Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. H.; Tai, L. C.; Liu, Y. L.
Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-knownmore » two-dimensional electrostatic Child-Langmuir law even at the classical regime.« less
Thermodynamics of Yukawa fluids near the one-component-plasma limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrapak, Sergey A.; Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20; Semenov, Igor L.
Thermodynamics of weakly screened (near the one-component-plasma limit) Yukawa fluids in two and three dimensions is analyzed in detail. It is shown that the thermal component of the excess internal energy of these fluids, when expressed in terms of the properly normalized coupling strength, exhibits the scaling pertinent to the corresponding one-component-plasma limit (the scalings differ considerably between the two- and three-dimensional situations). This provides us with a simple and accurate practical tool to estimate thermodynamic properties of weakly screened Yukawa fluids. Particular attention is paid to the two-dimensional fluids, for which several important thermodynamic quantities are calculated to illustratemore » the application of the approach.« less
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
NASA Astrophysics Data System (ADS)
Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-02-01
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (~1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals.
Carey, Benjamin J; Ou, Jian Zhen; Clark, Rhiannon M; Berean, Kyle J; Zavabeti, Ali; Chesman, Anthony S R; Russo, Salvy P; Lau, Desmond W M; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C; Dickey, Michael D; Kaner, Richard B; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-02-17
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kavehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-01-01
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. PMID:28211538
Kozik, Pavel; Hoppmann, Christiane A; Gerstorf, Denis
2015-01-01
Future time perspective has been associated with subjective well-being, though depending on the line of research considered either an open-ended future time perspective or a limited future time perspective has been associated with high well-being. Most of this research however has conceptualized future time perspective as a one-dimensional construct, whereas recent evidence has demonstrated that there are likely at least two different underlying dimensions, a focus on opportunities and a focus on limitations. This project first seeks to replicate the two-dimensional structure of the Future Time Perspective Scale, and then examines the associations these dimensions may have with different measures of subjective well-being and a biological index of chronic stress. To test if the two dimensions of the Future Time Perspective Scale, a focus on opportunities and a focus on limitations, differentially associate with two measures of subjective well-being and a biological indicator of chronic stress, namely hair cortisol. Sixty-six community-dwelling participants with a mean age of 72 years (SD = 5.83) completed the Future Time Perspective Scale, Center for Epidemiologic Studies Depression Scale, and Philadelphia Geriatric Center Morale Scale. Participants also provided a 3-cm-long hair strand to index cortisol accumulation over the past 3 months. Following the results of a factor analysis, a mediation model was created for each dimension of the Future Time Perspective Scale, and significance testing was done through a bootstrapping approach to harness maximal statistical power. Factor analysis results replicated the two-dimensional structure of the Future Time Perspective Scale. Both dimensions were then found to have unique associations with well-being. Specifically, a high focus on opportunities was associated with fewer depressive symptoms and higher morale, whereas a low focus on limitations was associated with reduced hair cortisol, though this association was mediated by subjective well-being. RESULTS replicate and extend previous research by pointing to the multi-dimensional nature of the Future Time Perspective Scale. While an open future time perspective was overall beneficial for well-being, the exact association each dimension had with well-being differed depending on whether subjective measures of well-being or biological indices of chronic stress were considered. © 2014 S. Karger AG, Basel.
Flavor and topological current correlators in parity-invariant three-dimensional QED
NASA Astrophysics Data System (ADS)
Karthik, Nikhil; Narayanan, Rajamani
2017-09-01
We use lattice regularization to study the flow of the flavor-triplet fermion current central charge CJf from its free field value in the ultraviolet limit to its conformal value in the infrared limit of the parity-invariant three-dimensional QED with two flavors of two-component fermions. The dependence of CJf on the scale is weak with a tendency to be below the free field value at intermediate distances. Our numerical data suggest that the flavor-triplet fermion current and the topological current correlators become degenerate within numerical errors in the infrared limit, thereby supporting an enhanced O(4) symmetry predicted by strong self-duality. Further, we demonstrate that fermion dynamics is necessary for the scale-invariant behavior of parity-invariant three-dimensional QED by showing that the pure gauge theory with noncompact gauge action has a nonzero bilinear condensate.
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
NASA Astrophysics Data System (ADS)
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong
2017-10-01
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong
2017-10-12
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations
NASA Astrophysics Data System (ADS)
Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli
2017-04-01
We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d > 1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.
Alden, J A; Feldman, M A; Hill, E; Prieto, F; Oyama, M; Coles, B A; Compton, R G; Dobson, P J; Leigh, P A
1998-05-01
A channel electrode array, with electrodes ranging in size from the millimeter to the submicrometer scale, is used for the amperometric interrogation of mechanistically complex electrode processes. In this way, the transport-limited current, measured as a function of both electrode size and electrolyte flow rate (convection), is shown to provide a highly sensitive probe of mechanism and kinetics. The application of "two-dimensional voltammetry" to diverse electrode processes, including E, ECE, ECEE, EC', and DISP2 reactions, is reported.
Hurtado, Pablo I
2005-10-01
We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity, and temperature profiles are obtained as a function of the mixture mass ratio mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower, and cooler than light particles in the strong nonequilibrium region around the shock. The shock width omega(mu), which characterizes the size of this region, decreases as omega(mu) approximately mu(1/3) for mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium: phi(chi) approximately exp[-chi/lambda]. The scale separation is also apparent here, with two typical scales, lambda1 and lambda2, such that lambda1 approximately mu(1/2 as mu-->0, while lambda2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed in light of recent numerical studies on the nonequilibrium behavior of similar one-dimensional binary fluids.
Long-time states of inverse cascades in the presence of a maximum length scale
NASA Technical Reports Server (NTRS)
Hossain, M.; Matthaeus, W. H.; Montgomery, D.
1983-01-01
It is shown numerically, both for the two-dimensional Navier-Stokes (guiding-center plasma) equations and for two-dimensional magnetohydrodynamics, that the long-time asymptotic state in a forced inverse-cascade situation is one in which the spectrum is completely dominated by its own fundamental. The growth continues until the fundamental is dissipatively limited by its own dissipation rate.
Rohan Benjankar; Daniele Tonina; James McKean
2014-01-01
Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...
Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation
NASA Astrophysics Data System (ADS)
Lehtinen, O.; Kurasch, S.; Krasheninnikov, A. V.; Kaiser, U.
