On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
NASA Astrophysics Data System (ADS)
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard
2016-01-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.
NASA Astrophysics Data System (ADS)
Guinot, Vincent
2017-11-01
The validity of flux and source term formulae used in shallow water models with porosity for urban flood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 different geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are defined. This results in a set of 96 fine grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP flux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous flux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance confirms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all flow configurations to be accounted for(vi) future laboratory experiments aiming at the validation of flux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and flow velocity fields.
Some issues in the simulation of two-phase flows: The relative velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräbel, J.; Hensel, S.; Ueberholz, P.
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Nkonga, Boniface
2017-10-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.
A new Lagrangian method for three-dimensional steady supersonic flows
NASA Technical Reports Server (NTRS)
Loh, Ching-Yuen; Liou, Meng-Sing
1993-01-01
In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.
Finite-volume application of high order ENO schemes to multi-dimensional boundary-value problems
NASA Technical Reports Server (NTRS)
Casper, Jay; Dorrepaal, J. Mark
1990-01-01
The finite volume approach in developing multi-dimensional, high-order accurate essentially non-oscillatory (ENO) schemes is considered. In particular, a two dimensional extension is proposed for the Euler equation of gas dynamics. This requires a spatial reconstruction operator that attains formal high order of accuracy in two dimensions by taking account of cross gradients. Given a set of cell averages in two spatial variables, polynomial interpolation of a two dimensional primitive function is employed in order to extract high-order pointwise values on cell interfaces. These points are appropriately chosen so that correspondingly high-order flux integrals are obtained through each interface by quadrature, at each point having calculated a flux contribution in an upwind fashion. The solution-in-the-small of Riemann's initial value problem (IVP) that is required for this pointwise flux computation is achieved using Roe's approximate Riemann solver. Issues to be considered in this two dimensional extension include the implementation of boundary conditions and application to general curvilinear coordinates. Results of numerical experiments are presented for qualitative and quantitative examination. These results contain the first successful application of ENO schemes to boundary value problems with solid walls.
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation
NASA Technical Reports Server (NTRS)
Driscoll, Tobin A.; Vavasis, Stephen A.
1996-01-01
We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James Russell
2015-03-05
This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equationmore » of state and for the JWL equation of state.« less
Comparative study of high-resolution shock-capturing schemes for a real gas
NASA Technical Reports Server (NTRS)
Montagne, J.-L.; Yee, H. C.; Vinokur, M.
1987-01-01
Recently developed second-order explicit shock-capturing methods, in conjunction with generalized flux-vector splittings, and a generalized approximate Riemann solver for a real gas are studied. The comparisons are made on different one-dimensional Riemann (shock-tube) problems for equilibrium air with various ranges of Mach numbers, densities and pressures. Six different Riemann problems are considered. These tests provide a check on the validity of the generalized formulas, since theoretical prediction of their properties appears to be difficult because of the non-analytical form of the state equation. The numerical results in the supersonic and low-hypersonic regimes indicate that these produce good shock-capturing capability and that the shock resolution is only slightly affected by the state equation of equilibrium air. The difference in shock resolution between the various methods varies slightly from one Riemann problem to the other, but the overall accuracy is very similar. For the one-dimensional case, the relative efficiency in terms of operation count for the different methods is within 30%. The main difference between the methods lies in their versatility in being extended to multidimensional problems with efficient implicit solution procedures.
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension
NASA Astrophysics Data System (ADS)
Rohde, Christian; Zeiler, Christoph
2018-06-01
We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Gregory H.
2003-08-06
In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in commonmore » practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.« less
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Osher, Stanley
1989-01-01
Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained.
Universal moduli spaces of Riemann surfaces
NASA Astrophysics Data System (ADS)
Ji, Lizhen; Jost, Jürgen
2017-04-01
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Bardi, Martino; Osher, Stanley
1991-01-01
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimensions when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a 'maxmin' equals a 'minmax', and thus a representation formula for this problem is obtained, generalizing the classical Hopi formulas.
Riemann-Hilbert technique scattering analysis of metamaterial-based asymmetric 2D open resonators
NASA Astrophysics Data System (ADS)
Kamiński, Piotr M.; Ziolkowski, Richard W.; Arslanagić, Samel
2017-12-01
The scattering properties of metamaterial-based asymmetric two-dimensional open resonators excited by an electric line source are investigated analytically. The resonators are, in general, composed of two infinite and concentric cylindrical layers covered with an infinitely thin, perfect conducting shell that has an infinite axial aperture. The line source is oriented parallel to the cylinder axis. An exact analytical solution of this problem is derived. It is based on the dual-series approach and its transformation to the equivalent Riemann-Hilbert problem. Asymmetric metamaterial-based configurations are found to lead simultaneously to large enhancements of the radiated power and to highly steerable Huygens-like directivity patterns; properties not attainable with the corresponding structurally symmetric resonators. The presented open resonator designs are thus interesting candidates for many scientific and engineering applications where enhanced directional near- and far-field responses, tailored with beam shaping and steering capabilities, are highly desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertola, Marco, E-mail: Marco.Bertola@concordia.ca; Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec H3C 3J7; SISSA/ISAS, via Bonomea 265, Trieste
2015-06-15
Two-phase solutions of focusing NLS equation are classically constructed out of an appropriate Riemann surface of genus two and expressed in terms of the corresponding theta-function. We show here that in a certain limiting regime, such solutions reduce to some elementary ones called “Solitons on unstable condensate.” This degeneration turns out to be conveniently studied by means of basic tools from the theory of Riemann-Hilbert problems. In particular, no acquaintance with Riemann surfaces and theta-function is required for such analysis.
The Riemann problem for longitudinal motion in an elastic-plastic bar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trangenstein, J.A.; Pember, R.B.
In this paper the analytical solution to the Riemann problem for the Antman-Szymczak model of longitudinal motion in an elastic-plastic bar is constructed. The model involves two surfaces corresponding to plastic yield in tension and compression, and exhibits the appropriate limiting behavior for total compressions. The solution of the Riemann problem involves discontinuous changes in characteristic speeds due to transitions from elastic to plastic response. Illustrations are presented, in both state-space and self-similar coordinates, of the variety of possible solutions to the Riemann problem for possible use with numerical algorithms.
Helmholtz, Riemann, and the Sirens: Sound, Color, and the "Problem of Space"
NASA Astrophysics Data System (ADS)
Pesic, Peter
2013-09-01
Emerging from music and the visual arts, questions about hearing and seeing deeply affected Hermann Helmholtz's and Bernhard Riemann's contributions to what became called the "problem of space [ Raumproblem]," which in turn influenced Albert Einstein's approach to general relativity. Helmholtz's physiological investigations measured the time dependence of nerve conduction and mapped the three-dimensional manifold of color sensation. His concurrent studies on hearing illuminated musical evidence through experiments with mechanical sirens that connect audible with visible phenomena, especially how the concept of frequency unifies motion, velocity, and pitch. Riemann's critique of Helmholtz's work on hearing led Helmholtz to respond and study Riemann's then-unpublished lecture on the foundations of geometry. During 1862-1870, Helmholtz applied his findings on the manifolds of hearing and seeing to the Raumproblem by supporting the quadratic distance relation Riemann had assumed as his fundamental hypothesis about geometrical space. Helmholtz also drew a "close analogy … in all essential relations between the musical scale and space." These intersecting studies of hearing and seeing thus led to reconsideration and generalization of the very concept of "space," which Einstein shaped into the general manifold of relativistic space-time.
CAFE: A New Relativistic MHD Code
NASA Astrophysics Data System (ADS)
Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.
2015-06-01
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
A shock-capturing SPH scheme based on adaptive kernel estimation
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; López, Hender; Donoso, Arnaldo; Sira, Eloy; Klapp, Jaime
2006-02-01
Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations, the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel summation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities, as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular, for the two-dimensional cylindrical Noh's shock implosion and Sedov point explosion problems the present scheme produces much better results than those obtained with conventional SPH codes.
Adaptive Discontinuous Evolution Galerkin Method for Dry Atmospheric Flow
2013-04-02
standard one-dimensional approximate Riemann solver used for the flux integration demonstrate better stability, accuracy as well as reliability of the...discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the standard one-dimensional approximate Riemann solver used...instead of a standard one- dimensional approximate Riemann solver , the flux integration within the discontinuous Galerkin method is now realized by
Upwind and symmetric shock-capturing schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.
1987-01-01
The development of numerical methods for hyperbolic conservation laws has been a rapidly growing area for the last ten years. Many of the fundamental concepts and state-of-the-art developments can only be found in meeting proceedings or internal reports. This review paper attempts to give an overview and a unified formulation of a class of shock-capturing methods. Special emphasis is on the construction of the basic nonlinear scalar second-order schemes and the methods of extending these nonlinear scalar schemes to nonlinear systems via the extact Riemann solver, approximate Riemann solvers, and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows is discussed. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas dynamics problems.
NASA Astrophysics Data System (ADS)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
Numerical comparison of Riemann solvers for astrophysical hydrodynamics
NASA Astrophysics Data System (ADS)
Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut
2007-11-01
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.
The Investigation of Ghost Fluid Method for Simulating the Compressible Two-Medium Flow
NASA Astrophysics Data System (ADS)
Lu, Hai Tian; Zhao, Ning; Wang, Donghong
2016-06-01
In this paper, we investigate the conservation error of the two-dimensional compressible two-medium flow simulated by the front tracking method. As the improved versions of the original ghost fluid method, the modified ghost fluid method and the real ghost fluid method are selected to define the interface boundary conditions, respectively, to show different effects on the conservation error. A Riemann problem is constructed along the normal direction of the interface in the front tracking method, with the goal of obtaining an efficient procedure to track the explicit sharp interface precisely. The corresponding Riemann solutions are also used directly in these improved ghost fluid methods. Extensive numerical examples including the sod tube and the shock-bubble interaction are tested to calculate the conservation error. It is found that these two ghost fluid methods have distinctive performances for different initial conditions of the flow field, and the related conclusions are made to suggest the best choice for the combination.
Whitham modulation theory for (2 + 1)-dimensional equations of Kadomtsev–Petviashvili type
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor
2018-05-01
Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R; Shashkov, Mikhail J
2009-01-01
Despite decades of development, Lagrangian hydrodynamics of strengthfree materials presents numerous open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider the case in which the change in heat in the constituent materials in the mixed cell is assumed equal. An instantaneous pressure equilibration model for a mixed cell can be cast asmore » four equations in four unknowns, comprised of the updated values of the specific internal energy and the specific volume for each of the two materials in the mixed cell. The unique contribution of our approach is a physics-inspired, geometry-based model in which the updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are related to a local Riemann problem through an optimization principle. This approach couples the modeling problem of assigning sub-cell pressures to the physics associated with the local, dynamic evolution. We package our approach in the framework of a standard predictor-corrector time integration scheme. We evaluate our model using idealized, two material problems using either ideal-gas or stiffened-gas equations of state and compare these results to those computed with the method of Tipton and with corresponding pure-material calculations.« less
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
A 3D finite element ALE method using an approximate Riemann solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiravalle, V. P.; Morgan, N. R.
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
NASA Astrophysics Data System (ADS)
Shao, Zhiqiang
2018-04-01
The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr
2013-02-15
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less
The piecewise parabolic method for Riemann problems in nonlinear elasticity.
Zhang, Wei; Wang, Tao; Bai, Jing-Song; Li, Ping; Wan, Zhen-Hua; Sun, De-Jun
2017-10-18
We present the application of Harten-Lax-van Leer (HLL)-type solvers on Riemann problems in nonlinear elasticity which undergoes high-load conditions. In particular, the HLLD ("D" denotes Discontinuities) Riemann solver is proved to have better robustness and efficiency for resolving complex nonlinear wave structures compared with the HLL and HLLC ("C" denotes Contact) solvers, especially in the shock-tube problem including more than five waves. Also, Godunov finite volume scheme is extended to higher order of accuracy by means of piecewise parabolic method (PPM), which could be used with HLL-type solvers and employed to construct the fluxes. Moreover, in the case of multi material components, level set algorithm is applied to track the interface between different materials, while the interaction of interfaces is realized through HLLD Riemann solver combined with modified ghost method. As seen from the results of both the solid/solid "stick" problem with the same material at the two sides of contact interface and the solid/solid "slip" problem with different materials at the two sides, this scheme composed of HLLD solver, PPM and level set algorithm can capture the material interface effectively and suppress spurious oscillations therein significantly.
NASA Astrophysics Data System (ADS)
Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.
2004-12-01
We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.
Feature Detection and Curve Fitting Using Fast Walsh Transforms for Shock Tracking: Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2017-01-01
Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it has been proven that the inner product of the Walsh Root function for group p with every polynomial of degree < or = (p - 1) across the element is identically zero. It has also been proven that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. The detection of a discontinuity enables analytic relations to locally describe its evolution and provide increased accuracy. Time accurate examples are provided for advection, Burgers equation, and Riemann problems (diaphragm burst) in closed tubes and de Laval nozzles. New algorithms to detect up to two C0 and/or C1 discontinuities within a single element are developed for application to the Riemann problem, in which a contact discontinuity and shock wave form after the diaphragm bursts.
On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow
NASA Astrophysics Data System (ADS)
Jenssen, Helge Kristian
2017-12-01
Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.
NASA Astrophysics Data System (ADS)
Heuzé, Thomas
2017-10-01
We present in this work two finite volume methods for the simulation of unidimensional impact problems, both for bars and plane waves, on elastic-plastic solid media within the small strain framework. First, an extension of Lax-Wendroff to elastic-plastic constitutive models with linear and nonlinear hardenings is presented. Second, a high order TVD method based on flux-difference splitting [1] and Superbee flux limiter [2] is coupled with an approximate elastic-plastic Riemann solver for nonlinear hardenings, and follows that of Fogarty [3] for linear ones. Thermomechanical coupling is accounted for through dissipation heating and thermal softening, and adiabatic conditions are assumed. This paper essentially focuses on one-dimensional problems since analytical solutions exist or can easily be developed. Accordingly, these two numerical methods are compared to analytical solutions and to the explicit finite element method on test cases involving discontinuous and continuous solutions. This allows to study in more details their respective performance during the loading, unloading and reloading stages. Particular emphasis is also paid to the accuracy of the computed plastic strains, some differences being found according to the numerical method used. Lax-Wendoff two-dimensional discretization of a one-dimensional problem is also appended at the end to demonstrate the extensibility of such numerical scheme to multidimensional problems.
Using the Pottery Wheel to Explore Topics in Calculus
ERIC Educational Resources Information Center
Farnell, Elin; Snipes, Marie A.
2015-01-01
Students sometimes struggle with visualizing the three-dimensional solids encountered in certain integral problems in a calculus class. We present a project in which students create solids of revolution with clay on a pottery wheel and estimate the volumes of these objects using Riemann sums. In addition to giving students an opportunity for…
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
2000-12-01
The kinetic structure of the reconnection layer in the magnetotail is investigated by two-dimensional hybrid simulations. As a proxy, the solution of the Riemann problem of the collapse of a current sheet with a normal magnetic field component is considered for two cases of the plasma beta (particle to magnetic field pressure): β=0.02 and β=0.002. The collapse results in an expanding layer of compressed and heated plasma, which is accelerated up to the Alfvén speed vA. The boundary layer separating this hot reconnection like layer from the cold lobe plasma is characterized by a beam of back-streaming ions with a field-aligned bulk speed of ~=2vA relative to the cold lobe ion population at rest. As a consequence, obliquely propagating waves are excited via the electromagnetic ion/ion cyclotron instability, which led to perpendicular heating of the ions in the boundary layer as well as further outside the layer in the lobe. In both regions, waves are found which propagate almost parallel to the magnetic field and which are identified as Alfvén ion cyclotron (AIC) waves. These waves are excited by the temperature anisotropy instability. The temperature anisotropy increases with decreasing plasma beta. Thus the anisotropy threshold of the instability is exceeded even in the case of a rather small beta value. The AIC waves, when convected downstream of what can be defined as the the slow shock, make an important contribution to the ion thermalization process. More detailed information on the dissipation process in the slow shocks is gained by analyzing individual ion trajectories.
Some applications of the multi-dimensional fractional order for the Riemann-Liouville derivative
NASA Astrophysics Data System (ADS)
Ahmood, Wasan Ajeel; Kiliçman, Adem
2017-01-01
In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Luis; MartI, Jose M; Ibanez, Jose M
2010-05-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less
Optical Random Riemann Waves in Integrable Turbulence
NASA Astrophysics Data System (ADS)
Randoux, Stéphane; Gustave, François; Suret, Pierre; El, Gennady
2017-06-01
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schrödinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, prebreaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
NASA Technical Reports Server (NTRS)
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
The solution of non-linear hyperbolic equation systems by the finite element method
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Zienkiewicz, O. C.
1984-01-01
A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.
An HLLC Riemann solver for resistive relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Miranda-Aranguren, S.; Aloy, M. A.; Rembiasz, T.
2018-05-01
We present a new approximate Riemann solver for the augmented system of equations of resistive relativistic magnetohydrodynamics that belongs to the family of Harten-Lax-van Leer contact wave (HLLC) solvers. In HLLC solvers, the solution is approximated by two constant states flanked by two shocks separated by a contact wave. The accuracy of the new approximate solver is calibrated through 1D and 2D test problems.
Riemann's and Helmholtz-Lie's problems of space from Weyl's relativistic perspective
NASA Astrophysics Data System (ADS)
Bernard, Julien
2018-02-01
I reconstruct Riemann's and Helmholtz-Lie's problems of space, from some perspectives that allow for a fruitful comparison with Weyl. In Part II. of his inaugural lecture, Riemann justifies that the infinitesimal metric is the square root of a quadratic form. Thanks to Finsler geometry, I clarify both the implicit and explicit hypotheses used for this justification. I explain that Riemann-Finsler's kind of method is also appropriate to deal with indefinite metrics. Nevertheless, Weyl shares with Helmholtz a strong commitment to the idea that the notion of group should be at the center of the foundations of geometry. Riemann missed this point, and that is why, according to Weyl, he dealt with the problem of space in a "too formal" way. As a consequence, to solve the problem of space, Weyl abandoned Riemann-Finsler's methods for group-theoretical ones. However, from a philosophical point of view, I show that Weyl and Helmholtz are in strong opposition. The meditation on Riemann's inaugural lecture, and its clear methodological separation between the infinitesimal and the finite parts of the problem of space, must have been crucial for Weyl, while searching for strong epistemological foundations for the group-theoretical methods, avoiding Helmholtz's unjustified transition from the finite to the infinitesimal.
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2010-08-01
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio η/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouras, I.; El, A.; Fochler, O.
2010-08-15
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
NASA Astrophysics Data System (ADS)
Ferrari, Alessia; Vacondio, Renato; Dazzi, Susanna; Mignosa, Paolo
2017-09-01
A novel augmented Riemann Solver capable of handling porosity discontinuities in 1D and 2D Shallow Water Equation (SWE) models is presented. With the aim of accurately approximating the porosity source term, a Generalized Riemann Problem is derived by adding an additional fictitious equation to the SWEs system and imposing mass and momentum conservation across the porosity discontinuity. The modified Shallow Water Equations are theoretically investigated, and the implementation of an augmented Roe Solver in a 1D Godunov-type finite volume scheme is presented. Robust treatment of transonic flows is ensured by introducing an entropy fix based on the wave pattern of the Generalized Riemann Problem. An Exact Riemann Solver is also derived in order to validate the numerical model. As an extension of the 1D scheme, an analogous 2D numerical model is also derived and validated through test cases with radial symmetry. The capability of the 1D and 2D numerical models to capture different wave patterns is assessed against several Riemann Problems with different wave patterns.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
NASA Astrophysics Data System (ADS)
Paardekooper, S.-J.
2017-08-01
We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.
A fast numerical method for ideal fluid flow in domains with multiple stirrers
NASA Astrophysics Data System (ADS)
Nasser, Mohamed M. S.; Green, Christopher C.
2018-03-01
A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Du, Dianlou
2010-08-01
The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.
A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case
NASA Astrophysics Data System (ADS)
Dudley Ward, N. F.; Lähivaara, T.; Eveson, S.
2017-12-01
In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic-elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic-elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.
NASA Technical Reports Server (NTRS)
Kleb, W. L.
1994-01-01
Steady flow over the leading portion of a multicomponent airfoil section is studied using computational fluid dynamics (CFD) employing an unstructured grid. To simplify the problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes equations - leaving the Euler equations. The algorithm is derived using the finite-volume approach, incorporating explicit time-marching of the unsteady Euler equations to a time-asymptotic, steady-state solution. The inviscid fluxes are obtained through either of two approximate Riemann solvers: Roe's flux difference splitting or van Leer's flux vector splitting. Results are presented which contrast the solutions given by the two flux functions as a function of Mach number and grid resolution. Additional information is presented concerning code verification techniques, flow recirculation regions, convergence histories, and computational resources.
NASA Astrophysics Data System (ADS)
Vilar, François; Shu, Chi-Wang; Maire, Pierre-Henri
2016-05-01
One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most of the problems studied in this framework contain very intense rarefaction and shock waves. In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is conducted for both ideal gas and non-ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Mie-Grüneisen (MG) EOS, and relies on two different techniques: either a particular definition of the local approximation of the acoustic impedances arising from the approximate Riemann solver, or an additional time step constraint relative to the cell volume variation. Then, making use of the work presented in [89,90,22], this positivity study is extended to high-orders of accuracy, where new time step constraints are obtained, and proper limitation is required. Through this new procedure, scheme robustness is highly improved and hence new problems can be tackled. Numerical results are provided to demonstrate the effectiveness of these methods. This paper is the first part of a series of two. The whole analysis presented here is extended to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature, such as those presented in [19,64,15,82,84].
The Riemann-Hilbert problem for nonsymmetric systems
NASA Astrophysics Data System (ADS)
Greenberg, W.; Zweifel, P. F.; Paveri-Fontana, S.
1991-12-01
A comparison of the Riemann-Hilbert problem and the Wiener-Hopf factorization problem arising in the solution of half-space singular integral equations is presented. Emphasis is on the factorization of functions lacking the reflection symmetry usual in transport theory.
Refraction of dispersive shock waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.
2012-09-01
We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.
Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group
NASA Astrophysics Data System (ADS)
Matone, Marco; Pasti, Paolo
2015-06-01
The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl2(ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite. Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of interpolated quantities in the solution of the Riemann Problem. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications.
The piecewise-linear predictor-corrector code - A Lagrangian-remap method for astrophysical flows
NASA Technical Reports Server (NTRS)
Lufkin, Eric A.; Hawley, John F.
1993-01-01
We describe a time-explicit finite-difference algorithm for solving the nonlinear fluid equations. The method is similar to existing Eulerian schemes in its use of operator-splitting and artificial viscosity, except that we solve the Lagrangian equations of motion with a predictor-corrector and then remap onto a fixed Eulerian grid. The remap is formulated to eliminate errors associated with coordinate singularities, with a general prescription for remaps of arbitrary order. We perform a comprehensive series of tests on standard problems. Self-convergence tests show that the code has a second-order rate of convergence in smooth, two-dimensional flow, with pressure forces, gravity, and curvilinear geometry included. While not as accurate on idealized problems as high-order Riemann-solving schemes, the predictor-corrector Lagrangian-remap code has great flexibility for application to a variety of astrophysical problems.
Visualization Techniques Applied to 155-mm Projectile Analysis
2014-11-01
semi-infinite Riemann problems are used in CFD++ to provide upwind flux information to the underlying transport scheme. Approximate Riemann solvers ...characteristics-based inflow/outflow boundary condition, which is based on solving a Riemann problem at the boundary. 2.3 Numerics Rolling/spinning is the...the solution files generated by the computational fluid dynamics (CFD) solver for the time-accurate rolling simulations at each timestep for the Mach
The Invar tensor package: Differential invariants of Riemann
NASA Astrophysics Data System (ADS)
Martín-García, J. M.; Yllanes, D.; Portugal, R.
2008-10-01
The long standing problem of the relations among the scalar invariants of the Riemann tensor is computationally solved for all 6ṡ10 objects with up to 12 derivatives of the metric. This covers cases ranging from products of up to 6 undifferentiated Riemann tensors to cases with up to 10 covariant derivatives of a single Riemann. We extend our computer algebra system Invar to produce within seconds a canonical form for any of those objects in terms of a basis. The process is as follows: (1) an invariant is converted in real time into a canonical form with respect to the permutation symmetries of the Riemann tensor; (2) Invar reads a database of more than 6ṡ10 relations and applies those coming from the cyclic symmetry of the Riemann tensor; (3) then applies the relations coming from the Bianchi identity, (4) the relations coming from commutations of covariant derivatives, (5) the dimensionally-dependent identities for dimension 4, and finally (6) simplifies invariants that can be expressed as product of dual invariants. Invar runs on top of the tensor computer algebra systems xTensor (for Mathematica) and Canon (for Maple). Program summaryProgram title:Invar Tensor Package v2.0 Catalogue identifier:ADZK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZK_v2_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3 243 249 No. of bytes in distributed program, including test data, etc.:939 Distribution format:tar.gz Programming language:Mathematica and Maple Computer:Any computer running Mathematica versions 5.0 to 6.0 or Maple versions 9 and 11 Operating system:Linux, Unix, Windows XP, MacOS RAM:100 Mb Word size:64 or 32 bits Supplementary material:The new database of relations is much larger than that for the previous version and therefore has not been included in the distribution. To obtain the Mathematica and Maple database files click on this link. Classification:1.5, 5 Does the new version supersede the previous version?:Yes. The previous version (1.0) only handled algebraic invariants. The current version (2.0) has been extended to cover differential invariants as well. Nature of problem:Manipulation and simplification of scalar polynomial expressions formed from the Riemann tensor and its covariant derivatives. Solution method:Algorithms of computational group theory to simplify expressions with tensors that obey permutation symmetries. Tables of syzygies of the scalar invariants of the Riemann tensor. Reasons for new version:With this new version, the user can manipulate differential invariants of the Riemann tensor. Differential invariants are required in many physical problems in classical and quantum gravity. Summary of revisions:The database of syzygies has been expanded by a factor of 30. New commands were added in order to deal with the enlarged database and to manipulate the covariant derivative. Restrictions:The present version only handles scalars, and not expressions with free indices. Additional comments:The distribution file for this program is over 53 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time:One second to fully reduce any monomial of the Riemann tensor up to degree 7 or order 10 in terms of independent invariants. The Mathematica notebook included in the distribution takes approximately 5 minutes to run.
