis data they use are various. Reanalysis data are essential as initial conditions to implement a downscale simulation with high accuracy. In this study, characteristics of EXPCs in three recent reanalyses were investigated from several perspectives: track densities, minimum MSLP (Mean Sea Level Pressure), and radius of EXPCs. The tracking method of extratropical cyclones (ECs) is to track local minimum of MSLP. The domain is limited to Eastern Asia and the North Pacific Ocean (lat20°:70°, lon100°:200°), and target period is 2000-2014. Fig.1 shows that the frequencies of EXPCs, which is defined as ECs whose MSLP drops by over 12hPa in 12hours, are greatly different, noting that extracted EXPCs are those whose most deepening phases were located around Japan (lat20°:60°, lon110°:160°). In addition, they are dissimilar to those in a previous EXPCs database (Kawamura et al.) and results in weather map analyses. The differences between each frequency might be caused by MSLP at their centers: there were sometimes small gaps of a few hPa. The minimum MSLP and effective radius were also investigated, but distributions of effective radii of EXPCs did not show significant difference (Fig.2). Thus, the gaps of central MSLP just matter in the differences of their trends. To evaluate the path density of EXPCs, two-dimensional kernel density estimation was conducted. The kernel densities of EXPCs' tracks in three reanalyses seem similar: they accumulated apparently above ocean (not shown). Two-dimensional kernel densities of EXPCs' most deepening points accumulated above Sea of Japan, Kuroshio and Extension. Therefore, it is proved that there are considerable differences in numbers of EXPCs depending on reanalyses, while the general characteristics of EXPCs just have little difference. It is worthwhile to say that careful attention should be paid when researchers investigate an individual EXPC with reanalysis data.

  5. Pixel-based meshfree modelling of skeletal muscles.

    PubMed

    Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu

    2016-01-01

    This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.

  6. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  7. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  8. Development of full wave code for modeling RF fields in hot non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.

  9. New numerical method for radiation heat transfer in nonhomogeneous participating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.R.; Tan, Zhiqiang

    A new numerical method, which solves the exact integral equations of distance-angular integration form for radiation transfer, is introduced in this paper. By constructing and prestoring the numerical integral formulas for the distance integral for appropriate kernel functions, this method eliminates the time consuming evaluations of the kernels of the space integrals in the formal computations. In addition, when the number of elements in the system is large, the resulting coefficient matrix is quite sparse. Thus, either considerable time or much storage can be saved. A weakness of the method is discussed, and some remedies are suggested. As illustrations, somemore » one-dimensional and two-dimensional problems in both homogeneous and inhomogeneous emitting, absorbing, and linear anisotropic scattering media are studied. Some results are compared with available data. 13 refs.« less

  10. Wavelets on the Group SO(3) and the Sphere S3

    NASA Astrophysics Data System (ADS)

    Bernstein, Swanhild

    2007-09-01

    The construction of wavelets relies on translations and dilations which are perfectly given in R. On the sphere translations can be considered as rotations but it difficult to say what are dilations. For the 2-dimensional sphere there exist two different approaches to obtain wavelets which are worth to be considered. The first concept goes back to Freeden and collaborators [2] which defines wavelets by means of kernels of spherical singular integrals. The other concept developed by Antoine and Vandergheynst and coworkers [3] is a purely group theoretical approach and defines dilations as dilations in the tangent plane. Surprisingly both concepts coincides for zonal functions. We will define wavelets on the 3-dimensional sphere by means of kernels of singular integrals and demonstrate that wavelets constructed by Antoine and Vandergheynst for zonal functions meet our definition.

  11. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale.

    PubMed

    Buck, Christoph; Kneib, Thomas; Tkaczick, Tobias; Konstabel, Kenn; Pigeot, Iris

    2015-12-22

    Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA. We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers. Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection. We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment.

  12. Semi-blind sparse image reconstruction with application to MRFM.

    PubMed

    Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O

    2012-09-01

    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

  13. Boundary conditions for gas flow problems from anisotropic scattering kernels

    NASA Astrophysics Data System (ADS)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline

    2015-10-01

    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  14. The importance of topographically corrected null models for analyzing ecological point processes.

    PubMed

    McDowall, Philip; Lynch, Heather J

    2017-07-01

    Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.

  15. Applications Performance on NAS Intel Paragon XP/S - 15#

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)

    1994-01-01

    The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran coded. We found that the measured performance of assembly-coded BLAS is much less than what memory bandwidth limitation would predict. The influence of data cache on different sizes of vectors is also investigated using one-dimensional FFTs. c. Impact of processor layout: There are several different ways processors can be laid out within the two-dimensional grid of processors on the Paragon. We have used the FFT example to investigate performance differences based on processors layout.

  16. Efficient 3D movement-based kernel density estimator and application to wildlife ecology

    USGS Publications Warehouse

    Tracey-PR, Jeff; Sheppard, James K.; Lockwood, Glenn K.; Chourasia, Amit; Tatineni, Mahidhar; Fisher, Robert N.; Sinkovits, Robert S.

    2014-01-01

    We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive than simpler, lower-dimensional models. Through a combination of code restructuring, parallelization and performance optimization, we were able to reduce the time to solution by up to a factor of 1000x, thereby greatly improving the applicability of the method.

  17. The Reconstruction of Three-Dimensional Morphological and Electrical Paraneters from Two-Dimensional Sections of Neurones

    NASA Astrophysics Data System (ADS)

    Brawn, A. D.; Wheal, H. V.

    1986-07-01

    A system is described which can be used to create a three-dimensional model of a neurone from the central nervous system. This model can then be used to obtain quantitative data on the physical and electrical pro, perties of the neurone. Living neurones are either raised in culture, or taken from in vitro preparations of brain tissue and optically sectioned. These two-dimensional sections are digitised, and input to a 68008-based microcomputer. The system reconstructs the three-dimensional structure of the neurone, both geanetrically and electrically. The user can a) View the structure fran any point at any angle b) "Move through" the structure along any given vector c) Nave through" the structure following a neurone process d) Fire the neurone at any point, and "watch" the action potentials propagate e) Vary the parameters of the electrical model of a process element. The system is targeted to a research programme on epilepsy, which makes frequent use of both geometric and electrical neurone modelling. Current techniques which may involve crude histology and two-dimensional drawings have considerable short camings.

  18. Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan

    2016-11-01

    In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.

  19. CLAss-Specific Subspace Kernel Representations and Adaptive Margin Slack Minimization for Large Scale Classification.

    PubMed

    Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan

    2018-02-01

    In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.

  20. Kernel learning at the first level of inference.

    PubMed

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  2. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  3. Knowledge Driven Image Mining with Mixture Density Mercer Kernals

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Oza, Nikunj

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven image mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. In that high dimensional feature space, linear clustering, prediction, and classification algorithms can be applied and the results can be mapped back down to the original image space. Thus, highly nonlinear structure in the image can be recovered through the use of well-known linear mathematics in the feature space. This process has a number of advantages over traditional methods in that it allows for nonlinear interactions to be modelled with only a marginal increase in computational costs. In this paper we present the theory of Mercer Kernels; describe its use in image mining, discuss a new method to generate Mercer Kernels directly from data, and compare the results with existing algorithms on data from the MODIS (Moderate Resolution Spectral Radiometer) instrument taken over the Arctic region. We also discuss the potential application of these methods on the Intelligent Archive, a NASA initiative for developing a tagged image data warehouse for the Earth Sciences.

  4. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.

  5. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    NASA Astrophysics Data System (ADS)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [11C]SCH23390 data, showing promising results.

  6. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    PubMed

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.

  7. Reduced Dynamics of the Non-holonomic Whipple Bicycle

    NASA Astrophysics Data System (ADS)

    Boyer, Frédéric; Porez, Mathieu; Mauny, Johan

    2018-06-01

    Though the bicycle is a familiar object of everyday life, modeling its full nonlinear three-dimensional dynamics in a closed symbolic form is a difficult issue for classical mechanics. In this article, we address this issue without resorting to the usual simplifications on the bicycle kinematics nor its dynamics. To derive this model, we use a general reduction-based approach in the principal fiber bundle of configurations of the three-dimensional bicycle. This includes a geometrically exact model of the contacts between the wheels and the ground, the explicit calculation of the kernel of constraints, along with the dynamics of the system free of any external forces, and its projection onto the kernel of admissible velocities. The approach takes benefits of the intrinsic formulation of geometric mechanics. Along the path toward the final equations, we show that the exact model of the bicycle dynamics requires to cope with a set of non-symmetric constraints with respect to the structural group of its configuration fiber bundle. The final reduced dynamics are simulated on several examples representative of the bicycle. As expected the constraints imposed by the ground contacts, as well as the energy conservation, are satisfied, while the dynamics can be numerically integrated in real time.

  8. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less

  9. Optimized formulas for the gravitational field of a tesseroid

    NASA Astrophysics Data System (ADS)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2013-07-01

    Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton's integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid's potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.

  10. Local stability of a five dimensional food chain model in the ocean

    NASA Astrophysics Data System (ADS)

    Kusumawinahyu, W. M.; Hidayatulloh, M. R.

    2014-02-01

    This paper discuss a food chain model on a microbiology ecosystem in the ocean, where predation process occurs. Four population growth rates are discussed, namely bacteria, phytoplankton, zooplankton, and protozoa growth rate. When the growth of nutrient density is also considered, the model is governed by a five dimensional dynamical system. The system considered in this paper is a modification of a model proposed by Hadley and Forbes [1], by taking Holling Type I as the functional response. For sake of simplicity, the model needs to be scaled. Dynamical behavior, such as existence condition of equilibrium points and their local stability are addressed. There are eight equilibrium points, where two of them exist under certain conditions. Three equilibrium points are unstable, while two points stable under certain conditions and the other three points are stable if the Ruth-Hurwitz criteria are satisfied. Numerical simulations are carried out to illustrate analytical findings.

  11. Calculation of electron Dose Point Kernel in water with GEANT4 for medical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guimaraes, C. C.; Sene, F. F.; Martinelli, J. R.

    2009-06-03

    The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4 - Low Energy, Penelope and Standard - were employed. To verify the adequacy of these models,more » the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.« less

  12. Interlayer tunneling in a strongly correlated electron-phonon system

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Zieliński, J.

    1996-10-01

    We discuss the role of interlayer tunneling for superconducting properties of strongly correlated (U-->∞ limit) two-layer Hubbard model coupled to phonons. Strong correlations are taken into account within the mean-field approximation for auxiliary boson fields. To consider phonon-mediated and interlayer tunneling contribution to superconductivity on equal footing we incorporate the tunneling term into the generalized Eliashberg equations. This leads to the modification of the phonon-induced pairing kernel and implies a pronounced enhancement of the superconducting transition temperature in the d-wave channel for moderate doping. In numerical calculations the two-dimensional band structure has been explicitly taken into account. The relevance of our results for high-temperature superconductors is briefly discussed.

  13. A flexible new method for 3D measurement based on multi-view image sequences

    NASA Astrophysics Data System (ADS)

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  14. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    PubMed

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  15. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  16. Comparative analysis of genetic architectures for nine developmental traits of rye.

    PubMed

    Masojć, Piotr; Milczarski, P; Kruszona, P

    2017-08-01

    Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.

  17. An Adaptive Genetic Association Test Using Double Kernel Machines

    PubMed Central

    Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis

    2014-01-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602

  18. Experimental study of turbulent flame kernel propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{submore » j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)« less

  19. SU-E-I-17: Comparison of Two Novel Algorithms for the Modulation Transfer Function of CT Using a Simple Cylindrical Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kam, S; Youn, H; Kim, H

    2014-06-01

    Purpose: To compare and analyze two novel algorithms for the assessment of modulation transfer functions (MTFs) of computed tomography (CT) systems using a simple acrylic cylindrical phantom Method and Materials: Images of the acrylic cylindrical phantom were acquired by a GE LightSpeed 16 RT (GE Healthcare, Milwaukee, WI) using 120 kVp, 330 mA, 2.5 mm slice thickness, 10 cm field-of view (FOV), four reconstruction kernels (e.g. standard, soft, detail, bone, and lung). Two different algorithms were used to analyze images for MTF assessment. First, Richard et al. suggested a task-based MTF assessment method through an edge spread function (ESF) whichmore » described pixel intensities as a function of distance from the center. The MTF was obtained as the absolute value of Fourier transform of the differentiated ESF. Second, Ohkubo et al. devised an effective method to determine the point spread function (PSF) of CT system accompanied with verification. The line spread function (LSF), which was the one-dimensional integration of the PSF, was used to obtain the MTF. We validated the reliability of two above-mentioned methods through the comparison with a conventional method using a thin tungsten wire phantom. Results: The measured MTFs by two methods were mostly similar each other for standard, soft, and detail kernels. In 0.6 lp/mm, the MTF difference between two methods were 0.012(standard), 0.004(soft), and 0.037(detail). They also coincided with the MTF by the conventional method well. However, there were considerable distinctions for bone and lung kernels containing edge enhancement that might cause undershoots near the peak of the LSF. Conclusions: We compared two novel methods to assess task-based MTFs for clinical CT systems especially using a simple acrylic cylindrical phantom with high-convenience and low-cost, and validated them against a conventional method. This work can provide a practical solution to users for the quality assurance of CT.« less

  20. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  1. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  2. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  3. An intelligent fault diagnosis method of rolling bearings based on regularized kernel Marginal Fisher analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Shi, Tielin; Xuan, Jianping

    2012-05-01

    Generally, the vibration signals of fault bearings are non-stationary and highly nonlinear under complicated operating conditions. Thus, it's a big challenge to extract optimal features for improving classification and simultaneously decreasing feature dimension. Kernel Marginal Fisher analysis (KMFA) is a novel supervised manifold learning algorithm for feature extraction and dimensionality reduction. In order to avoid the small sample size problem in KMFA, we propose regularized KMFA (RKMFA). A simple and efficient intelligent fault diagnosis method based on RKMFA is put forward and applied to fault recognition of rolling bearings. So as to directly excavate nonlinear features from the original high-dimensional vibration signals, RKMFA constructs two graphs describing the intra-class compactness and the inter-class separability, by combining traditional manifold learning algorithm with fisher criteria. Therefore, the optimal low-dimensional features are obtained for better classification and finally fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories of bearings. The experimental results demonstrate that the proposed approach improves the fault classification performance and outperforms the other conventional approaches.

  4. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    PubMed Central

    Bandeira e Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-01-01

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. PMID:28455415

  5. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.

    PubMed

    Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-06-07

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.

  6. Spectral methods in machine learning and new strategies for very large datasets

    PubMed Central

    Belabbas, Mohamed-Ali; Wolfe, Patrick J.

    2009-01-01

    Spectral methods are of fundamental importance in statistics and machine learning, because they underlie algorithms from classical principal components analysis to more recent approaches that exploit manifold structure. In most cases, the core technical problem can be reduced to computing a low-rank approximation to a positive-definite kernel. For the growing number of applications dealing with very large or high-dimensional datasets, however, the optimal approximation afforded by an exact spectral decomposition is too costly, because its complexity scales as the cube of either the number of training examples or their dimensionality. Motivated by such applications, we present here 2 new algorithms for the approximation of positive-semidefinite kernels, together with error bounds that improve on results in the literature. We approach this problem by seeking to determine, in an efficient manner, the most informative subset of our data relative to the kernel approximation task at hand. This leads to two new strategies based on the Nyström method that are directly applicable to massive datasets. The first of these—based on sampling—leads to a randomized algorithm whereupon the kernel induces a probability distribution on its set of partitions, whereas the latter approach—based on sorting—provides for the selection of a partition in a deterministic way. We detail their numerical implementation and provide simulation results for a variety of representative problems in statistical data analysis, each of which demonstrates the improved performance of our approach relative to existing methods. PMID:19129490

  7. Approximation of the breast height diameter distribution of two-cohort stands by mixture models III Kernel density estimators vs mixture models

    Treesearch

    Rafal Podlaski; Francis A. Roesch

    2014-01-01

    Two-component mixtures of either the Weibull distribution or the gamma distribution and the kernel density estimator were used for describing the diameter at breast height (dbh) empirical distributions of two-cohort stands. The data consisted of study plots from the Å wietokrzyski National Park (central Poland) and areas close to and including the North Carolina section...

  8. Mathematical inference in one point microrheology

    NASA Astrophysics Data System (ADS)

    Hohenegger, Christel; McKinley, Scott

    2016-11-01

    Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.

  9. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization

    PubMed Central

    Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996

  10. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization.

    PubMed

    Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.

  11. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  12. A linear-RBF multikernel SVM to classify big text corpora.

    PubMed

    Romero, R; Iglesias, E L; Borrajo, L

    2015-01-01

    Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.

  13. DNA denaturation through a model of the partition points on a one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Mejdani, R.; Huseini, H.

    1994-08-01

    We have shown that by using a model of the partition points gas on a one-dimensional lattice, we can study, besides the saturation curves obtained before for the enzyme kinetics, also the denaturation process, i.e. the breaking of the hydrogen bonds connecting the two strands, under treatment by heat of DNA. We think that this model, as a very simple model and mathematically transparent, can be advantageous for pedagogic goals or other theoretical investigations in chemistry or modern biology.