2013-06-01
Dislocations, one of the key entities in materials science, govern the properties of any crystalline material. Thus, understanding their life cycle, from creation to annihilation via motion and interaction with other dislocations, point defects and surfaces, is of fundamental importance. Unfortunately, atomic-scale investigations of dislocation evolution in a bulk object are well beyond the spatial and temporal resolution limits of current characterization techniques. Here we overcome the experimental limits by investigating the two-dimensional graphene in an aberration-corrected transmission electron microscope, exploiting the impinging energetic electrons both to image and stimulate atomic-scale morphological changes in the material. The resulting transformations are followed in situ, atom-by-atom, showing the full life cycle of a dislocation from birth to annihilation. Our experiments, combined with atomistic simulations, reveal the evolution of dislocations in two-dimensional systems to be governed by markedly long-ranging out-of-plane buckling.
NASA Astrophysics Data System (ADS)
Peng, Heng; Liu, Yinghua; Chen, Haofeng
2018-05-01
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
World-volume effective theory for higher-dimensional black holes.
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A
2009-05-15
We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.
Effects of friction on forced two-dimensional Navier-Stokes turbulence.
Blackbourn, Luke A K; Tran, Chuong V
2011-10-01
Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, "side effects" of such a mechanism--mechanical friction--on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity ν(c), which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that ν(c)=[η'(1/3)/(Ck(f)(2))]exp[-η'(1/3)/(Cα)], where η' is half the enstrophy injection rate, k(f) is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.
NASA Astrophysics Data System (ADS)
Lausch, Tobias; Widera, Artur; Fleischhauer, Michael
2018-03-01
We numerically study the relaxation dynamics of a single, heavy impurity atom interacting with a finite one- or two-dimensional, ultracold Bose gas. While there is a clear separation of time scales between processes resulting from single- and two-phonon scattering in three spatial dimensions, the thermalization in lower dimensions is dominated by two-phonon processes. This is due to infrared divergences in the corresponding scattering rates in the thermodynamic limit, which are a manifestation of the Mermin-Wagner-Hohenberg theorem. This makes it necessary to include second-order phonon scattering above a crossover temperature T2ph . T2ph scales inversely with the system size and is much smaller than currently experimentally accessible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Anh Khoa Augustin; IMEC, 75 Kapeldreef, B-3001 Leuven; Pourtois, Geoffrey
2016-01-25
The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, andmore » sets the limit of the scaling in future transistor designs.« less
Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira
2016-01-28
We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.
Renormalizable Quantum Field Theories in the Large -n Limit
NASA Astrophysics Data System (ADS)
Guruswamy, Sathya
1995-01-01
In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.
Avalanches in Strained Amorphous Solids: Does Inertia Destroy Critical Behavior?
NASA Astrophysics Data System (ADS)
Salerno, K. Michael; Maloney, Craig E.; Robbins, Mark O.
2012-09-01
Simulations are used to determine the effect of inertia on athermal shear of amorphous two-dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks. Inertia takes the system to a new underdamped universality class rather than driving the system away from criticality as previously thought. Scaling exponents are determined for the underdamped and overdamped limits and a critical damping that separates the two regimes. Systems are in the overdamped universality class even when most vibrational modes are underdamped.
Blackbourn, Luke A K; Tran, Chuong V
2014-08-01
We study inertial-range dynamics and scaling laws in unforced two-dimensional magnetohydrodynamic turbulence in the regime of moderately small and small initial magnetic-to-kinetic-energy ratio r(0), with an emphasis on the latter. The regime of small r(0) corresponds to a relatively weak field and strong magnetic stretching, whereby the turbulence is characterized by an intense conversion of kinetic into magnetic energy (dynamo action in the three-dimensional context). This conversion is an inertial-range phenomenon and, upon becoming quasisaturated, deposits the converted energy within the inertial range rather than transferring it to the small scales. As a result, the magnetic-energy spectrum E(b)(k) in the inertial range can become quite shallow and may not be adequately explained or understood in terms of conventional cascade theories. It is demonstrated by numerical simulations at high Reynolds numbers (and unity magnetic Prandtl number) that the energetics and inertial-range scaling depend strongly on r(0). In particular, for fully developed turbulence with r(0) in the range [1/4,1/4096], E(b)(k) is found to scale as k(α), where α≳-1, including α>0. The extent of such a shallow spectrum is limited, becoming broader as r(0) is decreased. The slope α increases as r(0) is decreased, appearing to tend to +1 in the limit of small r(0). This implies equipartition of magnetic energy among the Fourier modes of the inertial range and the scaling k(-1) of the magnetic potential variance, whose flux is direct rather than inverse. This behavior of the potential resembles that of a passive scalar. However, unlike a passive scalar whose variance dissipation rate slowly vanishes in the diffusionless limit, the dissipation rate of the magnetic potential variance scales linearly with the diffusivity in that limit. Meanwhile, the kinetic-energy spectrum is relatively steep, followed by a much shallower tail due to strong antidynamo excitation. This gives rise to a total-energy spectrum poorly obeying a power-law scaling.
The E(2) symmetry and quantum phase transition in the two-dimensional limit of the vibron model
NASA Astrophysics Data System (ADS)
Zhang, Yu; Pan, Feng; Liu, Yu-Xin; Draayer, J. P.
2010-11-01
We study in detail the relation between the two-dimensional Euclidean dynamical E(2) symmetry and the quantum phase transition in the two-dimensional limit of the vibron model, called the U(3) vibron model. Both geometric and algebraic descriptions of the U(3) vibron model show that structures of low-lying states at the critical point of the model with a quartic potential as its classical limit can be approximately described by the E(2) symmetry. We also fit the finite-size scaling exponent of the energy levels and E1 transition rates in the F(2) model, which is exactly the E(2) model but with truncation in its Hilbert subspace, as well as those at the critical point in the U(3) vibron model. The N-scaling power law around the critical point shows that the E(2) symmetry is well preserved even for cases with finite number of bosons. In addition, two kinds of experimentally accessible effective order parameters, such as the energy ratios E_{2_1}/E_{1_1}, E_{3_1}/E_{1_1} and E1 transition ratios \\frac{B(E1;2_1\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, \\frac{B(E1;0_2\\rightarrow 1_1)}{B(E1;1_1\\rightarrow 0_1)}, are proposed to identify the second-order phase transition in such systems. Possible empirical examples exhibiting approximate E(2) symmetry are also presented.
Attosecond-resolution Hong-Ou-Mandel interferometry.
Lyons, Ashley; Knee, George C; Bolduc, Eliot; Roger, Thomas; Leach, Jonathan; Gauger, Erik M; Faccio, Daniele
2018-05-01
When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they "bunch" deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon interference effect has long-held the potential for application in precision measurement of time delays, such as those induced by transparent specimens with unknown thickness profiles. However, the technique has never achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic layer two-dimensional materials.
Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models
Cowley, Benjamin R.; Doiron, Brent; Kohn, Adam
2016-01-01
Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition. We compared the scaling trends of two key outputs of dimensionality reduction—shared dimensionality and percent shared variance—with neuron and trial count. We found that the scaling properties of networks with non-clustered and clustered connectivity differed, and that the in vivo recordings were more consistent with the clustered network. Furthermore, recordings from tens of neurons were sufficient to identify the dominant modes of shared variability that generalize to larger portions of the network. These findings can help guide the interpretation of dimensionality reduction outputs in regimes of limited neuron and trial sampling and help relate these outputs to the underlying network structure. PMID:27926936
NASA Astrophysics Data System (ADS)
Huveneers, François
2018-04-01
We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.
Interfacial adsorption in two-dimensional pure and random-bond Potts models.
Fytas, Nikolaos G; Theodorakis, Panagiotis E; Malakis, Anastasios
2017-03-01
We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.
Fractal geometry in an expanding, one-dimensional, Newtonian universe.
Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel
2007-09-01
Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.
ePlant and the 3D data display initiative: integrative systems biology on the world wide web.
Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J
2011-01-10
Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).
Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios
NASA Astrophysics Data System (ADS)
Hobrecht, Hendrik; Hucht, Alfred
2017-02-01
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.
Two-dimensional axisymmetric Child-Langmuir scaling law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragan-Kelley, Benjamin; Verboncoeur, John; Feng Yang
The classical one-dimensional (1D) Child-Langmuir law was previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of radius r, outer drift tube radius R>r, and gap length L, we further examine the space charge limit in two dimensions. Simulations were done with no applied magnetic field as well as with a large (100 T) longitudinal magnetic field to restrict motion of particles to 1D. The ratio of the observed current density limit J{sub CL2} to the theoretical 1D value J{sub CL1} is found to bemore » a monotonically decreasing function of the ratio of emission radius to gap separation r/L. This result is in agreement with the planar results, where the emission area is proportional to the cathode width W. The drift tube in axisymmetric systems is shown to have a small but measurable effect on the space charge limit. Strong beam edge effects are observed with J(r)/J(0) approaching 3.5. Two-dimensional axisymmetric electrostatic particle-in-cell simulations were used to produce these results.« less
[Suicide and evaluation. Review of French tools: Non-dimensional approach and self-assessment].
Ducher, J-L; de Chazeron, I; Llorca, P-M
2016-06-01
Suicide prevention represents a major challenge to public health, and the suicide risk is a permanent concern in psychiatry. But the main difficulty is its diagnosis. What resources are available in French which seem to help therapists in this process? We can distinguish the non-dimensional approach, the use of self-administered questionnaires or interviewer-administrated questionnaires. In this paper, for reasons of editing constraints, we are interested only in a non-dimensional approach and direct assessment measures by self-assessment, analysing the strengths and limitations of each and taking into account scientific studies that have been devoted to them and their clinical relevance. We first considered various aspects of non-dimensional approach through suicidal risk factors research, suicidal emergency and suicidal potential concepts, Shea approach, the model of Mann and some recommended evaluations. This type of approach has a number of advantages, but also limitations. Dimensional approach allows going further. In this article, we also discuss the existing self-assessment tools in French as for example dedicated item for Beck Depression Inventory (BDI) or specific scales such as Reasons for Living Inventory (RFL), Suicidal Probability Scale (SPS), Beck Hopelessness Scale (BHS) and self-administered Suicide Risk Assessment Scale of Ducher (aRSD). These last two seem to be used as a priority regarding result of their validation studies. The strong correlation between the self-administered questionnaire aRSD and the interviewer-administered Suicide Risk Assessment Scale of Ducher RSD (r=0.92; P<10(-7)) shows the ability of patients to express their suicidal ideation if we want to invite them to do so. Copyright © 2015 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.
We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less
NASA Astrophysics Data System (ADS)
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.
Suo, Tongchuan; Whitmore, Mark D
2014-11-28
We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.
von Kármán-Howarth equation for three-dimensional two-fluid plasmas.
Andrés, N; Mininni, P D; Dmitruk, P; Gómez, D O
2016-06-01
We derive the von Kármán-Howarth equation for a full three-dimensional incompressible two-fluid plasma. In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic "four-fifths" law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in terms of third-order structure functions, which is appropriate for comparison with in situ measurements in the solar wind at different spatial ranges.
Dimensional Effects on the Charge Density Waves in Ultrathin Films of TiSe 2
Chen, P.; Chan, Y. -H.; Wong, M. -H.; ...
2016-09-20
Charge density wave (CDW) formation in solids is a critical phenomenon involving the collective reorganization of the electrons and atoms in the system into a wave structure, and it is expected to be sensitive to the geometric constraint of the system at the nanoscale. Here, we study the CDW transition in TiSe 2, a quasi-two-dimensional layered material, to determine the effects of quantum confinement and changing dimensions in films ranging from a single layer to multilayers. Of key interest is the characteristic length scale for the transformation from a two-dimensional case to the three-dimensional limit. Angle-resolved photoemission (ARPES) measurements ofmore » films with thicknesses up to six layers reveal substantial variations in the energy structure of discrete quantum well states; however, the temperature-dependent band-gap renormalization converges at just three layers. The results indicate a layer-dependent mixture of two transition temperatures and a very-short-range CDW interaction within a three-dimensional framework.« less
NASA Astrophysics Data System (ADS)
Reddy, Ramana; Kumar, Sanjeev
2007-12-01
In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.
NASA Astrophysics Data System (ADS)
Xie, Tao; Zou, Guang-Hui; William, Perrie; Kuang, Hai-Lan; Chen, Wei
2010-05-01
Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed.
NASA Astrophysics Data System (ADS)
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
Single-ion adsorption and switching in carbon nanotubes
Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...
2016-01-25
Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less
Hidden Symmetries of Euclideanised Kerr-NUT-(A)dS Metrics in Certain Scaling Limits
NASA Astrophysics Data System (ADS)
Visinescu, Mihai; Vîlcu, Eduard
2012-08-01
The hidden symmetries of higher dimensional Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. Finally the Killing forms on mixed 3-Sasaki manifolds are briefly described.
NASA Technical Reports Server (NTRS)
Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.
1986-01-01
Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed.
Vortex scaling ranges in two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Burgess, B. H.; Dritschel, D. G.; Scott, R. K.
2017-11-01
We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.
Low-noise phase of a two-dimensional active nematic system
NASA Astrophysics Data System (ADS)
Shankar, Suraj; Ramaswamy, Sriram; Marchetti, M. Cristina
2018-01-01
We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically study the two-dimensional fluctuating ordered phase in a coarse-grained hydrodynamic description involving both the nematic director and the conserved density field. In the presence of noise, we show that the system always displays only quasi-long-ranged orientational order beyond a crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to persist although now with strong finite-size effects and a nonuniversal scaling exponent. Nonlinear effects from the active currents lead to power-law correlations in the density field, thereby preventing macroscopic phase separation in the thermodynamic limit.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1980-01-01
Neutrally buoyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large-scale, two-dimensional, turbine stator cascade. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16-mm movie film. Individual frames from the film have been selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.
Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.
Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe
2017-07-06
The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.
Orbital selective directional conductor in the two-orbital Hubbard model
Mukherjee, Anamitra; Patel, Niravkumar D.; Moreo, Adriana; ...
2016-02-29
Recently, we employed a developed many-body technique that allows for the incorporation of thermal effects, the rich phase diagram of a two-dimensional two-orbital (degenerate d xz and d yz) Hubbard model is presented varying temperature and the repulsion U. The main result is the finding at intermediate U of an antiferromagnetic orbital selective state where an effective dimensional reduction renders one direction insulating and the other metallic. Possible realizations of this state are discussed. Additionally, we also study nematicity above the N eel temperature. After a careful finite-size scaling analysis, the nematicity temperature window appears to survive in the bulkmore » limit, although it is very narrow.« less
NASA Astrophysics Data System (ADS)
Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung
2011-10-01
We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.
Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.
Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil
2017-06-02
We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.
Six-vertex model and Schramm-Loewner evolution.
Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B
2017-05-01
Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SLE_{κ}, Schramm-Loewner evolution with parameter κ, where 4<κ≤12+8sqrt[2]. For square ice, κ=12. At the "free-fermion point" of the six-vertex model, κ=8+4sqrt[3]. These unusual values lie outside the classical interval 2≤κ≤8.
Coherence length saturation at the low temperature limit in two-dimensional hole gas
NASA Astrophysics Data System (ADS)
Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi
2018-05-01
The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Ochoa, Andrew J.; Katzgraber, Helmut G.
2018-05-01
The search for problems where quantum adiabatic optimization might excel over classical optimization techniques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasiplanar topologies. We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-lattice bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature spin-glass state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76, 4616 (1996), 10.1103/PhysRevLett.76.4616]. Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite zero-temperature simulations [Phys. Rev. B 63, 094423 (2001), 10.1103/PhysRevB.63.094423] suggesting the existence of a finite-temperature spin-glass transition. Therefore, deducing the finite-temperature behavior from zero-temperature simulations can be dangerous when corrections to scaling are large.
Nonequilibrium recombination after a curved shock wave
NASA Astrophysics Data System (ADS)
Wen, Chihyung; Hornung, Hans
2010-02-01
The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1979-01-01
Neutrally bouyant helium-filled bubbles were observed as they followed the streamlines in a horseshoe vortex system around the vane leading edge in a large scale, two dimensional, turbine stator cascade. Inlet Reynolds number, based on true chord, ranged between 100,000 to 300,000. Bubbles were introduced into the endwall boundary layer through a slot upstream of the vane leading edge. The paths of the bubbles were recorded photographically as streaklines on 16 mm movie film. Individual frames from the film were selected, and overlayed to show the details of the horseshoe vortex around the leading edge. The transport of the vortex across the passage near the leading edge is clearly seen when compared to the streaks formed by bubbles carried in the main stream. Limiting streamlines on the endwall surface were traced by the flow of oil drops.
NASA Astrophysics Data System (ADS)
Schimming, C. D.; Durian, D. J.
2017-09-01
For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.
Solar-energy conversion and light emission in an atomic monolayer p-n diode.
Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas
2014-04-01
The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.
Intermittency measurement in two-dimensional bacterial turbulence
NASA Astrophysics Data System (ADS)
Qiu, Xiang; Ding, Long; Huang, Yongxiang; Chen, Ming; Lu, Zhiming; Liu, Yulu; Zhou, Quan
2016-06-01
In this paper, an experimental velocity database of a bacterial collective motion, e.g., Bacillus subtilis, in turbulent phase with volume filling fraction 84 % provided by Professor Goldstein at Cambridge University (UK), was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the β -limitation. A dual-power-law behavior separated by the viscosity scale ℓν was observed for the q th -order Hilbert moment Lq(k ) . This dual-power-law belongs to an inverse-cascade since the scaling range is above the injection scale R , e.g., the bacterial body length. The measured scaling exponents ζ (q ) of both the small-scale (k >kν ) and large-scale (k
NASA Astrophysics Data System (ADS)
Lewis, Q. W.; Rhoads, B. L.
2017-12-01
The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.
Super-BMS3 algebras from {N}=2 flat supergravities
NASA Astrophysics Data System (ADS)
Lodato, Ivano; Merbis, Wout
2016-11-01
We consider two possible flat space limits of three dimensional {N}=(1, 1) AdS supergravity. They differ by how the supercharges are scaled with the AdS radius ℓ: the first limit (democratic) leads to the usual super-Poincaré theory, while a novel `twisted' theory of supergravity stems from the second (despotic) limit. We then propose boundary conditions such that the asymptotic symmetry algebras at null infinity correspond to supersymmetric extensions of the BMS algebras previously derived in connection to non- and ultra-relativistic limits of the {N}=(1, 1) Virasoro algebra in two dimensions. Finally, we study the supersymmetric energy bounds and find the explicit form of the asymptotic and global Killing spinors of supersymmetric solutions in both flat space supergravity theories.
Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions
NASA Astrophysics Data System (ADS)
Riconda, C.; Weber, S.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.
2013-11-01
Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC) simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS), and Brillouin- (SBS), side/backscattering as well as Two-Plasmon-Decay (TPD) are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro
2016-07-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.
Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots
Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro
2016-01-01
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684
Power-scaling performance of a three-dimensional tritium betavoltaic diode
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan
2009-12-01
Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.
A Test of the Dimensionality Assumptions of Rotter's Internal-External Scale
ERIC Educational Resources Information Center
Klockars, Alan J.; Varnum, Susan W.
1975-01-01
Examined two assumptions about the dimensionality of Rotters' Internal-External (I-E) scale: First, the bipolarity of the two statements within each item pair; second, the unidimensionality of the overall construct. Both assumptions regarding Rotters' I-E Scale were found untenable. (Author/BJG)
Scales of variability of black carbon plumes and their dependence on resolution of ECHAM6-HAM
NASA Astrophysics Data System (ADS)
Weigum, Natalie; Stier, Philip; Schutgens, Nick; Kipling, Zak
2015-04-01
Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. The aim of this study is to understand how a global climate model's (GCM) inability to resolve sub-grid scale variability affects simulations of important aerosol features. This problem is addressed by comparing observed black carbon (BC) plume scales from the HIPPO aircraft campaign to those simulated by ECHAM-HAM GCM, and testing how model resolution affects these scales. This study additionally investigates how model resolution affects BC variability in remote and near-source regions. These issues are examined using three different approaches: comparison of observed and simulated along-flight-track plume scales, two-dimensional autocorrelation analysis, and 3-dimensional plume analysis. We find that the degree to which GCMs resolve variability can have a significant impact on the scales of BC plumes, and it is important for models to capture the scales of aerosol plume structures, which account for a large degree of aerosol variability. In this presentation, we will provide further results from the three analysis techniques along with a summary of the implication of these results on future aerosol model development.