MUSTA fluxes for systems of conservation laws
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2006-08-01
This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Dumbser, Michael
2015-10-01
Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on unstructured meshes. Several stringent two- and three-dimensional problems are shown to work well with the methods presented here.
Modeling dam-break flows using finite volume method on unstructured grid
USDA-ARS?s Scientific Manuscript database
Two-dimensional shallow water models based on unstructured finite volume method and approximate Riemann solvers for computing the intercell fluxes have drawn growing attention because of their robustness, high adaptivity to complicated geometry and ability to simulate flows with mixed regimes and di...
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1994-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.
Two-dimensional CFD modeling of wave rotor flow dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Chima, Rodrick V.
1993-01-01
A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.
New higher-order Godunov code for modelling performance of two-stage light gas guns
NASA Technical Reports Server (NTRS)
Bogdanoff, D. W.; Miller, R. J.
1995-01-01
A new quasi-one-dimensional Godunov code for modeling two-stage light gas guns is described. The code is third-order accurate in space and second-order accurate in time. A very accurate Riemann solver is used. Friction and heat transfer to the tube wall for gases and dense media are modeled and a simple nonequilibrium turbulence model is used for gas flows. The code also models gunpowder burn in the first-stage breech. Realistic equations of state (EOS) are used for all media. The code was validated against exact solutions of Riemann's shock-tube problem, impact of dense media slabs at velocities up to 20 km/sec, flow through a supersonic convergent-divergent nozzle and burning of gunpowder in a closed bomb. Excellent validation results were obtained. The code was then used to predict the performance of two light gas guns (1.5 in. and 0.28 in.) in service at the Ames Research Center. The code predictions were compared with measured pressure histories in the powder chamber and pump tube and with measured piston and projectile velocities. Very good agreement between computational fluid dynamics (CFD) predictions and measurements was obtained. Actual powder-burn rates in the gun were found to be considerably higher (60-90 percent) than predicted by the manufacturer and the behavior of the piston upon yielding appears to differ greatly from that suggested by low-strain rate tests.
A fast numerical scheme for causal relativistic hydrodynamics with dissipation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamoto, Makoto, E-mail: takamoto@tap.scphys.kyoto-u.ac.jp; Inutsuka, Shu-ichiro
2011-08-01
Highlights: {yields} We have developed a new multi-dimensional numerical scheme for causal relativistic hydrodynamics with dissipation. {yields} Our new scheme can calculate the evolution of dissipative relativistic hydrodynamics faster and more effectively than existing schemes. {yields} Since we use the Riemann solver for solving the advection steps, our method can capture shocks very accurately. - Abstract: In this paper, we develop a stable and fast numerical scheme for relativistic dissipative hydrodynamics based on Israel-Stewart theory. Israel-Stewart theory is a stable and causal description of dissipation in relativistic hydrodynamics although it includes relaxation process with the timescale for collision of constituentmore » particles, which introduces stiff equations and makes practical numerical calculation difficult. In our new scheme, we use Strang's splitting method, and use the piecewise exact solutions for solving the extremely short timescale problem. In addition, since we split the calculations into inviscid step and dissipative step, Riemann solver can be used for obtaining numerical flux for the inviscid step. The use of Riemann solver enables us to capture shocks very accurately. Simple numerical examples are shown. The present scheme can be applied to various high energy phenomena of astrophysics and nuclear physics.« less
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
NASA Technical Reports Server (NTRS)
Chang, S.-C.; Adamczyk, J. J.
1986-01-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
A new approach for solving the three-dimensional steady Euler equations. I - General theory
NASA Astrophysics Data System (ADS)
Chang, S.-C.; Adamczyk, J. J.
1986-08-01
The present iterative procedure combines the Clebsch potentials and the Munk-Prim (1947) substitution principle with an extension of a semidirect Cauchy-Riemann solver to three dimensions, in order to solve steady, inviscid three-dimensional rotational flow problems in either subsonic or incompressible flow regimes. This solution procedure can be used, upon discretization, to obtain inviscid subsonic flow solutions in a 180-deg turning channel. In addition to accurately predicting the behavior of weak secondary flows, the algorithm can generate solutions for strong secondary flows and will yield acceptable flow solutions after only 10-20 outer loop iterations.
Riemann tensor of motion vision revisited.
Brill, M
2001-07-02
This note shows that the Riemann-space interpretation of motion vision developed by Barth and Watson is neither necessary for their results, nor sufficient to handle an intrinsic coordinate problem. Recasting the Barth-Watson framework as a classical velocity-solver (as in computer vision) solves these problems.
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Mass-deformed ABJM and black holes in AdS4
NASA Astrophysics Data System (ADS)
Bobev, Nikolay; Min, Vincent S.; Pilch, Krzysztof
2018-03-01
We find a class of new supersymmetric dyonic black holes in four-dimensional maximal gauged supergravity which are asymptotic to the SU(3) × U(1) invariant AdS4 Warner vacuum. These black holes can be embedded in eleven-dimensional supergravity where they describe the backreaction of M2-branes wrapped on a Riemann surface. The holographic dual description of these supergravity backgrounds is given by a partial topological twist on a Riemann surface of a three-dimensional N=2 SCFT that is obtained by a mass-deformation of the ABJM theory. We compute explicitly the topologically twisted index of this SCFT and show that it accounts for the entropy of the black holes.
A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method
NASA Astrophysics Data System (ADS)
Shen, Zhijun; Yan, Wei; Yuan, Guangwei
2014-07-01
This article presents a new cell-centered numerical method for compressible flows on arbitrary unstructured meshes. A multi-dimensional Riemann solver based on the HLLC method (denoted by HLLC-2D solver) is established. The work is an extension from the cell-centered Lagrangian scheme of Maire et al. [27] to the Eulerian framework. Similarly to the work in [27], a two-dimensional contact velocity defined on a grid node is introduced, and the motivation is to keep an edge flux consistency with the node velocity connected to the edge intrinsically. The main new feature of the algorithm is to relax the condition that the contact pressures must be same in the traditional HLLC solver. The discontinuous fluxes are constructed across each wave sampling direction rather than only along the contact wave direction. The two-dimensional contact velocity of the grid node is determined via enforcing conservation of mass, momentum and total energy, and thus the new method satisfies these conservation properties at nodes rather than on grid edges. Other good properties of the HLLC-2d solver, such as the positivity and the contact preserving, are described, and the two-dimensional high-order extension is constructed employing MUSCL type reconstruction procedure. Numerical results based on both quadrilateral and triangular grids are presented to demonstrate the robustness and the accuracy of this new solver, which shows it has better performance than the existing HLLC method.
Fractional Number Operator and Associated Fractional Diffusion Equations
NASA Astrophysics Data System (ADS)
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
Prescribing the mixed scalar curvature of a foliated Riemann-Cartan manifold
NASA Astrophysics Data System (ADS)
Rovenski, Vladimir Y.; Zelenko, Leonid
2018-03-01
The mixed scalar curvature is the simplest curvature invariant of a foliated Riemannian manifold. We explore the problem of prescribing the leafwise constant mixed scalar curvature of a foliated Riemann-Cartan manifold by conformal change of the structure in tangent and normal to the leaves directions. Under certain geometrical assumptions and in two special cases: along a compact leaf and for a closed fibered manifold, we reduce the problem to solution of a nonlinear leafwise elliptic equation for the conformal factor. We are looking for its solutions that are stable stationary solutions of the associated parabolic equation. Our main tool is using of majorizing and minorizing nonlinear heat equations with constant coefficients and application of comparison theorems for solutions of Cauchy's problem for parabolic equations.
Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.
2018-04-01
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
Domain decomposition methods in aerodynamics
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Saltz, Joel
1990-01-01
Compressible Euler equations are solved for two-dimensional problems by a preconditioned conjugate gradient-like technique. An approximate Riemann solver is used to compute the numerical fluxes to second order accuracy in space. Two ways to achieve parallelism are tested, one which makes use of parallelism inherent in triangular solves and the other which employs domain decomposition techniques. The vectorization/parallelism in triangular solves is realized by the use of a recording technique called wavefront ordering. This process involves the interpretation of the triangular matrix as a directed graph and the analysis of the data dependencies. It is noted that the factorization can also be done in parallel with the wave front ordering. The performances of two ways of partitioning the domain, strips and slabs, are compared. Results on Cray YMP are reported for an inviscid transonic test case. The performances of linear algebra kernels are also reported.
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
2016-11-01
We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise
2003-01-01
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.
Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
NASA Astrophysics Data System (ADS)
Chiodaroli, Elisabetta; Kreml, Ondřej
2018-04-01
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
NASA Astrophysics Data System (ADS)
Lee, Jun; Lee, Jungwoo; Yun, Sang-Leen; Oh, Hye-Cheol
2017-08-01
The purpose of this study was to develop a two-dimensional shallow water flow model using the finite volume method on a combined unstructured triangular and quadrilateral grid system to simulate coastal, estuarine and river flows. The intercell numerical fluxes were calculated using the classical Osher-Solomon's approximate Riemann solver for the governing conservation laws to be able to handle wetting and drying processes and to capture a tidal bore like phenomenon. The developed model was validated with several benchmark test problems including the two-dimensional dam-break problem. The model results were well agreed with results of other models and experimental results in literature. The unstructured triangular and quadrilateral combined grid system was successfully implemented in the model, thus the developed model would be more flexible when applying in an estuarine system, which includes narrow channels. Then, the model was tested in Mobile Bay, Alabama, USA. The developed model reproduced water surface elevation well as having overall Predictive Skill of 0.98. We found that the primary inlet, Main Pass, only covered 35% of the fresh water exchange while it covered 89% of the total water exchange between the ocean and Mobile Bay. There were also discharge phase difference between MP and the secondary inlet, Pass aux Herons, and this phase difference in flows would act as a critical role in substances' exchange between the eastern Mississippi Sound and the northern Gulf of Mexico through Main Pass and Pass aux Herons in Mobile Bay.
NASA Astrophysics Data System (ADS)
Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira
2017-10-01
The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.
Solution of the Riemann problem for polarization waves in a two-component Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Ivanov, S. K.; Kamchatnov, A. M.; Congy, T.; Pavloff, N.
2017-12-01
We provide a classification of the possible flows of two-component Bose-Einstein condensates evolving from initially discontinuous profiles. We consider the situation where the dynamics can be reduced to the consideration of a single polarization mode (also denoted as "magnetic excitation") obeying a system of equations equivalent to the Landau-Lifshitz equation for an easy-plane ferromagnet. We present the full set of one-phase periodic solutions. The corresponding Whitham modulation equations are obtained together with formulas connecting their solutions with the Riemann invariants of the modulation equations. The problem is not genuinely nonlinear, and this results in a non-single-valued mapping of the solutions of the Whitham equations with physical wave patterns as well as the appearance of interesting elements—contact dispersive shock waves—that are absent in more standard, genuinely nonlinear situations. Our analytic results are confirmed by numerical simulations.
Quasi-periodic Solutions of the Kaup-Kupershmidt Hierarchy
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Wu, Lihua; He, Guoliang
2013-08-01
Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup-Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup-Kupershmidt hierarchy, we introduce a trigonal curve {K}_{m-1} and present the corresponding Baker-Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup-Kupershmidt flows. With the aid of the properties of the Baker-Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann-Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker-Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup-Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.
The Hurwitz Enumeration Problem of Branched Covers and Hodge Integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yun S.
We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for the simple Hurwitz numbers in terms of the representation theory of the symmetric group S{sub n}. We also find a generating function for Hodge integrals on the moduli space {bar M}{sub g,2} of Riemann surfaces with two marked points, similar to that found by Faber and Pandharipande for the case of one marked point.
NASA Astrophysics Data System (ADS)
Chuvakhov, P. V.
2014-01-01
An exact expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for a convective two-equation differential closure RANS operator split along a curvilinear coordinate is derived. It is shown by examples of numerical modeling of supersonic flows over a flat plate and a compression corner with separation that application of the exact system of eigenvalues and eigenvectors to the Roe approach for approximate solution of the Riemann problem gives rise to an increase in the convergence rate, better stability and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
Newly-Developed 3D GRMHD Code and its Application to Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
A universal counting of black hole microstates in AdS4
NASA Astrophysics Data System (ADS)
Azzurli, Francesco; Bobev, Nikolay; Crichigno, P. Marcos; Min, Vincent S.; Zaffaroni, Alberto
2018-02-01
Many three-dimensional N=2 SCFTs admit a universal partial topological twist when placed on hyperbolic Riemann surfaces. We exploit this fact to derive a universal formula which relates the planar limit of the topologically twisted index of these SCFTs and their three-sphere partition function. We then utilize this to account for the entropy of a large class of supersymmetric asymptotically AdS4 magnetically charged black holes in M-theory and massive type IIA string theory. In this context we also discuss novel AdS2 solutions of eleven-dimensional supergravity which describe the near horizon region of large new families of supersymmetric black holes arising from M2-branes wrapping Riemann surfaces.
Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.
NASA Technical Reports Server (NTRS)
Rumsey, Christopher Lockwood
1991-01-01
A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.
AdS5 solutions from M5-branes on Riemann surface and D6-branes sources
Bah, Ibrahima
2015-09-24
Here, we describe the gravity duals of four-dimensional N = 1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators (J +, J –), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N = 1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We usemore » this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural (p, q) label associated to the circle dual to the killing vector pJ + + qJ – which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N = 2 supersymmetry. When p = –q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.« less
On the Ck-embedding of Lorentzian manifolds in Ricci-flat spaces
NASA Astrophysics Data System (ADS)
Avalos, R.; Dahia, F.; Romero, C.
2018-05-01
In this paper, we investigate the problem of non-analytic embeddings of Lorentzian manifolds in Ricci-flat semi-Riemannian spaces. In order to do this, we first review some relevant results in the area and then motivate both the mathematical and physical interests in this problem. We show that any n-dimensional compact Lorentzian manifold (Mn, g), with g in the Sobolev space Hs+3, s >n/2 , admits an isometric embedding in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold. The sharpest result available for these types of embeddings, in the general setting, comes as a corollary of Greene's remarkable embedding theorems R. Greene [Mem. Am. Math. Soc. 97, 1 (1970)], which guarantee the embedding of a compact n-dimensional semi-Riemannian manifold into an n(n + 5)-dimensional semi-Euclidean space, thereby guaranteeing the embedding into a Ricci-flat space with the same dimension. The theorem presented here improves this corollary in n2 + 3n - 2 codimensions by replacing the Riemann-flat condition with the Ricci-flat one from the beginning. Finally, we will present a corollary of this theorem, which shows that a compact strip in an n-dimensional globally hyperbolic space-time can be embedded in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold.
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2015-10-01
dispersion depends on the Riemann solver • Variables are allowed to be discontinuous at the cell interfaces Advantages - Method is conservative...release; distribution unlimited Discontinuous Galerkin (2) • Riemann problems are solved at each interface to compute fluxes • The source of dissipation
On numerical instabilities of Godunov-type schemes for strong shocks
NASA Astrophysics Data System (ADS)
Xie, Wenjia; Li, Wei; Li, Hua; Tian, Zhengyu; Pan, Sha
2017-12-01
It is well known that low diffusion Riemann solvers with minimal smearing on contact and shear waves are vulnerable to shock instability problems, including the carbuncle phenomenon. In the present study, we concentrate on exploring where the instability grows out and how the dissipation inherent in Riemann solvers affects the unstable behaviors. With the help of numerical experiments and a linearized analysis method, it has been found that the shock instability is strongly related to the unstable modes of intermediate states inside the shock structure. The consistency of mass flux across the normal shock is needed for a Riemann solver to capture strong shocks stably. The famous carbuncle phenomenon is interpreted as the consequence of the inconsistency of mass flux across the normal shock for a low diffusion Riemann solver. Based on the results of numerical experiments and the linearized analysis, a robust Godunov-type scheme with a simple cure for the shock instability is suggested. With only the dissipation corresponding to shear waves introduced in the vicinity of strong shocks, the instability problem is circumvented. Numerical results of several carefully chosen strong shock wave problems are investigated to demonstrate the robustness of the proposed scheme.
New gravitational solutions via a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Cardoso, G. L.; Serra, J. C.
2018-03-01
We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
An efficient direct solver for rarefied gas flows with arbitrary statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Manuel A., E-mail: f99543083@ntu.edu.tw; Yang, Jaw-Yen, E-mail: yangjy@iam.ntu.edu.tw; Center of Advanced Study in Theoretical Science, National Taiwan University, Taipei 10167, Taiwan
2016-01-15
A new numerical methodology associated with a unified treatment is presented to solve the Boltzmann–BGK equation of gas dynamics for the classical and quantum gases described by the Bose–Einstein and Fermi–Dirac statistics. Utilizing a class of globally-stiffly-accurate implicit–explicit Runge–Kutta scheme for the temporal evolution, associated with the discrete ordinate method for the quadratures in the momentum space and the weighted essentially non-oscillatory method for the spatial discretization, the proposed scheme is asymptotic-preserving and imposes no non-linear solver or requires the knowledge of fugacity and temperature to capture the flow structures in the hydrodynamic (Euler) limit. The proposed treatment overcomes themore » limitations found in the work by Yang and Muljadi (2011) [33] due to the non-linear nature of quantum relations, and can be applied in studying the dynamics of a gas with internal degrees of freedom with correct values of the ratio of specific heat for the flow regimes for all Knudsen numbers and energy wave lengths. The present methodology is numerically validated with the unified treatment by the one-dimensional shock tube problem and the two-dimensional Riemann problems for gases of arbitrary statistics. Descriptions of ideal quantum gases including rotational degrees of freedom have been successfully achieved under the proposed methodology.« less
The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix
NASA Astrophysics Data System (ADS)
Antipov, Yuri A.
2014-10-01
A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
NASA Astrophysics Data System (ADS)
Its, Alexander; Its, Elizabeth
2018-04-01
We revisit the Helmholtz equation in a quarter-plane in the framework of the Riemann-Hilbert approach to linear boundary value problems suggested in late 1990s by A. Fokas. We show the role of the Sommerfeld radiation condition in Fokas' scheme.
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
NASA Astrophysics Data System (ADS)
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Shock and Rarefaction Waves in a Heterogeneous Mantle
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave has a zero eigenvalue, corresponding to a wave speed of zero, which preserves a residual imprint of the initial condition. Freezing fronts textemdash those that result in a negative change in porositytextemdash feature fast path waves that travel as shocks, whereas the fast path waves of melting fronts travel as spreading, rarefaction waves.
NASA Astrophysics Data System (ADS)
Le Floch, Bruno; Turiaci, Gustavo J.
2017-12-01
We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N=2 gauge theories. Our construction naturally involves four-dimensional theories with fields defined on different ℤ2 quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a ℤ2 quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the ℝℙ4 partition function of four-dimensional N=2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known ℝℙ2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.
Excitation basis for (3+1)d topological phases
NASA Astrophysics Data System (ADS)
Delcamp, Clement
2017-12-01
We consider an exactly solvable model in 3+1 dimensions, based on a finite group, which is a natural generalization of Kitaev's quantum double model. The corresponding lattice Hamiltonian yields excitations located at torus-boundaries. By cutting open the three-torus, we obtain a manifold bounded by two tori which supports states satisfying a higher-dimensional version of Ocneanu's tube algebra. This defines an algebraic structure extending the Drinfel'd double. Its irreducible representations, labeled by two fluxes and one charge, characterize the torus-excitations. The tensor product of such representations is introduced in order to construct a basis for (3+1)d gauge models which relies upon the fusion of the defect excitations. This basis is defined on manifolds of the form Σ × S_1 , with Σ a two-dimensional Riemann surface. As such, our construction is closely related to dimensional reduction from (3+1)d to (2+1)d topological orders.
Elementary wave interactions in blood flow through artery
NASA Astrophysics Data System (ADS)
Raja Sekhar, T.; Minhajul
2017-10-01
In this paper, we consider the Riemann problem and interaction of elementary waves for the quasilinear hyperbolic system of conservation laws that arises in blood flow through arteries. We study the properties of solution involving shocks and rarefaction waves and establish the existence and uniqueness conditions. We show that the Riemann problem is solvable for arbitrary initial data under certain condition and construct the condition for no-feasible solution. Finally, we present numerical examples with different initial data and discuss all possible interactions of elementary waves.
Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach
NASA Astrophysics Data System (ADS)
Tovbis, Alexander; El, Gennady A.
2016-10-01
The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schrödinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove beneficial for a broad range of problems involving the semiclassical fNLS.
M2-brane surface operators and gauge theory dualities in Toda
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Le Floch, Bruno
2016-04-01
We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.
Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system
NASA Astrophysics Data System (ADS)
Acharya, Ragini
Numerical Simulation of interior ballistic processes in gun and mortar systems is a very difficult and interesting problem. The mathematical model for the physical processes in the mortar systems consists of a system of non-linear coupled partial differential equations, which also contain non-homogeneity in form of the source terms. This work includes the development of a three-dimensional mortar interior ballistic (3D-MIB) code for a 120mm mortar system and its stage-wise validation with multiple sets of experimental data. The 120mm mortar system consists of a flash tube contained within an ignition cartridge, tail-boom, fin region, charge increments containing granular propellants, and a projectile payload. The ignition cartridge discharges hot gas-phase products and unburned granular propellants into the mortar tube through vent-holes on its surface. In view of the complexity of interior ballistic processes in the mortar propulsion system, the overall problem was solved in a modular fashion, i.e., simulating each physical component of the mortar propulsion system separately. These modules were coupled together with appropriate initial and boundary conditions. The ignition cartridge and mortar tube contain nitrocellulose-based ball propellants. Therefore, the gas dynamical processes in the 120mm mortar system are two-phase, which were simulated by considering both phases as an interpenetrating continuum. Mass and energy fluxes from the flash tube into the granular bed of ignition cartridge were determined from a semi-empirical technique. For the tail-boom section, a transient one-dimensional two-phase compressible flow solver based on method of characteristics was developed. The mathematical model for the interior ballistic processes in the mortar tube posed an initial value problem with discontinuous initial conditions with the characteristics of the Riemann problem due to the discontinuity of the initial conditions. Therefore, the mortar tube model was solved by using a high-resolution Godunov-type shock-capturing approach was used where the discretization is done directly on the integral formulation of the conservation laws. A linearized approximate Riemann Solver was modified in this work for the two-phase flows to compute fully non-linear wave interactions and to directly provide upwinding properties in the scheme. An entropy fix based on Harten-Heyman method was used with van Leer flux limiter for total variation diminishing. The three dimensional effects were simulated by incorporating an unsplit multi-dimensional wave propagation method, which accounted for discontinuities traveling in both normal and oblique coordinate directions. For each component, the predicted pressure-time traces showed significant pressure wave phenomena, which closely simulated the measured pressure-time traces obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave phenomenon in the ignition cartridge. A comparison of the pressure difference between primer-end and projectile-end locations of the original and modified ignition cartridges with each other showed that the early-phase pressure-wave phenomenon can be significantly reduced with the modified pattern. The flow property distributions predicted by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics predictions provided adequate validation of theory by experiments.
Thermodynamic limit of random partitions and dispersionless Toda hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa; Nakatsu, Toshio
2012-01-01
We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.
A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1994-01-01
The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux-vector splitting approaches and thus provides a large savings for multidimensional, equilibrium real gases and nonequilibrium flow computations.
Brain Surface Conformal Parameterization Using Riemann Surface Structure
Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung
2011-01-01
In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336
NASA Astrophysics Data System (ADS)
Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.
2018-05-01
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1981-01-01
A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Girolami, M.
2014-11-01
We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint technique. Various numerical results up to 1025 parameters are presented to demonstrate the ability of the RMHMC method in exploring the geometric structure of the problem to propose (almost) uncorrelated/independent samples that are far away from each other, and yet the acceptance rate is almost unity. The results also suggest that for the PDE models considered the proposed fixed metric RMHMC can attain almost as high a quality performance as the original RMHMC, i.e. generating (almost) uncorrelated/independent samples, while being two orders of magnitude less computationally expensive.
A Lagrangian discontinuous Galerkin hydrodynamic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less
A Lagrangian discontinuous Galerkin hydrodynamic method
Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.
2017-12-11
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less
NASA Astrophysics Data System (ADS)
Zaal, K. J. J. M.
1991-06-01
In programming solutions of complex function theory, the complex logarithm function is replaced by the complex logarithmic function, introducing a discontinuity along the branch cut into the programmed solution which was not present in the mathematical solution. Recently, Liaw and Kamel presented their solution of the infinite anisotropic centrally cracked plate loaded by an arbitrary point force, which they used as Green's function in a boundary element method intended to evaluate the stress intensity factor at the tip of a crack originating from an elliptical home. Their solution may be used as Green's function of many more numerical methods involving anisotropic elasticity. In programming applications of Liaw and Kamel's solution, the standard definition of the logarithmic function with the branch cut at the nonpositive real axis cannot provide a reliable computation of the displacement field for Liaw and Kamel's solution. Either the branch cut should be redefined outside the domain of the logarithmic function, after proving that the domain is limited to a part of the plane, or the logarithmic function should be defined on its Riemann surface. A two dimensional line fractal can provide the link between all mesh points on the plane essential to evaluate the logarithm function on its Riemann surface. As an example, a two dimensional line fractal is defined for a mesh once used by Erdogan and Arin.
An interface capturing scheme for modeling atomization in compressible flows
NASA Astrophysics Data System (ADS)
Garrick, Daniel P.; Hagen, Wyatt A.; Regele, Jonathan D.