  14. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated dependingmore » on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.« less

  15. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  16. Analysis of the cable equation with non-local and non-singular kernel fractional derivative

    NASA Astrophysics Data System (ADS)

    Karaagac, Berat

    2018-02-01

    Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.

  17. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  18. Phonons around a soliton in a continuum model of t-(CH)x

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Terai, A.; Wada, Y.

    1986-05-01

    The eigenvalue problem for phonons around a soliton in a continuum model of trans-polyacetylene t-(CH)x, the so-called TLM model (Takayama et al, 1980), is reinvestigated using a kernel which satisfies the correct boundary condition. The three localized modes are reproduced, two with even parity and one with odd parity. The phase-shift analysis of the extended modes confirms their existence if the one-dimensional version of Levinson's theorem is applicable to the present problem. It is found that the phase shifts of even and odd modes differ from each other in the long-wavelength limit. The conclusion of Ito et al. (1984), that the scattering of phonons by the soliton is reflectionless, has to be modified in this limit, where phonons suffer reflection from the soliton.

  19. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  20. On the theory of oscillating airfoils of finite span in subsonic compressible flow

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    The problem of oscillating lifting surface of finite span in subsonic compressible flow is reduced to an integral equation. The kernel of the integral equation is approximated by a simpler expression, on the basis of the assumption of sufficiently large aspect ratio. With this approximation the double integral occurring in the formulation of the problem is reduced to two single integrals, one of which is taken over the chord and the other over the span of the lifting surface. On the basis of this reduction the three-dimensional problem appears separated into two two-dimensional problems, one of them being effectively the problem of two-dimensional flow and the other being the problem of spanwise circulation distribution. Earlier results concerning the oscillating lifting surface of finite span in incompressible flow are contained in the present more general results.

  1. Explaining Support Vector Machines: A Color Based Nomogram

    PubMed Central

    Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo

    2016-01-01

    Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811

  2. Using Adjoint Methods to Improve 3-D Velocity Models of Southern California

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.

    2006-12-01

    We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical representation of the gradient of the misfit function. With the capability of computing both the value of the misfit function and its gradient, which assimilates the traveltime anomalies, we are ready to use a non-linear conjugate gradient algorithm to iteratively improve velocity models of southern California.

  3. A Gibbs point field model for the spatial pattern of coronary capillaries

    NASA Astrophysics Data System (ADS)

    Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W.

    2006-09-01

    We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns.

  4. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  5. Providing the Fire Risk Map in Forest Area Using a Geographically Weighted Regression Model with Gaussin Kernel and Modis Images, a Case Study: Golestan Province

    NASA Astrophysics Data System (ADS)

    Shah-Heydari pour, A.; Pahlavani, P.; Bigdeli, B.

    2017-09-01

    According to the industrialization of cities and the apparent increase in pollutants and greenhouse gases, the importance of forests as the natural lungs of the earth is felt more than ever to clean these pollutants. Annually, a large part of the forests is destroyed due to the lack of timely action during the fire. Knowledge about areas with a high-risk of fire and equipping these areas by constructing access routes and allocating the fire-fighting equipment can help to eliminate the destruction of the forest. In this research, the fire risk of region was forecasted and the risk map of that was provided using MODIS images by applying geographically weighted regression model with Gaussian kernel and ordinary least squares over the effective parameters in forest fire including distance from residential areas, distance from the river, distance from the road, height, slope, aspect, soil type, land use, average temperature, wind speed, and rainfall. After the evaluation, it was found that the geographically weighted regression model with Gaussian kernel forecasted 93.4% of the all fire points properly, however the ordinary least squares method could forecast properly only 66% of the fire points.

  6. Three-dimensional scene reconstruction from a two-dimensional image

    NASA Astrophysics Data System (ADS)

    Parkins, Franz; Jacobs, Eddie

    2017-05-01

    We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.

  7. Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.

    PubMed

    Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A; Burgueño, Juan; Bandeira E Sousa, Massaine; Crossa, José

    2018-03-28

    In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines ([Formula: see text]) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. Copyright © 2018 Cuevas et al.

  8. Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials

    PubMed Central

    Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A.; Burgueño, Juan; Bandeira e Sousa, Massaine; Crossa, José

    2018-01-01

    In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. PMID:29476023

  9. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding

    NASA Astrophysics Data System (ADS)

    Liu, M. B.; Zhang, Z. L.; Feng, D. L.

    2017-09-01

    Explosive welding involves processes like the detonation of explosive, impact of metal structures and strong fluid-structure interaction, while the whole process of explosive welding has not been well modeled before. In this paper, a novel smoothed particle hydrodynamics (SPH) model is developed to simulate explosive welding. In the SPH model, a kernel gradient correction algorithm is used to achieve better computational accuracy. A density adapting technique which can effectively treat large density ratio is also proposed. The developed SPH model is firstly validated by simulating a benchmark problem of one-dimensional TNT detonation and an impact welding problem. The SPH model is then successfully applied to simulate the whole process of explosive welding. It is demonstrated that the presented SPH method can capture typical physics in explosive welding including explosion wave, welding surface morphology, jet flow and acceleration of the flyer plate. The welding angle obtained from the SPH simulation agrees well with that from a kinematic analysis.

  10. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  11. [Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].

    PubMed

    Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan

    2012-10-01

    To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.

  12. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-06-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.

  13. A high performance parallel algorithm for 1-D FFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, R.C.; Gustavson, F.G.; Zubair, M.

    1994-12-31

    In this paper the authors propose a parallel high performance FFT algorithm based on a multi-dimensional formulation. They use this to solve a commonly encountered FFT based kernel on a distributed memory parallel machine, the IBM scalable parallel system, SP1. The kernel requires a forward FFT computation of an input sequence, multiplication of the transformed data by a coefficient array, and finally an inverse FFT computation of the resultant data. They show that the multi-dimensional formulation helps in reducing the communication costs and also improves the single node performance by effectively utilizing the memory system of the node. They implementedmore » this kernel on the IBM SP1 and observed a performance of 1.25 GFLOPS on a 64-node machine.« less

  14. Out-of-equilibrium dynamical mean-field equations for the perceptron model

    NASA Astrophysics Data System (ADS)

    Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco

    2018-02-01

    Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.

  15. New earth system model for optical performance evaluation of space instruments.

    PubMed

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  16. Graphical and Numerical Descriptive Analysis: Exploratory Tools Applied to Vietnamese Data

    ERIC Educational Resources Information Center

    Haughton, Dominique; Phong, Nguyen

    2004-01-01

    This case study covers several exploratory data analysis ideas, the histogram and boxplot, kernel density estimates, the recently introduced bagplot--a two-dimensional extension of the boxplot--as well as the violin plot, which combines a boxplot with a density shape plot. We apply these ideas and demonstrate how to interpret the output from these…

  17. Bose–Einstein condensation temperature of finite systems

    NASA Astrophysics Data System (ADS)

    Xie, Mi

    2018-05-01

    In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.

  18. On butterfly effect in higher derivative gravities

    NASA Astrophysics Data System (ADS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-11-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  19. Methods for compressible fluid simulation on GPUs using high-order finite differences

    NASA Astrophysics Data System (ADS)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  20. Models for the Representation of Four-Component Systems.

    ERIC Educational Resources Information Center

    Kartzmark, Elinor M.

    1980-01-01

    Describes construction of two inexpensive three-dimensional models (tetrahedrons) using glass tubing and colored plastic sheeting. Diagrams show how these models are used in explaining how a point is plotted in a four-component system and how the composition of a point is deduced from its position in the model. (CS)

  1. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  2. Resonant Zener tunneling in two-dimensional periodic photonic lattices.

    PubMed

    Desyatnikov, Anton S; Kivshar, Yuri S; Shchesnovich, Valery S; Cavalcanti, Solange B; Hickmann, Jandir M

    2007-02-15

    We study Zener tunneling in two-dimensional photonic lattices and derive, for the case of hexagonal symmetry, the generalized Landau-Zener-Majorana model describing resonant interaction between high-symmetry points of the photonic spectral bands. We demonstrate that this effect can be employed for the generation of Floquet-Bloch modes and verify the model by direct numerical simulations of the tunneling effect.

  3. Efficient protein structure search using indexing methods

    PubMed Central

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively. PMID:23691543

  4. Efficient protein structure search using indexing methods.

    PubMed

    Kim, Sungchul; Sael, Lee; Yu, Hwanjo

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively.

  5. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    NASA Astrophysics Data System (ADS)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  6. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  7. Geographically weighted regression model on poverty indicator

    NASA Astrophysics Data System (ADS)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  8. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    PubMed Central

    Lakshminarayanan, Thilagam; Subbaiah, K. V.; Thayalan, K.; Kannan, S. E.

    2010-01-01

    Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for BRIT LDR applicator, found to vary from 2.6 to 5.1% for Fletcher green type LDR applicator and are up to −4.7% for Fletcher-Williamson HDR applicator. The isodose distribution plots also show good agreements with the results of previous literatures. The isodose distributions around the shielded vaginal cylinder computed using BrachyTPS code show better agreement (less than two per cent deviation) with MC results in the unshielded region compared to shielded region, where the deviations are observed up to five per cent. The present study implies that the accurate and fast validation of complicated treatment planning calculations is possible with the point kernel code package. PMID:20589118

  9. Approximate l-fold cross-validation with Least Squares SVM and Kernel Ridge Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Richard E; Zhang, Hao; Parker, Lynne Edwards

    2013-01-01

    Kernel methods have difficulties scaling to large modern data sets. The scalability issues are based on computational and memory requirements for working with a large matrix. These requirements have been addressed over the years by using low-rank kernel approximations or by improving the solvers scalability. However, Least Squares Support VectorMachines (LS-SVM), a popular SVM variant, and Kernel Ridge Regression still have several scalability issues. In particular, the O(n^3) computational complexity for solving a single model, and the overall computational complexity associated with tuning hyperparameters are still major problems. We address these problems by introducing an O(n log n) approximate l-foldmore » cross-validation method that uses a multi-level circulant matrix to approximate the kernel. In addition, we prove our algorithm s computational complexity and present empirical runtimes on data sets with approximately 1 million data points. We also validate our approximate method s effectiveness at selecting hyperparameters on real world and standard benchmark data sets. Lastly, we provide experimental results on using a multi-level circulant kernel approximation to solve LS-SVM problems with hyperparameters selected using our method.« less

  10. Alterations in Kernel Proteome after Infection with Fusarium culmorum in Two Triticale Cultivars with Contrasting Resistance to Fusarium Head Blight

    PubMed Central

    Perlikowski, Dawid; Wiśniewska, Halina; Kaczmarek, Joanna; Góral, Tomasz; Ochodzki, Piotr; Kwiatek, Michał; Majka, Maciej; Augustyniak, Adam; Kosmala, Arkadiusz

    2016-01-01

    Highlight: The level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to Fusarium head blight. Triticale was used here as a model to recognize new components of molecular mechanism of resistance to Fusarium head blight (FHB) in cereals. Fusarium-damaged kernels (FDK) of two lines distinct in levels of resistance to FHB were applied into a proteome profiling using two-dimensional gel electrophoresis (2-DE) to create protein maps and mass spectrometry (MS) to identify the proteins differentially accumulated between the analyzed lines. This proteomic research was supported by a measurement of alpha- and beta-amylase activities, mycotoxin content, and fungal biomass in the analyzed kernels. The 2-DE analysis indicated a total of 23 spots with clear differences in a protein content between the more resistant and more susceptible triticale lines after infection with Fusarium culmorum. A majority of the proteins were involved in a cell carbohydrate metabolism, stressing the importance of this protein group in a plant response to Fusarium infection. The increased accumulation levels of different isoforms of plant beta-amylase were observed for a more susceptible triticale line after inoculation but these were not supported by a total level of beta-amylase activity, showing the highest value in the control conditions. The more resistant line was characterized by a higher abundance of alpha-amylase inhibitor CM2 subunit and simultaneously a lower activity of alpha-amylase after inoculation. We suggest that the level of pathogen alpha-amylase and plant beta-amylase activities could be components of plant-pathogen interaction associated with the resistance of triticale to FHB. PMID:27582751

  11. IMPLEMENTATION OF THE SMOKE EMISSION DATA PROCESSOR AND SMOKE TOOL INPUT DATA PROCESSOR IN MODELS-3

    EPA Science Inventory

    The U.S. Environmental Protection Agency has implemented Version 1.3 of SMOKE (Sparse Matrix Object Kernel Emission) processor for preparation of area, mobile, point, and biogenic sources emission data within Version 4.1 of the Models-3 air quality modeling framework. The SMOK...

  12. Analysis of Drude model using fractional derivatives without singular kernels

    NASA Astrophysics Data System (ADS)

    Jiménez, Leonardo Martínez; García, J. Juan Rosales; Contreras, Abraham Ortega; Baleanu, Dumitru

    2017-11-01

    We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF), and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.

  13. Symmetry breaking in smectics and surface models of their singularities

    PubMed Central

    Chen, Bryan Gin-ge; Alexander, Gareth P.; Kamien, Randall D.

    2009-01-01

    The homotopy theory of topological defects in ordered media fails to completely characterize systems with broken translational symmetry. We argue that the problem can be understood in terms of the lack of rotational Goldstone modes in such systems and provide an alternate approach that correctly accounts for the interaction between translations and rotations. Dislocations are associated, as usual, with branch points in a phase field, whereas disclinations arise as critical points and singularities in the phase field. We introduce a three-dimensional model for two-dimensional smectics that clarifies the topology of disclinations and geometrically captures known results without the need to add compatibility conditions. Our work suggests natural generalizations of the two-dimensional smectic theory to higher dimensions and to crystals. PMID:19717435

  14. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    NASA Astrophysics Data System (ADS)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  15. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  16. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach

    NASA Astrophysics Data System (ADS)

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.

  17. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems.

    PubMed

    Chen, Nan; Majda, Andrew J

    2017-12-05

    Solving the Fokker-Planck equation for high-dimensional complex dynamical systems is an important issue. Recently, the authors developed efficient statistically accurate algorithms for solving the Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures, which contain many strong non-Gaussian features such as intermittency and fat-tailed probability density functions (PDFs). The algorithms involve a hybrid strategy with a small number of samples [Formula: see text], where a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious Gaussian kernel density estimation in the remaining low-dimensional subspace. In this article, two effective strategies are developed and incorporated into these algorithms. The first strategy involves a judicious block decomposition of the conditional covariance matrix such that the evolutions of different blocks have no interactions, which allows an extremely efficient parallel computation due to the small size of each individual block. The second strategy exploits statistical symmetry for a further reduction of [Formula: see text] The resulting algorithms can efficiently solve the Fokker-Planck equation with strongly non-Gaussian PDFs in much higher dimensions even with orders in the millions and thus beat the curse of dimension. The algorithms are applied to a [Formula: see text]-dimensional stochastic coupled FitzHugh-Nagumo model for excitable media. An accurate recovery of both the transient and equilibrium non-Gaussian PDFs requires only [Formula: see text] samples! In addition, the block decomposition facilitates the algorithms to efficiently capture the distinct non-Gaussian features at different locations in a [Formula: see text]-dimensional two-layer inhomogeneous Lorenz 96 model, using only [Formula: see text] samples. Copyright © 2017 the Author(s). Published by PNAS.

  18. Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.

    2014-08-01

    The Idaho National Laboratory (INL) PARFUME (PARticle FUel ModEl) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  19. The performance of approximations of farm contiguity compared to contiguity defined using detailed geographical information in two sample areas in Scotland: implications for foot-and-mouth disease modelling.

    PubMed

    Flood, Jessica S; Porphyre, Thibaud; Tildesley, Michael J; Woolhouse, Mark E J

    2013-10-08

    When modelling infectious diseases, accurately capturing the pattern of dissemination through space is key to providing optimal recommendations for control. Mathematical models of disease spread in livestock, such as for foot-and-mouth disease (FMD), have done this by incorporating a transmission kernel which describes the decay in transmission rate with increasing Euclidean distance from an infected premises (IP). However, this assumes a homogenous landscape, and is based on the distance between point locations of farms. Indeed, underlying the spatial pattern of spread are the contact networks involved in transmission. Accordingly, area-weighted tessellation around farm point locations has been used to approximate field-contiguity and simulate the effect of contiguous premises (CP) culling for FMD. Here, geographic data were used to determine contiguity based on distance between premises' fields and presence of landscape features for two sample areas in Scotland. Sensitivity, positive predictive value, and the True Skill Statistic (TSS) were calculated to determine how point distance measures and area-weighted tessellation compared to the 'gold standard' of the map-based measures in identifying CPs. In addition, the mean degree and density of the different contact networks were calculated. Utilising point distances <1 km and <5 km as a measure for contiguity resulted in poor discrimination between map-based CPs/non-CPs (TSS 0.279-0.344 and 0.385-0.400, respectively). Point distance <1 km missed a high proportion of map-based CPs; <5 km point distance picked up a high proportion of map-based non-CPs as CPs. Area-weighted tessellation performed best, with reasonable discrimination between map-based CPs/non-CPs (TSS 0.617-0.737) and comparable mean degree and density. Landscape features altered network properties considerably when taken into account. The farming landscape is not homogeneous. Basing contiguity on geographic locations of field boundaries and including landscape features known to affect transmission into FMD models are likely to improve individual farm-level accuracy of spatial predictions in the event of future outbreaks. If a substantial proportion of FMD transmission events are by contiguous spread, and CPs should be assigned an elevated relative transmission rate, the shape of the kernel could be significantly altered since ability to discriminate between map-based CPs and non-CPs is different over different Euclidean distances.