NASA Astrophysics Data System (ADS)
Akinpelu, Oluwatosin Caleb
The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface reservoir modelling. While this approach is quite promising for detailed three-dimensional outcrop studies, it is not an all-purpose panacea; thick overburden, poor antenna-ground coupling in rough terrains typical of outcrops, low penetration and rapid signal attenuation in mudstone and diagenetic clay- rich deposits often limit the prospects of this novel technique.
Atomic-like high-harmonic generation from two-dimensional materials.
Tancogne-Dejean, Nicolas; Rubio, Angel
2018-02-01
The generation of high-order harmonics from atomic and molecular gases enables the production of high-energy photons and ultrashort isolated pulses. Obtaining efficiently similar photon energy from solid-state systems could lead, for instance, to more compact extreme ultraviolet and soft x-ray sources. We demonstrate from ab initio simulations that it is possible to generate high-order harmonics from free-standing monolayer materials, with an energy cutoff similar to that of atomic and molecular gases. In the limit in which electrons are driven by the pump laser perpendicularly to the monolayer, they behave qualitatively the same as the electrons responsible for high-harmonic generation (HHG) in atoms, where their trajectories are described by the widely used semiclassical model, and exhibit real-space trajectories similar to those of the atomic case. Despite the similarities, the first and last steps of the well-established three-step model for atomic HHG are remarkably different in the two-dimensional materials from gases. Moreover, we show that the electron-electron interaction plays an important role in harmonic generation from monolayer materials because of strong local-field effects, which modify how the material is ionized. The recombination of the accelerated electron wave packet is also found to be modified because of the infinite extension of the material in the monolayer plane, thus leading to a more favorable wavelength scaling of the harmonic yield than in atomic HHG. Our results establish a novel and efficient way of generating high-order harmonics based on a solid-state device, with an energy cutoff and a more favorable wavelength scaling of the harmonic yield similar to those of atomic and molecular gases. Two-dimensional materials offer a unique platform where both bulk and atomic HHG can be investigated, depending on the angle of incidence. Devices based on two-dimensional materials can extend the limit of existing sources.
Fulford, Janice M.
2003-01-01
A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.
Interplay of screening and superconductivity in low-dimensional materials
NASA Astrophysics Data System (ADS)
Schönhoff, G.; Rösner, M.; Groenewald, R. E.; Haas, S.; Wehling, T. O.
2016-10-01
A quantitative description of Coulomb interactions is developed for two-dimensional superconducting materials, enabling us to compare intrinsic with external screening effects, such as those due to substrates. Using the example of a doped monolayer of MoS2 embedded in a tunable dielectric environment, we demonstrate that the influence of external screening is limited to a length scale, bounded from below by the effective thickness of the quasi-two-dimensional material and from above by its intrinsic screening length. As a consequence, it is found that unconventional Coulomb-driven superconductivity cannot be induced in MoS2 by tuning the substrate properties alone. Our calculations of the retarded Morel-Anderson Coulomb potential μ* reveal that the Coulomb interactions, renormalized by the reduced layer thickness and the substrate properties, can shift the onset of the electron-phonon driven superconducting phase in monolayer MoS2 but do not significantly affect the critical temperature at optimal doping.
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
Cold spray nozzle mach number limitation
NASA Astrophysics Data System (ADS)
Jodoin, B.
2002-12-01
The classic one-dimensional isentropic flow approach is used along with a two-dimensional axisymmetric numerical model to show that the exit Mach number of a cold spray nozzle should be limited due to two factors. To show this, the two-dimensional model is validated with experimental data. Although both models show that the stagnation temperature is an important limiting factor, the one-dimensional approach fails to show how important the shock-particle interactions are at limiting the nozzle Mach number. It is concluded that for an air nozzle spraying solid powder particles, the nozzle Mach number should be set between 1.5 and 3 to limit the negative effects of the high stagnation temperature and of the shock-particle interactions.
Three-scale analysis of the permeability of a natural shale
NASA Astrophysics Data System (ADS)
Davy, C. A.; Adler, P. M.
2017-12-01
The macroscopic permeability of a natural shale is determined by using structural measurements on three different scales. Transmission electron microscopy yields two-dimensional (2D) images with pixels smaller than 1 nm; these images are used to reconstruct 3D nanostructures. Three-dimensional focused ion beam-scanning electron microscopy (5.95- to 8.48-nm voxel size) provides 3D mesoscale pores of limited relative volume (1.71-5.9%). Micro-computed tomography (700-nm voxel size) provides information on the mineralogy of the shale, including the pores on this scale which do not percolate; synthetic 3D media are derived on the macroscopic scale by a training image technique. Permeability of the nanoscale, of the mesoscale structures and of their superposition is determined by solving the Stokes equation and this enables us to estimate the permeabilities of the 700-nm voxels located within the clay matrix. Finally, the Darcy equation is solved on synthetic 3D macroscale media to obtain the macroscopic permeability which is found in good agreement with experimental results obtained on the centimetric scale.
The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions
NASA Astrophysics Data System (ADS)
Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas
2017-09-01
We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).
Topology of large-scale structure. IV - Topology in two dimensions
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.
Kolmogorov-Kraichnan Scaling in the Inverse Energy Cascade of Two-Dimensional Plasma Turbulence
NASA Astrophysics Data System (ADS)
Antar, G. Y.
2003-08-01
Turbulence in plasmas that are magnetically confined, such as tokamaks or linear devices, is two dimensional or at least quasi two dimensional due to the strong magnetic field, which leads to extreme elongation of the fluctuations, if any, in the direction parallel to the magnetic field. These plasmas are also compressible fluid flows obeying the compressible Navier-Stokes equations. This Letter presents the first comprehensive scaling of the structure functions of the density and velocity fields up to 10th order in the PISCES linear plasma device and up to 6th order in the Mega-Ampère Spherical Tokamak (MAST). In the two devices, it is found that the scaling of the turbulent fields is in good agreement with the prediction of the Kolmogorov-Kraichnan theory for two-dimensional turbulence in the energy cascade subrange.
One-dimensional conduction through supporting electrolytes: two-scale cathodic Debye layer.