2017-09-01
The study of atomization in supersonic flow is critical to ensuring reliable ignition of scramjet combustors under startup conditions. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in compressible flow requires robust numerical methods that can handle discontinuities caused by both shocks and material interfaces with high density ratios. In this work, a shock and interface capturing scheme is developed that uses the Harten-Lax-van Leer-Contact (HLLC) Riemann solver while a Tangent of Hyperbola for INterface Capturing (THINC) interface reconstruction scheme retains the fluid immiscibility condition in the volume fraction and phasic densities in the context of the five equation model. The approach includes the effects of compressibility, surface tension, and molecular viscosity. One and two-dimensional benchmark problems demonstrate the desirable interface sharpening and conservation properties of the approach. Simulations of secondary atomization of a cylindrical water column after its interaction with a shockwave show good qualitative agreement with experimentally observed behavior. Three-dimensional examples of primary atomization of a liquid jet in a Mach 2 crossflow demonstrate the robustness of the method.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
NASA Astrophysics Data System (ADS)
Carraro, F.; Valiani, A.; Caleffi, V.
2018-03-01
Within the framework of the de Saint Venant equations coupled with the Exner equation for morphodynamic evolution, this work presents a new efficient implementation of the Dumbser-Osher-Toro (DOT) scheme for non-conservative problems. The DOT path-conservative scheme is a robust upwind method based on a complete Riemann solver, but it has the drawback of requiring expensive numerical computations. Indeed, to compute the non-linear time evolution in each time step, the DOT scheme requires numerical computation of the flux matrix eigenstructure (the totality of eigenvalues and eigenvectors) several times at each cell edge. In this work, an analytical and compact formulation of the eigenstructure for the de Saint Venant-Exner (dSVE) model is introduced and tested in terms of numerical efficiency and stability. Using the original DOT and PRICE-C (a very efficient FORCE-type method) as reference methods, we present a convergence analysis (error against CPU time) to study the performance of the DOT method with our new analytical implementation of eigenstructure calculations (A-DOT). In particular, the numerical performance of the three methods is tested in three test cases: a movable bed Riemann problem with analytical solution; a problem with smooth analytical solution; a test in which the water flow is characterised by subcritical and supercritical regions. For a given target error, the A-DOT method is always the most efficient choice. Finally, two experimental data sets and different transport formulae are considered to test the A-DOT model in more practical case studies.
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.
Whitham modulation theory for the Kadomtsev- Petviashvili equation.
Ablowitz, Mark J; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
Whitham modulation theory for the Kadomtsev- Petviashvili equation
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
Canonical forms of multidimensional steady inviscid flows
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1993-01-01
Canonical forms and canonical variables for inviscid flow problems are derived. In these forms the components of the system governed by different types of operators (elliptic and hyperbolic) are separated. Both the incompressible and compressible cases are analyzed, and their similarities and differences are discussed. The canonical forms obtained are block upper triangular operator form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear equations are treated without using any linearization process. This form enables a better analysis of the equations as well as better numerical treatment. These forms are the analog of the decomposition of the one dimensional Euler equations into characteristic directions and Riemann invariants.
Zhang, Peng; Liu, Ru-Xun; Wong, S C
2005-05-01
This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.
Deformations of super Riemann surfaces
NASA Astrophysics Data System (ADS)
Ninnemann, Holger
1992-11-01
Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-08
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.
Numerical solution of a flow inside a labyrinth seal
NASA Astrophysics Data System (ADS)
Šimák, Jan; Straka, Petr; Pelant, Jaroslav
2012-04-01
The aim of this study is a behaviour of a flow inside a labyrinth seal on a rotating shaft. The labyrinth seal is a type of a non-contact seal where a leakage of a fluid is prevented by a rather complicated path, which the fluid has to overcome. In the presented case the sealed medium is the air and the seal is made by a system of 20 teeth on a rotating shaft situated against a smooth static surface. Centrifugal forces present due to the rotation of the shaft create vortices in each chamber and thus dissipate the axial velocity of the escaping air.The structure of the flow field inside the seal is studied through the use of numerical methods. Three-dimensional solution of the Navier-Stokes equations for turbulent flow is very time consuming. In order to reduce the computational time we can simplify our problem and solve it as an axisymmetric problem in a two-dimensional meridian plane. For this case we use a transformation of the Navier-Stokes equations and of the standard k-omega turbulence model into a cylindrical coordinate system. A finite volume method is used for the solution of the resulting problem. A one-side modification of the Riemann problem for boundary conditions is used at the inlet and at the outlet of the axisymmetric channel. The total pressure and total density (temperature) are to be used preferably at the inlet whereas the static pressure is used at the outlet for the compatibility. This idea yields physically relevant boundary conditions. The important characteristics such as a mass flow rate and a power loss, depending on a pressure ratio (1.1 - 4) and an angular velocity (1000 - 15000 rpm) are evaluated.
NASA Astrophysics Data System (ADS)
Bilal, Adel; Gervais, Jean-Loup
A class of punctured constant curvature Riemann surfaces, with boundary conditions similar to those of the Poincaré half plane, is constructed. It is shown to describe the scattering of particle-like objects in two Euclidian dimensions. The associated time delays and classical phase shifts are introduced and connected to the behaviour of the surfaces at their punctures. For each such surface, we conjecture that the time delays are partial derivatives of the phase shift. This type of relationship, already known to be correct in other scattering problems, leads to a general integrability condition concerning the behaviour of the metric in the neighbourhood of the punctures. The time delays are explicitly computed for three punctures, and the conjecture is verified. The result, reexpressed as a product of Riemann zeta-functions, exhibits an intringuing number-theoretic structure: a p-adic product formula holds and one of Ramanujan's identities applies. An ansatz is given for the corresponding exact quantum S-matrix. It is such that the integrability condition is replaced by a finite difference relation only involving the exact spectrum already derived, in the associated Liouville field theory, by Gervais and Neveu.
Shadow poles in coupled-channel problems calculated with the Berggren basis
NASA Astrophysics Data System (ADS)
Id Betan, R. M.; Kruppa, A. T.; Vertse, T.
2018-02-01
Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.
NASA Technical Reports Server (NTRS)
Mendoza, John Cadiz
1995-01-01
The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.
Some theorems and properties of multi-dimensional fractional Laplace transforms
NASA Astrophysics Data System (ADS)
Ahmood, Wasan Ajeel; Kiliçman, Adem
2016-06-01
The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.
NASA Astrophysics Data System (ADS)
Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira
2014-06-01
Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.
Analytical solutions of Landau (1+1)-dimensional hydrodynamics
Wong, Cheuk-Yin; Sen, Abhisek; Gerhard, Jochen; ...
2014-12-17
To help guide our intuition, summarize important features, and point out essential elements, we review the analytical solutions of Landau (1+1)-dimensional hydrodynamics and exhibit the full evolution of the dynamics from the very beginning to subsequent times. Special emphasis is placed on the matching and the interplay between the Khalatnikov solution and the Riemann simple wave solution at the earliest times and in the edge regions at later times.
NASA Astrophysics Data System (ADS)
Zhu, Qiao-Zhen; Fan, En-Gui; Xu, Jian
2017-10-01
The Fokas unified method is used to analyze the initial-boundary value problem of two-component Gerdjikov-Ivanonv equation on the half-line. It is shown that the solution of the initial-boundary problem can be expressed in terms of the solution of a 3 × 3 Riemann-Hilbert problem. The Dirichlet to Neumann map is obtained through the global relation. Supported by grants from the National Science Foundation of China under Grant No. 11671095, National Science Foundation of China under Grant No. 11501365, Shanghai Sailing Program supported by Science and Technology Commission of Shanghai Municipality under Grant No 15YF1408100, and the Hujiang Foundation of China (B14005)
Bernhard Riemann, a(rche)typical mathematical-physicist?
NASA Astrophysics Data System (ADS)
Elizalde, Emilio
2013-09-01
The work of Bernhard Riemann is discussed under the perspective of present day mathematics and physics, and with a prospective view towards the future, too. Against the (unfortunately rather widespread) trend---which predominantly dominated national scientific societies in Europe during the last Century---of strictly classifying the work of scientists with the aim to constrain them to separated domains of knowledge, without any possible interaction among those and often even fighting against each other (and which, no doubt, was in part responsible for the decline of European in favor of American science), it will be here argued, using Riemann as a model, archetypical example, that good research transcends any classification. Its uses and applications arguably permeate all domains, subjects and disciplines one can possibly define, to the point that it can be considered to be universally useful. After providing a very concise review of the main publications of Bernhard Riemann on physical problems, some connections between Riemann's papers and contemporary physics will be considered: (i) the uses of Riemann's work on the zeta function for devising applications to the regularization of quantum field theories in curved space-time, in particular, of quantum vacuum fluctuations; (ii) the uses of the Riemann tensor in general relativity and in recent generalizations of this theory, which aim at understanding the presently observed acceleration of the universe expansion (the dark energy issue). Finally, it will be argued that mathematical physics, which was yet not long ago a model paradigm for interdisciplinary activity---and had a very important pioneering role in this sense---is now quickly being surpassed by the extraordinarily fruitful interconnections which seem to pop up from nothing every day and simultaneously involve several disciplines, in the classical sense, including genetics, combinatorics, nanoelectronics, biochemistry, medicine, and even ps
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less
A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...
2014-10-28
We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less
Ice cream and orbifold Riemann-Roch
NASA Astrophysics Data System (ADS)
Buckley, Anita; Reid, Miles; Zhou, Shengtian
2013-06-01
We give an orbifold Riemann-Roch formula in closed form for the Hilbert series of a quasismooth polarized n-fold (X,D), under the assumption that X is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of {K3} surfaces and Calabi-Yau 3-folds. These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise statements are considerably trickier. We expect to return to this in future publications.
Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Demirci, Ali; Ma, Yi-Ping
2016-10-01
Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and two dimensional Benjamin-Ono (2DBO) equation are considered using step like initial data along a parabolic front. Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg-de Vries (cKdV) and cylindrical Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which describe DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the cKdV and cBO equations, again with good agreement. It is concluded that the (2 + 1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.
2016-01-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel. PMID:27493559
Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations
NASA Astrophysics Data System (ADS)
Anosov, Dmitry V.; Leksin, Vladimir P.
2011-02-01
This paper contains an account of A.A. Bolibrukh's results obtained in the new directions of research that arose in the analytic theory of differential equations as a consequence of his sensational counterexample to the Riemann-Hilbert problem. A survey of results of his students in developing topics first considered by Bolibrukh is also presented. The main focus is on the role of the reducibility/irreducibility of systems of linear differential equations and their monodromy representations. A brief synopsis of results on the multidimensional Riemann-Hilbert problem and on isomonodromic deformations of Fuchsian systems is presented, and the main methods in the modern analytic theory of differential equations are sketched. Bibliography: 69 titles.
The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry
2015-01-01
We present an inverse scattering transform (IST) approach for the (differentiated) Ostrovsky-Vakhnenko equation This equation can also be viewed as the short wave model for the Degasperis-Procesi (sDP) equation. Our IST approach is based on an associated Riemann-Hilbert problem, which allows us to give a representation for the classical (smooth) solution, to get the principal term of its long time asymptotics, and also to describe loop soliton solutions. Dedicated to Johannes Sjöstrand with gratitude and admiration.
Reactive transport in a partially molten system with binary solid solution
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2017-12-01
Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.
A Lagrangian meshfree method applied to linear and nonlinear elasticity.
Walker, Wade A
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.
A Lagrangian meshfree method applied to linear and nonlinear elasticity
2017-01-01
The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443
Finite volume model for two-dimensional shallow environmental flow
Simoes, F.J.M.
2011-01-01
This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.
NASA Astrophysics Data System (ADS)
Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao
2008-09-01
Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.
Aspects of general higher-order gravities
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Min, Vincent S.; Visser, Manus R.
2017-02-01
We study several aspects of higher-order gravities constructed from general contractions of the Riemann tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P. Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation modes on a maximally symmetric background in the presence of matter and to classify L (Riemann ) theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most general cubic gravity constructed in a dimension-independent way and which does not propagate the ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of f (Lovelock ) invariants, plus the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized Newton potential and the post-Newtonian parameter γ for general L (Riemann ) gravities in arbitrary dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study the emission and propagation of gravitational radiation from sources for these theories in four dimensions, providing a generalized formula for the power emitted. Finally, we review Wald's formalism for general L (Riemann ) theories and construct new explicit expressions for the relevant quantities involved. Many examples illustrate our calculations.
Colloquium: Physics of the Riemann hypothesis
NASA Astrophysics Data System (ADS)
Schumayer, Dániel; Hutchinson, David A. W.
2011-04-01
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here a particular number-theoretical function is chosen, the Riemann zeta function, and its influence on the realm of physics is examined and also how physics may be suggestive for the resolution of one of mathematics’ most famous unconfirmed conjectures, the Riemann hypothesis. Does physics hold an essential key to the solution for this more than 100-year-old problem? In this work numerous models from different branches of physics are examined, from classical mechanics to statistical physics, where this function plays an integral role. This function is also shown to be related to quantum chaos and how its pole structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations light is shed on how the Riemann hypothesis can highlight physics. Naturally, the aim is not to be comprehensive, but rather focusing on the major models and aim to give an informed starting point for the interested reader.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
A Riemann-Hilbert Approach to Complex Sharma-Tasso-Olver Equation on Half Line*
NASA Astrophysics Data System (ADS)
Zhang, Ning; Xia, Tie-Cheng; Hu, Bei-Bei
2017-11-01
In this paper, the Fokas unified method is used to analyze the initial-boundary value problem of a complex Sharma-Tasso-Olver (cSTO) equation on the half line. We show that the solution can be expressed in terms of the solution of a Riemann-Hilbert problem. The relevant jump matrices are explicitly given in terms of the matrix-value spectral functions spectral functions \\{a(λ ),b(λ )\\} and \\{A(λ ),B(λ )\\} , which depending on initial data {u}0(x)=u(x,0) and boundary data {g}0(y)=u(0,y), {g}1(y)={u}x(0,y), {g}2(y)={u}{xx}(0,y). These spectral functions are not independent, they satisfy a global relation.
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-01
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919
NASA Technical Reports Server (NTRS)
Groth, Clinton P. T.; Roe, Philip L.
1998-01-01
Six months of funding was received for the proposed three year research program (funding for the period from March 1, 1997 to August 31, 1997). Although the official starting date for the project was March 1, 1997, no funding for the project was received until July 1997. In the funded research period, considerable progress was made on Phase I of the proposed research program. The initial research efforts concentrated on applying the 10-, 20-, and 35-moment Gaussian-based closures to a series of standard two-dimensional non-reacting single species test flow problems, such as the flat plate, couette, channel, and rearward facing step flows, and to some other two-dimensional flows having geometries similar to those encountered in chemical-vapor deposition (CVD) reactors. Eigensystem analyses for these systems for the case of two spatial dimensions was carried out and efficient formulations of approximate Riemann solvers have been formulated using these eigenstructures. Formulations to include rotational non-equilibrium effects into the moment closure models for the treatment of polyatomic gases were explored, as the original formulations of the closure models were developed strictly for gases composed of monatomic molecules. The development of a software library and computer code for solving relaxing hyperbolic systems in two spatial dimensions of the type arising from the closure models was also initiated. The software makes use of high-resolution upwind finite-volumes schemes, multi-stage point implicit time stepping, and automatic adaptive mesh refinement (AMR) to solve the governing conservation equations for the moment closures. The initial phase of the code development was completed and a numerical investigation of the solutions of the 10-moment closure model for the simple two-dimensional test cases mentioned above was initiated. Predictions of the 10-moment model were compared to available theoretical solutions and the results of direct-simulation Monte Carlo (DSMC) calculations. The first results of this study were presented at a meeting last year.
Pauli graphs, Riemann hypothesis, and Goldbach pairs
NASA Astrophysics Data System (ADS)
Planat, M.; Anselmi, F.; Solé, P.
2012-06-01
We consider the Pauli group Pq generated by unitary quantum generators X (shift) and Z (clock) acting on vectors of the q-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within Pq is controlled by the Dedekind psi function ψ(q) and that there exists a specific inequality involving the Euler constant γ ˜ 0.577 that is only satisfied at specific low dimensions q ∈ A = { 2, 3, 4, 5, 6, 8, 10, 12, 18, 30}. The set A is closely related to the set A∪{ 1, 24} of integers that are totally Goldbach, i.e., that consist of all primes p < n - 1 with p not dividing n and such that n-p is prime. In the extreme high-dimensional case, at primorial numbers Nr, the Hardy-Littlewood function R(q) is introduced for estimating the number of Goldbach pairs, and a new inequality (Theorem 4) is established for the equivalence to the Riemann hypothesis in terms of R(Nr). We discuss these number-theoretical properties in the context of the qudit commutation structure.
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes
NASA Astrophysics Data System (ADS)
Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.
2004-11-01
We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.
Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Ibanez, Jose M.
2001-12-01
My contribution to these proceedings summarizes a general overview on t High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.
Monotonic Derivative Correction for Calculation of Supersonic Flows
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
Aim of the study: This study examines numerical methods for solving the problems in gas dynamics, which are based on an exact or approximate solution to the problem of breakdown of an arbitrary discontinuity (the Riemann problem). Results: Comparative analysis of finite difference schemes for the Euler equations integration is conducted on the…
Solitons of shallow-water models from energy-dependent spectral problems
NASA Astrophysics Data System (ADS)
Haberlin, Jack; Lyons, Tony
2018-01-01
The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.
George, D.L.
2011-01-01
The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin
2017-05-01
We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
NASA Astrophysics Data System (ADS)
Postnov, Sergey
2017-11-01
Two kinds of optimal control problem are investigated for linear time-invariant fractional-order systems with lumped parameters which dynamics described by equations with Hadamard-type derivative: the problem of control with minimal norm and the problem of control with minimal time at given restriction on control norm. The problem setting with nonlocal initial conditions studied. Admissible controls allowed to be the p-integrable functions (p > 1) at half-interval. The optimal control problem studied by moment method. The correctness and solvability conditions for the corresponding moment problem are derived. For several special cases the optimal control problems stated are solved analytically. Some analogies pointed for results obtained with the results which are known for integer-order systems and fractional-order systems describing by equations with Caputo- and Riemann-Liouville-type derivatives.
Averages of ratios of the Riemann zeta-function and correlations of divisor sums
NASA Astrophysics Data System (ADS)
Conrey, Brian; Keating, Jonathan P.
2017-10-01
Nonlinearity has published articles containing a significant number-theoretic component since the journal was first established. We examine one thread, concerning the statistics of the zeros of the Riemann zeta function. We extend this by establishing a connection between the ratios conjecture for the Riemann zeta-function and a conjecture concerning correlations of convolutions of Möbius and divisor functions. Specifically, we prove that the ratios conjecture and an arithmetic correlations conjecture imply the same result. This provides new support for the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. Our main theorem generalises a recent calculation pertaining to the special case of two-over-two ratios.
The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation
NASA Astrophysics Data System (ADS)
Claeys, T.; Vanlessen, M.
2007-05-01
We establish the existence of a real solution y(x, T) with no poles on the real line of the following fourth order analogue of the Painlevé I equation: \\[ \\begin{equation*}x=Ty-\\left(\\case 1 6 y^3+\\case{1}{24} (y_x^2+2yy_{xx}) +\\case {1}{240} y_{xxxx}\\right).\\end{equation*} \\] This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y(x, T) as x → ±∞.
Explicit densities of multidimensional ballistic Lévy walks.
Magdziarz, Marcin; Zorawik, Tomasz
2016-08-01
Lévy walks have proved to be useful models of stochastic dynamics with a number of applications in the modeling of real-life phenomena. In this paper we derive explicit formulas for densities of the two- (2D) and three-dimensional (3D) ballistic Lévy walks, which are most important in applications. It turns out that in the 3D case the densities are given by elementary functions. The densities of the 2D Lévy walks are expressed in terms of hypergeometric functions and the right-side Riemann-Liouville fractional derivative, which allows us to efficiently evaluate them numerically. The theoretical results agree perfectly with Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.
2018-04-01
The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Liu, Huan
2018-04-01
The Riemann-Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding 3× 3 matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.
Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; González, J. A.
2018-04-01
We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.
A Riemann-Hilbert Approach for the Novikov Equation
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2016-09-01
We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry
NASA Astrophysics Data System (ADS)
Jaouen, Stéphane
2007-07-01
In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.
Colliding holes in Riemann surfaces and quantum cluster algebras
NASA Astrophysics Data System (ADS)
Chekhov, Leonid; Mazzocco, Marta
2018-01-01
In this paper, we describe a new type of surgery for non-compact Riemann surfaces that naturally appears when colliding two holes or two sides of the same hole in an orientable Riemann surface with boundary (and possibly orbifold points). As a result of this surgery, bordered cusps appear on the boundary components of the Riemann surface. In Poincaré uniformization, these bordered cusps correspond to ideal triangles in the fundamental domain. We introduce the notion of bordered cusped Teichmüller space and endow it with a Poisson structure, quantization of which is achieved with a canonical quantum ordering. We give a complete combinatorial description of the bordered cusped Teichmüller space by introducing the notion of maximal cusped lamination, a lamination consisting of geodesic arcs between bordered cusps and closed geodesics homotopic to the boundaries such that it triangulates the Riemann surface. We show that each bordered cusp carries a natural decoration, i.e. a choice of a horocycle, so that the lengths of the arcs in the maximal cusped lamination are defined as λ-lengths in Thurston-Penner terminology. We compute the Goldman bracket explicitly in terms of these λ-lengths and show that the groupoid of flip morphisms acts as a generalized cluster algebra mutation. From the physical point of view, our construction provides an explicit coordinatization of moduli spaces of open/closed string worldsheets and their quantization.
High-order centered difference methods with sharp shock resolution
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
In this paper we consider high-order centered finite difference approximations of hyperbolic conservation laws. We propose different ways of adding artificial viscosity to obtain sharp shock resolution. For the Riemann problem we give simple explicit formulas for obtaining stationary one and two-point shocks. This can be done for any order of accuracy. It is shown that the addition of artificial viscosity is equivalent to ensuring the Lax k-shock condition. We also show numerical experiments that verify the theoretical results.
A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials
NASA Astrophysics Data System (ADS)
Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X.
2001-08-01
A few years ago the authors introduced a new approach to study asymptotic questions for orthogonal polynomials. In this paper we give an overview of our method and review the results which have been obtained in Deift et al. (Internat. Math. Res. Notices (1997) 759, Comm. Pure Appl. Math. 52 (1999) 1491, 1335), Deift (Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, Vol. 3, New York University, 1999), Kriecherbauer and McLaughlin (Internat. Math. Res. Notices (1999) 299) and Baik et al. (J. Amer. Math. Soc. 12 (1999) 1119). We mainly consider orthogonal polynomials with respect to weights on the real line which are either (1) Freud-type weights d[alpha](x)=e-Q(x) dx (Q polynomial or Q(x)=x[beta], [beta]>0), or (2) varying weights d[alpha]n(x)=e-nV(x) dx (V analytic, limx-->[infinity] V(x)/logx=[infinity]). We obtain Plancherel-Rotach-type asymptotics in the entire complex plane as well as asymptotic formulae with error estimates for the leading coefficients, for the recurrence coefficients, and for the zeros of the orthogonal polynomials. Our proof starts from an observation of Fokas et al. (Comm. Math. Phys. 142 (1991) 313) that the orthogonal polynomials can be determined as solutions of certain matrix valued Riemann-Hilbert problems. We analyze the Riemann-Hilbert problems by a steepest descent type method introduced by Deift and Zhou (Ann. Math. 137 (1993) 295) and further developed in Deift and Zhou (Comm. Pure Appl. Math. 48 (1995) 277) and Deift et al. (Proc. Nat. Acad. Sci. USA 95 (1998) 450). A crucial step in our analysis is the use of the well-known equilibrium measure which describes the asymptotic distribution of the zeros of the orthogonal polynomials.
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Balsara, Dinshaw S., E-mail: dbalsara@nd.edu
In this paper a new, simple and universal formulation of the HLLEM Riemann solver (RS) is proposed that works for general conservative and non-conservative systems of hyperbolic equations. For non-conservative PDE, a path-conservative formulation of the HLLEM RS is presented for the first time in this paper. The HLLEM Riemann solver is built on top of a novel and very robust path-conservative HLL method. It thus naturally inherits the positivity properties and the entropy enforcement of the underlying HLL scheme. However, with just the slight additional cost of evaluating eigenvectors and eigenvalues of intermediate characteristic fields, we can represent linearlymore » degenerate intermediate waves with a minimum of smearing. For conservative systems, our paper provides the easiest and most seamless path for taking a pre-existing HLL RS and quickly and effortlessly converting it to a RS that provides improved results, comparable with those of an HLLC, HLLD, Osher or Roe-type RS. This is done with minimal additional computational complexity, making our variant of the HLLEM RS also a very fast RS that can accurately represent linearly degenerate discontinuities. Our present HLLEM RS also transparently extends these advantages to non-conservative systems. For shallow water-type systems, the resulting method is proven to be well-balanced. Several test problems are presented for shallow water-type equations and two-phase flow models, as well as for gas dynamics with real equation of state, magnetohydrodynamics (MHD & RMHD), and nonlinear elasticity. Since our new formulation accommodates multiple intermediate waves and has a broader applicability than the original HLLEM method, it could alternatively be called the HLLI Riemann solver, where the “I” stands for the intermediate characteristic fields that can be accounted for. -- Highlights: •New simple and general path-conservative formulation of the HLLEM Riemann solver. •Application to general conservative and non-conservative hyperbolic systems. •Inclusion of sub-structure and resolution of intermediate characteristic fields. •Well-balanced for single- and two-layer shallow water equations and multi-phase flows. •Euler equations with real equation of state, MHD equations, nonlinear elasticity.« less
Saka, Takashi
2016-05-01
The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.
N = 1 supersymmetric indices and the four-dimensional A-model
NASA Astrophysics Data System (ADS)
Closset, Cyril; Kim, Heeyeon; Willett, Brian
2017-08-01
We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.