  20. The MUSIC algorithm for impedance tomography of small inclusions from discrete data

    NASA Astrophysics Data System (ADS)

    Lechleiter, A.

    2015-09-01

    We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.

  1. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  2. Optimization of fixture layouts of glass laser optics using multiple kernel regression.

    PubMed

    Su, Jianhua; Cao, Enhua; Qiao, Hong

    2014-05-10

    We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.

  3. A search for outflows from X-ray bright points in coronal holes

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    Properties of X-ray bright points using two of the instruments on Solar Maximum Mission were investigated. The mass outflows from magnetic regions were modeled using a two dimensional MHD code. It was concluded that mass can be detected from X-ray bright points provided that the magnetic topology is favorable.

  4. One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions

    Treesearch

    Rohan Benjankar; Daniele Tonina; James McKean

    2014-01-01

    Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...

  5. Combining neural networks and signed particles to simulate quantum systems more efficiently

    NASA Astrophysics Data System (ADS)

    Sellier, Jean Michel

    2018-04-01

    Recently a new formulation of quantum mechanics has been suggested which describes systems by means of ensembles of classical particles provided with a sign. This novel approach mainly consists of two steps: the computation of the Wigner kernel, a multi-dimensional function describing the effects of the potential over the system, and the field-less evolution of the particles which eventually create new signed particles in the process. Although this method has proved to be extremely advantageous in terms of computational resources - as a matter of fact it is able to simulate in a time-dependent fashion many-body systems on relatively small machines - the Wigner kernel can represent the bottleneck of simulations of certain systems. Moreover, storing the kernel can be another issue as the amount of memory needed is cursed by the dimensionality of the system. In this work, we introduce a new technique which drastically reduces the computation time and memory requirement to simulate time-dependent quantum systems which is based on the use of an appropriately tailored neural network combined with the signed particle formalism. In particular, the suggested neural network is able to compute efficiently and reliably the Wigner kernel without any training as its entire set of weights and biases is specified by analytical formulas. As a consequence, the amount of memory for quantum simulations radically drops since the kernel does not need to be stored anymore as it is now computed by the neural network itself, only on the cells of the (discretized) phase-space which are occupied by particles. As its is clearly shown in the final part of this paper, not only this novel approach drastically reduces the computational time, it also remains accurate. The author believes this work opens the way towards effective design of quantum devices, with incredible practical implications.

  6. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    PubMed

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  7. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  8. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    PubMed Central

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  9. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  10. Discriminant analysis for fast multiclass data classification through regularized kernel function approximation.

    PubMed

    Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K

    2010-06-01

    In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.

  11. Transient and asymptotic behaviour of the binary breakage problem

    NASA Astrophysics Data System (ADS)

    Mantzaris, Nikos V.

    2005-06-01

    The general binary breakage problem with power-law breakage functions and two families of symmetric and asymmetric breakage kernels is studied in this work. A useful transformation leads to an equation that predicts self-similar solutions in its asymptotic limit and offers explicit knowledge of the mean size and particle density at each point in dimensionless time. A novel moving boundary algorithm in the transformed coordinate system is developed, allowing the accurate prediction of the full transient behaviour of the system from the initial condition up to the point where self-similarity is achieved, and beyond if necessary. The numerical algorithm is very rapid and its results are in excellent agreement with known analytical solutions. In the case of the symmetric breakage kernels only unimodal, self-similar number density functions are obtained asymptotically for all parameter values and independent of the initial conditions, while in the case of asymmetric breakage kernels, bimodality appears for high degrees of asymmetry and sharp breakage functions. For symmetric and discrete breakage kernels, self-similarity is not achieved. The solution exhibits sustained oscillations with amplitude that depends on the initial condition and the sharpness of the breakage mechanism, while the period is always fixed and equal to ln 2 with respect to dimensionless time.

  12. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  13. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    PubMed

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.

  14. The Swift-Hohenberg equation with a nonlocal nonlinearity

    NASA Astrophysics Data System (ADS)

    Morgan, David; Dawes, Jonathan H. P.

    2014-03-01

    It is well known that aspects of the formation of localised states in a one-dimensional Swift-Hohenberg equation can be described by Ginzburg-Landau-type envelope equations. This paper extends these multiple scales analyses to cases where an additional nonlinear integral term, in the form of a convolution, is present. The presence of a kernel function introduces a new lengthscale into the problem, and this results in additional complexity in both the derivation of envelope equations and in the bifurcation structure. When the kernel is short-range, weakly nonlinear analysis results in envelope equations of standard type but whose coefficients are modified in complicated ways by the nonlinear nonlocal term. Nevertheless, these computations can be formulated quite generally in terms of properties of the Fourier transform of the kernel function. When the lengthscale associated with the kernel is longer, our method leads naturally to the derivation of two different, novel, envelope equations that describe aspects of the dynamics in these new regimes. The first of these contains additional bifurcations, and unexpected loops in the bifurcation diagram. The second of these captures the stretched-out nature of the homoclinic snaking curves that arises due to the nonlocal term.

  15. Parameter diagnostics of phases and phase transition learning by neural networks

    NASA Astrophysics Data System (ADS)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, A. T.; Betzler, B. R.; Burke, T. P.

    Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less

  17. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature

    PubMed Central

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838

  18. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature.

    PubMed

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.

  19. Free Fermions and the Classical Compact Groups

    NASA Astrophysics Data System (ADS)

    Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil

    2018-06-01

    There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.

  20. The E(2) symmetry and quantum phase transition in the two-dimensional limit of the vibron model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Feng; Liu, Yu-Xin; Draayer, J. P.

    2010-11-01

    We study in detail the relation between the two-dimensional Euclidean dynamical E(2) symmetry and the quantum phase transition in the two-dimensional limit of the vibron model, called the U(3) vibron model. Both geometric and algebraic descriptions of the U(3) vibron model show that structures of low-lying states at the critical point of the model with a quartic potential as its classical limit can be approximately described by the E(2) symmetry. We also fit the finite-size scaling exponent of the energy levels and E1 transition rates in the F(2) model, which is exactly the E(2) model but with truncation in its Hilbert subspace, as well as those at the critical point in the U(3) vibron model. The N-scaling power law around the critical point shows that the E(2) symmetry is well preserved even for cases with finite number of bosons. In addition, two kinds of experimentally accessible effective order parameters, such as the energy ratios E_{2_1}/E_{1_1}, E_{3_1}/E_{1_1} and E1 transition ratios \\frac{B(E1;2_1\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, \\frac{B(E1;0_2\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, are proposed to identify the second-order phase transition in such systems. Possible empirical examples exhibiting approximate E(2) symmetry are also presented.

  1. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z = (z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y(0)=(y sub 1(0),...,y sub D(0)) knowledge of the statistical distribution of the random errors in y(0). The data space Y containing y(0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x (e.g., energy or dissipation rate), Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. CSI is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface. Neither the heat flow nor the energy bound is strong enough to permit estimation of B(r) at single points on the CMB, but the heat flow bound permits estimation of uniform averages of B(r) over discs on the CMB, and both bounds permit weighted disc-averages with continous weighting kernels. Both bounds also permit estimation of low-degree Gauss coefficients at the CMB. The heat flow bound resolves them up to degree 8 if the crustal field at satellite altitudes must be treated as a systematic error, but can resolve to degree 11 under the most favorable statistical treatment of the crust. These two limits produce circles of confusion on the CMB with diameters of 25 deg and 19 deg respectively.

  2. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    PubMed Central

    Li, Kan; Príncipe, José C.

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568

  3. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.

    PubMed

    Li, Kan; Príncipe, José C

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.

  4. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.

    2017-01-01

    In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.

  5. Dynamics of Nearest-Neighbour Competitions on Graphs

    NASA Astrophysics Data System (ADS)

    Rador, Tonguç

    2017-10-01

    Considering a collection of agents representing the vertices of a graph endowed with integer points, we study the asymptotic dynamics of the rate of the increase of their points according to a very simple rule: we randomly pick an an edge from the graph which unambiguously defines two agents we give a point the the agent with larger point with probability p and to the lagger with probability q such that p+q=1. The model we present is the most general version of the nearest-neighbour competition model introduced by Ben-Naim, Vazquez and Redner. We show that the model combines aspects of hyperbolic partial differential equations—as that of a conservation law—graph colouring and hyperplane arrangements. We discuss the properties of the model for general graphs but we confine in depth study to d-dimensional tori. We present a detailed study for the ring graph, which includes a chemical potential approximation to calculate all its statistics that gives rather accurate results. The two-dimensional torus, not studied in depth as the ring, is shown to possess critical behaviour in that the asymptotic speeds arrange themselves in two-coloured islands separated by borders of three other colours and the size of the islands obey power law distribution. We also show that in the large d limit the d-dimensional torus shows inverse sine law for the distribution of asymptotic speeds.

  6. The quantitative properties of three soft X-ray flare kernels observed with the AS&E X-ray telescope on Skylab

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Petrasso, R. D.; Kane, S. R.

    1976-01-01

    The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.

  7. Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.

    PubMed

    Duckic, Paulina; Hayes, Robert B

    2018-06-01

    Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.

  8. Critical behavior of two-dimensional vesicles in the deflated regime

    NASA Technical Reports Server (NTRS)

    Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio

    1991-01-01

    The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.

  9. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China

    NASA Astrophysics Data System (ADS)

    Xu, Chong; Dai, Fuchu; Xu, Xiwei; Lee, Yuan Hsi

    2012-04-01

    Support vector machine (SVM) modeling is based on statistical learning theory. It involves a training phase with associated input and target output values. In recent years, the method has become increasingly popular. The main purpose of this study is to evaluate the mapping power of SVM modeling in earthquake triggered landslide-susceptibility mapping for a section of the Jianjiang River watershed using a Geographic Information System (GIS) software. The river was affected by the Wenchuan earthquake of May 12, 2008. Visual interpretation of colored aerial photographs of 1-m resolution and extensive field surveys provided a detailed landslide inventory map containing 3147 landslides related to the 2008 Wenchuan earthquake. Elevation, slope angle, slope aspect, distance from seismogenic faults, distance from drainages, and lithology were used as the controlling parameters. For modeling, three groups of positive and negative training samples were used in concert with four different kernel functions. Positive training samples include the centroids of 500 large landslides, those of all 3147 landslides, and 5000 randomly selected points in landslide polygons. Negative training samples include 500, 3147, and 5000 randomly selected points on slopes that remained stable during the Wenchuan earthquake. The four kernel functions are linear, polynomial, radial basis, and sigmoid. In total, 12 cases of landslide susceptibility were mapped. Comparative analyses of landslide-susceptibility probability and area relation curves show that both the polynomial and radial basis functions suitably classified the input data as either landslide positive or negative though the radial basis function was more successful. The 12 generated landslide-susceptibility maps were compared with known landslide centroid locations and landslide polygons to verify the success rate and predictive accuracy of each model. The 12 results were further validated using area-under-curve analysis. Group 3 with 5000 randomly selected points on the landslide polygons, and 5000 randomly selected points along stable slopes gave the best results with a success rate of 79.20% and predictive accuracy of 79.13% under the radial basis function. Of all the results, the sigmoid kernel function was the least skillful when used in concert with the centroid data of all 3147 landslides as positive training samples, and the negative training samples of 3147 randomly selected points in regions of stable slope (success rate = 54.95%; predictive accuracy = 61.85%). This paper also provides suggestions and reference data for selecting appropriate training samples and kernel function types for earthquake triggered landslide-susceptibility mapping using SVM modeling. Predictive landslide-susceptibility maps could be useful in hazard mitigation by helping planners understand the probability of landslides in different regions.

  10. Flexible Kernel Memory

    PubMed Central

    Nowicki, Dimitri; Siegelmann, Hava

    2010-01-01

    This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors can be added, deleted, and updated on-line simply, without harming existing memories, and the number of attractors is independent of input dimension. Input vectors do not have to adhere to a fixed or bounded dimensionality; they can increase and decrease it without relearning previous memories. A memory consolidation process enables the network to generalize concepts and form clusters of input data, which outperforms many unsupervised clustering techniques; this process is demonstrated on handwritten digits from MNIST. Another process, reminiscent of memory reconsolidation is introduced, in which existing memories are refreshed and tuned with new inputs; this process is demonstrated on series of morphed faces. PMID:20552013

  11. Estimating epidemic arrival times using linear spreading theory

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  12. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    NASA Astrophysics Data System (ADS)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  13. Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, H.; Tromp, J.

    2014-12-01

    Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.

  14. Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting.

    PubMed

    Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H

    2016-01-01

    Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.

  15. A spatial scan statistic for nonisotropic two-level risk cluster.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

    NASA Astrophysics Data System (ADS)

    Ardentov, Andrei A.; Sachkov, Yuri L.

    2017-12-01

    We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank 2 sub-Riemannian structure on a 4-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations R+ and a discrete group of reflections Z2 × Z2 × Z2. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.

  17. A model for the kinetics of homotypic cellular aggregation under static conditions

    NASA Technical Reports Server (NTRS)

    Neelamegham, S.; Munn, L. L.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.

  18. On supervised graph Laplacian embedding CA model & kernel construction and its application

    NASA Astrophysics Data System (ADS)

    Zeng, Junwei; Qian, Yongsheng; Wang, Min; Yang, Yongzhong

    2017-01-01

    There are many methods to construct kernel with given data attribute information. Gaussian radial basis function (RBF) kernel is one of the most popular ways to construct a kernel. The key observation is that in real-world data, besides the data attribute information, data label information also exists, which indicates the data class. In order to make use of both data attribute information and data label information, in this work, we propose a supervised kernel construction method. Supervised information from training data is integrated into standard kernel construction process to improve the discriminative property of resulting kernel. A supervised Laplacian embedding cellular automaton model is another key application developed for two-lane heterogeneous traffic flow with the safe distance and large-scale truck. Based on the properties of traffic flow in China, we re-calibrate the cell length, velocity, random slowing mechanism and lane-change conditions and use simulation tests to study the relationships among the speed, density and flux. The numerical results show that the large-scale trucks will have great effects on the traffic flow, which are relevant to the proportion of the large-scale trucks, random slowing rate and the times of the lane space change.

  19. Multitasking kernel for the C and Fortran programming languages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, E.D. III

    1984-09-01

    A multitasking kernel for the C and Fortran programming languages which runs on the Unix operating system is presented. The kernel provides a multitasking environment which serves two purposes. The first is to provide an efficient portable environment for the coding, debugging and execution of production multiprocessor programs. The second is to provide a means of evaluating the performance of a multitasking program on model multiprocessors. The performance evaluation features require no changes in the source code of the application and are implemented as a set of compile and run time options in the kernel.

  20. Discrimination of raw and processed Dipsacus asperoides by near infrared spectroscopy combined with least squares-support vector machine and random forests

    NASA Astrophysics Data System (ADS)

    Xin, Ni; Gu, Xiao-Feng; Wu, Hao; Hu, Yu-Zhu; Yang, Zhong-Lin

    2012-04-01

    Most herbal medicines could be processed to fulfill the different requirements of therapy. The purpose of this study was to discriminate between raw and processed Dipsacus asperoides, a common traditional Chinese medicine, based on their near infrared (NIR) spectra. Least squares-support vector machine (LS-SVM) and random forests (RF) were employed for full-spectrum classification. Three types of kernels, including linear kernel, polynomial kernel and radial basis function kernel (RBF), were checked for optimization of LS-SVM model. For comparison, a linear discriminant analysis (LDA) model was performed for classification, and the successive projections algorithm (SPA) was executed prior to building an LDA model to choose an appropriate subset of wavelengths. The three methods were applied to a dataset containing 40 raw herbs and 40 corresponding processed herbs. We ran 50 runs of 10-fold cross validation to evaluate the model's efficiency. The performance of the LS-SVM with RBF kernel (RBF LS-SVM) was better than the other two kernels. The RF, RBF LS-SVM and SPA-LDA successfully classified all test samples. The mean error rates for the 50 runs of 10-fold cross validation were 1.35% for RBF LS-SVM, 2.87% for RF, and 2.50% for SPA-LDA. The best classification results were obtained by using LS-SVM with RBF kernel, while RF was fast in the training and making predictions.