Almog, Yaniv; Yariv, Ehud
2011-10-01
Supporting-electrolyte solutions comprise chemically inert cations and anions, produced by salt dissolution, together with a reactive ionic species that may be consumed and generated on bounding ion-selective surfaces (e.g., electrodes or membranes). Upon application of an external voltage, a Faraday current is thereby established. It is natural to analyze this ternary-system process through a one-dimensional transport problem, employing the thin Debye-layer limit. Using a simple model of ideal ion-selective membranes, we have recently addressed this problem for moderate voltages [Yariv and Almog, Phys. Rev. Lett. 105, 176101 (2010)], predicting currents that scale as a fractional power of Debye thickness. We address herein the complementary problem of moderate currents. We employ matched asymptotic expansions, separately analyzing the two inner thin Debye layers adjacent to the ion-selective surfaces and the outer electroneutral region outside them. A straightforward calculation following comparable singular-perturbation analyses of binary systems is frustrated by the prediction of negative ionic concentrations near the cathode. Accompanying numerical simulations, performed for small values of Debye thickness, indicate a number unconventional features occurring at that region, such as inert-cation concentration amplification and electric-field intensification. The current-voltage correlation data of the electrochemical cell, obtained from compilation of these simulations, does not approach a limit as the Debye thickness vanishes. Resolution of these puzzles reveals a transformation of the asymptotic structure of the cathodic Debye layer. This reflects the emergence of an internal boundary layer, adjacent to the cathode, wherein field and concentration scaling differs from those of the Gouy-Chapman theory. The two-scale feature of the cathodic Debye layer is manifested through a logarithmic voltage scaling with Debye thickness. Accounting for this scaling, the complied current-voltage data collapses upon a single curve. This curve practically coincides with an asymptotically calculated universal current-voltage relation.
2015-01-01
still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org
Laser-driven magnetized liner inertial fusion
Davies, J. R.
2017-06-05
A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less
Laser-driven magnetized liner inertial fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, J. R.
A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less
A Selective Overview of Variable Selection in High Dimensional Feature Space
Fan, Jianqing
2010-01-01
High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods. PMID:21572976
Three dimensional finite temperature SU(3) gauge theory near the phase transition
NASA Astrophysics Data System (ADS)
Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.
2013-06-01
We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.
Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials.
Ashton, Michael; Paul, Joshua; Sinnott, Susan B; Hennig, Richard G
2017-03-10
The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structure's unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials that are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory was used to calculate the exfoliation energy of each material and 680 monolayers emerge with exfoliation energies below those of already-existent two-dimensional materials. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other calculated data for all 826 monolayers are provided at our database (https://materialsweb.org).
Efimov effect in D spatial dimensions in A A B systems
NASA Astrophysics Data System (ADS)
Rosa, D. S.; Frederico, T.; Krein, G.; Yamashita, M. T.
2018-05-01
The existence of the Efimov effect is drastically affected by the dimensionality of the space in which the system is embedded. The effective spatial dimension containing an atomic cloud can be continuously modified by compressing it in one or two directions. In the present Rapid Communication we determine the dimensionality D for which the Efimov effect can exist for different values of the mass ratio A =mB/mA for a general A A B system formed by two identical bosons A and a third particle B in the two-body unitary limit. In addition, we provide a prediction for the Efimov discrete scaling factor exp(π /s ) as a function of a wide range of values of A and D , which can be tested in experiments that can be realized with currently available technology.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
Effect of correlated decay on fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Lemberger, B.; Yavuz, D. D.
2017-12-01
We analyze noise in the circuit model of quantum computers when the qubits are coupled to a common bosonic bath and discuss the possible failure of scalability of quantum computation. Specifically, we investigate correlated (super-radiant) decay between the qubit energy levels from a two- or three-dimensional array of qubits without imposing any restrictions on the size of the sample. We first show that regardless of how the spacing between the qubits compares with the emission wavelength, correlated decay produces errors outside the applicability of the threshold theorem. This is because the sum of the norms of the two-body interaction Hamiltonians (which can be viewed as the upper bound on the single-qubit error) that decoheres each qubit scales with the total number of qubits and is unbounded. We then discuss two related results: (1) We show that the actual error (instead of the upper bound) on each qubit scales with the number of qubits. As a result, in the limit of large number of qubits in the computer, N →∞ , correlated decay causes each qubit in the computer to decohere in ever shorter time scales. (2) We find the complete eigenvalue spectrum of the exchange Hamiltonian that causes correlated decay in the same limit. We show that the spread of the eigenvalue distribution grows faster with N compared to the spectrum of the unperturbed system Hamiltonian. As a result, as N →∞ , quantum evolution becomes completely dominated by the noise due to correlated decay. These results argue that scalable quantum computing may not be possible in the circuit model in a two- or three- dimensional geometry when the qubits are coupled to a common bosonic bath.
REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM
The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...
NASA Astrophysics Data System (ADS)
Marocchino, A.; Atzeni, S.; Schiavi, A.
2014-01-01
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.
Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction
NASA Technical Reports Server (NTRS)
Li, Zhijin; Chao, Yi; Li, P. Peggy
2012-01-01
A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.
Integrated optic head for sensing a two-dimensional displacement of a grating scale
NASA Astrophysics Data System (ADS)
Ura, Shogo; Endoh, Toshiaki; Suhara, Toshiaki; Nishihara, Hiroshi
1996-11-01
An integrated optic sensor head was proposed for sensing a two-dimensional displacement of a scale consisting of crossed gratings. Two interferometers, crossing each other, are constructed by the integration of two pairs of linearly focusing grating couplers (LFGC's) and two pairs of photodiodes (PD's) on a Si substrate. Four beams radiated by the LFGC's from the sensor head overlap on the grating scale, and the beams are diffracted by the grating scale and interfere on the PD's. The period of the interference signal variation is just half of the scale grating period. The device was designed and fabricated with a grating scale of 3.2- mu m period, and the sensing principle was experimentally confirmed.
Renormalization group flow of the Higgs potential
NASA Astrophysics Data System (ADS)
Gies, Holger; Sondenheimer, René
2018-01-01
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
NASA Astrophysics Data System (ADS)
Yearsley, J. R.
2017-12-01
The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.
A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction
NASA Astrophysics Data System (ADS)
Rajaram, Harihar; Arshadi, Masoud
2015-04-01
Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.
Inorganic nanotubes and fullerene-like nanoparticles.
Tenne, R
2006-11-01
Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.
Inorganic nanotubes and fullerene-like nanoparticles
NASA Astrophysics Data System (ADS)
Tenne, R.