Effect of interfacial stresses in an elastic body with a nanoinclusion
NASA Astrophysics Data System (ADS)
Vakaeva, Aleksandra B.; Grekov, Mikhail A.
2018-05-01
The 2-D problem of an infinite elastic solid with a nanoinclusion of a different from circular shape is solved. The interfacial stresses are acting at the interface. Contact of the inclusion with the matrix satisfies the ideal conditions of cohesion. The generalized Laplace - Young law defines conditions at the interface. To solve the problem, Gurtin - Murdoch surface elasticity model, Goursat - Kolosov complex potentials and the boundary perturbation method are used. The problem is reduced to the solution of two independent Riemann - Hilbert's boundary problems. For the circular inclusion, hypersingular integral equation in an unknown interfacial stress is derived. The algorithm of solving this equation is constructed. The influence of the interfacial stress and the dimension of the circular inclusion on the stress distribution and stress concentration at the interface are analyzed.
A new shock-capturing numerical scheme for ideal hydrodynamics
NASA Astrophysics Data System (ADS)
Fecková, Z.; Tomášik, B.
2015-05-01
We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.
The short pulse equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2017-07-01
We develop a Riemann-Hilbert approach to the inverse scattering transform method for the short pulse (SP) equation u_{xt}=u+{1/6}(u^3)_{xx} with zero boundary conditions (as |x|→ ∞). This approach is directly applied to a Lax pair for the SP equation. It allows us to give a parametric representation of the solution to the Cauchy problem. This representation is then used for studying the longtime behavior of the solution as well as for retrieving the soliton solutions. Finally, the analysis of the longtime behavior allows us to formulate, in spectral terms, a sufficient condition for the wave breaking.
SSME Turbopump Turbine Computations
NASA Technical Reports Server (NTRS)
Jorgenson, P. G. E.
1985-01-01
A two-dimensional viscous code was developed to be used in the prediction of the flow in the SSME high-pressure turbopump blade passages. The rotor viscous code (RVC) employs a four-step Runge-Kutta scheme to solve the two-dimensional, thin-layer Navier-Stokes equations. The Baldwin-Lomax eddy-viscosity model is used for these turbulent flow calculations. A viable method was developed to use the relative exit conditions from an upstream blade row as the inlet conditions to the next blade row. The blade loading diagrams are compared with the meridional values obtained from an in-house quasithree-dimensional inviscid code. Periodic boundary conditions are imposed on a body-fitted C-grid computed by using the GRAPE GRids about Airfoils using Poisson's Equation (GRAPE) code. Total pressure, total temperature, and flow angle are specified at the inlet. The upstream-running Riemann invariant is extrapolated from the interior. Static pressure is specified at the exit such that mass flow is conserved from blade row to blade row, and the conservative variables are extrapolated from the interior. For viscous flows the noslip condition is imposed at the wall. The normal momentum equation gives the pressure at the wall. The density at the wall is obtained from the wall total temperature.
Riemann solvers and Alfven waves in black hole magnetospheres
NASA Astrophysics Data System (ADS)
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
SToRM: A Model for Unsteady Surface Hydraulics Over Complex Terrain
Simoes, Francisco J.
2014-01-01
A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow over complex topography is presented. The model is based on an unstructured cellcentered finite volume formulation and a nonlinear strong stability preserving Runge-Kutta time stepping scheme. The numerical discretization is founded on the classical and well established shallow water equations in hyperbolic conservative form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes. The model’s implementation within a graphical user interface is discussed. Field application of the model is illustrated by utilizing it to estimate peak flow discharges in a flooding event of historic significance in Colorado, U.S.A., in 2013.
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
On Lovelock analogs of the Riemann tensor
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
1988-02-01
in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
On the formation of Friedlander waves in a compressed-gas-driven shock tube
Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.
2016-01-01
Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888
Constant curvature black holes in Einstein AdS gravity: Euclidean action and thermodynamics
NASA Astrophysics Data System (ADS)
Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.
2018-03-01
We compute the Euclidean action for constant curvature black holes (CCBHs), as an attempt to associate thermodynamic quantities to these solutions of Einstein anti-de Sitter (AdS) gravity. CCBHs are gravitational configurations obtained by identifications along isometries of a D -dimensional globally AdS space, such that the Riemann tensor remains constant. Here, these solutions are interpreted as extended objects, which contain a (D -2 )-dimensional de-Sitter brane as a subspace. Nevertheless, the computation of the free energy for these solutions shows that they do not obey standard thermodynamic relations.
Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using (G‧/G2) -expansion method
NASA Astrophysics Data System (ADS)
Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Ullah, Rahmat; Ahmed, Naveed; Khan, Umar
This article deals with finding some exact solutions of nonlinear fractional differential equations (NLFDEs) by applying a relatively new method known as (G‧/G2) -expansion method. Solutions of space-time fractional Sharma-Tasso-Olever (STO) equation of fractional order and (3+1)-dimensional KdV-Zakharov Kuznetsov (KdV-ZK) equation of fractional order are reckoned to demonstrate the validity of this method. The fractional derivative version of modified Riemann-Liouville, linked with Fractional complex transform is employed to transform fractional differential equations into the corresponding ordinary differential equations.
NASA Astrophysics Data System (ADS)
Zou, Li; Tian, Shou-Fu; Feng, Lian-Li
2017-12-01
In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
A Walsh Function Module Users' Manual
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2014-01-01
The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.
Special discontinuities in nonlinearly elastic media
NASA Astrophysics Data System (ADS)
Chugainova, A. P.
2017-06-01
Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.
2014-01-01
with a Riemann flux !"#! (!! ,!!!,), where !!! denotes the solution outside the current element !. Various (approximate) Riemann solvers ...can be used to calculate the Riemann flux, and the Rusanov Riemann solver is adopted in this paper. Then Eq. (7) can be rewritten as !
General phase transition models for vehicular traffic with point constraints on the flow
NASA Astrophysics Data System (ADS)
Dal Santo, E.; Rosini, M. D.; Dymski, N.; Benyahia, M.
2017-12-01
We generalize the phase transition model studied in [R. Colombo. Hyperbolic phase transition in traffic flow.\\ SIAM J.\\ Appl.\\ Math., 63(2):708-721, 2002], that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the \\emph{free-flow} phase and by a system of two conservation laws in the \\emph{congested} phase. In particular, we study the resulting Riemann problems in the case a local point constraint on the flux of the solutions is enforced.
NASA Astrophysics Data System (ADS)
Murillo, J.; García-Navarro, P.
2012-02-01
In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.
One-dimensional high-order compact method for solving Euler's equations
NASA Astrophysics Data System (ADS)
Mohamad, M. A. H.; Basri, S.; Basuno, B.
2012-06-01
In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.
A compressible two-layer model for transient gas-liquid flows in pipes
NASA Astrophysics Data System (ADS)
Demay, Charles; Hérard, Jean-Marc
2017-03-01
This work is dedicated to the modeling of gas-liquid flows in pipes. As a first step, a new two-layer model is proposed to deal with the stratified regime. The starting point is the isentropic Euler set of equations for each phase where the classical hydrostatic assumption is made for the liquid. The main difference with the models issued from the classical literature is that the liquid as well as the gas is assumed compressible. In that framework, an averaging process results in a five-equation system where the hydrostatic constraint has been used to define the interfacial pressure. Closure laws for the interfacial velocity and source terms such as mass and momentum transfer are provided following an entropy inequality. The resulting model is hyperbolic with non-conservative terms. Therefore, regarding the homogeneous part of the system, the definition and uniqueness of jump conditions is studied carefully and acquired. The nature of characteristic fields and the corresponding Riemann invariants are also detailed. Thus, one may build analytical solutions for the Riemann problem. In addition, positivity is obtained for heights and densities. The overall derivation deals with gas-liquid flows through rectangular channels, circular pipes with variable cross section and includes vapor-liquid flows.
c-Extremization from toric geometry
NASA Astrophysics Data System (ADS)
Amariti, Antonio; Cassia, Luca; Penati, Silvia
2018-04-01
We derive a geometric formulation of the 2d central charge cr from infinite families of 4d N = 1 superconformal field theories topologically twisted on constant curvature Riemann surfaces. They correspond to toric quiver gauge theories and are associated to D3 branes probing five dimensional Sasaki-Einstein geometries in the AdS/CFT correspondence. We show that cr can be expressed in terms of the areas of the toric diagram describing the moduli space of the 4d theory, both for toric geometries with smooth and singular horizons. We also study the relation between a-maximization in 4d and c-extremization in 2d, giving further evidences of the mixing of the baryonic symmetries with the exact R-current in two dimensions.
Putrov, Pavel; Song, Jaewon; Yan, Wenbin
2016-03-29
We study a class of two-dimensional N = (0; 4) quiver gauge theories that flow to superconformal field theories. We find dualities for the superconformal field theories similar to the 4d N = 2 theories of class S, labelled by a Riemann surface C. The dual descriptions arise from various pair-of-pants decompositions, that involve an analog of the T N theory. Especially, we find the superconformal indices of such theories can be written in terms of a topological field theory on C. In conclusion, we interpret this class of SCFTs as the ones coming from compactifying 6d N = (2;more » 0) theory on CP 1 x C. Moreover, some new dualities of (0; 2) and (2; 2) theories are also discussed.« less
Fully- and weakly-nonlinear biperiodic traveling waves in shallow water
NASA Astrophysics Data System (ADS)
Hirakawa, Tomoaki; Okamura, Makoto
2018-04-01
We directly calculate fully nonlinear traveling waves that are periodic in two independent horizontal directions (biperiodic) in shallow water. Based on the Riemann theta function, we also calculate exact periodic solutions to the Kadomtsev-Petviashvili (KP) equation, which can be obtained by assuming weakly-nonlinear, weakly-dispersive, weakly-two-dimensional waves. To clarify how the accuracy of the biperiodic KP solution is affected when some of the KP approximations are not satisfied, we compare the fully- and weakly-nonlinear periodic traveling waves of various wave amplitudes, wave depths, and interaction angles. As the interaction angle θ decreases, the wave frequency and the maximum wave height of the biperiodic KP solution both increase, and the central peak sharpens and grows beyond the height of the corresponding direct numerical solutions, indicating that the biperiodic KP solution cannot qualitatively model direct numerical solutions for θ ≲ 45^\\circ . To remedy the weak two-dimensionality approximation, we apply the correction of Yeh et al (2010 Eur. Phys. J. Spec. Top. 185 97-111) to the biperiodic KP solution, which substantially improves the solution accuracy and results in wave profiles that are indistinguishable from most other cases.
NASA Astrophysics Data System (ADS)
Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi
2018-07-01
In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Jia, Shu-Liang; Lan, Zhong-Zhou
2017-07-01
Under investigation in this paper is a generalized ?-dimensional Yu-Toda-Sasa-Fukayama equation for the interfacial wave in a two-layer fluid or the elastic quasi-plane wave in a liquid lattice. By virtue of the binary Bell polynomials, bilinear form of this equation is obtained. With the help of the bilinear form, N-soliton solutions are obtained via the Hirota method, and a bilinear Bäcklund transformation is derived to verify the integrability. Homoclinic breather waves are obtained according to the homoclinic test approach, which is not only the space-periodic breather but also the time-periodic breather via the graphic analysis. Via the Riemann theta function, quasi one-periodic waves are constructed, which can be viewed as a superposition of the overlapping solitary waves, placed one period apart. Finally, soliton-like, periodical triangle-type, rational-type and solitary bell-type travelling waves are obtained by means of the polynomial expansion method.
Global boundary flattening transforms for acoustic propagation under rough sea surfaces.
Oba, Roger M
2010-07-01
This paper introduces a conformal transform of an acoustic domain under a one-dimensional, rough sea surface onto a domain with a flat top. This non-perturbative transform can include many hundreds of wavelengths of the surface variation. The resulting two-dimensional, flat-topped domain allows direct application of any existing, acoustic propagation model of the Helmholtz or wave equation using transformed sound speeds. Such a transform-model combination applies where the surface particle velocity is much slower than sound speed, such that the boundary motion can be neglected. Once the acoustic field is computed, the bijective (one-to-one and onto) mapping permits the field interpolation in terms of the original coordinates. The Bergstrom method for inverse Riemann maps determines the transform by iterated solution of an integral equation for a surface matching term. Rough sea surface forward scatter test cases provide verification of the method using a particular parabolic equation model of the Helmholtz equation.
The Riemann-Lanczos equations in general relativity and their integrability
NASA Astrophysics Data System (ADS)
Dolan, P.; Gerber, A.
2008-06-01
The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, Christian B.; Spohn, Herbert
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
A Schrödinger equation for solving the Bender-Brody-Müller conjecture
NASA Astrophysics Data System (ADS)
Moxley, Frederick Ira
2017-11-01
The Hamiltonian of a quantum mechanical system has an affiliated spectrum. If this spectrum is the sequence of prime numbers, a connection between quantum mechanics and the nontrivial zeros of the Riemann zeta function can be made. In this case, the Riemann zeta function is analogous to chaotic quantum systems, as the harmonic oscillator is for integrable quantum systems. Such quantum Riemann zeta function analogies have led to the Bender-Brody-Müller (BBM) conjecture, which involves a non-Hermitian Hamiltonian that maps to the zeros of the Riemann zeta function. If the BBM Hamiltonian can be shown to be Hermitian, then the Riemann Hypothesis follows. As such, herein we perform a symmetrization procedure of the BBM Hamiltonian to obtain a unique Hermitian Hamiltonian that maps to the zeros of the analytic continuation of the Riemann zeta function, and discuss the eigenvalues of the results. Moreover, a second quantization of the resulting Schrödinger equation is performed, and a convergent solution for the nontrivial zeros of the analytic continuation of the Riemann zeta function is obtained. Finally, the Hilbert-Pólya conjecture is discussed, and it is heuristically shown that the real part of every nontrivial zero of the Riemann zeta function converges at σ = 1/2.
Real Gas Computation Using an Energy Relaxation Method and High-Order WENO Schemes
NASA Technical Reports Server (NTRS)
Montarnal, Philippe; Shu, Chi-Wang
1998-01-01
In this paper, we use a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition into two parts: one part is associated with a simpler pressure law and the other part (the nonlinear deviation) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the first part. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.
Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh
NASA Astrophysics Data System (ADS)
Wenhua, Wang; Yanying, Wang
2010-05-01
This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
Shortening anomalies in supersymmetric theories
Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi; ...
2017-01-17
We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K 3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why theremore » are no N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less
Shortening anomalies in supersymmetric theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi
We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K 3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why theremore » are no N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less
Fractional kinetics of compartmental systems: first approach with use digraph-based method
NASA Astrophysics Data System (ADS)
Markowski, Konrad Andrzej
2017-08-01
In the last two decades, integral and differential calculus of a fractional order has become a subject of great interest in different areas of physics, biology, economics and other sciences. The idea of such a generalization was mentioned in 1695 by Leibniz and L'Hospital. The first definition of the fractional derivative was introduced by Liouville and Riemann at the end of the 19th century. Fractional calculus was found to be a very useful tool for modelling the behaviour of many materials and systems. In this paper fractional calculus was applied to pharmacokinetic compartmental model. For introduced model determine all possible quasi-positive realisation based on one-dimensional digraph theory. The proposed method was discussed and illustrated in detail with some numerical examples.
The Kummer tensor density in electrodynamics and in gravity
NASA Astrophysics Data System (ADS)
Baekler, Peter; Favaro, Alberto; Itin, Yakov; Hehl, Friedrich W.
2014-10-01
Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, K. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four T, which is antisymmetric in its first two and its last two indices: T=-T=-T. Thus, K∼T3, see Eq. (46). (i) If T is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized Fresnel wave surfaces for propagating light. In the reversible case, the wave surfaces turn out to be Kummer surfaces as defined in algebraic geometry (Bateman 1910). (ii) If T is identified with the curvature tensor R of a Riemann-Cartan spacetime, then K∼R3 and, in the special case of general relativity, K reduces to the Kummer tensor of Zund (1969). This K is related to the principal null directions of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose K irreducibly under the 4-dimensional linear group GL(4,R) and, subsequently, under the Lorentz group SO(1,3).
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng
2018-02-01
Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.
NASA Astrophysics Data System (ADS)
Giraud, O.; Thain, A.; Hannay, J. H.
2004-02-01
The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.
A Legendre tau-spectral method for solving time-fractional heat equation with nonlocal conditions.
Bhrawy, A H; Alghamdi, M A
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem.
A Legendre tau-Spectral Method for Solving Time-Fractional Heat Equation with Nonlocal Conditions
Bhrawy, A. H.; Alghamdi, M. A.
2014-01-01
We develop the tau-spectral method to solve the time-fractional heat equation (T-FHE) with nonlocal condition. In order to achieve highly accurate solution of this problem, the operational matrix of fractional integration (described in the Riemann-Liouville sense) for shifted Legendre polynomials is investigated in conjunction with tau-spectral scheme and the Legendre operational polynomials are used as the base function. The main advantage in using the presented scheme is that it converts the T-FHE with nonlocal condition to a system of algebraic equations that simplifies the problem. For demonstrating the validity and applicability of the developed spectral scheme, two numerical examples are presented. The logarithmic graphs of the maximum absolute errors is presented to achieve the exponential convergence of the proposed method. Comparing between our spectral method and other methods ensures that our method is more accurate than those solved similar problem. PMID:25057507
Exploration and extension of an improved Riemann track fitting algorithm
NASA Astrophysics Data System (ADS)
Strandlie, A.; Frühwirth, R.
2017-09-01
Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.
2006-03-01
2000. http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html. Toro , Eleuterio F . Riemann Solvers and Numerical Methods for Fluid Dynamics...Invariants along the characteristics are used ( Toro , 1999:120). A generalized pressure function, ( )* f p ,ξ ξW , whereξ indicates the appropriate...dx dt ,⎡ ⎤− =⎢ ⎥⎣ ⎦∫ U F U 0 (4.9) where the line integration is performed, counter-clockwise, along the boundary of the domain ( Toro , 1999:62
BRST formulation of 4-monopoles
NASA Astrophysics Data System (ADS)
Gianvittorio, R.; Martin, I.; Restuccia, A.
1996-11-01
A supersymmetric gauge-invariant action is constructed over any four-dimensional Riemannian manifold describing Witten's theory of 4-monopoles. The topological supersymmetric algebra closes off-shell. The multiplets include the auxiliary fields and the Wess - Zumino fields in an unusual way, arising naturally from BRST gauge fixing. A new canonical approach over Riemann manifolds is followed, using a Morse function as a Euclidean time and taking into account the BRST boundary conditions that come from the BFV formulation. This allows a construction of the effective action starting from gauge principles.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelanti, Marica, E-mail: Marica.Pelanti@ens.f; Bouchut, Francois, E-mail: francois.bouchut@univ-mlv.f; Mangeney, Anne, E-mail: mangeney@ipgp.jussieu.f
2011-02-01
We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resultingmore » relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.« less
Intersecting surface defects and two-dimensional CFT
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Le Floch, Bruno; Pan, Yiwen; Peelaers, Wolfger
2017-08-01
We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N =2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators in N =2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations of S U (N ).
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
Mendl, Christian B.; Spohn, Herbert
2016-10-04
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Isomonodromy for the Degenerate Fifth Painlevé Equation
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; van der Put, Marius; Top, Jaap
2017-05-01
This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.
A Riemann-Hilbert formulation for the finite temperature Hubbard model
NASA Astrophysics Data System (ADS)
Cavaglià, Andrea; Cornagliotto, Martina; Mattelliano, Massimo; Tateo, Roberto
2015-06-01
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
Gasdynamic Inlet Isolation in Rotating Detonation Engine
2010-12-01
2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal
NASA Astrophysics Data System (ADS)
Tripathi, B. B.; Espíndola, D.; Pinton, G. F.
2017-11-01
The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.
NASA Astrophysics Data System (ADS)
Navas-Montilla, A.; Murillo, J.
2016-07-01
In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.
Initial-boundary value problems associated with the Ablowitz-Ladik system
NASA Astrophysics Data System (ADS)
Xia, Baoqiang; Fokas, A. S.
2018-02-01
We employ the Ablowitz-Ladik system as an illustrative example in order to demonstrate how to analyze initial-boundary value problems for integrable nonlinear differential-difference equations via the unified transform (Fokas method). In particular, we express the solutions of the integrable discrete nonlinear Schrödinger and integrable discrete modified Korteweg-de Vries equations in terms of the solutions of appropriate matrix Riemann-Hilbert problems. We also discuss in detail, for both the above discrete integrable equations, the associated global relations and the process of eliminating of the unknown boundary values.
Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor
NASA Astrophysics Data System (ADS)
Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.
2017-09-01
The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.
Hydrodynamic optical soliton tunneling
NASA Astrophysics Data System (ADS)
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Hydrodynamic optical soliton tunneling.
Sprenger, P; Hoefer, M A; El, G A
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
One-dimensional super Calabi-Yau manifolds and their mirrors
NASA Astrophysics Data System (ADS)
Noja, S.; Cacciatori, S. L.; Piazza, F. Dalla; Marrani, A.; Re, R.
2017-04-01
We apply a definition of generalised super Calabi-Yau variety (SCY) to supermanifolds of complex dimension one. One of our results is that there are two SCY's having reduced manifold equal to P^1, namely the projective super space P^{.1|2} and the weighted projective super space W{P}_{(2)}^{.1|1} . Then we compute the corresponding sheaf cohomology of superforms, showing that the cohomology with picture number one is infinite dimensional, while the de Rham cohomology, which is what matters from a physical point of view, remains finite dimensional. Moreover, we provide the complete real and holomorphic de Rham cohomology for generic projective super spaces {P}^{.n|m} . We also determine the automorphism groups: these always match the dimension of the projective super group with the only exception of {P}^{.1|2} , whose automorphism group turns out to be larger than the projective super group. By considering the cohomology of the super tangent sheaf, we compute the deformations of {P}^{.1|m} , discovering that the presence of a fermionic structure allows for deformations even if the reduced manifold is rigid. Finally, we show that {P}^{.1|2} is self-mirror, whereas W{P}_{(2)}^{.1|1} has a zero dimensional mirror. Also, the mirror map for {P}^{.1|2} naturally endows it with a structure of N = 2 super Riemann surface.
Hypersonic blunt body computations including real gas effects
NASA Technical Reports Server (NTRS)
Montagne, J.-L.; Yee, H. C.; Klopfer, G. H.; Vinokur, M.
1989-01-01
Various second-order explicit and implicit TVD shock-capturing methods, a generalization of Roe's approximate Riemann solver, and a generalized flux-vector splitting scheme are used to study two-dimensional hypersonic real-gas flows. Special attention is given to the identification of some of the elements and parameters which can affect the convergence rate for high Mach numbers or real gases, but have negligible effect for low Mach numbers, for cases involving steady-state inviscid blunt flows. Blunt body calculations at Mach numbers of greater than 15 are performed to treat real-gas effects, and impinging shock results are obtained to test the treatment of slip surfaces and complex structures. Even with the addition of improvements, the convergence rate of algorithms in the hypersonic flow regime is found to be generally slower for a real gas than for a perfect gas.
Covariant path integrals on hyperbolic surfaces
NASA Astrophysics Data System (ADS)
Schaefer, Joe
1997-11-01
DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).
NASA Astrophysics Data System (ADS)
Grinevich, P. G.; Santini, P. M.
2007-08-01
We study the complexification of the one-dimensional Newtonian particle in a monomial potential. We discuss two classes of motions on the associated Riemann surface: the rectilinear and the cyclic motions, corresponding to two different classes of real and autonomous Newtonian dynamics in the plane. The rectilinear motion has been studied in a number of papers, while the cyclic motion is much less understood. For small data, the cyclic time trajectories lead to isochronous dynamics. For bigger data the situation is quite complicated; computer experiments show that, for sufficiently small degree of the monomial, the motion is generically isochronous with integer period, which depends in a quite sensitive way on the initial data. If the degree of the monomial is sufficiently high, computer experiments show essentially chaotic behavior. We suggest a possible theoretical explanation of these different behaviors. We also introduce a two-parameter family of two-dimensional mappings, describing the motion of the center of the circle, as a convenient representation of the cyclic dynamics; we call such a mapping the center map. Computer experiments for the center map show a typical multifractal behavior with periodicity islands. Therefore the above complexification procedure generates dynamics amenable to analytic treatment and possessing a high degree of complexity.
Elementary solutions of coupled model equations in the kinetic theory of gases
NASA Technical Reports Server (NTRS)
Kriese, J. T.; Siewert, C. E.; Chang, T. S.
1974-01-01
The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.
NASA Astrophysics Data System (ADS)
Huang, Daniel Z.; De Santis, Dante; Farhat, Charbel
2018-07-01
The Finite Volume method with Exact two-material Riemann Problems (FIVER) is both a computational framework for multi-material flows characterized by large density jumps, and an Embedded Boundary Method (EBM) for computational fluid dynamics and highly nonlinear Fluid-Structure Interaction (FSI) problems. This paper deals with the EBM aspect of FIVER. For FSI problems, this EBM has already demonstrated the ability to address viscous effects along wall boundaries, and large deformations and topological changes of such boundaries. However, like for most EBMs - also known as immersed boundary methods - the performance of FIVER in the vicinity of a wall boundary can be sensitive with respect to the position and orientation of this boundary relative to the embedding mesh. This is mainly due to ill-conditioning issues that arise when an embedded interface becomes too close to a node of the embedding mesh, which may lead to spurious oscillations in the computed solution gradients at the wall boundary. This paper resolves these issues by introducing an alternative definition of the active/inactive status of a mesh node that leads to the removal of all sources of potential ill-conditioning from all spatial approximations performed by FIVER in the vicinity of a fluid-structure interface. It also makes two additional contributions. The first one is a new procedure for constructing the fluid-structure half Riemann problem underlying the semi-discretization by FIVER of the convective fluxes. This procedure eliminates one extrapolation from the conventional treatment of the wall boundary conditions and replaces it by an interpolation, which improves robustness. The second contribution is a post-processing algorithm for computing quantities of interest at the wall that achieves smoothness in the computed solution and its gradients. Lessons learned from these enhancements and contributions that are triggered by the new definition of the status of a mesh node are then generalized and exploited to eliminate from the original version of the FIVER method its sensitivities with respect to both of the position and orientation of the wall boundary relative to the embedding mesh, while maintaining the original definition of the status of a mesh node. This leads to a family of second-generation FIVER methods whose performance is illustrated in this paper for several flow and FSI problems. These include a challenging flow problem over a bird wing characterized by a feather-induced surface roughness, and a complex flexible flapping wing problem for which experimental data is available.
Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer
NASA Astrophysics Data System (ADS)
Surov, V. S.
2018-05-01
Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.
Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas-Dust Layer
NASA Astrophysics Data System (ADS)
Surov, V. S.
2018-03-01
Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.
Nonclassical models of the theory of plates and shells
NASA Astrophysics Data System (ADS)
Annin, Boris D.; Volchkov, Yuri M.
2017-11-01
Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the complete system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each of the unknown functions (stresses and displacements) by segments of the Legendre polynomials are also reviewed.
Energy in higher-dimensional spacetimes
NASA Astrophysics Data System (ADS)
Barzegar, Hamed; Chruściel, Piotr T.; Hörzinger, Michael
2017-12-01
We derive expressions for the total Hamiltonian energy of gravitating systems in higher-dimensional theories in terms of the Riemann tensor, allowing a cosmological constant Λ ∈R . Our analysis covers asymptotically anti-de Sitter spacetimes, asymptotically flat spacetimes, as well as Kaluza-Klein asymptotically flat spacetimes. We show that the Komar mass equals the Arnowitt-Deser-Misner (ADM) mass in stationary asymptotically flat spacetimes in all dimensions, generalizing the four-dimensional result of Beig, and that this is no longer true with Kaluza-Klein asymptotics. We show that the Hamiltonian mass does not necessarily coincide with the ADM mass in Kaluza-Klein asymptotically flat spacetimes, and that the Witten positivity argument provides a lower bound for the Hamiltonian mass—and not for the ADM mass—in terms of the electric charge. We illustrate our results on the five-dimensional Rasheed metrics, which we study in some detail, pointing out restrictions that arise from the requirement of regularity, which have gone seemingly unnoticed so far in the literature.
Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2014-08-01
This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.
The three-wave equation on the half-line
NASA Astrophysics Data System (ADS)
Xu, Jian; Fan, Engui
2014-01-01
The Fokas method is used to analyze the initial-boundary value problem for the three-wave equation p-{bi-bj}/{ai-aj}p+∑k ({bk-bj}/{ak-aj}-{bi-bk}/{ai-ak})pp=0, i,j,k=1,2,3, on the half-line. Assuming that the solution p(x,t) exists, we show that it can be recovered from its initial and boundary values via the solution of a Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ.
NASA Astrophysics Data System (ADS)
Song, Yang; Srinivasan, Bhuvana
2017-10-01
The discontinuous Galerkin (DG) method has the advantage of resolving shocks and sharp gradients that occur in neutral fluids and plasmas. An unstructured DG code has been developed in this work to study plasma instabilities using the two-fluid plasma model. Unstructured meshes are known to produce small and randomized grid errors compared to traditional structured meshes. Computational tests for Rayleigh-Taylor instabilities in radially-converging flows are performed using the MHD model. Choice of grid geometry is not obvious for simulations of instabilities in these circular configurations. Comparisons of the effects for different grids are made. A 2D magnetic nozzle simulation using the two-fluid plasma model is also performed. A vacuum boundary condition technique is applied to accurately solve the Riemann problem on the edge of the plume.
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
An approximate Riemann solver for hypervelocity flows
NASA Technical Reports Server (NTRS)
Jacobs, Peter A.
1991-01-01
We describe an approximate Riemann solver for the computation of hypervelocity flows in which there are strong shocks and viscous interactions. The scheme has three stages, the first of which computes the intermediate states assuming isentropic waves. A second stage, based on the strong shock relations, may then be invoked if the pressure jump across either wave is large. The third stage interpolates the interface state from the two initial states and the intermediate states. The solver is used as part of a finite-volume code and is demonstrated on two test cases. The first is a high Mach number flow over a sphere while the second is a flow over a slender cone with an adiabatic boundary layer. In both cases the solver performs well.
Application of the trigonal curve to the Blaszak-Marciniak lattice hierarchy
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Zeng, Xin
2017-01-01
We develop a method for constructing algebro-geometric solutions of the Blaszak-Marciniak ( BM) lattice hierarchy based on the theory of trigonal curves. We first derive the BM lattice hierarchy associated with a discrete (3×3)- matrix spectral problem using Lenard recurrence relations. Using the characteristic polynomial of the Lax matrix for the BM lattice hierarchy, we introduce a trigonal curve with two infinite points, which we use to establish the associated Dubrovin-type equations. We then study the asymptotic properties of the algebraic function carrying the data of the divisor and the Baker-Akhiezer function near the two infinite points on the trigonal curve. We finally obtain algebro-geometric solutions of the entire BM lattice hierarchy in terms of the Riemann theta function.
Stringy horizons and generalized FZZ duality in perturbation theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
N-body dynamics on closed surfaces: the axioms of mechanics
Dritschel, David G.; Schaefer, Rodrigo G.
2016-01-01
A major challenge for our understanding of the mathematical basis of particle dynamics is the formulation of N-body and N-vortex dynamics on Riemann surfaces. In this paper, we show how the two problems are, in fact, closely related when considering the role played by the intrinsic geometry of the surface. This enables a straightforward deduction of the dynamics of point masses, using recently derived results for point vortices on general closed differentiable surfaces M endowed with a metric g. We find, generally, that Kepler's Laws do not hold. What is more, even Newton's First Law (the law of inertia) fails on closed surfaces with variable curvature (e.g. the ellipsoid). PMID:27616915
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
A randomized trial of Rapid Rhino Riemann and Telfa nasal packs following endoscopic sinus surgery.
Cruise, A S; Amonoo-Kuofi, K; Srouji, I; Kanagalingam, J; Georgalas, C; Patel, N N; Badia, L; Lund, V J
2006-02-01
To compare Telfa with the Rapid Rhino Riemann nasal pack for use following endoscopic sinus surgery. Prospective, randomized, double-blind, paired trial. Tertiary otolaryngology hospital. Forty-five adult patients undergoing bilateral endoscopic sinus surgery for either chronic rhinosinusitis or nasal polyps. A visual analogue scale was used to assess discomfort caused by the presence of the packs in the nose and by their removal. The amount of bleeding was noted with the packs in place and following their removal. Crusting and adhesions were assessed 2 and 6 weeks following surgery. Both packs performed well giving good haemostasis and causing little bleeding on removal. Both packs caused only mild discomfort while in the nose. On the visual analogue scale of 0-10 cm the mean visual analogue score for Rapid Rhino Riemann pack was 1.7 and for Telfa 2.0 (P = 0.371). The Rapid Rhino Riemann pack caused significantly less pain on removal compared with the Telfa pack with a mean visual analogue score of 2.0 in comparison with 3.7 for Telfa (P = 0.001). There were less adhesions with the Rapid Rhino Riemann than Telfa pack but this was not statistically significant (P = 0.102). Both Telfa and Rapid Rhino Riemann packs can be recommended as packs that control postoperative haemorrhage, do not cause bleeding on removal and cause little discomfort while in the nose. The Rapid Rhino Riemann pack has the advantage of causing significantly less pain on removal.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Accurate boundary conditions for exterior problems in gas dynamics
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Hariharan, S. I.
1988-01-01
The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.
Numerical Inverse Scattering for the Toda Lattice
NASA Astrophysics Data System (ADS)
Bilman, Deniz; Trogdon, Thomas
2017-06-01
We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the ( n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because ( n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.
NASA Astrophysics Data System (ADS)
Pskhu, A. V.
2017-12-01
We solve the first boundary-value problem in a non-cylindrical domain for a diffusion-wave equation with the Dzhrbashyan- Nersesyan operator of fractional differentiation with respect to the time variable. We prove an existence and uniqueness theorem for this problem, and construct a representation of the solution. We show that a sufficient condition for unique solubility is the condition of Hölder smoothness for the lateral boundary of the domain. The corresponding results for equations with Riemann- Liouville and Caputo derivatives are particular cases of results obtained here.
NASA Astrophysics Data System (ADS)
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
Hyperbolic conservation laws and numerical methods
NASA Technical Reports Server (NTRS)
Leveque, Randall J.
1990-01-01
The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.
SToRM: A Model for 2D environmental hydraulics
Simões, Francisco J. M.
2017-01-01
A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow over complex topography is presented. The model, SToRM, is based on an unstructured cell-centered finite volume formulation and on nonlinear strong stability preserving Runge-Kutta time stepping schemes. The numerical discretization is founded on the classical and well established shallow water equations in hyperbolic conservative form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes. Computational efficiency is achieved through a parallel implementation based on the OpenMP standard and the Fortran programming language. SToRM’s implementation within a graphical user interface is discussed. Field application of SToRM is illustrated by utilizing it to estimate peak flow discharges in a flooding event of the St. Vrain Creek in Colorado, U.S.A., in 2013, which reached 850 m3/s (~30,000 f3 /s) at the location of this study.
NASA Astrophysics Data System (ADS)
Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig
2011-03-01
Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
NASA Astrophysics Data System (ADS)
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye
2003-10-01
A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.
Wall-crossing in coupled 2d-4d systems
NASA Astrophysics Data System (ADS)
Gaiotto, Davide; Moore, Gregory W.; Neitzke, Andrew
2012-12-01
We introduce a new wall-crossing formula which combines and generalizes the Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d systems respectively. This 2d-4d wall-crossing formula governs the wall-crossing of BPS states in an {N}=2 supersymmetric 4d gauge theory coupled to a supersymmetric surface defect. When the theory and defect are compactified on a circle, we get a 3d theory with a supersymmetric line operator, corresponding to a hyperholomorphic connection on a vector bundle over a hyperkähler space. The 2d-4d wall-crossing formula can be interpreted as a smoothness condition for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can be determined for 4d theories of class {S} , that is, for those theories obtained by compactifying the six-dimensional (0, 2) theory with a partial topological twist on a punctured Riemann surface C. For such theories there are canonical surface defects. We illustrate with several examples in the case of A 1 theories of class {S} . Finally, we indicate how our results can be used to produce solutions to the A 1 Hitchin equations on the Riemann surface C.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2000-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. On the analysis side, we have studied the efficient and stable discontinuous Galerkin framework for small second derivative terms, for example in Navier-Stokes equations, and also for related equations such as the Hamilton-Jacobi equations. This is a truly local discontinuous formulation where derivatives are considered as new variables. On the applied side, we have implemented and tested the efficiency of different approaches numerically. Related issues in high order ENO and WENO finite difference methods and spectral methods have also been investigated. Jointly with Hu, we have presented a discontinuous Galerkin finite element method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the RungeKutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact stencil, and are suited for efficient parallel implementation. One and two dimensional numerical examples are given to illustrate the capability of the method. Jointly with Hu, we have constructed third and fourth order WENO schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. The third order schemes are based on a combination of linear polynomials with nonlinear weights, and the fourth order schemes are based on combination of quadratic polynomials with nonlinear weights. We have addressed several difficult issues associated with high order WENO schemes on unstructured mesh, including the choice of linear and nonlinear weights, what to do with negative weights, etc. Numerical examples are shown to demonstrate the accuracies and robustness of the methods for shock calculations. Jointly with P. Montarnal, we have used a recently developed energy relaxation theory by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) schemes to simulate the Euler equations of real gas. The main idea is an energy decomposition under the form epsilon = epsilon(sub 1) + epsilon(sub 2), where epsilon(sub 1) is associated with a simpler pressure law (gamma)-law in this paper) and the nonlinear deviation epsilon(sub 2) is convected with the flow. A relaxation process is performed for each time step to ensure that the original pressure law is satisfied. The necessary characteristic decomposition for the high order WENO schemes is performed on the characteristic fields based on the epsilon(sub l) gamma-law. The algorithm only calls for the original pressure law once per grid point per time step, without the need to compute its derivatives or any Riemann solvers. Both one and two dimensional numerical examples are shown to illustrate the effectiveness of this approach.
Solution of the two-dimensional spectral factorization problem
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
The Davey-Stewartson Equation on the Half-Plane
NASA Astrophysics Data System (ADS)
Fokas, A. S.
2009-08-01
The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Taflove, Allen; Garain, Sudip; Montecinos, Gino
2017-11-01
While classic finite-difference time-domain (FDTD) solutions of Maxwell's equations have served the computational electrodynamics (CED) community very well, formulations based on Godunov methodology have begun to show advantages. We argue that the formulations presented so far are such that FDTD schemes and Godunov-based schemes each have their own unique advantages. However, there is currently not a single formulation that systematically integrates the strengths of both these major strains of development. While an early glimpse of such a formulation was offered in Balsara et al. [16], that paper focused on electrodynamics in plasma. Here, we present a synthesis that integrates the strengths of both FDTD and Godunov-based schemes into a robust single formulation for CED in material media. Three advances make this synthesis possible. First, from the FDTD method, we retain (but somewhat modify) a spatial staggering strategy for the primal variables. This provides a beneficial constraint preservation for the electric displacement and magnetic induction vector fields via reconstruction methods that were initially developed in some of the first author's papers for numerical magnetohydrodynamics (MHD). Second, from the Godunov method, we retain the idea of upwinding, except that this idea, too, has to be significantly modified to use the multi-dimensionally upwinded Riemann solvers developed by the first author. Third, we draw upon recent advances in arbitrary derivatives in space and time (ADER) time-stepping by the first author and his colleagues. We use the ADER predictor step to endow our method with sub-cell resolving capabilities so that the method can be stiffly stable and resolve significant sub-cell variation in the material properties within a zone. Overall, in this paper, we report a new scheme for numerically solving Maxwell's equations in material media, with special attention paid to a second-order-accurate formulation. Several numerical examples are presented to show that the proposed technique works. Because of its sub-cell resolving ability, the new method retains second-order accuracy even when material permeability and permittivity vary by an order-of-magnitude over just one or two zones. Furthermore, because the new method is also unconditionally stable in the presence of stiff source terms (i.e., in problems involving giant conductivity variations), it can handle several orders-of-magnitude variation in material conductivity over just one or two zones without any reduction of the time-step. Consequently, the CFL depends only on the propagation speed of light in the medium being studied.
An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1993-01-01
We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactlymore » preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.« less
ERIC Educational Resources Information Center
Lindstrom, Peter A.; And Others
This document consists of four units. The first of these views calculus applications to work, area, and distance problems. It is designed to help students gain experience in: 1) computing limits of Riemann sums; 2) computing definite integrals; and 3) solving elementary area, distance, and work problems by integration. The second module views…
Conformal field theories from deformations of theories with Wn symmetry
NASA Astrophysics Data System (ADS)
Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash
2016-10-01
We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.
NASA Astrophysics Data System (ADS)
Du, Zhifang; Li, Jiequan
2018-02-01
This paper develops a new fifth order accurate Hermite WENO (HWENO) reconstruction method for hyperbolic conservation schemes in the framework of the two-stage fourth order accurate temporal discretization in Li and Du (2016) [13]. Instead of computing the first moment of the solution additionally in the conventional HWENO or DG approach, we can directly take the interface values, which are already available in the numerical flux construction using the generalized Riemann problem (GRP) solver, to approximate the first moment. The resulting scheme is fourth order temporal accurate by only invoking the HWENO reconstruction twice so that it becomes more compact. Numerical experiments show that such compactness makes significant impact on the resolution of nonlinear waves.
Step-by-step integration for fractional operators
NASA Astrophysics Data System (ADS)
Colinas-Armijo, Natalia; Di Paola, Mario
2018-06-01
In this paper, an approach based on the definition of the Riemann-Liouville fractional operators is proposed in order to provide a different discretisation technique as alternative to the Grünwald-Letnikov operators. The proposed Riemann-Liouville discretisation consists of performing step-by-step integration based upon the discretisation of the function f(t). It has been shown that, as f(t) is discretised as stepwise or piecewise function, the Riemann-Liouville fractional integral and derivative are governing by operators very similar to the Grünwald-Letnikov operators. In order to show the accuracy and capabilities of the proposed Riemann-Liouville discretisation technique and the Grünwald-Letnikov discrete operators, both techniques have been applied to: unit step functions, exponential functions and sample functions of white noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Exact solutions in 3D gravity with torsion
NASA Astrophysics Data System (ADS)
González, P. A.; Vásquez, Yerko
2011-08-01
We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces
NASA Astrophysics Data System (ADS)
Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.
2017-09-01
We extend the numerical pole field solver (Fornberg and Weideman (2011) [12]) to enable the computation of the multivalued Painlevé transcendents, which are the solutions to the third, fifth and sixth Painlevé equations, on their Riemann surfaces. We display, for the first time, solutions to these equations on multiple Riemann sheets. We also provide numerical evidence for the existence of solutions to the sixth Painlevé equation that have pole-free sectors, known as tronquée solutions.
NASA Astrophysics Data System (ADS)
Zhou, Xin
1990-03-01
For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.
NASA Astrophysics Data System (ADS)
García-Senz, Domingo; Cabezón, Rubén M.; Escartín, José A.; Ebinger, Kevin
2014-10-01
Context. The smoothed-particle hydrodynamics (SPH) technique is a numerical method for solving gas-dynamical problems. It has been applied to simulate the evolution of a wide variety of astrophysical systems. The method has a second-order accuracy, with a resolution that is usually much higher in the compressed regions than in the diluted zones of the fluid. Aims: We propose and check a method to balance and equalize the resolution of SPH between high- and low-density regions. This method relies on the versatility of a family of interpolators called sinc kernels, which allows increasing the interpolation quality by varying only a single parameter (the exponent of the sinc function). Methods: The proposed method was checked and validated through a number of numerical tests, from standard one-dimensional Riemann problems in shock tubes, to multidimensional simulations of explosions, hydrodynamic instabilities, and the collapse of a Sun-like polytrope. Results: The analysis of the hydrodynamical simulations suggests that the scheme devised to equalize the accuracy improves the treatment of the post-shock regions and, in general, of the rarefacted zones of fluids while causing no harm to the growth of hydrodynamic instabilities. The method is robust and easy to implement with a low computational overload. It conserves mass, energy, and momentum and reduces to the standard SPH scheme in regions of the fluid that have smooth density gradients.
Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy
NASA Astrophysics Data System (ADS)
Coralic, Vedran; Colonius, Tim
2014-11-01
In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Chang, Sin-Chung; Yu, Sheng-Tao; Wang, Xiao-Yen; Loh, Ching-Yuen; Jorgenson, Philip C. E.
1999-01-01
In this overview paper, we review the basic principles of the method of space-time conservation element and solution element for solving the conservation laws in one and two spatial dimensions. The present method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. In contrast to the modern upwind schemes, the approach here does not use the Riemann solver and the reconstruction procedure as the building blocks. The drawbacks of the upwind approach, such as the difficulty of rationally extending the 1D scalar approach to systems of equations and particularly to multiple dimensions is here contrasted with the uniformity and ease of generalization of the Conservation Element and Solution Element (CE/SE) 1D scalar schemes to systems of equations and to multiple spatial dimensions. The assured compatibility with the simplest type of unstructured meshes, and the uniquely simple nonreflecting boundary conditions of the present method are also discussed. The present approach has yielded high-resolution shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves, and shock/acoustic waves/vortices interactions. Moreover, since no directional splitting is employed, numerical resolution of two-dimensional calculations is comparable to that of the one-dimensional calculations. Some sample applications displaying the strengths and broad applicability of the CE/SE method are reviewed.
Loop Integrands for Scattering Amplitudes from the Riemann Sphere
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2015-09-01
The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
The unstaggered extension to GFDL's FV3 dynamical core on the cubed-sphere
NASA Astrophysics Data System (ADS)
Chen, X.; Lin, S. J.; Harris, L.
2017-12-01
Finite-volume schemes have become popular for atmospheric transport since they provide intrinsic mass conservation to constituent species. Many CFD codes use unstaggered discretizations for finite volume methods with an approximate Riemann solver. However, this approach is inefficient for geophysical flows due to the complexity of the Riemann solver. We introduce a Low Mach number Approximate Riemann Solver (LMARS) simplified using assumptions appropriate for atmospheric flows: the wind speed is much slower than the sound speed, weak discontinuities, and locally uniform sound wave velocity. LMARS makes possible a Riemann-solver-based dynamical core comparable in computational efficiency to many current dynamical cores. We will present a 3D finite-volume dynamical core using LMARS in a cubed-sphere geometry with a vertically Lagrangian discretization. Results from standard idealized test cases will be discussed.
High-Fidelity Real-Time Simulation on Deployed Platforms
2010-08-26
three–dimensional transient heat conduction “ Swiss Cheese ” problem; and a three–dimensional unsteady incompressible Navier- Stokes low–Reynolds–number...our approach with three examples: a two?dimensional Helmholtz acoustics ?horn? problem; a three?dimensional transient heat conduction ? Swiss Cheese ...solutions; a transient lin- ear heat conduction problem in a three–dimensional “ Swiss Cheese ” configuration Ω — to illustrate treat- ment of many
Children's Strategies for Solving Two- and Three-Dimensional Combinatorial Problems.
ERIC Educational Resources Information Center
English, Lyn D.
1993-01-01
Investigated strategies that 7- to 12-year-old children (n=96) spontaneously applied in solving novel combinatorial problems. With experience in solving two-dimensional problems, children were able to refine their strategies and adapt them to three dimensions. Results on some problems indicated significant effects of age. (Contains 32 references.)…
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble
NASA Astrophysics Data System (ADS)
Berggren, Tomas; Duits, Maurice
2017-09-01
In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
NASA Astrophysics Data System (ADS)
Venkatachari, Balaji Shankar; Chang, Chau-Lyan
2016-11-01
The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).
NASA Astrophysics Data System (ADS)
Grib, S. A.; Leora, S. N.
2017-12-01
Macroscopic discontinuous structures observed in the solar wind are considered in the framework of magnetic hydrodynamics. The interaction of strong discontinuities is studied based on the solution of the generalized Riemann-Kochin problem. The appearance of discontinuities inside the magnetosheath after the collision of the solar wind shock wave with the bow shock front is taken into account. The propagation of secondary waves appearing in the magnetosheath is considered in the approximation of one-dimensional ideal magnetohydrodynamics. The appearance of a compression wave reflected from the magnetopause is indicated. The wave can nonlinearly break with the formation of a backward shock wave and cause the motion of the bow shock towards the Sun. The interaction between shock waves is considered with the well-known trial calculation method. It is assumed that the velocity of discontinuities in the magnetosheath in the first approximation is constant on the average. All reasonings and calculations correspond to consideration of a flow region with a velocity less than the magnetosonic speed near the Earth-Sun line. It is indicated that the results agree with the data from observations carried out on the WIND and Cluster spacecrafts.
Multi-dimensional upwinding-based implicit LES for the vorticity transport equations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Duraisamy, Karthik
2017-11-01
Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.
Relativistic Shock Waves in Viscous Gluon Matter
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2009-07-01
We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s from zero to infinity. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.
2018-01-01
In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.
NASA Astrophysics Data System (ADS)
Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent
2018-02-01
We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.
Generalized Toda theory from six dimensions and the conifold
NASA Astrophysics Data System (ADS)
van Leuven, Sam; Oling, Gerben
2017-12-01
Recently, a physical derivation of the Alday-Gaiotto-Tachikawa correspondence has been put forward. A crucial role is played by the complex Chern-Simons theory arising in the 3d-3d correspondence, whose boundary modes lead to Toda theory on a Riemann surface. We explore several features of this derivation and subsequently argue that it can be extended to a generalization of the AGT correspondence. The latter involves codimension two defects in six dimensions that wrap the Riemann surface. We use a purely geometrical description of these defects and find that the generalized AGT setup can be modeled in a pole region using generalized conifolds. Furthermore, we argue that the ordinary conifold clarifies several features of the derivation of the original AGT correspondence.
NASA Astrophysics Data System (ADS)
Huang, Feimin; Li, Tianhong; Yu, Huimin; Yuan, Difan
2018-06-01
We are concerned with the global existence and large time behavior of entropy solutions to the one-dimensional unipolar hydrodynamic model for semiconductors in the form of Euler-Poisson equations in a bounded interval. In this paper, we first prove the global existence of entropy solution by vanishing viscosity and compensated compactness framework. In particular, the solutions are uniformly bounded with respect to space and time variables by introducing modified Riemann invariants and the theory of invariant region. Based on the uniform estimates of density, we further show that the entropy solution converges to the corresponding unique stationary solution exponentially in time. No any smallness condition is assumed on the initial data and doping profile. Moreover, the novelty in this paper is about the unform bound with respect to time for the weak solutions of the isentropic Euler-Poisson system.
Topological String Theory and Enumerative Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y. S
In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of study. The main problems addressed are as follows: In considering the Hurwitz enumeration problem of branched covers of compact connected Riemann surfaces, we completely solve the problem in the case of simple Hurwitz numbers. In addition, utilizing the connection between Hurwitzmore » numbers and Hodge integrals, we derive a generating function for the latter on the moduli space {bar M}{sub g,2} of 2-pointed, genus-g Deligne-Mumford stable curves. We also investigate Givental's recent conjecture regarding semisimple Frobenius structures and Gromov-Witten invariants, both of which are closely related to topological field theories; we consider the case of a complex projective line P{sup 1} as a specific example and verify his conjecture at low genera. In the last chapter, we demonstrate that certain topological open string amplitudes can be computed via relative stable morphisms in the algebraic category.« less
Quantum simulation of the integer factorization problem: Bell states in a Penning trap
NASA Astrophysics Data System (ADS)
Rosales, Jose Luis; Martin, Vicente
2018-03-01
The arithmetic problem of factoring an integer N can be translated into the physics of a quantum device, a result that supports Pólya's and Hilbert's conjecture to demonstrate Riemann's hypothesis. The energies of this system, being univocally related to the factors of N , are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of N . This is equivalent to a quantum sieve that is shown to require only o (ln√{N}) 3 energy measurements to solve the problem, recovering Shor's complexity result. Hence the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.