  1. TH-C-BRD-04: Beam Modeling and Validation with Triple and Double Gaussian Dose Kernel for Spot Scanning Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, S; Takayanagi, T; Fujii, Y

    2014-06-15

    Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less

  2. Riemannian multi-manifold modeling and clustering in brain networks

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  3. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  4. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-01-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  6. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel

    2016-10-01

    Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  7. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  8. Registering Cortical Surfaces Based on Whole-Brain Structural Connectivity and Continuous Connectivity Analysis

    PubMed Central

    Gutman, Boris; Leonardo, Cassandra; Jahanshad, Neda; Hibar, Derrek; Eschen-burg, Kristian; Nir, Talia; Villalon, Julio; Thompson, Paul

    2014-01-01

    We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups. PMID:25320795

  9. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  10. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  11. A fast algorithm for forward-modeling of gravitational fields in spherical coordinates with 3D Gauss-Legendre quadrature

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Liu, J.; Chen, B.; Guo, R.; Chen, L.

    2017-12-01

    Forward modeling of gravitational fields at large-scale requires to consider the curvature of the Earth and to evaluate the Newton's volume integral in spherical coordinates. To acquire fast and accurate gravitational effects for subsurface structures, subsurface mass distribution is usually discretized into small spherical prisms (called tesseroids). The gravity fields of tesseroids are generally calculated numerically. One of the commonly used numerical methods is the 3D Gauss-Legendre quadrature (GLQ). However, the traditional GLQ integration suffers from low computational efficiency and relatively poor accuracy when the observation surface is close to the source region. We developed a fast and high accuracy 3D GLQ integration based on the equivalence of kernel matrix, adaptive discretization and parallelization using OpenMP. The equivalence of kernel matrix strategy increases efficiency and reduces memory consumption by calculating and storing the same matrix elements in each kernel matrix just one time. In this method, the adaptive discretization strategy is used to improve the accuracy. The numerical investigations show that the executing time of the proposed method is reduced by two orders of magnitude compared with the traditional method that without these optimized strategies. High accuracy results can also be guaranteed no matter how close the computation points to the source region. In addition, the algorithm dramatically reduces the memory requirement by N times compared with the traditional method, where N is the number of discretization of the source region in the longitudinal direction. It makes the large-scale gravity forward modeling and inversion with a fine discretization possible.

  12. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, A.; Avramova, Maria; Ivanov, Kostadin

    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed bymore » data from hydrogen experiments and PIE data.« less

  13. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  14. Modeling and Visualization Process of the Curve of Pen Point by GeoGebra

    ERIC Educational Resources Information Center

    Aktümen, Muharem; Horzum, Tugba; Ceylan, Tuba

    2013-01-01

    This study describes the mathematical construction of a real-life model by means of parametric equations, as well as the two- and three-dimensional visualization of the model using the software GeoGebra. The model was initially considered as "determining the parametric equation of the curve formed on a plane by the point of a pen, positioned…

  15. Multilevel image recognition using discriminative patches and kernel covariance descriptor

    NASA Astrophysics Data System (ADS)

    Lu, Le; Yao, Jianhua; Turkbey, Evrim; Summers, Ronald M.

    2014-03-01

    Computer-aided diagnosis of medical images has emerged as an important tool to objectively improve the performance, accuracy and consistency for clinical workflow. To computerize the medical image diagnostic recognition problem, there are three fundamental problems: where to look (i.e., where is the region of interest from the whole image/volume), image feature description/encoding, and similarity metrics for classification or matching. In this paper, we exploit the motivation, implementation and performance evaluation of task-driven iterative, discriminative image patch mining; covariance matrix based descriptor via intensity, gradient and spatial layout; and log-Euclidean distance kernel for support vector machine, to address these three aspects respectively. To cope with often visually ambiguous image patterns for the region of interest in medical diagnosis, discovery of multilabel selective discriminative patches is desired. Covariance of several image statistics summarizes their second order interactions within an image patch and is proved as an effective image descriptor, with low dimensionality compared with joint statistics and fast computation regardless of the patch size. We extensively evaluate two extended Gaussian kernels using affine-invariant Riemannian metric or log-Euclidean metric with support vector machines (SVM), on two medical image classification problems of degenerative disc disease (DDD) detection on cortical shell unwrapped CT maps and colitis detection on CT key images. The proposed approach is validated with promising quantitative results on these challenging tasks. Our experimental findings and discussion also unveil some interesting insights on the covariance feature composition with or without spatial layout for classification and retrieval, and different kernel constructions for SVM. This will also shed some light on future work using covariance feature and kernel classification for medical image analysis.

  16. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  17. Evaluating Multi-core Architectures through Accelerating the Three-Dimensional Lax–Wendroff Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2014-07-18

    Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time time-consuming, which greatly limits application’s performance and power efficiency. In this paper, we accelerate the forward modeling technique on the latest multi-core and many-core architectures such as Intel Sandy Bridge CPUs, NVIDIA Fermi C2070 GPU, NVIDIA Kepler K20x GPU, and the Intel Xeon Phi Co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.more » For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best.« less

  18. Metabolic network prediction through pairwise rational kernels.

    PubMed

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.

  19. Effect of mixing scanner types and reconstruction kernels on the characterization of lung parenchymal pathologies: emphysema, interstitial pulmonary fibrosis and normal non-smokers

    NASA Astrophysics Data System (ADS)

    Xu, Ye; van Beek, Edwin J.; McLennan, Geoffrey; Guo, Junfeng; Sonka, Milan; Hoffman, Eric

    2006-03-01

    In this study we utilize our texture characterization software (3-D AMFM) to characterize interstitial lung diseases (including emphysema) based on MDCT generated volumetric data using 3-dimensional texture features. We have sought to test whether the scanner and reconstruction filter (kernel) type affect the classification of lung diseases using the 3-D AMFM. We collected MDCT images in three subject groups: emphysema (n=9), interstitial pulmonary fibrosis (IPF) (n=10), and normal non-smokers (n=9). In each group, images were scanned either on a Siemens Sensation 16 or 64-slice scanner, (B50f or B30 recon. kernel) or a Philips 4-slice scanner (B recon. kernel). A total of 1516 volumes of interest (VOIs; 21x21 pixels in plane) were marked by two chest imaging experts using the Iowa Pulmonary Analysis Software Suite (PASS). We calculated 24 volumetric features. Bayesian methods were used for classification. Images from different scanners/kernels were combined in all possible combinations to test how robust the tissue classification was relative to the differences in image characteristics. We used 10-fold cross validation for testing the result. Sensitivity, specificity and accuracy were calculated. One-way Analysis of Variances (ANOVA) was used to compare the classification result between the various combinations of scanner and reconstruction kernel types. This study yielded a sensitivity of 94%, 91%, 97%, and 93% for emphysema, ground-glass, honeycombing, and normal non-smoker patterns respectively using a mixture of all three subject groups. The specificity for these characterizations was 97%, 99%, 99%, and 98%, respectively. The F test result of ANOVA shows there is no significant difference (p <0.05) between different combinations of data with respect to scanner and convolution kernel type. Since different MDCT and reconstruction kernel types did not show significant differences in regards to the classification result, this study suggests that the 3-D AMFM can be generally introduced.

  20. Estimating Mixture of Gaussian Processes by Kernel Smoothing

    PubMed Central

    Huang, Mian; Li, Runze; Wang, Hansheng; Yao, Weixin

    2014-01-01

    When the functional data are not homogeneous, e.g., there exist multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this paper, we propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate both functional and inhomogeneous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from EM algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset. PMID:24976675

  1. Protein Analysis Meets Visual Word Recognition: A Case for String Kernels in the Brain

    ERIC Educational Resources Information Center

    Hannagan, Thomas; Grainger, Jonathan

    2012-01-01

    It has been recently argued that some machine learning techniques known as Kernel methods could be relevant for capturing cognitive and neural mechanisms (Jakel, Scholkopf, & Wichmann, 2009). We point out that "String kernels," initially designed for protein function prediction and spam detection, are virtually identical to one contending proposal…

  2. Two-point functions in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.

  3. On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis.

    PubMed

    Li, Bing; Chun, Hyonho; Zhao, Hongyu

    2014-09-01

    We introduce a nonparametric method for estimating non-gaussian graphical models based on a new statistical relation called additive conditional independence, which is a three-way relation among random vectors that resembles the logical structure of conditional independence. Additive conditional independence allows us to use one-dimensional kernel regardless of the dimension of the graph, which not only avoids the curse of dimensionality but also simplifies computation. It also gives rise to a parallel structure to the gaussian graphical model that replaces the precision matrix by an additive precision operator. The estimators derived from additive conditional independence cover the recently introduced nonparanormal graphical model as a special case, but outperform it when the gaussian copula assumption is violated. We compare the new method with existing ones by simulations and in genetic pathway analysis.

  4. A new discriminative kernel from probabilistic models.

    PubMed

    Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert

    2002-10-01

    Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.

  5. Tight-Binding Study of Polarons in Two-Dimensional Systems: Implications for Organic Field-Effect Transistor Materials

    NASA Astrophysics Data System (ADS)

    Lei, Jie

    2011-03-01

    In order to understand the electronic and transport properties of organic field-effect transistor (FET) materials, we theoretically studied the polarons in two-dimensional systems using a tight-binding model with the Holstein type and Su--Schrieffer--Heeger type electron--lattice couplings. By numerical calculations, it was found that a carrier accepts four kinds of localization, which are named the point polaron, two-dimensional polaron, one-dimensional polaron, and the extended state. The degree of localization is sensitive to the following parameters in the model: the strength and type of electron--lattice couplings, and the signs and relative magnitudes of transfer integrals. When a parameter set for a single-crystal phase of pentacene is applied within the Holstein model, a considerably delocalized hole polaron is found, consistent with the bandlike transport mechanism.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along withmore » stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.« less

  7. Convolution kernels for multi-wavelength imaging

    NASA Astrophysics Data System (ADS)

    Boucaud, A.; Bocchio, M.; Abergel, A.; Orieux, F.; Dole, H.; Hadj-Youcef, M. A.

    2016-12-01

    Astrophysical images issued from different instruments and/or spectral bands often require to be processed together, either for fitting or comparison purposes. However each image is affected by an instrumental response, also known as point-spread function (PSF), that depends on the characteristics of the instrument as well as the wavelength and the observing strategy. Given the knowledge of the PSF in each band, a straightforward way of processing images is to homogenise them all to a target PSF using convolution kernels, so that they appear as if they had been acquired by the same instrument. We propose an algorithm that generates such PSF-matching kernels, based on Wiener filtering with a tunable regularisation parameter. This method ensures all anisotropic features in the PSFs to be taken into account. We compare our method to existing procedures using measured Herschel/PACS and SPIRE PSFs and simulated JWST/MIRI PSFs. Significant gains up to two orders of magnitude are obtained with respect to the use of kernels computed assuming Gaussian or circularised PSFs. A software to compute these kernels is available at https://github.com/aboucaud/pypher

  8. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    NASA Astrophysics Data System (ADS)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  9. Development of Design Analysis Methods for C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.

    2006-01-01

    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.

  10. Radiative Heat Transfer in Finite Cylindrical Enclosures with Nonhomogeneous Participating Media

    NASA Technical Reports Server (NTRS)

    Hsu, Pei-Feng; Ku, Jerry C.

    1994-01-01

    Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate radiative heat transfer from soot particles in such flames. It is shown that the nonhomogeneity of radiative property has very significant effects. The peak value of the divergence of radiative heat flux could be underestimated by 2 factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also investigated and found to be nonnegligible.

  11. Alaska/Yukon Geoid Improvement by a Data-Driven Stokes's Kernel Modification Approach

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Roman, Daniel R.

    2015-04-01

    Geoid modeling over Alaska of USA and Yukon Canada being a trans-national issue faces a great challenge primarily due to the inhomogeneous surface gravity data (Saleh et al, 2013) and the dynamic geology (Freymueller et al, 2008) as well as its complex geological rheology. Previous study (Roman and Li 2014) used updated satellite models (Bruinsma et al 2013) and newly acquired aerogravity data from the GRAV-D project (Smith 2007) to capture the gravity field changes in the targeting areas primarily in the middle-to-long wavelength. In CONUS, the geoid model was largely improved. However, the precision of the resulted geoid model in Alaska was still in the decimeter level, 19cm at the 32 tide bench marks and 24cm on the 202 GPS/Leveling bench marks that gives a total of 23.8cm at all of these calibrated surface control points, where the datum bias was removed. Conventional kernel modification methods in this area (Li and Wang 2011) had limited effects on improving the precision of the geoid models. To compensate the geoid miss fits, a new Stokes's kernel modification method based on a data-driven technique is presented in this study. First, the method was tested on simulated data sets (Fig. 1), where the geoid errors have been reduced by 2 orders of magnitude (Fig 2). For the real data sets, some iteration steps are required to overcome the rank deficiency problem caused by the limited control data that are irregularly distributed in the target area. For instance, after 3 iterations, the standard deviation dropped about 2.7cm (Fig 3). Modification at other critical degrees can further minimize the geoid model miss fits caused either by the gravity error or the remaining datum error in the control points.

  12. Initial Kernel Timing Using a Simple PIM Performance Model

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Block, Gary L.; Springer, Paul L.; Sterling, Thomas; Brockman, Jay B.; Callahan, David

    2005-01-01

    This presentation will describe some initial results of paper-and-pencil studies of 4 or 5 application kernels applied to a processor-in-memory (PIM) system roughly similar to the Cascade Lightweight Processor (LWP). The application kernels are: * Linked list traversal * Sun of leaf nodes on a tree * Bitonic sort * Vector sum * Gaussian elimination The intent of this work is to guide and validate work on the Cascade project in the areas of compilers, simulators, and languages. We will first discuss the generic PIM structure. Then, we will explain the concepts needed to program a parallel PIM system (locality, threads, parcels). Next, we will present a simple PIM performance model that will be used in the remainder of the presentation. For each kernel, we will then present a set of codes, including codes for a single PIM node, and codes for multiple PIM nodes that move data to threads and move threads to data. These codes are written at a fairly low level, between assembly and C, but much closer to C than to assembly. For each code, we will present some hand-drafted timing forecasts, based on the simple PIM performance model. Finally, we will conclude by discussing what we have learned from this work, including what programming styles seem to work best, from the point-of-view of both expressiveness and performance.

  13. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.

    PubMed

    Poon, Art F Y

    2015-09-01

    The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this "kernel-ABC" method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Gate-controlled-diodes in silicon-on-sapphire: A computer simulation

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1974-01-01

    The computer simulation of the electrical behavior of a Gate-Controlled Diode (GCD) fabricated in Silicon-On-Sapphire (SOS) was described. A procedure for determining lifetime profiles from capacitance and reverse current measurements on the GCD was established. Chapter 1 discusses the SOS structure and points out the need of lifetime profiles to assist in device design for GCD's and bipolar transistors. Chapter 2 presents the one-dimensional analytical formula for electrostatic analysis of the SOS-GCD which are useful for data interpretation and setting boundary conditions on a simplified two-dimensional analysis. Chapter 3 gives the results of a two-dimensional analysis which treats the field as one-dimensional until the silicon film is depleted and the field penetrates the sapphire substrate. Chapter 4 describes a more complete two-dimensional model and gives results of programs implementing the model.

  15. On the Decay of Correlations in Non-Analytic SO(n)-Symmetric Models

    NASA Astrophysics Data System (ADS)

    Naddaf, Ali

    We extend the method of complex translations which was originally employed by McBryan-Spencer [2] to obtain a decay rate for the two point function in two-dimensional SO(n)-symmetric models with non-analytic Hamiltonians for $.

  16. Finite-size scaling study of the two-dimensional Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Beale, Paul D.

    1986-02-01

    The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.

  17. Quality changes in macadamia kernel between harvest and farm-gate.

    PubMed

    Walton, David A; Wallace, Helen M

    2011-02-01

    Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.

  18. Kernel and divergence techniques in high energy physics separations

    NASA Astrophysics Data System (ADS)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2017-10-01

    Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.

  19. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).

  20. Alternative Derivations for the Poisson Integral Formula

    ERIC Educational Resources Information Center

    Chen, J. T.; Wu, C. S.

    2006-01-01

    Poisson integral formula is revisited. The kernel in the Poisson integral formula can be derived in a series form through the direct BEM free of the concept of image point by using the null-field integral equation in conjunction with the degenerate kernels. The degenerate kernels for the closed-form Green's function and the series form of Poisson…

  1. Partial Deconvolution with Inaccurate Blur Kernel.

    PubMed

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.

  2. Study of the influence of the parameters of an experiment on the simulation of pole figures of polycrystalline materials using electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonova, A. O., E-mail: aoantonova@mail.ru; Savyolova, T. I.

    2016-05-15

    A two-dimensional mathematical model of a polycrystalline sample and an experiment on electron backscattering diffraction (EBSD) is considered. The measurement parameters are taken to be the scanning step and threshold grain-boundary angle. Discrete pole figures for materials with hexagonal symmetry have been calculated based on the results of the model experiment. Discrete and smoothed (by the kernel method) pole figures of the model sample and the samples in the model experiment are compared using homogeneity criterion χ{sup 2}, an estimate of the pole figure maximum and its coordinate, a deviation of the pole figures of the model in the experimentmore » from the sample in the space of L{sub 1} measurable functions, and the RP-criterion for estimating the pole figure errors. Is is shown that the problem of calculating pole figures is ill-posed and their determination with respect to measurement parameters is not reliable.« less

  3. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    PubMed Central

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  4. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  5. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  6. Modeling adaptive kernels from probabilistic phylogenetic trees.