2006-11-01
Although graphite, with its anisotropic two-dimensional lattice, is the stable form of carbon under ambient conditions, on nanometre length scales it forms zero- and one-dimensional structures, namely fullerenes and nanotubes, respectively. This virtue is not limited to carbon and, in recent years, fullerene-like structures and nanotubes have been made from numerous compounds with layered two-dimensional structures. Furthermore, crystalline and polycrystalline nanotubes of pure elements and compounds with quasi-isotropic (three-dimensional) unit cells have also been synthesized, usually by making use of solid templates. These findings open up vast opportunities for the synthesis and study of new kinds of nanostructures with properties that may differ significantly from the corresponding bulk materials. Various potential applications have been proposed for the inorganic nanotubes and the fullerene-like phases. Fullerene-like nanoparticles have been shown to exhibit excellent solid lubrication behaviour, suggesting many applications in, for example, the automotive and aerospace industries, home appliances, and recently for medical technology. Various other potential applications, in catalysis, rechargeable batteries, drug delivery, solar cells and electronics have also been proposed.
ERIC Educational Resources Information Center
Abramowitz, Jonathan S.; Deacon, Brett J.; Olatunji, Bunmi O.; Wheaton, Michael G.; Berman, Noah C.; Losardo, Diane; Timpano, Kiara R.; McGrath, Patrick B.; Riemann, Bradley C.; Adams, Thomas; Bjorgvinsson, Throstur; Storch, Eric A.; Hale, Lisa R.
2010-01-01
Although several measures of obsessive-compulsive (OC) symptoms exist, most are limited in that they are not consistent with the most recent empirical findings on the nature and dimensional structure of obsessions and compulsions. In the present research, the authors developed and evaluated a measure called the Dimensional Obsessive-Compulsive…
Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime
2016-12-01
We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.
NASA Astrophysics Data System (ADS)
Ragan-Kelley, Benjamin
Space-charge limited flow is a topic of much interest and varied application. We extend existing understanding of space-charge limits by simulations, and develop new tools and techniques for doing these simulations along the way. The Child-Langmuir limit is a simple analytic solution for space-charge limited current density in a one-dimensional diode. It has been previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of finite radius r and outer drift tube R > r and gap length L, we further examine the space charge limit in two dimensions. We simulate a two-dimensional axisymmetric parallel plate diode of various aspect ratios (r/L), and develop a scaling law for the measured two-dimensional space-charge limit (2DSCL) relative to the Child-Langmuir limit as a function of the aspect ratio of the diode. These simulations are done with a large (100T) longitudinal magnetic field to restrict electron motion to 1D, with the two-dimensional particle-in-cell simulation code OOPIC. We find a scaling law that is a monotonically decreasing function of this aspect ratio, and the one-dimensional result is recovered in the limit as r >> L. The result is in good agreement with prior results in planar geometry, where the emission area is proportional to the cathode width. We find a weak contribution from the effects of the drift tube for current at the beam edge, and a strong contribution of high current-density "wings" at the outer-edge of the beam, with a very large relative contribution when the beam is narrow. Mechanisms for enhancing current beyond the Child-Langmuir limit remain a matter of great importance. We analyze the enhancement effects of upstream ion injection on the transmitted current in a one-dimensional parallel plate diode. Electrons are field-emitted at the cathode, and ions are injected at a controlled current from the anode. An analytic solution is derived for maximizing the electron current throughput in terms of the ion current. This analysis accounts for various energy regimes, from classical to fully relativistic. The analytical result is then confirmed by simulation of the diode in each energy regime. Field-limited emission is an approach for using Gauss's law to satisfy the space charge limit for emitting current in particle-in-cell simulations. We find that simple field-limited emission models make several assumptions, which introduce small, systematic errors in the system. We make a thorough analysis of each assumption, and ultimately develop and test a new emission scheme that accounts for each. The first correction we make is to allow for a non-zero surface field at the boundary. Since traditional field-emission schemes only aim to balance Gauss's law at the surface, a zero surface field is an assumed condition. But for many systems, this is not appropriate, so the addition of a target surface field is made. The next correction is to account for nonzero initial velocity, which, if neglected, results in a systematic underestimation of the current, due to assuming that all emitted charge will be weighted to the boundary, when in fact it will be weighted as a fraction strictly less than unity, depending on the distance across the initial cell the particle travels in its initial fractional timestep. A correction is made to the scheme, to use the actual particle weight to adjust the target emission. The final analyses involve geometric terms, analyzing the effects of cylindrical coordinates, and taking particular care to analyze the center of a cylindrical beam, as well as the outer edge of the beam, in Cartesian coordinates. We find that balancing Gauss's law at the edge of the beam is not the correct behavior, and that it is important to resolve the profile of the emitted current, in order to avoid systematic errors. A thorough analysis is done of the assumptions made in prior implementations, and corrections are introduced for cylindrical geometry, non-zero injection velocity, and non-zero surface field. Particular care is taken to determine special conditions for the outermost node, where we find that forcing a balance of Gauss's law would be incorrect. (Abstract shortened by UMI.)
Hyperspectral range imaging for transportation systems evaluation
NASA Astrophysics Data System (ADS)
Bridgelall, Raj; Rafert, J. B.; Atwood, Don; Tolliver, Denver D.
2016-04-01
Transportation agencies expend significant resources to inspect critical infrastructure such as roadways, railways, and pipelines. Regular inspections identify important defects and generate data to forecast maintenance needs. However, cost and practical limitations prevent the scaling of current inspection methods beyond relatively small portions of the network. Consequently, existing approaches fail to discover many high-risk defect formations. Remote sensing techniques offer the potential for more rapid and extensive non-destructive evaluations of the multimodal transportation infrastructure. However, optical occlusions and limitations in the spatial resolution of typical airborne and space-borne platforms limit their applicability. This research proposes hyperspectral image classification to isolate transportation infrastructure targets for high-resolution photogrammetric analysis. A plenoptic swarm of unmanned aircraft systems will capture images with centimeter-scale spatial resolution, large swaths, and polarization diversity. The light field solution will incorporate structure-from-motion techniques to reconstruct three-dimensional details of the isolated targets from sequences of two-dimensional images. A comparative analysis of existing low-power wireless communications standards suggests an application dependent tradeoff in selecting the best-suited link to coordinate swarming operations. This study further produced a taxonomy of specific roadway and railway defects, distress symptoms, and other anomalies that the proposed plenoptic swarm sensing system would identify and characterize to estimate risk levels.
Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction
NASA Technical Reports Server (NTRS)
Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)
2004-01-01
Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaud, Pascale; Brummell, Nicholas
2015-12-10
Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtlmore » number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.« less
Note on tachyon moduli and closed strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro da Cunha, Bruno
2008-07-15
The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.
MPI-AMRVAC 2.0 for Solar and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Xia, C.; Teunissen, J.; El Mellah, I.; Chané, E.; Keppens, R.