On the theory of oscillating airfoils of finite span in subsonic compressible flow
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
The problem of oscillating lifting surface of finite span in subsonic compressible flow is reduced to an integral equation. The kernel of the integral equation is approximated by a simpler expression, on the basis of the assumption of sufficiently large aspect ratio. With this approximation the double integral occurring in the formulation of the problem is reduced to two single integrals, one of which is taken over the chord and the other over the span of the lifting surface. On the basis of this reduction the three-dimensional problem appears separated into two two-dimensional problems, one of them being effectively the problem of two-dimensional flow and the other being the problem of spanwise circulation distribution. Earlier results concerning the oscillating lifting surface of finite span in incompressible flow are contained in the present more general results.
Conical twist fields and null polygonal Wilson loops
NASA Astrophysics Data System (ADS)
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Gómez-Aguilar, J. F.
2018-04-01
To answer some issues raised about the concept of fractional differentiation and integration based on the exponential and Mittag-Leffler laws, we present, in this paper, fundamental differences between the power law, exponential decay, Mittag-Leffler law and their possible applications in nature. We demonstrate the failure of the semi-group principle in modeling real-world problems. We use natural phenomena to illustrate the importance of non-commutative and non-associative operators under which the Caputo-Fabrizio and Atangana-Baleanu fractional operators fall. We present statistical properties of generator for each fractional derivative, including Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu ones. The Atangana-Baleanu and Caputo-Fabrizio fractional derivatives show crossover properties for the mean-square displacement, while the Riemann-Liouville is scale invariant. Their probability distributions are also a Gaussian to non-Gaussian crossover, with the difference that the Caputo Fabrizio kernel has a steady state between the transition. Only the Atangana-Baleanu kernel is a crossover for the waiting time distribution from stretched exponential to power law. A new criterion was suggested, namely the Atangana-Gómez fractional bracket, that helps describe the energy needed by a fractional derivative to characterize a 2-pletic manifold. Based on these properties, we classified fractional derivatives in three categories: weak, mild and strong fractional differential and integral operators. We presented some applications of fractional differential operators to describe real-world problems and we proved, with numerical simulations, that the Riemann-Liouville power-law derivative provides a description of real-world problems with much additional information, that can be seen as noise or error due to specific memory properties of its power-law kernel. The Caputo-Fabrizio derivative is less noisy while the Atangana-Baleanu fractional derivative provides an excellent description, due to its Mittag-Leffler memory, able to distinguish between dynamical systems taking place at different scales without steady state. The study suggests that the properties of associativity and commutativity or the semi-group principle are just irrelevant in fractional calculus. Properties of classical derivatives were established for the ordinary calculus with no memory effect and it is a failure of mathematical investigation to attempt to describe more complex natural phenomena using the same notions.
Initialized Fractional Calculus
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices
NASA Astrophysics Data System (ADS)
Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo
2016-11-01
We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.
Two-and three-dimensional unsteady lift problems in high-speed flight
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B; Sluder, Loma
1952-01-01
The problem of transient lift on two- and three-dimensional wings flying at high speeds is discussed as a boundary-value problem for the classical wave equation. Kirchoff's formula is applied so that the analysis is reduced, just as in the steady state, to an investigation of sources and doublets. The applications include the evaluation of indicial lift and pitching-moment curves for two-dimensional sinking and pitching wings flying at Mach numbers equal to 0, 0.8, 1.0, 1.2 and 2.0. Results for the sinking case are also given for a Mach number of 0.5. In addition, the indicial functions for supersonic-edged triangular wings in both forward and reverse flow are presented and compared with the two-dimensional values.
NASA Astrophysics Data System (ADS)
Baez, J.; Lapidaryus, M.; Siegel, Edward Carl-Ludwig
2011-03-01
Riemann-hypothesis physics-proof combines: Siegel-Antonoff-Smith[AMS Joint Mtg.(2002)-Abs.973-03-126] digits on-average statistics HIll[Am. J. Math 123, 3, 887(1996)] logarithm-function's (1,0)-fixed-point base=units=scale-invariance proven Newcomb[Am. J. Math. 4, 39(1881)]-Weyl[Goett. Nachr.(1914); Math. Ann. 7, 313(1916)]-Benford[Proc. Am. Phil. Soc. 78, 4, 51(1938)]-law [Kac, Math. of Stat.-Reasoning(1955); Raimi, Sci. Am. 221, 109(1969)] algebraic-inversion to ONLY Bose-Einstein quantum-statistics(BEQS) with digit d = 0 gapFUL Bose-Einstein Condensation(BEC) insight that digits are quanta are bosons were always digits, via Siegel-Baez category-semantics tabular list-format matrix truth-table analytics in Plato-Aristotle classic "square-of-opposition" : FUZZYICS=CATEGORYICS/Category-Semantics, with Goodkind Bose-Einstein condensation(BEC) ABOVE ground-state with/and Rayleigh(cut-limit of "short-cut method";1870)-Polya(1922)-"Anderson"(1958) localization [Doyle and Snell, Random-Walks and Electrical-Networks, MAA(1981)-p.99-100!!!].
Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach
NASA Astrophysics Data System (ADS)
Antón, Luis; Zanotti, Olindo; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Font, José A.; Pons, José A.
2006-01-01
We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e., Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic MHD equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic MHD in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick disks accreting onto a black hole and subject to the magnetorotational instability.
Determination of the temperature field of shell structures
NASA Astrophysics Data System (ADS)
Rodionov, N. G.
1986-10-01
A stationary heat conduction problem is formulated for the case of shell structures, such as those found in gas-turbine and jet engines. A two-dimensional elliptic differential equation of stationary heat conduction is obtained which allows, in an approximate manner, for temperature changes along a third variable, i.e., the shell thickness. The two-dimensional problem is reduced to a series of one-dimensional problems which are then solved using efficient difference schemes. The approach proposed here is illustrated by a specific example.
Computational unsteady aerodynamics for lifting surfaces
NASA Technical Reports Server (NTRS)
Edwards, John W.
1988-01-01
Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.
Mixing Regimes in a Spatially Confined, Two-Dimensional, Supersonic Shear Layer
1992-07-31
MODEL ................................... 3 THE MODEL PROBLEMS .............................................. 6 THE ONE-DIMENSIONAL PROBLEM...the effects of the numerical diffusion on the spectrum. Guirguis et al.ś and Farouk et al."’ have studied spatially evolving mixing layers for equal...approximations. Physical and Numerical Model General Formulation We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface
NASA Astrophysics Data System (ADS)
Onopriienko, Oleg; Loboda, Volodymyr; Sheveleva, Alla; Lapusta, Yuri
2018-06-01
The interaction of a conductive crack and an electrode at a piezoelectric bi-material interface is studied. The bimaterial is subjected to an in-plane electrical field parallel to the interface and an anti-plane mechanical loading. The problem is formulated and reduced, via the application of sectionally analytic vector functions, to a combined Dirichlet-Riemann boundary value problem. Simple analytical expressions for the stress, the electric field, and their intensity factors as well as for the crack faces' displacement jump are derived. Our numerical results illustrate the proposed approach and permit to draw some conclusions on the crack-electrode interaction.
The range and valence of a real Smirnov function
NASA Astrophysics Data System (ADS)
Ferguson, Timothy; Ross, William T.
2018-02-01
We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.
Riemann correlator in de Sitter including loop corrections from conformal fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric; Roura, Albert, E-mail: mfroeb@ffn.ub.edu, E-mail: albert.roura@uni-ulm.de, E-mail: enric.verdaguer@ub.edu
2014-07-01
The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicitmore » result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.« less
Extension of modified power method to two-dimensional problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919; Lee, Hyunsuk
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. Themore » stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.« less
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
Modeling the 1958 Lituya Bay mega-tsunami with a PVM-IFCP GPU-based model
NASA Astrophysics Data System (ADS)
González-Vida, José M.; Arcas, Diego; de la Asunción, Marc; Castro, Manuel J.; Macías, Jorge; Ortega, Sergio; Sánchez-Linares, Carlos; Titov, Vasily
2013-04-01
In this work we present a numerical study, performed in collaboration with the NOAA Center for Tsunami Research (USA), that uses a GPU version of the PVM-IFCP landslide model for the simulation of the 1958 landslide generated tsunami of Lituya Bay. In this model, a layer composed of fluidized granular material is assumed to flow within an upper layer of an inviscid fluid (e. g. water). The model is discretized using a two dimensional PVM-IFCP [Fernández - Castro - Parés. On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System, J. Sci. Comput., 48 (2011):117-140] finite volume scheme implemented on GPU cards for increasing the speed-up. This model has been previously validated by using the two-dimensional physical laboratory experiments data from H. Fritz [Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary. Pure Appl. Geophys., 166 (2009) pp. 153-175]. In the present work, the first step was to reconstruct the topobathymetry of the Lituya Bay before this event ocurred, this is based on USGS geological surveys data. Then, a sensitivity analysis of some model parameters has been performed in order to determine the parameters that better fit to reality, when model results are compared against available event data, as run-up areas. In this presentation, the reconstruction of the pre-tsunami scenario will be shown, a detailed simulation of the tsunami presented and several comparisons with real data (runup, wave height, etc.) shown.
NASA Astrophysics Data System (ADS)
Ji, Xing; Zhao, Fengxiang; Shyy, Wei; Xu, Kun
2018-03-01
Most high order computational fluid dynamics (CFD) methods for compressible flows are based on Riemann solver for the flux evaluation and Runge-Kutta (RK) time stepping technique for temporal accuracy. The advantage of this kind of space-time separation approach is the easy implementation and stability enhancement by introducing more middle stages. However, the nth-order time accuracy needs no less than n stages for the RK method, which can be very time and memory consuming due to the reconstruction at each stage for a high order method. On the other hand, the multi-stage multi-derivative (MSMD) method can be used to achieve the same order of time accuracy using less middle stages with the use of the time derivatives of the flux function. For traditional Riemann solver based CFD methods, the lack of time derivatives in the flux function prevents its direct implementation of the MSMD method. However, the gas kinetic scheme (GKS) provides such a time accurate evolution model. By combining the second-order or third-order GKS flux functions with the MSMD technique, a family of high order gas kinetic methods can be constructed. As an extension of the previous 2-stage 4th-order GKS, the 5th-order schemes with 2 and 3 stages will be developed in this paper. Based on the same 5th-order WENO reconstruction, the performance of gas kinetic schemes from the 2nd- to the 5th-order time accurate methods will be evaluated. The results show that the 5th-order scheme can achieve the theoretical order of accuracy for the Euler equations, and present accurate Navier-Stokes solutions as well due to the coupling of inviscid and viscous terms in the GKS formulation. In comparison with Riemann solver based 5th-order RK method, the high order GKS has advantages in terms of efficiency, accuracy, and robustness, for all test cases. The 4th- and 5th-order GKS have the same robustness as the 2nd-order scheme for the capturing of discontinuous solutions. The current high order MSMD GKS is a multi-dimensional scheme with incorporation of both normal and tangential spatial derivatives of flow variables at a cell interface in the flux evaluation. The scheme can be extended straightforwardly to viscous flow computation in unstructured mesh. It provides a promising direction for the development of high-order CFD methods for the computation of complex flows, such as turbulence and acoustics with shock interactions.
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1988-01-01
The initial effort was concentrated on developing the quasi-analytical approach for two-dimensional transonic flow. To keep the problem computationally efficient and straightforward, only the two-dimensional flow was considered and the problem was modeled using the transonic small perturbation equation.
Development of relativistic shock waves in viscous gluon matter
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2009-11-01
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.
An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order
Almeida, Ricardo
2013-01-01
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve differential equations, and problems of the calculus of variations that depend on fractional derivatives of Marchaud type. PMID:24319382
Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic.
Francesco, Marco Di; Fagioli, Simone; Rosini, Massimiliano D
2017-02-01
We consider the follow-the-leader approximation of the Aw-Rascle-Zhang (ARZ) model for traffic flow in a multi population formulation. We prove rigorous convergence to weak solutions of the ARZ system in the many particle limit in presence of vacuum. The result is based on uniform BV estimates on the discrete particle velocity. We complement our result with numerical simulations of the particle method compared with some exact solutions to the Riemann problem of the ARZ system.
Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.
Wang, Kevin G
2017-10-01
A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max = 35.0MPa, p min =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Congy, T.; Ivanov, S. K.; Kamchatnov, A. M.; Pavloff, N.
2017-08-01
We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks, which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations.
Congy, T; Ivanov, S K; Kamchatnov, A M; Pavloff, N
2017-08-01
We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks, which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations.
A fast numerical method for the valuation of American lookback put options
NASA Astrophysics Data System (ADS)
Song, Haiming; Zhang, Qi; Zhang, Ran
2015-10-01
A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.
Topological semimetals with Riemann surface states
NASA Astrophysics Data System (ADS)
Fang, Chen; Lu, Ling; Liu, Junwei; Fu, Liang
Topological semimetals have robust bulk band crossings between the conduction and the valence bands. Among them, Weyl semimetals are so far the only class having topologically protected signatures on the surface known as the ``Fermi arcs''. Here we theoretically find new classes of topological semimetals protected by nonsymmorphic glide reflection symmetries. On a symmetric surface, there are multiple Fermi arcs protected by nontrivial Z2 spectral flows between two high-symmetry lines (or two segments of one line) in the surface Brillouin zone. We observe that so far topological semimetals with protected Fermi arcs have surface dispersions that can be mapped to noncompact Riemann surfaces representing simple holomorphic functions. We propose perovskite superlattice [(SrIrO3)2m, (CaIrO3)2n] as a nonsymmorphic Dirac semimetal. C.F. and L.F. were supported by the S3TEC Solid State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award No. DE-SC0001299/DE.
The dimension split element-free Galerkin method for three-dimensional potential problems
NASA Astrophysics Data System (ADS)
Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.
2018-06-01
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
On the use of kinetic energy preserving DG-schemes for large eddy simulation
NASA Astrophysics Data System (ADS)
Flad, David; Gassner, Gregor
2017-12-01
Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub-grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.
Yin, Kedong; Yang, Benshuo; Li, Xuemei
2018-01-24
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.
Yin, Kedong; Yang, Benshuo
2018-01-01
In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making. PMID:29364849
Electromagnetic Radiation Reaction in General Relativity.
NASA Astrophysics Data System (ADS)
O'Donnell, Nuala
Available from UMI in association with The British Library. This thesis examines the electromagnetic radiation reaction felt by a charged body falling freely in an external gravitational field in general relativity. The original objective was to find a new derivation of the radiation reaction force F^{i} of DeWitt and DeWitt^1 which was calculated for the special case of a point charge falling in slow motion in a weak, static gravitational field: F ^{i} = {2over 3}e^2R^{i}_{0j0 }v^{j}. This may be thought of as a local expression since it involves the particle's velocity v^{j } and the local Riemann curvature tensor R ^{i}_{0j0}. Its derivation involves integrals over the whole history of the particle, covering distances of approximately the length scale on which R^{i}_{0j0 } changes. This is different from calculations of the Abraham-Lorentz force of flat space-time involving integrals over distances only a few times the size of the charge. This work was motivated by the wish to find a "local" derivation of the local reaction force. Using Schutz's^2 local initial value method to solve the problem of a charged, rigid, spherically symmetric body moving in an external gravitational field of arbitrary metric. Calculations are done in a Riemann normal coordinate system ^3 and are only valid in a normal neighbourhood of the origin, where geodesics have not begun to cross one another. We solve Maxwell's equations for the self -force by making a slow-motion approximation and keeping terms to first order only in the Riemann tensor and velocity. It is surprising that we find no local radiation reaction. Consider two particles in a static spacetime with the same initial conditions at t = 0. Particle A is that of DeWitt and DeWitt; it feels a reaction force F^{i} = {2over 3}e^2R^{i }_{0j0}v^{j}. Particle B is accelerated from rest to the same small velocity; it feels no reaction force. The two particles therefore follow different trajectories. We conclude that there is a certain amount of history dependence in curved spacetime which is absent in flat spacetime where the Abraham-Lorentz reaction force acts equally on both particles. ftn ^1C. M. DeWitt and B. S. Brehme, Falling Charges, Phys., 1, 3 (1964). ^2B. F. Schutz, Statistical Formulation of Gravitational Radiation Reaction, Phys. Rev. D., 22, 249 (1980). ^3See for example A. Z. Petrov, Einstein Spaces, p.33, Pergamon Press (1969).
The CRONOS Code for Astrophysical Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kissmann, R.; Kleimann, J.; Krebl, B.; Wiengarten, T.
2018-06-01
We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space-physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem in hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the code’s potential through several (M)HD test problems and some astrophysical applications.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kojima, Fumio
1988-01-01
The identification of the geometrical structure of the system boundary for a two-dimensional diffusion system is reported. The domain identification problem treated here is converted into an optimization problem based on a fit-to-data criterion and theoretical convergence results for approximate identification techniques are discussed. Results of numerical experiments to demonstrate the efficacy of the theoretical ideas are reported.
Numerical Integration with GeoGebra in High School
ERIC Educational Resources Information Center
Herceg, Dorde; Herceg, Dragoslav
2010-01-01
The concept of definite integral is almost always introduced as the Riemann integral, which is defined in terms of the Riemann sum, and its geometric interpretation. This definition is hard to understand for high school students. With the aid of mathematical software for visualisation and computation of approximate integrals, the notion of…
Numerical Simulations of Aero-Optical Distortions Around Various Turret Geometries
2013-06-12
arbi trary cell topologies. The spatial operator uses the exact Riemann Solver of Gottlieb and Groth, least squares gradient cal- culations using QR...Unstructured Euler/Navier-Stokes Flow Solver ," in A/AA Paper 1999-0786, 1999. [9] J. J. Gottlieb and C. P. T. Groth, "Assessment of Riemann Solvers
An approximate Riemann solver for real gas parabolized Navier-Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbano, Annafederica, E-mail: annafederica.urbano@uniroma1.it; Nasuti, Francesco, E-mail: francesco.nasuti@uniroma1.it
2013-01-15
Under specific assumptions, parabolized Navier-Stokes equations are a suitable mean to study channel flows. A special case is that of high pressure flow of real gases in cooling channels where large crosswise gradients of thermophysical properties occur. To solve the parabolized Navier-Stokes equations by a space marching approach, the hyperbolicity of the system of governing equations is obtained, even for very low Mach number flow, by recasting equations such that the streamwise pressure gradient is considered as a source term. For this system of equations an approximate Roe's Riemann solver is developed as the core of a Godunov type finitemore » volume algorithm. The properties of the approximated Riemann solver, which is a modification of Roe's Riemann solver for the parabolized Navier-Stokes equations, are presented and discussed with emphasis given to its original features introduced to handle fluids governed by a generic real gas EoS. Sample solutions are obtained for low Mach number high compressible flows of transcritical methane, heated in straight long channels, to prove the solver ability to describe flows dominated by complex thermodynamic phenomena.« less
Applications of an exponential finite difference technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.; Keith, T.G. Jr.
1988-07-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
Kulish-Sklyanin-type models: Integrability and reductions
NASA Astrophysics Data System (ADS)
Gerdjikov, V. S.
2017-08-01
We start with a Riemann-Hilbert problem ( RHP) related to BD.I- type symmetric spaces SO(2 r + 1)/ S( O(2 r - 2 s+1) ⊗ O(2 s)), s ≥ 1. We consider two RHPs: the first is formulated on the real axis R in the complex-λ plane; the second, on R ⊗ iR. The first RHP for s = 1 allows solving the Kulish-Sklyanin (KS) model; the second RHP is related to a new type of KS model. We consider an important example of nontrivial deep reductions of the KS model and show its effect on the scattering matrix. In particular, we obtain new two-component nonlinear Schrödinger equations. Finally, using the Wronski relations, we show that the inverse scattering method for KS models can be understood as generalized Fourier transforms. We thus find a way to characterize all the fundamental properties of KS models including the hierarchy of equations and the hierarchy of their Hamiltonian structures.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C., E-mail: duffell@berkeley.edu
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less
The Osher scheme for non-equilibrium reacting flows
NASA Technical Reports Server (NTRS)
Suresh, Ambady; Liou, Meng-Sing
1992-01-01
An extension of the Osher upwind scheme to nonequilibrium reacting flows is presented. Owing to the presence of source terms, the Riemann problem is no longer self-similar and therefore its approximate solution becomes tedious. With simplicity in mind, a linearized approach which avoids an iterative solution is used to define the intermediate states and sonic points. The source terms are treated explicitly. Numerical computations are presented to demonstrate the feasibility, efficiency and accuracy of the proposed method. The test problems include a ZND (Zeldovich-Neumann-Doring) detonation problem for which spurious numerical solutions which propagate at mesh speed have been observed on coarse grids. With the present method, a change of limiter causes the solution to change from the physically correct CJ detonation solution to the spurious weak detonation solution.
On the solutions of fractional order of evolution equations
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.
2017-01-01
In this paper we present a discussion of generalized Cauchy problems in a diffusion wave process, we consider bi-fractional-order evolution equations in the Riemann-Liouville, Liouville-Caputo, and Caputo-Fabrizio sense. Through Fourier transforms and Laplace transform we derive closed-form solutions to the Cauchy problems mentioned above. Similarly, we establish fundamental solutions. Finally, we give an application of the above results to the determination of decompositions of Dirac type for bi-fractional-order equations and write a formula for the moments for the fractional vibration of a beam equation. This type of decomposition allows us to speak of internal degrees of freedom in the vibration of a beam equation.
NASA Astrophysics Data System (ADS)
Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.
2018-01-01
High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.
(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2010-07-15
We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as amore » function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.« less
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
Li, Q; He, Y L; Wang, Y; Tao, W Q
2007-11-01
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
Transient fields produced by a cylindrical electron beam flowing through a plasma
NASA Astrophysics Data System (ADS)
Firpo, Marie-Christine
2012-10-01
Fast ignition schemes (FIS) for inertial confinement fusion should involve in their final stage the interaction of an ignition beam composed of MeV electrons laser generated at the critical density surface with a dense plasma target. In this study, the out-of-equilibrium situation in which an initially sharp-edged cylindrical electron beam, that could e.g. model electrons flowing within a wire [1], is injected into a plasma is considered. A detailed computation of the subsequently produced magnetic field is presented [2]. The control parameter of the problem is shown to be the ratio of the beam radius to the electron skin depth. Two alternative ways to address analytically the problem are considered: one uses the usual Laplace transform approach, the other one involves Riemann's method in which causality conditions manifest through some integrals of triple products of Bessel functions.[4pt] [1] J.S. Green et al., Surface heating of wire plasmas using laser-irradiated cone geometries, Nature Physics 3, 853--856 (2007).[0pt] [2] M.-C. Firpo, http://hal.archives-ouvertes.fr/hal-00695629, to be published (2012).
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...
2018-04-09
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
NASA Astrophysics Data System (ADS)
Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.
2017-11-01
The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.
A boundary element alternating method for two-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Krishnamurthy, T.
1992-01-01
A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.
1992-11-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Drake, J. F.; Swisdak, M.
2017-12-01
How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.
Computational strategies for the Riemann zeta function
NASA Astrophysics Data System (ADS)
Borwein, Jonathan M.; Bradley, David M.; Crandall, Richard E.
2000-09-01
We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of the argument, the desired speed of computation, and the incidence of what we call "value recycling".
The Riemann Zeta Zeros from an Asymptotic Perspective
ERIC Educational Resources Information Center
Grant, Ken
2015-01-01
In 1859, on the occasion of being elected as a corresponding member of the Berlin Academy, Bernard Riemann (1826-66), a student of Carl Friedrich Gauss (1777-1855), presenteda lecture in which he presented a mathematics formula, derived from complex integration, which gave a precise count of the primes on the understanding that one of the terms in…
On small values of the Riemann zeta-function at Gram points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, M A
In this paper, we prove the existence of a large set of Gram points t{sub n} such that the values ζ(0.5+it{sub n}) are 'anomalously' close to zero. A lower bound for the negative 'discrete' moment of the Riemann zeta-function on the critical line is also given. Bibliography: 13 titles.
Study Paths, Riemann Surfaces, and Strebel Differentials
ERIC Educational Resources Information Center
Buser, Peter; Semmler, Klaus-Dieter
2017-01-01
These pages aim to explain and interpret why the late Mika Seppälä, a conformal geometer, proposed to model student study behaviour using concepts from conformal geometry, such as Riemann surfaces and Strebel differentials. Over many years Mika Seppälä taught online calculus courses to students at Florida State University in the United States, as…
NASA Technical Reports Server (NTRS)
Yee, H. C.
1995-01-01
Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Adduce, Claudia; Sciortino, Giampiero; Pinzon, Allen Bateman
2008-10-01
The dynamics of a three-dimensional gravity current is investigated by both laboratory experiments and numerical simulations. The experiments take place in a rectangular tank, which is divided into two square reservoirs with a wall containing a sliding gate of width b. The two reservoirs are filled to the same height H, one with salt water and the other with fresh water. The gravity current starts its evolution as soon as the sliding gate is manually opened. Experiments are conducted with either smooth or rough surface on the bottom of the tank. The bottom roughness is created by gluing sediment material of different diameters to the surface. Five diameter values for the surface roughness and two salinity conditions for the fluid are investigated. The mathematical model is based on shallow-water theory together with the single-layer approximation, so that the model is strictly hyperbolic and can be put into conservative form. Consequently, a finite-volume-based numerical algorithm can be applied. The Godunov formulation is used together with Roe's approximate Riemann solver. Comparisons between the numerical and experimental results show satisfactory agreement. The behavior of the gravity current is quite unusual and cannot be interpreted using the usual model framework adopted for two-dimensional and axisymmetric gravity currents. Two main phases are apparent in the gravity current evolution; during the first phase the front velocity increases, and during the second phase the front velocity decreases and the dimensionless results, relative to the different densities, collapse onto the same curve. A systematic discrepancy is seen between the numerical and experimental results, mainly during the first phase of the gravity current evolution. This discrepancy is attributed to the limits of the mathematical formulation, in particular, the neglect of entrainment in the mathematical model. An interesting result arises from the influence of the bottom surface roughness; it both reduces the front velocity during the second phase of motion and attenuates the differences between the experimental and numerical front velocities during the first phase of motion.