    PubMed

    Nicotra, Luca; Micheli, Alessio

    2009-01-01

    Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.

  7. Reservoir area of influence and implications for fisheries management

    USGS Publications Warehouse

    Martin, Dustin R.; Chizinski, Christopher J.; Pope, Kevin L.

    2015-01-01

    Understanding the spatial area that a reservoir draws anglers from, defined as the reservoir's area of influence, and the potential overlap of that area of influence between reservoirs is important for fishery managers. Our objective was to define the area of influence for reservoirs of the Salt Valley regional fishery in southeastern Nebraska using kernel density estimation. We used angler survey data obtained from in-person interviews at 17 reservoirs during 2009–2012. The area of influence, defined by the 95% kernel density, for reservoirs within the Salt Valley regional fishery varied, indicating that anglers use reservoirs differently across the regional fishery. Areas of influence reveal angler preferences in a regional context, indicating preferred reservoirs with a greater area of influence. Further, differences in areas of influences across time and among reservoirs can be used as an assessment following management changes on an individual reservoir or within a regional fishery. Kernel density estimation provided a clear method for creating spatial maps of areas of influence and provided a two-dimensional view of angler travel, as opposed to the traditional mean travel distance assessment.

  8. Bayesian Travel Time Inversion adopting Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Mauerberger, S.; Holschneider, M.

    2017-12-01

    A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.

  9. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    PubMed

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  10. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2017-03-01

    In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

  11. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less

  12. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  13. Strong anti-gravity Life in the shock wave

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Roland, Kaj

    1992-12-01

    Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.

  14. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population.

    PubMed

    Raihan, Mohammad Sharif; Liu, Jie; Huang, Juan; Guo, Huan; Pan, Qingchun; Yan, Jianbing

    2016-08-01

    Sixteen major QTLs regulating maize kernel traits were mapped in multiple environments and one of them, qKW - 9.2 , was restricted to 630 Kb, harboring 28 putative gene models. To elucidate the genetic basis of kernel traits, a quantitative trait locus (QTL) analysis was conducted in a maize recombinant inbred line population derived from a cross between two diverse parents Zheng58 and SK, evaluated across eight environments. Construction of a high-density linkage map was based on 13,703 single-nucleotide polymorphism markers, covering 1860.9 cM of the whole genome. In total, 18, 26, 23, and 19 QTLs for kernel length, width, thickness, and 100-kernel weight, respectively, were detected on the basis of a single-environment analysis, and each QTL explained 3.2-23.7 % of the phenotypic variance. Sixteen major QTLs, which could explain greater than 10 % of the phenotypic variation, were mapped in multiple environments, implying that kernel traits might be controlled by many minor and multiple major QTLs. The major QTL qKW-9.2 with physical confidence interval of 1.68 Mbp, affecting kernel width, was then selected for fine mapping using heterogeneous inbred families. At final, the location of the underlying gene was narrowed down to 630 Kb, harboring 28 putative candidate-gene models. This information will enhance molecular breeding for kernel traits and simultaneously assist the gene cloning underlying this QTL, helping to reveal the genetic basis of kernel development in maize.

  15. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-03-01

    Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.

  16. Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

    PubMed

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen

    2017-08-31

    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  17. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  18. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hyperspectral data discrimination methods

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Chen, Xuewen

    2000-12-01

    Hyperspectral data provides spectral response information that provides detailed chemical, moisture, and other description of constituent parts of an item. These new sensor data are useful in USDA product inspection. However, such data introduce problems such as the curse of dimensionality, the need to reduce the number of features used to accommodate realistic small training set sizes, and the need to employ discriminatory features and still achieve good generalization (comparable training and test set performance). Several two-step methods are compared to a new and preferable single-step spectral decomposition algorithm. Initial results on hyperspectral data for good/bad almonds and for good/bad (aflatoxin infested) corn kernels are presented. The hyperspectral application addressed differs greatly from prior USDA work (PLS) in which the level of a specific channel constituent in food was estimated. A validation set (separate from the test set) is used in selecting algorithm parameters. Threshold parameters are varied to select the best Pc operating point. Initial results show that nonlinear features yield improved performance.

  20. P- and S-wave Receiver Function Imaging with Scattering Kernels

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.

    2017-12-01

    Full waveform inversion provides a flexible approach to the seismic parameter estimation problem and can account for the full physics of wave propagation using numeric simulations. However, this approach requires significant computational resources due to the demanding nature of solving the forward and adjoint problems. This issue is particularly acute for temporary passive-source seismic experiments (e.g. PASSCAL) that have traditionally relied on teleseismic earthquakes as sources resulting in a global scale forward problem. Various approximation strategies have been proposed to reduce the computational burden such as hybrid methods that embed a heterogeneous regional scale model in a 1D global model. In this study, we focus specifically on the problem of scattered wave imaging (migration) using both P- and S-wave receiver function data. The proposed method relies on body-wave scattering kernels that are derived from the adjoint data sensitivity kernels which are typically used for full waveform inversion. The forward problem is approximated using ray theory yielding a computationally efficient imaging algorithm that can resolve dipping and discontinuous velocity interfaces in 3D. From the imaging perspective, this approach is closely related to elastic reverse time migration. An energy stable finite-difference method is used to simulate elastic wave propagation in a 2D hypothetical subduction zone model. The resulting synthetic P- and S-wave receiver function datasets are used to validate the imaging method. The kernel images are compared with those generated by the Generalized Radon Transform (GRT) and Common Conversion Point stacking (CCP) methods. These results demonstrate the potential of the kernel imaging approach to constrain lithospheric structure in complex geologic environments with sufficiently dense recordings of teleseismic data. This is demonstrated using a receiver function dataset from the Central California Seismic Experiment which shows several dipping interfaces related to the tectonic assembly of this region. Figure 1. Scattering kernel examples for three receiver function phases. A) direct P-to-s (Ps), B) direct S-to-p and C) free-surface PP-to-s (PPs).

  1. Efficient processing of two-dimensional arrays with C or C++

    USGS Publications Warehouse

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  2. Earth Structure, Ice Mass Changes, and the Local Dynamic Geoid

    NASA Astrophysics Data System (ADS)

    Harig, C.; Simons, F. J.

    2014-12-01

    Spherical Slepian localization functions are a useful method for studying regional mass changes observed by satellite gravimetry. By projecting data onto a sparse basis set, the local field can be estimated more easily than with the full spherical harmonic basis. We have used this method previously to estimate the ice mass change in Greenland from GRACE data, and it can also be applied to other planetary problems such as global magnetic fields. Earth's static geoid, in contrast to the time-variable field, is in large part related to the internal density and rheological structure of the Earth. Past studies have used dynamic geoid kernels to relate this density structure and the internal deformation it induces to the surface geopotential at large scales. These now classical studies of the eighties and nineties were able to estimate the mantle's radial rheological profile, placing constraints on the ratio between upper and lower mantle viscosity. By combining these two methods, spherical Slepian localization and dynamic geoid kernels, we have created local dynamic geoid kernels which are sensitive only to density variations within an area of interest. With these kernels we can estimate the approximate local radial rheological structure that best explains the locally observed geoid on a regional basis. First-order differences of the regional mantle viscosity structure are accessible to this technique. In this contribution we present our latest, as yet unpublished results on the geographical and temporal pattern of ice mass changes in Antarctica over the past decade, and we introduce a new approach to extract regional information about the internal structure of the Earth from the static global gravity field. Both sets of results are linked in terms of the relevant physics, but also in being developed from the marriage of Slepian functions and geoid kernels. We make predictions on the utility of our approach to derive fully three-dimensional rheological Earth models, to be used for corrections for glacio-isostatic adjustment, as necessary for the interpretation of time-variable gravity observations in terms of ice sheet mass-balance studies.

  3. Rare-Region-Induced Avoided Quantum Criticality in Disordered Three-Dimensional Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Huse, David A.; Das Sarma, S.

    2016-04-01

    We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied) quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H ) and exactly calculate the density of states (DOS) near zero energy, using a combination of Lanczos on H2 and the kernel polynomial method on H . We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i) typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii) nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent) types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is "rounded out" by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden) criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work showing quantum criticality with the existence of these nonperturbative effects.

  4. Fast Query-Optimized Kernel-Machine Classification

    NASA Technical Reports Server (NTRS)

    Mazzoni, Dominic; DeCoste, Dennis

    2004-01-01

    A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.

  5. Refinement of Methods for Evaluation of Near-Hypersingular Integrals in BEM Formulations

    NASA Technical Reports Server (NTRS)

    Fink, Patricia W.; Khayat, Michael A.; Wilton, Donald R.

    2006-01-01

    In this paper, we present advances in singularity cancellation techniques applied to integrals in BEM formulations that are nearly hypersingular. Significant advances have been made recently in singularity cancellation techniques applied to 1 R type kernels [M. Khayat, D. Wilton, IEEE Trans. Antennas and Prop., 53, pp. 3180-3190, 2005], as well as to the gradients of these kernels [P. Fink, D. Wilton, and M. Khayat, Proc. ICEAA, pp. 861-864, Torino, Italy, 2005] on curved subdomains. In these approaches, the source triangle is divided into three tangent subtriangles with a common vertex at the normal projection of the observation point onto the source element or the extended surface containing it. The geometry of a typical tangent subtriangle and its local rectangular coordinate system with origin at the projected observation point is shown in Fig. 1. Whereas singularity cancellation techniques for 1 R type kernels are now nearing maturity, the efficient handling of near-hypersingular kernels still needs attention. For example, in the gradient reference above, techniques are presented for computing the normal component of the gradient relative to the plane containing the tangent subtriangle. These techniques, summarized in the transformations in Table 1, are applied at the sub-triangle level and correspond particularly to the case in which the normal projection of the observation point lies within the boundary of the source element. They are found to be highly efficient as z approaches zero. Here, we extend the approach to cover two instances not previously addressed. First, we consider the case in which the normal projection of the observation point lies external to the source element. For such cases, we find that simple modifications to the transformations of Table 1 permit significant savings in computational cost. Second, we present techniques that permit accurate computation of the tangential components of the gradient; i.e., tangent to the plane containing the source element.

  6. Effect of Local TOF Kernel Miscalibrations on Contrast-Noise in TOF PET

    NASA Astrophysics Data System (ADS)

    Clementel, Enrico; Mollet, Pieter; Vandenberghe, Stefaan

    2013-06-01

    TOF PET imaging requires specific calibrations: accurate characterization of the system timing resolution and timing offset is required to achieve the full potential image quality. Current system models used in image reconstruction assume a spatially uniform timing resolution kernel. Furthermore, although the timing offset errors are often pre-corrected, this correction becomes less accurate with the time since, especially in older scanners, the timing offsets are often calibrated only during the installation, as the procedure is time-consuming. In this study, we investigate and compare the effects of local mismatch of timing resolution when a uniform kernel is applied to systems with local variations in timing resolution and the effects of uncorrected time offset errors on image quality. A ring-like phantom was acquired on a Philips Gemini TF scanner and timing histograms were obtained from coincidence events to measure timing resolution along all sets of LORs crossing the scanner center. In addition, multiple acquisitions of a cylindrical phantom, 20 cm in diameter with spherical inserts, and a point source were simulated. A location-dependent timing resolution was simulated, with a median value of 500 ps and increasingly large local variations, and timing offset errors ranging from 0 to 350 ps were also simulated. Images were reconstructed with TOF MLEM with a uniform kernel corresponding to the effective timing resolution of the data, as well as with purposefully mismatched kernels. To CRC vs noise curves were measured over the simulated cylinder realizations, while the simulated point source was processed to generate timing histograms of the data. Results show that timing resolution is not uniform over the FOV of the considered scanner. The simulated phantom data indicate that CRC is moderately reduced in data sets with locally varying timing resolution reconstructed with a uniform kernel, while still performing better than non-TOF reconstruction. On the other hand, uncorrected offset errors in our setup have a larger potential for decreasing image quality and can lead to a reduction of CRC of up to 15% and an increase in the measured timing resolution kernel up to 40%. However, in realistic conditions in frequently calibrated systems, using a larger effective timing kernel in image reconstruction can compensate uncorrected offset errors.

  7. Clustering by reordering of similarity and Laplacian matrices: Application to galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Shoukry, A.; Takey, A.

    2018-04-01

    Similarity metrics, kernels and similarity-based algorithms have gained much attention due to their increasing applications in information retrieval, data mining, pattern recognition and machine learning. Similarity Graphs are often adopted as the underlying representation of similarity matrices and are at the origin of known clustering algorithms such as spectral clustering. Similarity matrices offer the advantage of working in object-object (two-dimensional) space where visualization of clusters similarities is available instead of object-features (multi-dimensional) space. In this paper, sparse ɛ-similarity graphs are constructed and decomposed into strong components using appropriate methods such as Dulmage-Mendelsohn permutation (DMperm) and/or Reverse Cuthill-McKee (RCM) algorithms. The obtained strong components correspond to groups (clusters) in the input (feature) space. Parameter ɛi is estimated locally, at each data point i from a corresponding narrow range of the number of nearest neighbors. Although more advanced clustering techniques are available, our method has the advantages of simplicity, better complexity and direct visualization of the clusters similarities in a two-dimensional space. Also, no prior information about the number of clusters is needed. We conducted our experiments on two and three dimensional, low and high-sized synthetic datasets as well as on an astronomical real-dataset. The results are verified graphically and analyzed using gap statistics over a range of neighbors to verify the robustness of the algorithm and the stability of the results. Combining the proposed algorithm with gap statistics provides a promising tool for solving clustering problems. An astronomical application is conducted for confirming the existence of 45 galaxy clusters around the X-ray positions of galaxy clusters in the redshift range [0.1..0.8]. We re-estimate the photometric redshifts of the identified galaxy clusters and obtain acceptable values compared to published spectroscopic redshifts with a 0.029 standard deviation of their differences.

  8. Stability and Hopf Bifurcation in a Reaction-Diffusion Model with Chemotaxis and Nonlocal Delay Effect

    NASA Astrophysics Data System (ADS)

    Li, Dong; Guo, Shangjiang

    Chemotaxis is an observed phenomenon in which a biological individual moves preferentially toward a relatively high concentration, which is contrary to the process of natural diffusion. In this paper, we study a reaction-diffusion model with chemotaxis and nonlocal delay effect under Dirichlet boundary condition by using Lyapunov-Schmidt reduction and the implicit function theorem. The existence, multiplicity, stability and Hopf bifurcation of spatially nonhomogeneous steady state solutions are investigated. Moreover, our results are illustrated by an application to the model with a logistic source, homogeneous kernel and one-dimensional spatial domain.

  9. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data

    PubMed Central

    2013-01-01

    Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755

  10. Local Geostatistical Models and Big Data in Hydrological and Ecological Applications

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios

    2015-04-01

    The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property helps to overcome a significant computational bottleneck of geostatistical models due to the poor scaling of the matrix inversion [4,5]. We present applications to real and simulated data sets, including the Walker lake data, and we investigate the SLI performance using various statistical cross validation measures. References [1] T. Hofmann, B. Schlkopf, A.J. Smola, Annals of Statistics, 36, 1171-1220 (2008). [2] D. T. Hristopulos, SIAM Journal on Scientific Computing, 24(6): 2125-2162 (2003). [3] D. T. Hristopulos and S. N. Elogne, IEEE Transactions on Signal Processing, 57(9): 3475-3487 (2009) [4] G. Jona Lasinio, G. Mastrantonio, and A. Pollice, Statistical Methods and Applications, 22(1):97-112 (2013) [5] Sun, Y., B. Li, and M. G. Genton (2012). Geostatistics for large datasets. In: Advances and Challenges in Space-time Modelling of Natural Events, Lecture Notes in Statistics, pp. 55-77. Springer, Berlin-Heidelberg.

  11. A Multi-Resolution Data Structure for Two-Dimensional Morse Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, P-T; Edelsbrunner, H; Hamann, B

    2003-07-30

    The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.

  12. On the solution of integral equations with a generalized cauchy kernel

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  13. A Model for Selection of Eyespots on Butterfly Wings.

    PubMed

    Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida

    2015-01-01

    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell.

  14. Resource Efficient Hardware Architecture for Fast Computation of Running Max/Min Filters

    PubMed Central

    Torres-Huitzil, Cesar

    2013-01-01

    Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k × k kernel requires of k 2 − 1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on 1024 × 1024 images with up to 255 × 255 kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding. PMID:24288456

  15. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    PubMed

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.

  16. Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation

    PubMed Central

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  17. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory; The CenterComplex Quantum Systems Team

    In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this 3-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems. We gratefully acknowledge funding from ARO Grant W911NF-14-1-0579 and NSF DMR-1507621.

  18. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor responses in the time, gas and temperature domains, and the dual representation of the support vector regression solution is shown to provide insight into the sensor's sensitivity and potential orthogonality. Finally, the dual weights of the support vector regression solution to the sensor's response are suggested as a fitness function for a genetic algorithm, or some other method for efficiently searching large parameter spaces.

  19. Some Applications of the Model of the Partion Points on a One Dimensional Lattice

    NASA Astrophysics Data System (ADS)

    Mejdani, R.; Huseini, H.

    1996-02-01

    We have shown that by using a model of gas of partition points on a one-dimensional lattice, we can find some results about the saturation curves for enzyme kinetics or the average domain-size, which we have obtained before by using a correlated walks' theory or a probabilistic (combinatoric) way. We have studied, using the same model and the same technique, the denaturation process, i.e., the breaking of the hydrogen bonds connecting the two strands, under treatment by heat. Also, we have discussed, without entering in details, the problem related to the spread of an infections disease and the stochastic model of partition points. We think that this model, being simple and mathematically transparent, can be advantageous for the other theoratical investigations in chemistry or modern biology. PACS NOS.: 05.50. + q; 05.70.Ce; 64.10.+h; 87.10. +e; 87.15.Rn

  20. Relativistic bound-state problem in the light-front Yukawa model

    NASA Astrophysics Data System (ADS)

    Głazek, Stanisław; Harindranath, Avaroth; Pinsky, Stephen; Shigemitsu, Junko; Wilson, Kenneth

    1993-02-01

    We study the renormalization problem on the light front for the two-fermion bound state in the (3+1)-dimensional Yukawa model, working within the lowest-order Tamm-Dancoff approximation. In addition to traditional mass and wave-function renormalization, new types of counterterms are required. These are nonlocal and involve arbitrary functions of the longitudinal momenta. Their appearance is consistent with general power-counting arguments on the light front. We estimate the ``arbitrary function'' in two ways: (1) by using perturbation theory as a guide and (2) by considering the asymptotic large transverse momentum behavior of the kernel in the bound-state equations. The latter method, as it is currently implemented, is applicable only to the helicity-zero sector of the theory. Because of triviality, in the Yukawa model one must retain a finite cutoff Λ in order to have a nonvanishing renormalized coupling. For the range of renormalized couplings (and cutoffs) allowed by triviality, one finds that the perturbative counterterm does a good job in eliminating cutoff dependence in the low-energy spectrum (masses <<Λ).

  1. Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim

    2017-07-01

    The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.

  2. Credit scoring analysis using kernel discriminant

    NASA Astrophysics Data System (ADS)

    Widiharih, T.; Mukid, M. A.; Mustafid

    2018-05-01

    Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.

  3. CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics

    NASA Astrophysics Data System (ADS)

    Owen, John Michael; Raskin, Cody; Frontiere, Nicholas

    2018-01-01

    The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied CRKSPH to a number of astrophysical scenarios, such as rotating gaseous disks, supernova remnants, and large-scale cosmological structure formation. In this poster we present an overview of CRKSPH and show examples of these astrophysical applications.

  4. Does money matter in inflation forecasting?

    NASA Astrophysics Data System (ADS)

    Binner, J. M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G.

    2010-11-01

    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regression-techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naïve random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists’ long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies.

  5. Dimensional coordinate measurements: application in characterizing cervical spine motion

    NASA Astrophysics Data System (ADS)

    Zheng, Weilong; Li, Linan; Wang, Shibin; Wang, Zhiyong; Shi, Nianke; Xue, Yuan

    2014-06-01

    Cervical spine as a complicated part in the human body, the form of its movement is diverse. The movements of the segments of vertebrae are three-dimensional, and it is reflected in the changes of the angle between two joint and the displacement in different directions. Under normal conditions, cervical can flex, extend, lateral flex and rotate. For there is no relative motion between measuring marks fixed on one segment of cervical vertebra, the cervical vertebrae with three marked points can be seen as a body. Body's motion in space can be decomposed into translational movement and rotational movement around a base point .This study concerns the calculation of dimensional coordinate of the marked points pasted to the human body's cervical spine by an optical method. Afterward, these measures will allow the calculation of motion parameters for every spine segment. For this study, we choose a three-dimensional measurement method based on binocular stereo vision. The object with marked points is placed in front of the CCD camera. Through each shot, we will get there two parallax images taken from different cameras. According to the principle of binocular vision we can be realized three-dimensional measurements. Cameras are erected parallelly. This paper describes the layout of experimental system and a mathematical model to get the coordinates.

  6. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Zhou, Qi

    2015-08-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  7. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  8. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  9. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less

  10. Two-dimensional habitat modeling in the Yellowstone/Upper Missouri River system

    USGS Publications Warehouse

    Waddle, T. J.; Bovee, K.D.; Bowen, Z.H.

    1997-01-01

    This study is being conducted to provide the aquatic biology component of a decision support system being developed by the U.S. Bureau of Reclamation. In an attempt to capture the habitat needs of Great Plains fish communities we are looking beyond previous habitat modeling methods. Traditional habitat modeling approaches have relied on one-dimensional hydraulic models and lumped compositional habitat metrics to describe aquatic habitat. A broader range of habitat descriptors is available when both composition and configuration of habitats is considered. Habitat metrics that consider both composition and configuration can be adapted from terrestrial biology. These metrics are most conveniently accessed with spatially explicit descriptors of the physical variables driving habitat composition. Two-dimensional hydrodynamic models have advanced to the point that they may provide the spatially explicit description of physical parameters needed to address this problem. This paper reports progress to date on applying two-dimensional hydraulic and habitat models on the Yellowstone and Missouri Rivers and uses examples from the Yellowstone River to illustrate the configurational metrics as a new tool for assessing riverine habitats.

  11. Real-space mapping of topological invariants using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  12. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  13. Kernel Temporal Differences for Neural Decoding

    PubMed Central

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  14. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of predicted landfall locations compared with observations.

  15. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.

    PubMed

    Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P

    2017-01-01

    Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  16. Laser-driven magnetized liner inertial fusion

    DOE PAGES

    Davies, J. R.

    2017-06-05

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

  17. Laser-driven magnetized liner inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, J. R.

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

  18. FARSITE: Fire Area Simulator-model development and evaluation

    Treesearch

    Mark A. Finney

    1998-01-01

    A computer simulation model, FARSITE, includes existing fire behavior models for surface, crown, spotting, point-source fire acceleration, and fuel moisture. The model's components and assumptions are documented. Simulations were run for simple conditions that illustrate the effect of individual fire behavior models on two-dimensional fire growth.

  19. Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin S.; Moses, Gregory; Young, Todd

    2016-05-01

    We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, O k , k=1,\\ldots,p , have two-dimensional unstable manifolds that contain orbits connecting each O k to the next two equilibrium points O k+1 and O k+2 in the chain ({{O}p+1}={{O}1} ). We show that the union of these equilibria and their unstable manifolds form a two-dimensional surface with a boundary that is homeomorphic to a cylinder if p is even and a Möbius strip if p is odd. If, further, each equilibrium in the chain satisfies a condition called ‘dissipativity’, then this surface is asymptotically stable.

  20. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Aggregation Behaviors of a Two-Species System with Lose-Lose Interactions

    NASA Astrophysics Data System (ADS)

    Song, Mei-Xia; Lin, Zhen-Quan; Li, Xiao-Dong; Ke, Jian-Hong

    2010-06-01

    We propose an aggregation evolution model of two-species (A- and B-species) aggregates to study the prevalent aggregation phenomena in social and economic systems. In this model, A- and B-species aggregates perform self-exchange-driven growths with the exchange rate kernels K (k,l) = Kkl and L(k,l) = Lkl, respectively, and the two species aggregates perform self-birth processes with the rate kernels J1(k) = J1k and J2(k) = J2k, and meanwhile the interaction between the aggregates of different species A and B causes a lose-lose scheme with the rate kernel H(k,l) = Hkl. Based on the mean-field theory, we investigated the evolution behaviors of the two species aggregates to study the competitions among above three aggregate evolution schemes on the distinct initial monomer concentrations A0 and B0 of the two species. The results show that the evolution behaviors of A- and B-species are crucially dominated by the competition between the two self-birth processes, and the initial monomer concentrations A0 and B0 play important roles, while the lose-lose scheme play important roles in some special cases.

  1. Deep neural network using color and synthesized three-dimensional shape for face recognition

    NASA Astrophysics Data System (ADS)

    Rhee, Seon-Min; Yoo, ByungIn; Han, Jae-Joon; Hwang, Wonjun

    2017-03-01

    We present an approach for face recognition using synthesized three-dimensional (3-D) shape information together with two-dimensional (2-D) color in a deep convolutional neural network (DCNN). As 3-D facial shape is hardly affected by the extrinsic 2-D texture changes caused by illumination, make-up, and occlusions, it could provide more reliable complementary features in harmony with the 2-D color feature in face recognition. Unlike other approaches that use 3-D shape information with the help of an additional depth sensor, our approach generates a personalized 3-D face model by using only face landmarks in the 2-D input image. Using the personalized 3-D face model, we generate a frontalized 2-D color facial image as well as 3-D facial images (e.g., a depth image and a normal image). In our DCNN, we first feed 2-D and 3-D facial images into independent convolutional layers, where the low-level kernels are successfully learned according to their own characteristics. Then, we merge them and feed into higher-level layers under a single deep neural network. Our proposed approach is evaluated with labeled faces in the wild dataset and the results show that the error rate of the verification rate at false acceptance rate 1% is improved by up to 32.1% compared with the baseline where only a 2-D color image is used.

  2. Combining area-based and individual-level data in the geostatistical mapping of late-stage cancer incidence.

    PubMed

    Goovaerts, Pierre

    2009-01-01

    This paper presents a geostatistical approach to incorporate individual-level data (e.g. patient residences) and area-based data (e.g. rates recorded at census tract level) into the mapping of late-stage cancer incidence, with an application to breast cancer in three Michigan counties. Spatial trends in cancer incidence are first estimated from census data using area-to-point binomial kriging. This prior model is then updated using indicator kriging and individual-level data. Simulation studies demonstrate the benefits of this two-step approach over methods (kernel density estimation and indicator kriging) that process only residence data.

  3. An ensemble method for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi

    2016-06-01

    Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. GRAYSKY-A new gamma-ray skyshine code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witts, D.J.; Twardowski, T.; Watmough, M.H.

    1993-01-01

    This paper describes a new prototype gamma-ray skyshine code GRAYSKY (Gamma-RAY SKYshine) that has been developed at BNFL, as part of an industrially based master of science course, to overcome the problems encountered with SKYSHINEII and RANKERN. GRAYSKY is a point kernel code based on the use of a skyshine response function. The scattering within source or shield materials is accounted for by the use of buildup factors. This is an approximate method of solution but one that has been shown to produce results that are acceptable for dose rate predictions on operating plants. The novel features of GRAYSKY aremore » as follows: 1. The code is fully integrated with a semianalytical point kernel shielding code, currently under development at BNFL, which offers powerful solid-body modeling capabilities. 2. The geometry modeling also allows the skyshine response function to be used in a manner that accounts for the shielding of air-scattered radiation. 3. Skyshine buildup factors calculated using the skyshine response function have been used as well as dose buildup factors.« less

  5. Parallel language constructs for tensor product computations on loosely coupled architectures

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Van Rosendale, John

    1989-01-01

    A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.

  6. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models.

    PubMed

    Ding, Jiarui; Condon, Anne; Shah, Sohrab P

    2018-05-21

    Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.

  7. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  8. Experiences modeling ocean circulation problems on a 30 node commodity cluster with 3840 GPU processor cores.

    NASA Astrophysics Data System (ADS)

    Hill, C.

    2008-12-01

    Low cost graphic cards today use many, relatively simple, compute cores to deliver support for memory bandwidth of more than 100GB/s and theoretical floating point performance of more than 500 GFlop/s. Right now this performance is, however, only accessible to highly parallel algorithm implementations that, (i) can use a hundred or more, 32-bit floating point, concurrently executing cores, (ii) can work with graphics memory that resides on the graphics card side of the graphics bus and (iii) can be partially expressed in a language that can be compiled by a graphics programming tool. In this talk we describe our experiences implementing a complete, but relatively simple, time dependent shallow-water equations simulation targeting a cluster of 30 computers each hosting one graphics card. The implementation takes into account the considerations (i), (ii) and (iii) listed previously. We code our algorithm as a series of numerical kernels. Each kernel is designed to be executed by multiple threads of a single process. Kernels are passed memory blocks to compute over which can be persistent blocks of memory on a graphics card. Each kernel is individually implemented using the NVidia CUDA language but driven from a higher level supervisory code that is almost identical to a standard model driver. The supervisory code controls the overall simulation timestepping, but is written to minimize data transfer between main memory and graphics memory (a massive performance bottle-neck on current systems). Using the recipe outlined we can boost the performance of our cluster by nearly an order of magnitude, relative to the same algorithm executing only on the cluster CPU's. Achieving this performance boost requires that many threads are available to each graphics processor for execution within each numerical kernel and that the simulations working set of data can fit into the graphics card memory. As we describe, this puts interesting upper and lower bounds on the problem sizes for which this technology is currently most useful. However, many interesting problems fit within this envelope. Looking forward, we extrapolate our experience to estimate full-scale ocean model performance and applicability. Finally we describe preliminary hybrid mixed 32-bit and 64-bit experiments with graphics cards that support 64-bit arithmetic, albeit at a lower performance.

  9. Dynamics of a developing economy with a remote region: Agglomeration, trade integration and trade patterns

    NASA Astrophysics Data System (ADS)

    Commendatore, Pasquale; Kubin, Ingrid; Sushko, Iryna

    2018-05-01

    We consider a three-region developing economy with poor transport infrastructures. Two models are related to different stages of development: in the first all regions are autarkic; in the second two of the regions begin to integrate with the third region still not accessible to trade. The properties of the two models are studied also considering the interplay between industry location and trade patterns. Dynamics of these models are described by two-dimensional piecewise smooth maps, characterized by multistability and complex bifurcation structure of the parameter space. We obtain analytical results related to stability of various fixed points and illustrate several bifurcation structures by means of two-dimensional bifurcation diagrams and basins of coexisting attractors.

  10. Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison.

    PubMed

    Kireeva, N; Baskin, I I; Gaspar, H A; Horvath, D; Marcou, G; Varnek, A

    2012-04-01

    Here, the utility of Generative Topographic Maps (GTM) for data visualization, structure-activity modeling and database comparison is evaluated, on hand of subsets of the Database of Useful Decoys (DUD). Unlike other popular dimensionality reduction approaches like Principal Component Analysis, Sammon Mapping or Self-Organizing Maps, the great advantage of GTMs is providing data probability distribution functions (PDF), both in the high-dimensional space defined by molecular descriptors and in 2D latent space. PDFs for the molecules of different activity classes were successfully used to build classification models in the framework of the Bayesian approach. Because PDFs are represented by a mixture of Gaussian functions, the Bhattacharyya kernel has been proposed as a measure of the overlap of datasets, which leads to an elegant method of global comparison of chemical libraries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel.

    PubMed

    Cao, D-S; Zhao, J-C; Yang, Y-N; Zhao, C-X; Yan, J; Liu, S; Hu, Q-N; Xu, Q-S; Liang, Y-Z

    2012-01-01

    There is a great need to assess the harmful effects or toxicities of chemicals to which man is exposed. In the present paper, the simplified molecular input line entry specification (SMILES) representation-based string kernel, together with the state-of-the-art support vector machine (SVM) algorithm, were used to classify the toxicity of chemicals from the US Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) database network. In this method, the molecular structure can be directly encoded by a series of SMILES substrings that represent the presence of some chemical elements and different kinds of chemical bonds (double, triple and stereochemistry) in the molecules. Thus, SMILES string kernel can accurately and directly measure the similarities of molecules by a series of local information hidden in the molecules. Two model validation approaches, five-fold cross-validation and independent validation set, were used for assessing the predictive capability of our developed models. The results obtained indicate that SVM based on the SMILES string kernel can be regarded as a very promising and alternative modelling approach for potential toxicity prediction of chemicals.

  12. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  13. Efficient approach to include molecular polarizations using charge and atom dipole response kernels to calculate free energy gradients in the QM/MM scheme.