Paterson, Gillian; Power, Kevin; Yellowlees, Alex; Park, Katy; Taylor, Louise
2007-01-01
Research examining cognitive and behavioural determinants of anorexia is currently lacking. This has implications for the success of treatment programmes for anorexics, particularly, given the high reported dropout rates. This study examines two-dimensional self-esteem (comprising of self-competence and self-liking) and social problem-solving in an anorexic population and predicts that self-esteem will mediate the relationship between problem-solving and eating pathology by facilitating/inhibiting use of faulty/effective strategies. Twenty-seven anorexic inpatients and 62 controls completed measures of social problem solving and two-dimensional self-esteem. Anorexics scored significantly higher than the non-clinical group on measures of eating pathology, negative problem orientation, impulsivity/carelessness and avoidance and significantly lower on positive problem orientation and both self-esteem components. In the clinical sample, disordered eating correlated significantly with self-competence, negative problem-orientation and avoidance. Associations between disordered eating and problem solving lost significance when self-esteem was controlled in the clinical group only. Self-competence was found to be the main predictor of eating pathology in the clinical sample while self-liking, impulsivity and negative and positive problem orientation were main predictors in the non-clinical sample. Findings support the two-dimensional self-esteem theory with self-competence only being relevant to the anorexic population and support the hypothesis that self-esteem mediates the relationship between disordered eating and problem solving ability in an anorexic sample. Treatment implications include support for programmes emphasising increasing self-appraisal and self-efficacy. 2006 John Wiley & Sons, Ltd and Eating Disorders Association
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Pavan Kumar, K. V.; Rosa, Dario
2018-01-01
We contrast some aspects of various SYK-like models with large- N melonic behavior. First, we note that ungauged tensor models can exhibit symmetry breaking, even though these are 0+1 dimensional theories. Related to this, we show that when gauged, some of them admit no singlets, and are anomalous. The uncolored Majorana tensor model with even N is a simple case where gauge singlets can exist in the spectrum. We outline a strategy for solving for the singlet spectrum, taking advantage of the results in arXiv:1706.05364, and reproduce the singlet states expected in N = 2. In the second part of the paper, we contrast the random matrix aspects of some ungauged tensor models, the original SYK model, and a model due to Gross and Rosenhaus. The latter, even though disorder averaged, shows parallels with the Gurau-Witten model. In particular, the two models fall into identical Andreev ensembles as a function of N . In an appendix, we contrast the (expected) spectra of AdS2 quantum gravity, SYK and SYK-like tensor models, and the zeros of the Riemann Zeta function.
Action-minimizing solutions of the one-dimensional N-body problem
NASA Astrophysics Data System (ADS)
Yu, Xiang; Zhang, Shiqing
2018-05-01
We supplement the following result of C. Marchal on the Newtonian N-body problem: A path minimizing the Lagrangian action functional between two given configurations is always a true (collision-free) solution when the dimension d of the physical space R^d satisfies d≥2. The focus of this paper is on the fixed-ends problem for the one-dimensional Newtonian N-body problem. We prove that a path minimizing the action functional in the set of paths joining two given configurations and having all the time the same order is always a true (collision-free) solution. Considering the one-dimensional N-body problem with equal masses, we prove that (i) collision instants are isolated for a path minimizing the action functional between two given configurations, (ii) if the particles at two endpoints have the same order, then the path minimizing the action functional is always a true (collision-free) solution and (iii) when the particles at two endpoints have different order, although there must be collisions for any path, we can prove that there are at most N! - 1 collisions for any action-minimizing path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flock, M.; Dzyurkevich, N.; Klahr, H.
2011-07-10
We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.
Jasim Mohammed, M; Ibrahim, Rabha W; Ahmad, M Z
2017-03-01
In this paper, we consider a low initial population model. Our aim is to study the periodicity computation of this model by using neutral differential equations, which are recognized in various studies including biology. We generalize the neutral Rayleigh equation for the third-order by exploiting the model of fractional calculus, in particular the Riemann-Liouville differential operator. We establish the existence and uniqueness of a periodic computational outcome. The technique depends on the continuation theorem of the coincidence degree theory. Besides, an example is presented to demonstrate the finding.
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Two-Dimensional Grammars And Their Applications To Artificial Intelligence
NASA Astrophysics Data System (ADS)
Lee, Edward T.
1987-05-01
During the past several years, the concepts and techniques of two-dimensional grammars1,2 have attracted growing attention as promising avenues of approach to problems in picture generation as well as in picture description3 representation, recognition, transformation and manipulation. Two-dimensional grammar techniques serve the purpose of exploiting the structure or underlying relationships in a picture. This approach attempts to describe a complex picture in terms of their components and their relative positions. This resembles the way a sentence is described in terms of its words and phrases, and the terms structural picture recognition, linguistic picture recognition, or syntactic picture recognition are often used. By using this approach, the problem of picture recognition becomes similar to that of phrase recognition in a language. However, describing pictures using a string grammar (one-dimensional grammar), the only relation between sub-pictures and/or primitives is the concatenation; that is each picture or primitive can be connected only at the left or right. This one-dimensional relation has not been very effective in describing two-dimensional pictures. A natural generaliza-tion is to use two-dimensional grammars. In this paper, two-dimensional grammars and their applications to artificial intelligence are presented. Picture grammars and two-dimensional grammars are introduced and illustrated by examples. In particular, two-dimensional grammars for generating all possible squares and all possible rhombuses are presented. The applications of two-dimensional grammars to solving region filling problems are discussed. An algorithm for region filling using two-dimensional grammars is presented together with illustrative examples. The advantages of using this algorithm in terms of computation time are also stated. A high-level description of a two-level picture generation system is proposed. The first level is the picture primitive generation using two-dimensional grammars. The second level is picture generation using either string description or entity-relationship (ER) diagram description. Illustrative examples are also given. The advantages of ER diagram description together with its comparison to string description are also presented. The results obtained in this paper may have useful applications in artificial intelligence, robotics, expert systems, picture processing, pattern recognition, knowledge engineering and pictorial database design. Furthermore, examples related to satellite surveillance and identifications are also included.
The Great Gorilla Jump: An Introduction to Riemann Sums and Definite Integrals
ERIC Educational Resources Information Center
Sealey, Vicki; Engelke, Nicole
2012-01-01
The great gorilla jump is an activity designed to allow calculus students to construct an understanding of the structure of the Riemann sum and definite integral. The activity uses the ideas of position, velocity, and time to allow students to explore familiar ideas in a new way. Our research has shown that introducing the definite integral as…
A preconditioned formulation of the Cauchy-Riemann equations
NASA Technical Reports Server (NTRS)
Phillips, T. N.
1983-01-01
A preconditioning of the Cauchy-Riemann equations which results in a second-order system is described. This system is shown to have a unique solution if the boundary conditions are chosen carefully. This choice of boundary condition enables the solution of the first-order system to be retrieved. A numerical solution of the preconditioned equations is obtained by the multigrid method.
Rational Solutions of the Painlevé-II Equation Revisited
NASA Astrophysics Data System (ADS)
Miller, Peter D.; Sheng, Yue
2017-08-01
The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method.
Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials
NASA Astrophysics Data System (ADS)
Kalla, C.; Korotkin, D.
2014-11-01
In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.
Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics
NASA Astrophysics Data System (ADS)
Mehta, Pravin K.
1990-10-01
A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.
Polymeric quantum mechanics and the zeros of the Riemann zeta function
NASA Astrophysics Data System (ADS)
Berra-Montiel, Jasel; Molgado, Alberto
We analyze the Berry-Keating model and the Sierra and Rodríguez-Laguna Hamiltonian within the polymeric quantization formalism. By using the polymer representation, we obtain for both models, the associated polymeric quantum Hamiltonians and the corresponding stationary wave functions. The self-adjointness condition provides a proper domain for the Hamiltonian operator and the energy spectrum, which turned out to be dependent on an introduced scale parameter. By performing a counting of semiclassical states, we prove that the polymer representation reproduces the smooth part of the Riemann-von Mangoldt formula, and also introduces a correction depending on the energy and the scale parameter. This may shed some light on the understanding of the fluctuation behavior of the zeros of the Riemann function from a purely quantum point of view.
2-dimensional implicit hydrodynamics on adaptive grids
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2007-12-01
We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
Snyder-like modified gravity in Newton's spacetime
NASA Astrophysics Data System (ADS)
Leiva, Carlos
This work is focused on searching a geodesic interpretation of the dynamics of a particle under the effects of a Snyder-like deformation in the background of the Kepler problem. In order to accomplish that task, a Newtonian spacetime is used. Newtonian spacetime is not a metric manifold, but allows to introduce a torsion-free connection in order to interpret the dynamic equations of the deformed Kepler problem as geodesics in a curved spacetime. These geodesics and the curvature terms of the Riemann and Ricci tensors show a mass and a fundamental length dependence as expected, but are velocity-independent that is a feature present in other classical approaches to the problem. In this sense, the effect of introducing a deformed algebra is examined and the corresponding curvature terms calculated, as well as the modifications of the integrals of motion.
Giant graviton interactions and M2-branes ending on multiple M5-branes
NASA Astrophysics Data System (ADS)
Hirano, Shinji; Sato, Yuki
2018-05-01
We study splitting and joining interactions of giant gravitons with angular momenta N 1/2 ≪ J ≪ N in the type IIB string theory on AdS 5 × S 5 by describing them as instantons in the tiny graviton matrix model introduced by Sheikh-Jabbari. At large J the instanton equation can be mapped to the four-dimensional Laplace equation and the Coulomb potential for m point charges in an n-sheeted Riemann space corresponds to the m-to- n interaction process of giant gravitons. These instantons provide the holographic dual of correlators of all semi-heavy operators and the instanton amplitudes exactly agree with the pp-wave limit of Schur polynomial correlators in N = 4 SYM computed by Corley, Jevicki and Ramgoolam. By making a slight change of variables the same instanton equation is mathematically transformed into the Basu-Harvey equation which describes the system of M2-branes ending on M5-branes. As it turns out, the solutions to the sourceless Laplace equation on an n-sheeted Riemann space correspond to n M5-branes connected by M2-branes and we find general solutions representing M2-branes ending on multiple M5-branes. Among other solutions, the n = 3 case describes an M2-branes junction ending on three M5-branes. The effective theory on the moduli space of our solutions might shed light on the low energy effective theory of multiple M5-branes.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Versions TEA and TMA are two dimensional numerical electromagnetic scattering codes based upon the Finite Difference Time Domain Technique (FDTD) first proposed by Yee in 1966. The supplied version of the codes are two versions of our current two dimensional FDTD code set. This manual provides a description of the codes and corresponding results for the default scattering problem. The manual is organized into eleven sections: introduction, Version TEA and TMA code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include files (TEACOM.FOR TMACOM.FOR), a section briefly discussing scattering width computations, a section discussing the scattering results, a sample problem set section, a new problem checklist, references and figure titles.
Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data
NASA Astrophysics Data System (ADS)
Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.
2017-10-01
The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.
Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow
NASA Technical Reports Server (NTRS)
Arian, Eyal; Ta'asan, Shlomo
1996-01-01
In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.
Confined One Dimensional Harmonic Oscillator as a Two-Mode System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueorguiev, V G; Rau, A P; Draayer, J P
2005-07-11
The one-dimensional harmonic oscillator in a box problem is possibly the simplest example of a two-mode system. This system has two exactly solvable limits, the harmonic oscillator and a particle in a (one-dimensional) box. Each of the two limits has a characteristic spectral structure describing the two different excitation modes of the system. Near each of these limits, one can use perturbation theory to achieve an accurate description of the eigenstates. Away from the exact limits, however, one has to carry out a matrix diagonalization because the basis-state mixing that occurs is typically too large to be reproduced in anymore » other way. An alternative to casting the problem in terms of one or the other basis set consists of using an ''oblique'' basis that uses both sets. Through a study of this alternative in this one-dimensional problem, we are able to illustrate practical solutions and infer the applicability of the concept for more complex systems, such as in the study of complex nuclei where oblique-basis calculations have been successful.« less
The Osher scheme for real gases
NASA Technical Reports Server (NTRS)
Suresh, Ambady; Liou, Meng-Sing
1990-01-01
An extension of Osher's approximate Riemann solver to include gases with an arbitrary equation of state is presented. By a judicious choice of thermodynamic variables, the Riemann invariats are reduced to quadratures which are then approximated numerically. The extension is rigorous and does not involve any further assumptions or approximations over the ideal gas case. Numerical results are presented to demonstrate the feasibility and accuracy of the proposed method.
Linearizable quantum supersymmetric σ models
NASA Astrophysics Data System (ADS)
Haba, Z.
1988-07-01
Euclidean quantization of superfields with values in a Hermitian manifold and defined on a super-Riemann surface is discussed. It is shown that stochastic differential equations relating an interacting σ superfield to the free one become linear if the field takes values in a generalized Poincaré upper half-plane. A renormalized perturbative solution is obtained. Fields with values in a Riemann surface are discussed in brief.
ERIC Educational Resources Information Center
Caglayan, Gunhan
2016-01-01
The purpose of this article is to offer teaching ideas in the treatment of the definite integral concept and the Riemann sums in a technology-supported environment. Specifically, the article offers teaching ideas and activities for classroom for the numerical methods of approximating a definite integral via left- and right-hand Riemann sums, along…
A contribution to the great Riemann solver debate
NASA Technical Reports Server (NTRS)
Quirk, James J.
1992-01-01
The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.
Quantum Computer Circuit Analysis and Design
2009-02-01
is a first order nonlinear differential matrix equation of the Lax type. This report gives derivations of the Levi - Civita connection, Riemann...directions on the manifold not easily simulated by local gates. In this way, basic differential geometric concepts such as the Levi - Civita connection...and two - body terms, and Q(H) contains more than two - body terms. Thus ),()( HQHPH (1) in which P and Q are superoperators (matrices) acting on
Pair correlation and twin primes revisited.
Conrey, Brian; Keating, Jonathan P
2016-10-01
We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe.
Pair correlation and twin primes revisited
NASA Astrophysics Data System (ADS)
Conrey, Brian; Keating, Jonathan P.
2016-10-01
We establish a connection between the conjectural two-over-two ratios formula for the Riemann zeta-function and a conjecture concerning correlations of a certain arithmetic function. Specifically, we prove that the ratios conjecture and the arithmetic correlations conjecture imply the same result. This casts a new light on the underpinnings of the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe.
Uniform high order spectral methods for one and two dimensional Euler equations
NASA Technical Reports Server (NTRS)
Cai, Wei; Shu, Chi-Wang
1991-01-01
Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.
Current status of one- and two-dimensional numerical models: Successes and limitations
NASA Technical Reports Server (NTRS)
Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.
1985-01-01
The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
NASA Astrophysics Data System (ADS)
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond and its breaching such as depth, wide, length, volume and breaching shape and daily total rainfall data were used in the models. The simulated flooding in the both models were compared with the real flood extent which gathered from photos taken after the flood event, high satellite images acquired after 20 days from the flood event, and field works. The results show that LISFLOOD-Roe hydraulic model gives more than 80% fit to the extent of real flood event. Also both modelling results show that the embankment breaching of the Ata Pond directly affected the flood magnitude and intensity on the area. This study reveals that modelling of the probable flooding in urban areas is necessary and very important in urban planning. References Gallegos, H. A., Schubert, J. E., and Sanders, B. F.: Two dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills California, Adv. Water Resour., 32, 1323-1335, 2009. Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T. and Bates, P.: How mush physical complexity is needed to model flood inundation? Hydrological Processes, DOI: 10.1002/hyp.8339. Ozdemir H., Sampson C., De Almeida G., Bates P.D.: Evaluating scale and roughness effects in urban flood modelling using terrestrial LiDAR data, Hydrology and Earth System Sciences, vol.17, pp.4015-4030, 2013. Roe P.: Approximate Riemann solvers, parameter vectors, and difference-schemes. Journal of Computational Physics 43(2): 357-372, 1981. Villanueva I, Wright NG.: Linking Riemann and storage cell models for flood prediction. Proceedings of the Institution of Civil Engineers, Journal of Water Management 159: 27-33, 2006.
Robust L1-norm two-dimensional linear discriminant analysis.
Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang
2015-05-01
In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Octarina, Sisca; Radiana, Mutia; Bangun, Putra B. J.
2018-01-01
Two dimensional cutting stock problem (CSP) is a problem in determining the cutting pattern from a set of stock with standard length and width to fulfill the demand of items. Cutting patterns were determined in order to minimize the usage of stock. This research implemented pattern generation algorithm to formulate Gilmore and Gomory model of two dimensional CSP. The constraints of Gilmore and Gomory model was performed to assure the strips which cut in the first stage will be used in the second stage. Branch and Cut method was used to obtain the optimal solution. Based on the results, it found many patterns combination, if the optimal cutting patterns which correspond to the first stage were combined with the second stage.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
NASA Technical Reports Server (NTRS)
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-01-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1995-01-01
This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Gas dynamic and force effects of a solid particle in a shock wave in air
NASA Astrophysics Data System (ADS)
Obruchkova, L. R.; Baldina, E. G.; Efremov, V. P.
2017-03-01
Shock wave interaction with an adiabatic solid microparticle is numerically simulated. In the simulation, the shock wave is initiated by the Riemann problem with instantaneous removal of a diaphragm between the high- and low-pressure chambers. The calculation is performed in the two-dimensional formulation using the ideal gas equation of state. The left end of the tube is impermeable, while outflow from the right end is permitted. The particle is assumed to be motionless, impermeable, and adiabatic, and the simulation is performed for time intervals shorted than the time of velocity and temperature relaxation of the particle. The numerical grid is chosen for each particle size to ensure convergence. For each particle size, the calculated hydraulic resistance coefficient describing the particle force impact on the flow is compared with that obtained from the analytical Stokes formula. It is discovered that the Stokes formula can be used for calculation of hydraulic resistance of a motionless particle in a shock wave flow. The influence of the particle diameter on the flow perturbation behind the shock front is studied. Specific heating of the flow in front of the particle is calculated and a simple estimate is proposed. The whole heated region is divided by the acoustic line into the subsonic and supersonic regions. It is demonstrated that the main heat generated by the particle in the flow is concentrated in the subsonic region. The calculations are performed using two different 2D hydro codes. The energy release in the flow induced by the particle is compared with the maximum possible heating at complete termination of the flow. The results can be used for estimating the possibility of gas ignition in front of the particle by a shock wave whose amplitude is insufficient for initiating detonation in the absence of a particle.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
NASA Astrophysics Data System (ADS)
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
NASA Astrophysics Data System (ADS)
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.
Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1
NASA Technical Reports Server (NTRS)
Burning, Pieter G.; Nichols, Robert H.; Tramel, Robert W.
2009-01-01
Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
Revisiting low-fidelity two-fluid models for gas-solids transport
NASA Astrophysics Data System (ADS)
Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus
2016-08-01
Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.
A Depth-Averaged 2-D Simulation for Coastal Barrier Breaching Processes
2011-05-01
including bed change and variable flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle...flow density in the flow continuity and momentum equations. The model adopts the HLL approximate Riemann solver to handle the mixed-regime flows near...18 547 Keulegan equation or the Bernoulli equation, and the breach morphological change is determined using simplified sediment transport models
NASA Astrophysics Data System (ADS)
Sandoval, J. H.; Bellotti, F. F.; Yamashita, M. T.; Frederico, T.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.
2018-03-01
The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical bosons can arise at the threshold where the two-body problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here we present a framework for studying the three-body problem as one (continuously) changes the dimensionality of the system all the way from three, through two, and down to a single dimension. This is done by considering the Efimov favorable case of a mass-imbalanced system and with an external confinement provided by a typical experimental case with a (deformed) harmonic trap.
Assessment of numerical techniques for unsteady flow calculations
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung
1989-01-01
The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.
A Two-Dimensional Linear Bicharacteristic FDTD Method
NASA Technical Reports Server (NTRS)
Beggs, John H.
2002-01-01
The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.
Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.
Doi, Toshiyuki
2011-02-01
Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society
Correct numerical simulation of a two-phase coolant
NASA Astrophysics Data System (ADS)
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Numerical two-dimensional calculations of the formation of the solar nebula
NASA Technical Reports Server (NTRS)
Bodenheimer, Peter H.
1991-01-01
Numerical two dimensional calculations of the formation of the solar nebula are presented. The following subject areas are covered: (1) observational constraints of the properties of the initial solar nebula; (2) the physical problem; (3) review if two dimensional calculations of the formation phase; (4) recent models with hydrodynamics and radiative transport; and (5) further evolution of the system.
The Goertler vortex instability mechanism in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.
1984-01-01
The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.
An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Shivakumar, K. N.
1990-01-01
An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.
NASA Astrophysics Data System (ADS)
Zhao, Jiaquan; Li, Renfu; Wu, Haiyan
2018-02-01
In order to characterize the flow structure and the effect of acoustic waves caused by the shock-vortex interaction on the performance of the shock focusing, the incident plane shock wave with a single disturbance vortex focusing in a parabolic cavity is simulated systematically through solving the two-dimensional, unsteady Saint-Venant equations with the two order HLL scheme of Riemann solvers. The simulations show that the dilatation effect to be dominant in the net vorticity generation, while the baroclinic effect is dominate in the absence of initial vortex disturbance. Moreover, the simulations show that the time evolution of maximum focusing pressure with initial vortex is more complicate than that without initial vortex, which has a lot of relevance with the presence of quadrupolar acoustic wave structure induced by shock-vortex interaction and its propagation in the cavity. Among shock and other disturbance parameters, the shock Mach number, vortex Mach number and the shape of parabolic reflector proved to play a critical role in the focusing of shock waves and the strength of viscous dissipation, which in turn govern the evolution of maximum focusing pressure due to the gas dynamic focus, the change in dissipation rate and the coincidence of motion disturbance vortex with aerodynamic focus point.
Computer simulation of plasma and N-body problems
NASA Technical Reports Server (NTRS)
Harries, W. L.; Miller, J. B.
1975-01-01
The following FORTRAN language computer codes are presented: (1) efficient two- and three-dimensional central force potential solvers; (2) a three-dimensional simulator of an isolated galaxy which incorporates the potential solver; (3) a two-dimensional particle-in-cell simulator of the Jeans instability in an infinite self-gravitating compressible gas; and (4) a two-dimensional particle-in-cell simulator of a rotating self-gravitating compressible gaseous system of which rectangular coordinate and superior polar coordinate versions were written.
Baryon asymmetry from primordial black holes
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Iso, Satoshi
2017-03-01
We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming the presence of microscopic baryon (or lepton) number violation, and the presence of an effective CP-violating operator such as ∂αF (R…)Jα , where F (R…) is a scalar function of the Riemann tensor and Jα is a baryonic (leptonic) current, the time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH emanates asymmetric Hawking radiation between baryons (leptons) and antibaryons (leptons). Though the operator is higher-dimensional and largely suppressed by a high mass scale M* , we show that a sufficient amount of asymmetry can be generated for a wide range of parameters of the PBH mass MPBH , its abundance ΩPBH , and the scale M*.
On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo
2017-06-01
We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, ofmore » the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.« less
Free boundary problems in shock reflection/diffraction and related transonic flow problems
Chen, Gui-Qiang; Feldman, Mikhail
2015-01-01
Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows. When a shock hits an obstacle, or a flying body meets a shock, shock reflection/diffraction phenomena occur. In this paper, we show how several long-standing shock reflection/diffraction problems can be formulated as free boundary problems, discuss some recent progress in developing mathematical ideas, approaches and techniques for solving these problems, and present some further open problems in this direction. In particular, these shock problems include von Neumann's problem for shock reflection–diffraction by two-dimensional wedges with concave corner, Lighthill's problem for shock diffraction by two-dimensional wedges with convex corner, and Prandtl-Meyer's problem for supersonic flow impinging onto solid wedges, which are also fundamental in the mathematical theory of multidimensional conservation laws. PMID:26261363
An asymptotic formula for polynomials orthonormal with respect to a varying weight. II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komlov, A V; Suetin, S P
2014-09-30
This paper gives a proof of the theorem announced by the authors in the preceding paper with the same title. The theorem states that asymptotically the behaviour of the polynomials which are orthonormal with respect to the varying weight e{sup −2nQ(x)}p{sub g}(x)/√(∏{sub j=1}{sup 2p}(x−e{sub j})) coincides with the asymptotic behaviour of the Nuttall psi-function, which solves a special boundary-value problem on the relevant hyperelliptic Riemann surface of genus g=p−1. Here e{sub 1}
The high hall ventilation with the simplified simulation of the fan
NASA Astrophysics Data System (ADS)
Kyncl, Martin; Pelant, Jaroslav
2018-06-01
Here we work with the system of equations describing the non-stationary compressible turbulent multi-component flow in the gravitational field. We focus on the numerical simulation of the fan situated inside the high hall. The RANS equations are discretized with the use of the finite volume method. The original modification of the Riemann problem and its solution is used at the boundaries. The combination of specific boundary conditions is used for the simulation of the fan. The presented computational results are computed with own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general).
Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey
NASA Astrophysics Data System (ADS)
Böttcher, A.; Garoni, C.; Serra-Capizzano, S.
2017-11-01
It is often asked why Toeplitz-like matrices with unbounded symbols are worth studying. This paper gives an answer by presenting several concrete problems that motivate such studies. It surveys the central results of the theory of Generalized Locally Toeplitz (GLT) sequences in a self-contained tool-kit fashion, and gives a new extension from bounded Riemann integrable functions to unbounded almost everywhere continuous functions. The emergence of unbounded symbols is illustrated by local grid refinements in finite difference and finite element discretizations and also by preconditioning strategies. Bibliography: 40 titles.