    PubMed

    Asada, Toshio; Ando, Kanta; Sakurai, Koji; Koseki, Shiro; Nagaoka, Masataka

    2015-10-28

    An efficient approach to evaluate free energy gradients (FEGs) within the quantum mechanical/molecular mechanical (QM/MM) framework has been proposed to clarify reaction processes on the free energy surface (FES) in molecular assemblies. The method is based on response kernel approximations denoted as the charge and the atom dipole response kernel (CDRK) model that include explicitly induced atom dipoles. The CDRK model was able to reproduce polarization effects for both electrostatic interactions between QM and MM regions and internal energies in the QM region obtained by conventional QM/MM methods. In contrast to charge response kernel (CRK) models, CDRK models could be applied to various kinds of molecules, even linear or planer molecules, without using imaginary interaction sites. Use of the CDRK model enabled us to obtain FEGs on QM atoms in significantly reduced computational time. It was also clearly demonstrated that the time development of QM forces of the solvated propylene carbonate radical cation (PC˙(+)) provided reliable results for 1 ns molecular dynamics (MD) simulation, which were quantitatively in good agreement with expensive QM/MM results. Using FEG and nudged elastic band (NEB) methods, we found two optimized reaction paths on the FES for decomposition reactions to generate CO2 molecules from PC˙(+), whose reaction is known as one of the degradation mechanisms in the lithium-ion battery. Two of these reactions proceed through an identical intermediate structure whose molecular dipole moment is larger than that of the reactant to be stabilized in the solvent, which has a high relative dielectric constant. Thus, in order to prevent decomposition reactions, PC˙(+) should be modified to have a smaller dipole moment along two reaction paths.

  14. Global Search of a Three-dimensional Low Solidity Circular Cascade Diffuser for Centrifugal Blowers by Meta-model Assisted Optimization

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw

    2018-04-01

    A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.

  15. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3-25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  16. Calculation of three-dimensional compressible laminar and turbulent boundary layers. Calculation of three-dimensional compressible boundary layers on arbitrary wings

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Ramsey, J.; Moser, A.

    1975-01-01

    A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows.

  17. Quantum phase transitions in a two-dimensional quantum XYX model: ground-state fidelity and entanglement.

    PubMed

    Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang

    2009-06-01

    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.

  18. A deformable particle-in-cell method for advective transport in geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Samuel, Henri

    2018-06-01

    This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.

  19. Screening of the aerodynamic and biophysical properties of barley malt

    NASA Astrophysics Data System (ADS)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  20. Producing data-based sensitivity kernels from convolution and correlation in exploration geophysics.

    NASA Astrophysics Data System (ADS)

    Chmiel, M. J.; Roux, P.; Herrmann, P.; Rondeleux, B.

    2016-12-01

    Many studies have shown that seismic interferometry can be used to estimate surface wave arrivals by correlation of seismic signals recorded at a pair of locations. In the case of ambient noise sources, the convergence towards the surface wave Green's functions is obtained with the criterion of equipartitioned energy. However, seismic acquisition with active, controlled sources gives more possibilities when it comes to interferometry. The use of controlled sources makes it possible to recover the surface wave Green's function between two points using either correlation or convolution. We investigate the convolutional and correlational approaches using land active-seismic data from exploration geophysics. The data were recorded on 10,710 vertical receivers using 51,808 sources (seismic vibrator trucks). The sources spacing is the same in both X and Y directions (30 m) which is known as a "carpet shooting". The receivers are placed in parallel lines with a spacing 150 m in the X direction and 30 m in the Y direction. Invoking spatial reciprocity between sources and receivers, correlation and convolution functions can thus be constructed between either pairs of receivers or pairs of sources. Benefiting from the dense acquisition, we extract sensitivity kernels from correlation and convolution measurements of the seismic data. These sensitivity kernels are subsequently used to produce phase-velocity dispersion curves between two points and to separate the higher mode from the fundamental mode for surface waves. Potential application to surface wave cancellation is also envisaged.

  1. Image Processing Research

    DTIC Science & Technology

    1975-09-30

    systems a linear model results in an object f being mappad into an image _ by a point spread function matrix H. Thus with noise j +Hf +n (1) The simplest... linear models for imaging systems are given by space invariant point spread functions (SIPSF) in which case H is block circulant. If the linear model is...Ij,...,k-IM1 is a set of two dimensional indices each distinct and prior to k. Modeling Procedare: To derive the linear predictor (block LP of figure

  2. Codimension-Two Bifurcation, Chaos and Control in a Discrete-Time Information Diffusion Model

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Yu, Liping

    2016-12-01

    In this paper, we present a discrete model to illustrate how two pieces of information interact with online social networks and investigate the dynamics of discrete-time information diffusion model in three types: reverse type, intervention type and mutualistic type. It is found that the model has orbits with period 2, 4, 6, 8, 12, 16, 20, 30, quasiperiodic orbit, and undergoes heteroclinic bifurcation near 1:2 point, a homoclinic structure near 1:3 resonance point and an invariant cycle bifurcated by period 4 orbit near 1:4 resonance point. Moreover, in order to regulate information diffusion process and information security, we give two control strategies, the hybrid control method and the feedback controller of polynomial functions, to control chaos, flip bifurcation, 1:2, 1:3 and 1:4 resonances, respectively, in the two-dimensional discrete system.

  3. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  4. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Billings, S. A.

    2017-02-01

    The Volterra series model is a direct generalisation of the linear convolution integral and is capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply way. Nonlinear system analysis using Volterra series is normally based on the analysis of its frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and the truncation of Volterra series are coupled with each other. In this paper, a novel complex-valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful tool to determine which terms should be included in the Volterra series expansion and to estimate the kernels and thus solves the two problems all together. The estimated results are compared with those determined using the analytical expressions of the kernels to validate the method. To further evaluate the effectiveness of the method, the physical parameters of the system are also extracted from the measured kernels. Simulation studies demonstrates that the new approach not only can truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but also can indicate the applicability of the Volterra series analysis in a severely nonlinear system case.

  6. Magnetohydrodynamic cellular automata

    NASA Technical Reports Server (NTRS)

    Montgomery, David; Doolen, Gary D.

    1987-01-01

    A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.

  7. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  8. Research of MPPT for photovoltaic generation based on two-dimensional cloud model

    NASA Astrophysics Data System (ADS)

    Liu, Shuping; Fan, Wei

    2013-03-01

    The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.

  9. Renormalized Energy Concentration in Random Matrices

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Serfaty, Sylvia

    2013-05-01

    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line ( β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.

  10. Airflow and air quality simulations over the western mountainous region with a four-dimensional data assimilation technique

    NASA Astrophysics Data System (ADS)

    Yamada, Tetsuji; Kao, Chih-Yue; Bunker, Susan

    We apply a three-dimensional meteorological model with a four-dimensional data assimilation (4-DDA) technique to simulate diurnal variations of wind, temperature, water vapor, and turbulence in a region extending from the west coast to east of the Rockies and from northern Mexico to Wyoming. The wind data taken during the 1985 SCENES ( Subregional Cooperative Electric Utility, Dept. of Defense, National Park Service, and Environmental Protection Agency Study on Visibility) field experiments are successfully assimilated into the model through the 4-DDA technique by 'nudging' the modeled winds toward the observed winds. The modeled winds and turbulence fields are then used in a Lagrangian random-particle statistical model to investigate how pollutants from potential sources are transported and diffused. Finally, we calculate the ground concentrations through a kernel density estimator. Two scenarios in different weather patterns are investigated with simulation periods up to 6 days. One is associated with the evolution of a surface cold front and the other under a high-pressure stagnant condition. In the frontal case, the impact of air-mass movement on the ground concentrations of pollutants released from the Los Angeles area is well depicted by the model. Also, the pollutants produced from Los Angeles can be transported to the Grand Canyon area within 24 h. However, if we use only the data that were obtained from the regular NWS rawinsonde network, whose temporal and spatial resolutions are coarser than those of the special network, the plume goes north-northeast and never reaches the Grand Canyon area. In the stagnant case, the pollutants meander around the source area and can have significant impact on local air quality.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birmingham, D.; Kantowski, R.; Milton, K.A.

    We use two methods of computing the unique logarithmically divergent part of the Casimir energy for massive scalar and spinor fields defined on even-dimensional Kaluza-Klein spaces of the form M/sup 4/ x S/sup N//sup 1/ x S/sup N//sup 2/ x xxx. Both methods (heat kernel and direct) give identical results. The first evaluates the required internal zeta function by identifying it in the asymptotic expansion of the trace of the heat kernel, and the second evaluates the zeta function directly using the Euler-Maclaurin sum formula. In Appendix C we tabulate these energies for all spaces of total internal dimension lessmore » than or equal to6. These methods are easily applied to vector and tensor fields needed in computing one-loop vacuum gravitational energies on these spaces. Stable solutions are given for internal structure S/sup 2/ x S/sup 2/.« less

  12. Comparing Thermal Process Validation Methods for Salmonella Inactivation on Almond Kernels.

    PubMed

    Jeong, Sanghyup; Marks, Bradley P; James, Michael K

    2017-01-01

    Ongoing regulatory changes are increasing the need for reliable process validation methods for pathogen reduction processes involving low-moisture products; however, the reliability of various validation methods has not been evaluated. Therefore, the objective was to quantify accuracy and repeatability of four validation methods (two biologically based and two based on time-temperature models) for thermal pasteurization of almonds. Almond kernels were inoculated with Salmonella Enteritidis phage type 30 or Enterococcus faecium (NRRL B-2354) at ~10 8 CFU/g, equilibrated to 0.24, 0.45, 0.58, or 0.78 water activity (a w ), and then heated in a pilot-scale, moist-air impingement oven (dry bulb 121, 149, or 177°C; dew point <33.0, 69.4, 81.6, or 90.6°C; v air = 2.7 m/s) to a target lethality of ~4 log. Almond surface temperatures were measured in two ways, and those temperatures were used to calculate Salmonella inactivation using a traditional (D, z) model and a modified model accounting for process humidity. Among the process validation methods, both methods based on time-temperature models had better repeatability, with replication errors approximately half those of the surrogate ( E. faecium ). Additionally, the modified model yielded the lowest root mean squared error in predicting Salmonella inactivation (1.1 to 1.5 log CFU/g); in contrast, E. faecium yielded a root mean squared error of 1.2 to 1.6 log CFU/g, and the traditional model yielded an unacceptably high error (3.4 to 4.4 log CFU/g). Importantly, the surrogate and modified model both yielded lethality predictions that were statistically equivalent (α = 0.05) to actual Salmonella lethality. The results demonstrate the importance of methodology, a w , and process humidity when validating thermal pasteurization processes for low-moisture foods, which should help processors select and interpret validation methods to ensure product safety.

  13. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-05-01

    Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach's feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.

  14. Renormalizable Quantum Field Theories in the Large -n Limit

    NASA Astrophysics Data System (ADS)

    Guruswamy, Sathya

    1995-01-01

    In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.

  15. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  16. Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.

    PubMed

    Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi

    2018-03-01

    Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.

  17. Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wenjing; Krishnamoorthy, Sriram; Agrawal, Gagan

    2012-05-15

    Auto-tuning has emerged as an important practical method for creating highly optimized implementations of key computational kernels and applications. However, the growing complexity of architectures and applications is creating new challenges for auto-tuning. Complex applications can involve a prohibitively large search space that precludes empirical auto-tuning. Similarly, architectures are becoming increasingly complicated, making it hard to model performance. In this paper, we focus on the challenge to auto-tuning presented by applications with a large number of kernels and kernel instantiations. While these kernels may share a somewhat similar pattern, they differ considerably in problem sizes and the exact computation performed.more » We propose and evaluate a new approach to auto-tuning which we refer to as parameterized micro-benchmarking. It is an alternative to the two existing classes of approaches to auto-tuning: analytical model-based and empirical search-based. Particularly, we argue that the former may not be able to capture all the architectural features that impact performance, whereas the latter might be too expensive for an application that has several different kernels. In our approach, different expressions in the application, different possible implementations of each expression, and the key architectural features, are used to derive a simple micro-benchmark and a small parameter space. This allows us to learn the most significant features of the architecture that can impact the choice of implementation for each kernel. We have evaluated our approach in the context of GPU implementations of tensor contraction expressions encountered in excited state calculations in quantum chemistry. We have focused on two aspects of GPUs that affect tensor contraction execution: memory access patterns and kernel consolidation. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations, but no auto-tuning. We demonstrate that observations made from microbenchmarks match the behavior seen from real expressions. In the process, we make important observations about the memory hierarchy of two of the most recent NVIDIA GPUs, which can be used in other optimization frameworks as well.« less

  18. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-04-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

  19. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

  20. Discontinuous functional for linear-response time-dependent density-functional theory: The exact-exchange kernel and approximate forms

    NASA Astrophysics Data System (ADS)

    Hellgren, Maria; Gross, E. K. U.

    2013-11-01

    We present a detailed study of the exact-exchange (EXX) kernel of time-dependent density-functional theory with an emphasis on its discontinuity at integer particle numbers. It was recently found that this exact property leads to sharp peaks and step features in the kernel that diverge in the dissociation limit of diatomic systems [Hellgren and Gross, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.022514 85, 022514 (2012)]. To further analyze the discontinuity of the kernel, we here make use of two different approximations to the EXX kernel: the Petersilka Gossmann Gross (PGG) approximation and a common energy denominator approximation (CEDA). It is demonstrated that whereas the PGG approximation neglects the discontinuity, the CEDA includes it explicitly. By studying model molecular systems it is shown that the so-called field-counteracting effect in the density-functional description of molecular chains can be viewed in terms of the discontinuity of the static kernel. The role of the frequency dependence is also investigated, highlighting its importance for long-range charge-transfer excitations as well as inner-shell excitations.

  1. Recent Survey and Application of the simSUNDT Software

    NASA Astrophysics Data System (ADS)

    Persson, G.; Wirdelius, H.

    2010-02-01

    The simSUNDT software is based on a previous developed program (SUNDT). The latest version has been customized in order to generate realistic synthetic data (including a grain noise model), compatible with a number of off-line analysis software. The software consists of a Windows®-based preprocessor and postprocessor together with a mathematical kernel (UTDefect), dealing with the actual mathematical modeling. The model employs various integral transforms and integral equation and enables simulations of the entire ultrasonic testing situation. The model is completely three-dimensional though the simulated component is two-dimensional, bounded by the scanning surface and a planar back surface as an option. It is of great importance that inspection methods that are applied are proper validated and that their capability of detection of cracks and defects are quantified. In order to achieve this, statistical methods such as Probability of Detection (POD) often are applied, with the ambition to estimate the detectability as a function of defect size. Despite the fact that the proposed procedure with the utilization of test pieces is very expensive, it also tends to introduce a number of possible misalignments between the actual NDT situation that is to be performed and the proposed experimental simulation. The presentation will describe the developed model that will enable simulation of a phased array NDT inspection and the ambition to use this simulation software to generate POD information. The paper also includes the most recent developments of the model including some initial experimental validation of the phased array probe model.

  2. Appraisal of ALM predictions of turbulent wake features

    NASA Astrophysics Data System (ADS)

    Rocchio, Benedetto; Cilurzo, Lorenzo; Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano

    2017-11-01

    Wind turbine blades create a turbulent wake that may persist far downstream, with significant implications on wind farm design and on its power production. The numerical representation of the real blade geometry would lead to simulations beyond the present computational resources. We focus our attention on the Actuator Line Model (ALM), in which the blade is replaced by a rotating line divided into finite segments with representative aerodynamic coefficients. The total aerodynamic force is projected along the computational axis and, to avoid numerical instabilities, it is distributed among the nearest grid points by using a Gaussian regularization kernel. The standard deviation of this kernel is a fundamental parameter that strongly affects the characteristics of the wake. We compare here the wake features obtained in direct numerical simulations of the flow around 2D bodies (a flat plate and an airfoil) modeled using the Immersed Boundary Method with the results of simulations in which the body is modeled by ALM. In particular, we investigate whether the ALM is able to reproduce the mean velocity field and the turbulent kinetic energy in the wake for the considered bodies at low and high angles of attack and how this depends on the choice of the ALM kernel. S. Leonardi was supported by the National Science Foundation, Grant No. 1243482 (the WINDINSPIRE project).

  3. Norm overlap between many-body states: Uncorrelated overlap between arbitrary Bogoliubov product states

    NASA Astrophysics Data System (ADS)

    Bally, B.; Duguet, T.

    2018-02-01

    Background: State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such norm kernels has become available under the form of Pfaffians [L. M. Robledo, Phys. Rev. C 79, 021302 (2009), 10.1103/PhysRevC.79.021302]. Recently developed particle-number-restored Bogoliubov coupled-cluster (PNR-BCC) and particle-number-restored Bogoliubov many-body perturbation (PNR-BMBPT) ab initio theories [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] make use of generalized norm kernels incorporating explicit many-body correlations. In PNR-BCC and PNR-BMBPT, the Bogoliubov states involved in the norm kernels differ specifically via a global gauge rotation. Purpose: The goal of this work is threefold. We wish (i) to propose and implement an alternative to the Pfaffian method to compute unambiguously the norm overlap between arbitrary Bogoliubov quasiparticle states, (ii) to extend the first point to explicitly correlated norm kernels, and (iii) to scrutinize the analytical content of the correlated norm kernels employed in PNR-BMBPT. Point (i) constitutes the purpose of the present paper while points (ii) and (iii) are addressed in a forthcoming paper. Methods: We generalize the method used in another work [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] in such a way that it is applicable to kernels involving arbitrary pairs of Bogoliubov states. The formalism is presently explicated in detail in the case of the uncorrelated overlap between arbitrary Bogoliubov states. The power of the method is numerically illustrated and benchmarked against known results on the basis of toy models of increasing complexity. Results: The norm overlap between arbitrary Bogoliubov product states is obtained under a closed-form expression allowing its computation without any phase ambiguity. The formula is physically intuitive, accurate, and versatile. It equally applies to norm overlaps between Bogoliubov states of even or odd number parity. Numerical applications illustrate these features and provide a transparent representation of the content of the norm overlaps. Conclusions: The complex norm overlap between arbitrary Bogoliubov states is computed, without any phase ambiguity, via elementary linear algebra operations. The method can be used in any configuration mixing of orthogonal and non-orthogonal product states. Furthermore, the closed-form expression extends naturally to correlated overlaps at play in PNR-BCC and PNR-BMBPT. As such, the straight overlap between Bogoliubov states is the zero-order reduction of more involved norm kernels to be studied in a forthcoming paper.