Assimilation of Wave and Current Data for Prediction of Inlet and River Mouth Dynamics
2013-07-01
onto the Delft3D computational grid and the specification of Riemann -type boundary conditions for the boundary-normal velocity and surface elevation...conditions from time- history data from in situ tide gages. The corrections are applied to the surface-elevation contribution to the Riemann boundary...The algorithms described above are all of the strong-constraint variational variety, and make use of adjoint solvers corresponding to the various
A distinguishing gravitational property for gravitational equation in higher dimensions
NASA Astrophysics Data System (ADS)
Dadhich, Naresh
2016-03-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.
NASA Astrophysics Data System (ADS)
Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou
2016-11-01
In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.
Thomas-Fermi model for a bulk self-gravitating stellar object in two dimensions
NASA Astrophysics Data System (ADS)
De, Sanchari; Chakrabarty, Somenath
2015-09-01
In this article we have solved a hypothetical problem related to the stability and gross properties of two-dimensional self-gravitating stellar objects using the Thomas-Fermi model. The formalism presented here is an extension of the standard three-dimensional problem discussed in the book on statistical physics, Part I by Landau and Lifshitz. Further, the formalism presented in this article may be considered a class problem for post-graduate-level students of physics or may be assigned as a part of their dissertation project.
Classification Objects, Ideal Observers & Generative Models
ERIC Educational Resources Information Center
Olman, Cheryl; Kersten, Daniel
2004-01-01
A successful vision system must solve the problem of deriving geometrical information about three-dimensional objects from two-dimensional photometric input. The human visual system solves this problem with remarkable efficiency, and one challenge in vision research is to understand how neural representations of objects are formed and what visual…
A discontinuous Galerkin method for two-dimensional PDE models of Asian options
NASA Astrophysics Data System (ADS)
Hozman, J.; Tichý, T.; Cvejnová, D.
2016-06-01
In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.
R4 terms in supergravities via T -duality constraint
NASA Astrophysics Data System (ADS)
Razaghian, Hamid; Garousi, Mohammad R.
2018-05-01
It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.
A geometric construction of the Riemann scalar curvature in Regge calculus
NASA Astrophysics Data System (ADS)
McDonald, Jonathan R.; Miller, Warner A.
2008-10-01
The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe is it ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a new fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.
A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows
NASA Astrophysics Data System (ADS)
Lei, Xin; Li, Jiequan
2018-04-01
This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.
NASA Astrophysics Data System (ADS)
Berezin, Sergey; Zayats, Oleg
2018-01-01
We study a friction-controlled slide of a body excited by random motions of the foundation it is placed on. Specifically, we are interested in such quantities as displacement, traveled distance, and energy loss due to friction. We assume that the random excitation is switched off at some time (possibly infinite) and show that the problem can be treated in an analytic, explicit, manner. Particularly, we derive formulas for the moments of the displacement and distance, and also for the average energy loss. To accomplish that we use the Pugachev-Sveshnikov equation for the characteristic function of a continuous random process given by a system of SDEs. This equation is solved by reduction to a parametric Riemann boundary value problem of complex analysis.
Solving time-dependent two-dimensional eddy current problems
NASA Technical Reports Server (NTRS)
Lee, Min Eig; Hariharan, S. I.; Ida, Nathan
1988-01-01
Results of transient eddy current calculations are reported. For simplicity, a two-dimensional transverse magnetic field which is incident on an infinitely long conductor is considered. The conductor is assumed to be a good but not perfect conductor. The resulting problem is an interface initial boundary value problem with the boundary of the conductor being the interface. A finite difference method is used to march the solution explicitly in time. The method is shown. Treatment of appropriate radiation conditions is given special consideration. Results are validated with approximate analytic solutions. Two stringent test cases of high and low frequency incident waves are considered to validate the results.
Intertwined Hamiltonians in two-dimensional curved spaces
NASA Astrophysics Data System (ADS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-04-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.
Aerodynamics of an airfoil with a jet issuing from its surface
NASA Technical Reports Server (NTRS)
Tavella, D. A.; Karamcheti, K.
1982-01-01
A simple, two dimensional, incompressible and inviscid model for the problem posed by a two dimensional wing with a jet issuing from its lower surface is considered and a parametric analysis is carried out to observe how the aerodynamic characteristics depend on the different parameters. The mathematical problem constitutes a boundary value problem where the position of part of the boundary is not known a priori. A nonlinear optimization approach was used to solve the problem, and the analysis reveals interesting characteristics that may help to better understand the physics involved in more complex situations in connection with high lift systems.
Denlinger, R.P.; Iverson, R.M.
2001-01-01
Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.
Transonic small disturbances equation applied to the solution of two-dimensional nonsteady flows
NASA Technical Reports Server (NTRS)
Couston, M.; Angelini, J. J.; Mulak, P.
1980-01-01
Transonic nonsteady flows are of large practical interest. Aeroelastic instability prediction, control figured vehicle techniques or rotary wings in forward flight are some examples justifying the effort undertaken to improve knowledge of these problems is described. The numerical solution of these problems under the potential flow hypothesis is described. The use of an alternating direction implicit scheme allows the efficient resolution of the two dimensional transonic small perturbations equation.
Aerodynamics of Engine-Airframe Interaction
NASA Technical Reports Server (NTRS)
Caughey, D. A.
1986-01-01
The report describes progress in research directed towards the efficient solution of the inviscid Euler and Reynolds-averaged Navier-Stokes equations for transonic flows through engine inlets, and past complete aircraft configurations, with emphasis on the flowfields in the vicinity of engine inlets. The research focusses upon the development of solution-adaptive grid procedures for these problems, and the development of multi-grid algorithms in conjunction with both, implicit and explicit time-stepping schemes for the solution of three-dimensional problems. The work includes further development of mesh systems suitable for inlet and wing-fuselage-inlet geometries using a variational approach. Work during this reporting period concentrated upon two-dimensional problems, and has been in two general areas: (1) the development of solution-adaptive procedures to cluster the grid cells in regions of high (truncation) error;and (2) the development of a multigrid scheme for solution of the two-dimensional Euler equations using a diagonalized alternating direction implicit (ADI) smoothing algorithm.
Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials
NASA Astrophysics Data System (ADS)
Malik, Pradeep; Swaminathan, A.
2010-11-01
In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.
NASA Astrophysics Data System (ADS)
Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam
2017-05-01
The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.
NASA Astrophysics Data System (ADS)
Crochet, M. W.; Gonthier, K. A.
2013-12-01
Systems of hyperbolic partial differential equations are frequently used to model the flow of multiphase mixtures. These equations often contain sources, referred to as nozzling terms, that cannot be posed in divergence form, and have proven to be particularly challenging in the development of finite-volume methods. Upwind schemes have recently shown promise in properly resolving the steady wave solution of the associated multiphase Riemann problem. However, these methods require a full characteristic decomposition of the system eigenstructure, which may be either unavailable or computationally expensive. Central schemes, such as the Kurganov-Tadmor (KT) family of methods, require minimal characteristic information, which makes them easily applicable to systems with an arbitrary number of phases. However, the proper implementation of nozzling terms in these schemes has been mathematically ambiguous. The primary objectives of this work are twofold: first, an extension of the KT family of schemes is proposed that formally accounts for the nonconservative nozzling sources. This modification results in a semidiscrete form that retains the simplicity of its predecessor and introduces little additional computational expense. Second, this modified method is applied to multiple, but equivalent, forms of the multiphase equations to perform a numerical study by solving several one-dimensional test problems. Both ideal and Mie-Grüneisen equations of state are used, with the results compared to an analytical solution. This study demonstrates that the magnitudes of the resulting numerical errors are sensitive to the form of the equations considered, and suggests an optimal form to minimize these errors. Finally, a separate modification of the wave propagation speeds used in the KT family is also suggested that can reduce the extent of numerical diffusion in multiphase flows.
Louis, A. K.
2006-01-01
Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060
The simulation of shock- and impact-driven flows with Mie-Gruneisen equations of state
NASA Astrophysics Data System (ADS)
Ward, Geoffrey M.
An investigation of shock- and impact-driven flows with Mie-Gruneisen equation of state derived from a linear shock-particle speed Hugoniot relationship is presented. Cartesian mesh methods using structured adaptive refinement are applied to simulate several flows of interest in an Eulerian frame of reference. The flows central to the investigation include planar Richtmyer-Meshkov instability, the impact of a sphere with a plate, and an impact-driven Mach stem. First, for multicomponent shock-driven flows, a dimensionally unsplit, spatially high-order, hybrid, center-difference, limiter methodology is developed. Effective switching between center-difference and upwinding schemes is achieved by a set of robust tolerance and Lax-entropy-based criteria [49]. Oscillations that result from such a mixed stencil scheme are minimized by requiring that the upwinding method approaches the center-difference method in smooth regions. The solver is then applied to investigate planar Richtmyer-Meshkov instability in the context of an equation of state comparison. Comparisons of simulations with materials modeled by isotropic stress Mie-Gruneisen equations of state derived from a linear shock-particle speed Hugoniot relationship [36,52] to those of perfect gases are made with the intention of exposing the role of the equation of state. First, results for single- and triple-mode planar Richtmyer-Meshkov instability between mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Gruneisen equations of state are presented for the case of a reflected shock. The single-mode case is explored for incident shock Mach numbers of 1.5 and 2.5. Additionally, examined is single-mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. Vorticity distribution and corrugation centerline shortly after shock interaction is also examined. The formation of incipient weak shock waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected. Next, the ghost fluid method [83] is explored for application to impact-driven flows with Mie-Gruneisen equations of state in a vacuum. Free surfaces are defined utilizing a level-set approach. The level-set is reinitialized to the signed distance function periodically by solution to a Hamilton-Jacobi differential equation in artificial time. Flux reconstruction along each Cartesian direction of the domain is performed by subdividing in a way that allows for robust treatment of grid-scale sized voids. Ghost cells in voided regions near the material-vacuum interface are determined from surface-normal Riemann problem solution. The method is then applied to several impact problems of interest. First, a one-dimensional impact problem is examined in Mie-Gruneisen aluminum with simple point erosion used to model separation by spallation under high tension. A similar three-dimensional axisymmetric simulation of two rods impacting is then performed without a model for spallation. Further results for three-dimensional axisymmetric simulation of a sphere hitting a plate are then presented. Finally, a brief investigation of the assumptions utilized in modeling solids as isotropic fluids is undertaken. An Eulerian solver approach to handling elastic and elastic-plastic solids is utilized for comparison to the simple fluid model assumption. First, in one dimension an impact problem is examined for elastic, elastic-plastic, and fluid equations of state for aluminum. The results demonstrate that in one dimension the fluid models the plastic shock structure of the flow well. Further investigation is made using a three-dimensional axisymmetric simulation of an impact problem involving a copper cylinder surrounded by aluminum. An aluminum slab impact drives a faster shock in the outer aluminum region yielding a Mach reflection in the copper. The results demonstrate similar plastic shock structures. Several differences are also notable that include a lack of roll-up instability at the material interface and slip-line emanating from the Mach stem's triple point. (Abstract shortened by UMI.)
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
The 'chemistry of space': the sources of Hermann Grassmann's scientific achievements.
Petsche, Hans-Joachim
2014-10-01
Albert Lewis's article (Annals of Science, 1977) analysing the influence of Friedrich Schleiermacher on Hermann Grassmann, stimulated many different studies on the founder of n-dimensional outer algebra. Following a brief outline of the various, sometimes diverging, analyses of Grassmann's creative thinking, new research is presented which confirms Lewis's original contribution and widens it considerably. It will be shown that: i. Grassmann, although a self-taught mathematician, was at the centre of a hitherto understated intellectual trend, which was defining for Germany. Initiated by Pestalozzi's concept of elementary mathematical education and culminating in the modern mathematics of the late 19th Century, it was reflected in the contributions of Grassmann, Riemann, Jacobi and Eisenstein. ii. Hermann Grassmann, his father Justus, and his brother Robert were all demonstrably influenced by Schleiermacher's dialectic; however the two brothers responded to it in very different ways. iii. Whilst the more philosophical parts of Hermann's 1844 Extension Theory are characterised by the influence of Schleiermacher and also by the mathematical knowledge of his father, the entire development of this work is the unfolding of a single idea based on the father's interpretation of combinatorial multiplication as a 'chemical conjunction', which was developed largely dialectically by Hermann.
ERIC Educational Resources Information Center
Ellison, Mark D.
2008-01-01
The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…
Approximation and Numerical Analysis of Nonlinear Equations of Evolution.
1980-01-31
dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example
The Athena Astrophysical MHD Code in Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Skinner, M. A.; Ostriker, E. C.
2011-10-01
We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.
The Euler-Poisson-Darboux equation for relativists
NASA Astrophysics Data System (ADS)
Stewart, John M.
2009-09-01
The Euler-Poisson-Darboux (EPD) equation is the simplest linear hyperbolic equation in two independent variables whose coefficients exhibit singularities, and as such must be of interest as a paradigm to relativists. Sadly it receives scant treatment in the textbooks. The first half of this review is didactic in nature. It discusses in the simplest terms possible the nature of solutions of the EPD equation for the timelike and spacelike singularity cases. Also covered is the Riemann representation of solutions of the characteristic initial value problem, which is hard to find in the literature. The second half examines a few of the possible applications, ranging from explicit computation of the leading terms in the far-field backscatter from predominantly outgoing radiation in a Schwarzschild space-time, to computing explicitly the leading terms in the matter-induced singularities in plane symmetric space-times. There are of course many other applications and the aim of this article is to encourage relativists to investigate this underrated paradigm.
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Uenal, A.
1981-01-01
A numerical scheme for solving two dimensional Fredholm integral equations of the second kind is developed. The proof of the convergence of the numerical scheme is shown for three cases: the case of periodic kernels, the case of semiperiodic kernels, and the case of nonperiodic kernels. Applications to the incompressible, stationary Navier-Stokes problem are of primary interest.
On metrics and super-Riemann surfaces
NASA Astrophysics Data System (ADS)
Hodgkin, Luke
1987-08-01
It is shown that any super-Riemann surface M admits a large space of metrics (in a rather basic sense); while if M is of compact genus g type, g>1, M admits a unique metric whose lift to the universal cover is superconformally equivalent to the standard (Baranov-Shvarts) metric on the super-half plane. This explains the relation between the different methods of calculation of the upper Teichmüller space by the author (using arbitrary superconformal transformations) and Crane and Rabin (using only isometries).
NASA Astrophysics Data System (ADS)
Paramestha, D. L.; Santosa, B.
2018-04-01
Two-dimensional Loading Heterogeneous Fleet Vehicle Routing Problem (2L-HFVRP) is a combination of Heterogeneous Fleet VRP and a packing problem well-known as Two-Dimensional Bin Packing Problem (BPP). 2L-HFVRP is a Heterogeneous Fleet VRP in which these costumer demands are formed by a set of two-dimensional rectangular weighted item. These demands must be served by a heterogeneous fleet of vehicles with a fix and variable cost from the depot. The objective function 2L-HFVRP is to minimize the total transportation cost. All formed routes must be consistent with the capacity and loading process of the vehicle. Sequential and unrestricted scenarios are considered in this paper. We propose a metaheuristic which is a combination of the Genetic Algorithm (GA) and the Cross Entropy (CE) named Cross Entropy Genetic Algorithm (CEGA) to solve the 2L-HFVRP. The mutation concept on GA is used to speed up the algorithm CE to find the optimal solution. The mutation mechanism was based on local improvement (2-opt, 1-1 Exchange, and 1-0 Exchange). The probability transition matrix mechanism on CE is used to avoid getting stuck in the local optimum. The effectiveness of CEGA was tested on benchmark instance based 2L-HFVRP. The result of experiments shows a competitive result compared with the other algorithm.
NASA Astrophysics Data System (ADS)
Pelties, C.; Käser, M.
2010-12-01
We will present recent developments concerning the extensions of the ADER-DG method to solve three dimensional dynamic rupture problems on unstructured tetrahedral meshes. The simulation of earthquake rupture dynamics and seismic wave propagation using a discontinuous Galerkin (DG) method in 2D was recently presented by J. de la Puente et al. (2009). A considerable feature of this study regarding spontaneous rupture problems was the combination of the DG scheme and a time integration method using Arbitrarily high-order DERivatives (ADER) to provide high accuracy in space and time with the discretization on unstructured meshes. In the resulting discrete velocity-stress formulation of the elastic wave equations variables are naturally discontinuous at the interfaces between elements. The so-called Riemann problem can then be solved to obtain well defined values of the variables at the discontinuity itself. This is in particular valid for the fault at which a certain friction law has to be evaluated. Hence, the fault’s geometry is honored by the computational mesh. This way, complex fault planes can be modeled adequately with small elements while fast mesh coarsening is possible with increasing distance from the fault. Due to the strict locality of the scheme using only direct neighbor communication, excellent parallel behavior can be observed. A further advantage of the scheme is that it avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping or filtering of synthetic seismograms. In order to test the accuracy of the ADER-DG method the Southern California Earthquake Center (SCEC) benchmark for spontaneous rupture simulations was employed. Reference: J. de la Puente, J.-P. Ampuero, and M. Käser (2009), Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B10302, doi:10.1029/2008JB006271
Discontinuous Galerkin Method with Numerical Roe Flux for Spherical Shallow Water Equations
NASA Astrophysics Data System (ADS)
Yi, T.; Choi, S.; Kang, S.
2013-12-01
In developing the dynamic core of a numerical weather prediction model with discontinuous Galerkin method, a numerical flux at the boundaries of grid elements plays a vital role since it preserves the local conservation properties and has a significant impact on the accuracy and stability of numerical solutions. Due to these reasons, we developed the numerical Roe flux based on an approximate Riemann problem for spherical shallow water equations in Cartesian coordinates [1] to find out its stability and accuracy. In order to compare the performance with its counterpart flux, we used the Lax-Friedrichs flux, which has been used in many dynamic cores such as NUMA [1], CAM-DG [2] and MCore [3] because of its simplicity. The Lax-Friedrichs flux is implemented by a flux difference between left and right states plus the maximum characteristic wave speed across the boundaries of elements. It has been shown that the Lax-Friedrichs flux with the finite volume method is more dissipative and unstable than other numerical fluxes such as HLLC, AUSM+ and Roe. The Roe flux implemented in this study is based on the decomposition of flux difference over the element boundaries where the nonlinear equations are linearized. It is rarely used in dynamic cores due to its complexity and thus computational expensiveness. To compare the stability and accuracy of the Roe flux with the Lax-Friedrichs, two- and three-dimensional test cases are performed on a plane and cubed-sphere, respectively, with various numbers of element and polynomial order. For the two-dimensional case, the Gaussian bell is simulated on the plane with two different numbers of elements at the fixed polynomial orders. In three-dimensional cases on the cubed-sphere, we performed the test cases of a zonal flow over an isolated mountain and a Rossby-Haurwitz wave, of which initial conditions are the same as those of Williamson [4]. This study presented that the Roe flux with the discontinuous Galerkin method is less dissipative and has stronger numerical stability than the Lax-Friedrichs. Reference 1. 2002, Giraldo, F.X., Hesthaven, J.S. and Warburton, T., "Nodal High-Order Discontinous Galerkin Methods for the Spherical Shallow Water Equations," Journal of Computational Physics, Vol.181, pp.499-525. 2. 2005, Nair, R.D., Thomas, S.J. and Loft, R.D., "A Discontinuous Galerkin Transport Scheme on the Cubed Sphere," Monthly Weather Review, Vol.133, pp.814-828. 3. 2010, Ullrich, P.A., Jablonowski, C. and Leer, van B., "High-Order Finite-Volume Methods for the Shallow-Water Equations on the Sphere," Journal of Computational Physics, Vol.229, pp.6104-6134. 4. 1992, Williamson, D.L., Drake, J.B., Hack, J., Jacob, R. and Swartztrauber, P.N., "A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry," Journal of Computational Physics, Vol.102, pp.211-224.
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
An equivalent domain integral for analysis of two-dimensional mixed mode problems
NASA Technical Reports Server (NTRS)
Raju, I. S.; Shivakumar, K. N.
1989-01-01
An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies subjected to mixed mode loading is presented. The total and product integrals consist of the sum of an area or domain integral and line integrals on the crack faces. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all the problems analyzed.
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
Two solvable problems of planar geometrical optics.
Borghero, Francesco; Bozis, George
2006-12-01
In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.
Analysis of a Two-Dimensional Thermal Cloaking Problem on the Basis of Optimization
NASA Astrophysics Data System (ADS)
Alekseev, G. V.
2018-04-01
For a two-dimensional model of thermal scattering, inverse problems arising in the development of tools for cloaking material bodies on the basis of a mixed thermal cloaking strategy are considered. By applying the optimization approach, these problems are reduced to optimization ones in which the role of controls is played by variable parameters of the medium occupying the cloaking shell and by the heat flux through a boundary segment of the basic domain. The solvability of the direct and optimization problems is proved, and an optimality system is derived. Based on its analysis, sufficient conditions on the input data are established that ensure the uniqueness and stability of optimal solutions.
High-frequency modes in a two-dimensional rectangular room with windows
NASA Astrophysics Data System (ADS)
Shabalina, E. D.; Shirgina, N. V.; Shanin, A. V.
2010-07-01
We examine a two-dimensional model problem of architectural acoustics on sound propagation in a rectangular room with windows. It is supposed that the walls are ideally flat and hard; the windows absorb all energy that falls upon them. We search for the modes of such a room having minimal attenuation indices, which have the expressed structure of billiard trajectories. The main attenuation mechanism for such modes is diffraction at the edges of the windows. We construct estimates for the attenuation indices of the given modes based on the solution to the Weinstein problem. We formulate diffraction problems similar to the statement of the Weinstein problem that describe the attenuation of billiard modes in complex situations.
On Born's Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal
NASA Astrophysics Data System (ADS)
Bétermin, Laurent; Knüpfer, Hans
2018-04-01
We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born's conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results hold for a class of completely monotone interaction potentials which includes Coulomb-type interactions for d≥3 . In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.
Soliton and quasi-periodic wave solutions for b-type Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Singh, Manjit; Gupta, R. K.
2017-11-01
In this paper, truncated Laurent expansion is used to obtain the bilinear equation of a nonlinear evolution equation. As an application of Hirota's method, multisoliton solutions are constructed from the bilinear equation. Extending the application of Hirota's method and employing multidimensional Riemann theta function, one and two-periodic wave solutions are also obtained in a straightforward manner. The asymptotic behavior of one and two-periodic wave solutions under small amplitude limits is presented, and their relations with soliton solutions are also demonstrated.
Revisiting low-fidelity two-fluid models for gas–solids transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus
Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The modelmore » equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.« less
NASA Astrophysics Data System (ADS)
Hehl, Friedrich W.; McCrea, J. Dermott
1986-03-01
Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.
Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Melson, N. Duane
1998-01-01
We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.
A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.
2002-01-01
The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear Bicharacteristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for two-dimensional model problems on uniform grids, and the Finite Difference Time Domain (FDTD) algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has less phase velocity error.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.
NASA Technical Reports Server (NTRS)
Stein, M.; Stein, P. A.
1978-01-01
Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.
Numerical methods for systems of conservation laws of mixed type using flux splitting
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1990-01-01
The essentially non-oscillatory (ENO) finite difference scheme is applied to systems of conservation laws of mixed hyperbolic-elliptic type. A flux splitting, with the corresponding Jacobi matrices having real and positive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately. The scheme is numerically tested on the van der Waals equation in fluid dynamics. Convergence was observed with good resolution to weak solutions for various Riemann problems, which are then numerically checked to be admissible as the viscosity-capillarity limits. The interesting phenomena of the shrinking of elliptic regions if they are present in the initial conditions were also observed.
Sign changes in sums of the Liouville function
NASA Astrophysics Data System (ADS)
Borwein, Peter; Ferguson, Ron; Mossinghoff, Michael J.
2008-09-01
The Liouville function λ(n) is the completely multiplicative function whose value is -1 at each prime. We develop some algorithms for computing the sum T(n)Dsum_{kD1}^n λ(k)/k , and use these methods to determine the smallest positive integer n where T(n)<0 . This answers a question originating in some work of Turan, who linked the behavior of T(n) to questions about the Riemann zeta function. We also study the problem of evaluating Polya's sum L(n)Dsum_{kD1}^nλ(k) , and we determine some new local extrema for this function, including some new positive values.
Quasi-periodic solutions to the hierarchy of four-component Toda lattices
NASA Astrophysics Data System (ADS)
Wei, Jiao; Geng, Xianguo; Zeng, Xin
2016-08-01
Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km-2 of genus m - 2 and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.
Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko
2013-01-01
The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175
Two-dimensional problem of two Coulomb centers at small intercenter distances
NASA Astrophysics Data System (ADS)
Bondar, D. I.; Hnatich, M.; Lazur, V. Yu.
2006-08-01
We use analytic methods to analyze the discrete spectrum for the problem (Z1eZ2)2 in the united-atom limit ( R ≪ 1) and obtain asymptotic expansions for the quantum defect and energy terms of the system (Z1eZ2)2 at small intercenter distances R up to terms of the order O(R6). We investigate the effect of the dimensionality factor on the energy spectrum of the hydrogen molecular ion H{2/+}.
Extrapolation techniques applied to matrix methods in neutron diffusion problems
NASA Technical Reports Server (NTRS)
Mccready, Robert R
1956-01-01
A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.
NASA Technical Reports Server (NTRS)
Kumar, A.
1984-01-01
A computer program NASCRIN has been developed for analyzing two-dimensional flow fields in high-speed inlets. It solves the two-dimensional Euler or Navier-Stokes equations in conservation form by an explicit, two-step finite-difference method. An explicit-implicit method can also be used at the user's discretion for viscous flow calculations. For turbulent flow, an algebraic, two-layer eddy-viscosity model is used. The code is operational on the CDC CYBER 203 computer system and is highly vectorized to take full advantage of the vector-processing capability of the system. It is highly user oriented and is structured in such a way that for most supersonic flow problems, the user has to make only a few changes. Although the code is primarily written for supersonic internal flow, it can be used with suitable changes in the boundary conditions for a variety of other problems.