  4. Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python.

    PubMed

    Irvine, Michael A; Hollingsworth, T Déirdre

    2018-05-26

    Fitting complex models to epidemiological data is a challenging problem: methodologies can be inaccessible to all but specialists, there may be challenges in adequately describing uncertainty in model fitting, the complex models may take a long time to run, and it can be difficult to fully capture the heterogeneity in the data. We develop an adaptive approximate Bayesian computation scheme to fit a variety of epidemiologically relevant data with minimal hyper-parameter tuning by using an adaptive tolerance scheme. We implement a novel kernel density estimation scheme to capture both dispersed and multi-dimensional data, and directly compare this technique to standard Bayesian approaches. We then apply the procedure to a complex individual-based simulation of lymphatic filariasis, a human parasitic disease. The procedure and examples are released alongside this article as an open access library, with examples to aid researchers to rapidly fit models to data. This demonstrates that an adaptive ABC scheme with a general summary and distance metric is capable of performing model fitting for a variety of epidemiological data. It also does not require significant theoretical background to use and can be made accessible to the diverse epidemiological research community. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Reply to Comments to X. Li and Y. M. Wang (2011) Comparisons of geoid models over Alaska computed with different Stokes' kernel modifications, JGS 1(2): 136-142 by L. E. Sjöberg

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2012-01-01

    The authors thank professor Sjöberg for having interest in our paper. The main goal of the paper is to test kernel modification methods used in geoid computations. Our tests found that Vanicek/Kleusberg's and Featherstone's methods fit the GPS/leveling data the best in the relative sense at various cap sizes. At the same time, we also pointed out that their methods are unstable and the mean values change from dm to meters by just changing the cap size. By contrast, the modification of the Wong and Gore type (including the spectral combination, method of Heck and Grüninger) is stable and insensitive to the truncation degree and cap size. This feature is especially useful when we know the accuracy of the gravity field at different frequency bands. For instance, it is advisable to truncate Stokes' kernel at a degree to which the satellite model is believed to be more accurate than surface data. The method of the Wong and Goretype does this job quite well. In contrast, the low degrees of Stokes' kernel are modified by Molodensky's coefficients tn in Vanicek/Kleusberg's and Featherstone's methods (cf. Eq. (6) in Li and Wang (2011)). It implies that the low degree gravity field of the reference model will be altered by less accurate surface data in the final geoid. This is also the cause of the larger variation in mean values of the geoid.

  6. The CT image standardization based on the verified PSF

    NASA Astrophysics Data System (ADS)

    Wada, Shinichi; Ohkubo, Masaki; Kunii, Masayuki; Matsumoto, Toru; Murao, Kohei; Awai, Kazuo; Ikeda, Mitsuru

    2007-03-01

    This study discusses a method of CT image quality standardization that uses a point-spread function (PSF) in MDCT. CT image I(x,y,z) is represented by the following formula: I(x,y,z) = O(x,y,z)***PSF(x,y,z). Standardization was performed by measuring the three-dimensional (3-D) PSFs of two CT images with different image qualities. The image conversion method was constructed and tested using the 3-D PSFs and CT images of the CT scanners of three different manufacturers. The CT scanners used were Lightspeed QX/i, Somatom Volume Zoom, and Brilliance-40. To obtain the PSF(x,y) of these CT scanners, the line spread functions of the respective reconstruction kernels were measured using a phantom described by J.M. Boone. The kernels for each scanner were: soft, standard, lung, bone, and bone plus (GE); B20f, B40f, B41f, B50f, and B60f (Siemens); and B, C, D, E, and L (Philips). Slice sensitivity profile (SSP) were measured using a micro-disk phantom (50 μm* φ1 mm) with 5 mm slice thickness and beam pitch of 1.5 (GE, Siemens) and 0.626 (Philips). 3-D PSF was verified using an MDCT QA phantom. Real chest CT images were converted to images with contrasting standard image quality. Comparison between the converted CT image and the original standard image showed good agreement. The usefulness of the image conversion method is discussed using clinical CT images acquired by CT scanners produced by different manufacturers.

  7. A Three Dimensional Model of the Feline Hindlimb

    PubMed Central

    Burkholder, Thomas J.; Richard Nichols, T.

    2007-01-01

    This paper describes a three dimensional musculoskeletal model of the feline hindlimb based on digitized musculoskeletal anatomy. The model consists of seven degrees of freedom: three at the hip and two each at the knee and ankle. Lines of action and via points for 32 major muscles of the limb are described. Interspecimen variability of muscle paths was surprisingly low: most via points displayed a scatter of only a few millimeters. Joint axes identified by mechanical techniques as non-coincident and non-orthogonal were further honed to yield moment arms consistent with previous reports. Interspecimen variability in joint axes was greater than that of muscle paths and highlights the importance of joint axes in kinematic models. The contribution of specific muscles to the direction of endpoint force generation is discussed. PMID:15164372

  8. Cross Correlations for Two-Dimensional Geosynchronous Satellite Imagery Data,

    DTIC Science & Technology

    1980-04-01

    transform of f(x), g(x,u) is the forward transformation kernel, and u assumes values in the range 0, 1, .. ,N-i. Similarly, the inverse transform is given...transform for values of u and v in the range, 0, 1, 2, ..., N-1. To obtain the inverse transform we pre-multiply and post-multiply Eq. (5-7) by an inverse...any algorithm for computing the forward transform can be used directly to obtain the inverse transform simply by multiplying the result of the

  9. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  10. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia

    PubMed Central

    Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.

    2011-01-01

    Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948

  11. Recording from two neurons: second-order stimulus reconstruction from spike trains and population coding.

    PubMed

    Fernandes, N M; Pinto, B D L; Almeida, L O B; Slaets, J F W; Köberle, R

    2010-10-01

    We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.

  12. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging.

    PubMed

    Wang, Wei; Heitschmidt, Gerald W; Windham, William R; Feldner, Peggy; Ni, Xinzhi; Chu, Xuan

    2015-01-01

    The feasibility of using a visible/near-infrared hyperspectral imaging system with a wavelength range between 400 and 1000 nm to detect and differentiate different levels of aflatoxin B1 (AFB1 ) artificially titrated on maize kernel surface was examined. To reduce the color effects of maize kernels, image analysis was limited to a subset of original spectra (600 to 1000 nm). Residual staining from the AFB1 on the kernels surface was selected as regions of interest for analysis. Principal components analysis (PCA) was applied to reduce the dimensionality of hyperspectral image data, and then a stepwise factorial discriminant analysis (FDA) was performed on latent PCA variables. The results indicated that discriminant factors F2 can be used to separate control samples from all of the other groups of kernels with AFB1 inoculated, whereas the discriminant factors F1 can be used to identify maize kernels with levels of AFB1 as low as 10 ppb. An overall classification accuracy of 98% was achieved. Finally, the peaks of β coefficients of the discrimination factors F1 and F2 were analyzed and several key wavelengths identified for differentiating maize kernels with and without AFB1 , as well as those with differing levels of AFB1 inoculation. Results indicated that Vis/NIR hyperspectral imaging technology combined with the PCA-FDA was a practical method to detect and differentiate different levels of AFB1 artificially inoculated on the maize kernels surface. However, indicated the potential to detect and differentiate naturally occurring toxins in maize kernel. © 2014 Institute of Food Technologists®

  13. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  14. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  15. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Terletska, Hanna; Moore, C.

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  16. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE PAGES

    Zhang, Yi; Terletska, Hanna; Moore, C.; ...

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  17. SU-F-T-450: The Investigation of Radiotherapy Quality Assurance and Automatic Treatment Planning Based On the Kernel Density Estimation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Fan, J; Hu, W

    Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less

  18. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.

  19. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Followill, D; Howell, R

    2015-06-15

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titaniummore » and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus, these two strategies do have the potential to improve accuracy for patients with metal implants in certain scenarios. This work was supported by Public Health Service grants CA 180803 and CA 10953 awarded by the National Cancer Institute, United States of Health and Human Services, and in part by Mobius Medical Systems.« less

  20. Mathematical modeling of transformation process of structurally unstable magnetic configurations into structurally stable ones in two-dimensional and three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov

    Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.

  1. Center-of-Mass Tomography and Wigner Function for Multimode Photon States

    NASA Astrophysics Data System (ADS)

    Dudinets, Ivan V.; Man'ko, Vladimir I.

    2018-06-01

    Tomographic probability representation of multimode electromagnetic field states in the scheme of center-of-mass tomography is reviewed. Both connection of the field state Wigner function and observable Weyl symbols with the center-of-mass tomograms as well as connection of the Grönewold kernel with the center-of-mass tomographic kernel determining the noncommutative product of the tomograms are obtained. The dual center-of-mass tomogram of the photon states are constructed and the dual tomographic kernel is obtained. The models of other generalized center-of-mass tomographies are discussed. Example of two-mode even and odd Schrödinger cat states is presented in details.

  2. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Franz, M.

    2017-07-01

    A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti-de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  3. Feature extraction based on semi-supervised kernel Marginal Fisher analysis and its application in bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Xuan, Jianping; Shi, Tielin

    2013-12-01

    Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.

  4. Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data.

    PubMed

    Buettner, Florian; Moignard, Victoria; Göttgens, Berthold; Theis, Fabian J

    2014-07-01

    High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to low or absent expression, and the true expression level is unknown. Because this censoring can occur for high proportions of the data, it is one of the main challenges when dealing with single-cell qPCR data. Principal component analysis (PCA) is an important tool for visualizing the structure of high-dimensional data as well as for identifying subpopulations of cells. However, to date it is not clear how to perform a PCA of censored data. We present a probabilistic approach that accounts for the censoring and evaluate it for two typical datasets containing single-cell qPCR data. We use the Gaussian process latent variable model framework to account for censoring by introducing an appropriate noise model and allowing a different kernel for each dimension. We evaluate this new approach for two typical qPCR datasets (of mouse embryonic stem cells and blood stem/progenitor cells, respectively) by performing linear and non-linear probabilistic PCA. Taking the censoring into account results in a 2D representation of the data, which better reflects its known structure: in both datasets, our new approach results in a better separation of known cell types and is able to reveal subpopulations in one dataset that could not be resolved using standard PCA. The implementation was based on the existing Gaussian process latent variable model toolbox (https://github.com/SheffieldML/GPmat); extensions for noise models and kernels accounting for censoring are available at http://icb.helmholtz-muenchen.de/censgplvm. © The Author 2014. Published by Oxford University Press. All rights reserved.

  5. Probabilistic PCA of censored data: accounting for uncertainties in the visualization of high-throughput single-cell qPCR data

    PubMed Central

    Buettner, Florian; Moignard, Victoria; Göttgens, Berthold; Theis, Fabian J.

    2014-01-01

    Motivation: High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to low or absent expression, and the true expression level is unknown. Because this censoring can occur for high proportions of the data, it is one of the main challenges when dealing with single-cell qPCR data. Principal component analysis (PCA) is an important tool for visualizing the structure of high-dimensional data as well as for identifying subpopulations of cells. However, to date it is not clear how to perform a PCA of censored data. We present a probabilistic approach that accounts for the censoring and evaluate it for two typical datasets containing single-cell qPCR data. Results: We use the Gaussian process latent variable model framework to account for censoring by introducing an appropriate noise model and allowing a different kernel for each dimension. We evaluate this new approach for two typical qPCR datasets (of mouse embryonic stem cells and blood stem/progenitor cells, respectively) by performing linear and non-linear probabilistic PCA. Taking the censoring into account results in a 2D representation of the data, which better reflects its known structure: in both datasets, our new approach results in a better separation of known cell types and is able to reveal subpopulations in one dataset that could not be resolved using standard PCA. Availability and implementation: The implementation was based on the existing Gaussian process latent variable model toolbox (https://github.com/SheffieldML/GPmat); extensions for noise models and kernels accounting for censoring are available at http://icb.helmholtz-muenchen.de/censgplvm. Contact: fbuettner.phys@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24618470

  6. Improved GSO Optimized ESN Soft-Sensor Model of Flotation Process Based on Multisource Heterogeneous Information Fusion

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na

    2014-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935

  7. A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.

    PubMed

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2004-09-01

    Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.

  8. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    PubMed

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  9. Renormalization group flows and continual Lie algebras

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis

    2003-08-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.

  10. Optimization method of superpixel analysis for multi-contrast Jones matrix tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.

  11. Robust kernel collaborative representation for face recognition

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong

    2015-05-01

    One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.

  12. SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlain, S; Roswell Park Cancer Institute, Buffalo, NY; French, S

    Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3more » × 10{sup 6} to 3 × 10{sup 7}); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10{sup 6} was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10{sup 6} have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.« less

  13. Two-terminal conductance fluctuations in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Ho, Chang-Ming

    1999-09-01

    Motivated by recent experiments on the conductance fluctuations in mesoscopic integer quantum Hall systems, we consider a model in which the Coulomb interactions are incorporated into the picture of edge-state transport through a single saddle point. The occupancies of classical localized states in the two-dimensional electron system change due to the interactions between electrons when the gate voltage on top of the device is varied. The electrostatic potential between the localized states and the saddle point causes fluctuations of the saddle-point potential and thus fluctuations of the transmission probability of edge states. This simple model is studied numerically and compared with the observation.

  14. Hybrid parallel computing architecture for multiview phase shifting

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  15. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  16. Biochemical studies of some non-conventional sources of proteins. Part 7. Effect of detoxification treatments on the nutritional quality of apricot kernels.

    PubMed

    el-Adawy, T A; Rahma, E H; el-Badawey, A A; Gomaa, M A; Lásztity, R; Sarkadi, L

    1994-01-01

    Detoxification of apricot kernels by soaking in distilled water and ammonium hydroxide for 30 h at 47 degrees C decreased the total protein, non-protein nitrogen, total ash, glucose, sucrose, minerals, non-essential amino acids, polar amino acids, acidic amino acids, aromatic amino acids, antinutritional factors, hydrocyanic acid, tannins and phytic acid. On the other hand, removal of toxic and bitter compounds from apricot kernels increased the relative content of crude fibre, starch, total essential amino acids. Higher in-vitro protein digestibility and biological value was also observed. Generally, the detoxified apricot kernels were nutritionally well balanced. Utilization and incorporation of detoxified apricot kernel flours in food products is completely safe from the toxicity point of view.

  17. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less

  18. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    NASA Astrophysics Data System (ADS)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  19. NARMER-1: a photon point-kernel code with build-up factors

    NASA Astrophysics Data System (ADS)

    Visonneau, Thierry; Pangault, Laurence; Malouch, Fadhel; Malvagi, Fausto; Dolci, Florence

    2017-09-01

    This paper presents an overview of NARMER-1, the new generation of photon point-kernel code developed by the Reactor Studies and Applied Mathematics Unit (SERMA) at CEA Saclay Center. After a short introduction giving some history points and the current context of development of the code, the paper exposes the principles implemented in the calculation, the physical quantities computed and surveys the generic features: programming language, computer platforms, geometry package, sources description, etc. Moreover, specific and recent features are also detailed: exclusion sphere, tetrahedral meshes, parallel operations. Then some points about verification and validation are presented. Finally we present some tools that can help the user for operations like visualization and pre-treatment.

  20. Kernel methods and flexible inference for complex stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Capobianco, Enrico

    2008-07-01

    Approximation theory suggests that series expansions and projections represent standard tools for random process applications from both numerical and statistical standpoints. Such instruments emphasize the role of both sparsity and smoothness for compression purposes, the decorrelation power achieved in the expansion coefficients space compared to the signal space, and the reproducing kernel property when some special conditions are met. We consider these three aspects central to the discussion in this paper, and attempt to analyze the characteristics of some known approximation instruments employed in a complex application domain such as financial market time series. Volatility models are often built ad hoc, parametrically and through very sophisticated methodologies. But they can hardly deal with stochastic processes with regard to non-Gaussianity, covariance non-stationarity or complex dependence without paying a big price in terms of either model mis-specification or computational efficiency. It is thus a good idea to look at other more flexible inference tools; hence the strategy of combining greedy approximation and space dimensionality reduction techniques, which are less dependent on distributional assumptions and more targeted to achieve computationally efficient performances. Advantages and limitations of their use will be evaluated by looking at algorithmic and model building strategies, and by reporting statistical diagnostics.

Top