2018-02-01
We report on the development of MPI-AMRVAC version 2.0, which is an open-source framework for parallel, grid-adaptive simulations of hydrodynamic and magnetohydrodynamic (MHD) astrophysical applications. The framework now supports radial grid stretching in combination with adaptive mesh refinement (AMR). The advantages of this combined approach are demonstrated with one-dimensional, two-dimensional, and three-dimensional examples of spherically symmetric Bondi accretion, steady planar Bondi–Hoyle–Lyttleton flows, and wind accretion in supergiant X-ray binaries. Another improvement is support for the generic splitting of any background magnetic field. We present several tests relevant for solar physics applications to demonstrate the advantages of field splitting on accuracy and robustness in extremely low-plasma β environments: a static magnetic flux rope, a magnetic null-point, and magnetic reconnection in a current sheet with either uniform or anomalous resistivity. Our implementation for treating anisotropic thermal conduction in multi-dimensional MHD applications is also described, which generalizes the original slope-limited symmetric scheme from two to three dimensions. We perform ring diffusion tests that demonstrate its accuracy and robustness, and show that it prevents the unphysical thermal flux present in traditional schemes. The improved parallel scaling of the code is demonstrated with three-dimensional AMR simulations of solar coronal rain, which show satisfactory strong scaling up to 2000 cores. Other framework improvements are also reported: the modernization and reorganization into a library, the handling of automatic regression tests, the use of inline/online Doxygen documentation, and a new future-proof data format for input/output.
Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S
2014-02-25
Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.
Universal scaling laws of diffusion in two-dimensional granular liquids.
Wang, Chen-Hung; Yu, Szu-Hsuan; Chen, Peilong
2015-06-01
We find, in a two-dimensional air table granular system, that the reduced diffusion constant D* and excess entropy S(2) follow two distinct scaling laws: D*∼e(S(2)*) for dense liquids and D∼e(3S(2)*) for dilute ones. The scaling for dense liquids is very similar to that for three-dimensional liquids proposed previously [M. Dzugutov, Nature (London) 381, 137 (1996); A. Samanta et al., Phys. Rev. Lett. 92, 145901 (2004)]. In the dilute regime, a power law [Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999)] also fits our data reasonably well. In our system, particles experience low air drag dissipation and interact with each others through embedded magnets. These near-conservative many-body interactions are responsible for the measured Gaussian velocity distribution functions and the scaling laws. The dominance of cage relaxations in dense liquids leads to the different scaling laws for dense and dilute regimes.
Non-classical photon correlation in a two-dimensional photonic lattice.
Gao, Jun; Qiao, Lu-Feng; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min
2016-06-13
Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to 0.890 ± 0.001. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated photonic chips.
Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations
NASA Technical Reports Server (NTRS)
Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.
1993-01-01
We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.
Revisiting the Scale-Invariant, Two-Dimensional Linear Regression Method
ERIC Educational Resources Information Center
Patzer, A. Beate C.; Bauer, Hans; Chang, Christian; Bolte, Jan; Su¨lzle, Detlev
2018-01-01
The scale-invariant way to analyze two-dimensional experimental and theoretical data with statistical errors in both the independent and dependent variables is revisited by using what we call the triangular linear regression method. This is compared to the standard least-squares fit approach by applying it to typical simple sets of example data…
Energy Spectra of Strongly Stratified and Rotating Turbulence
NASA Technical Reports Server (NTRS)
Mahalov, Alex; Nicolaenko, Basil; Zhou, Ye
1998-01-01
Turbulence under strong stratification and rotation is usually characterized as quasi-two dimensional turbulence. We develop a "quasi-two dimensional" energy spectrum which changes smoothly between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation, as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence, the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale observations.
Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes
Xia, Yu; Mathis, Tyler S.; Zhao, Meng -Qiang; ...
2018-05-16
The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film. Strategiesmore » for facilitating ion transport—such as increasing the interlayer spacing by intercalation or introducing film porosity by designing nanoarchitectures—result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge–discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films. However, so far only limited success has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti 3C 2T x), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti 3C 2T x. The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. In conclusion, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.« less
Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yu; Mathis, Tyler S.; Zhao, Meng -Qiang
The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film. Strategiesmore » for facilitating ion transport—such as increasing the interlayer spacing by intercalation or introducing film porosity by designing nanoarchitectures—result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge–discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films. However, so far only limited success has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti 3C 2T x), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti 3C 2T x. The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. In conclusion, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.« less
Nonlinear effects in the bounded dust-vortex flow in plasma
NASA Astrophysics Data System (ADS)
Laishram, Modhuchandra; Sharma, Devendra; Chattopdhyay, Prabal K.; Kaw, Predhiman K.
2017-03-01
The vortex structures in a cloud of electrically suspended dust in a streaming plasma constitutes a driven system with a rich nonlinear flow regime. Experimentally recovered toroidal formations of this system have motivated study of its volumetrically driven-dissipative vortex flow dynamics using two-dimensional hydrodynamics in the incompressible Navier-Stokes regime. Nonlinear equilibrium solutions are obtained for this system where a nonuniformly driven two-dimensional dust flow exhibits distinct regions of localized accelerations and strong friction caused by stationary fluids at the confining boundaries resisting the dust flow. In agreement with observations in experiments, it is demonstrated that the nonlinear effects appear in the limit of small viscosity, where the primary vortices form scaling with the most dominant spatial scales of the domain topology and develop separated virtual boundaries along their periphery. This separation is triggered beyond a critical dust viscosity that signifies a structural bifurcation. Emergence of uniform vorticity core and secondary vortices with a newer level of identical dynamics highlights the applicability of the studied dynamics to gigantic vortex flows, such as the Jovian great red spot, to microscopic biophysical intracellular activity.
Kinetic description of cyclotron-range oscillations of a non-neutral plasma column
NASA Astrophysics Data System (ADS)
Neu, S. C.; Morales, G. J.
1998-04-01
The kinetic analysis introduced by Prasad, Morales, and Fried [Prasad et al., Phys. Fluids 30, 3093 (1987)] is used to derive damping conditions and a differential equation for azimuthally propagating waves in a non-neutral plasma column in the limits rl/L≪1 and krl≪1 (where rl is the Larmor radius, k is the wave number, and L is the density scale length). The predictions of the kinetic analysis are verified using a two-dimensional particle-in-cell simulation of Bernstein modes in a thermal rigid-rotor equilibrium. Differences between modes in a strongly magnetized limit and near the Brillouin limit are studied in the simulation.
Renormalization group flow of the Higgs potential.
Gies, Holger; Sondenheimer, René
2018-03-06
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
A two-dimensional composite grid numerical model based on the reduced system for oceanography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Y.F.; Browning, G.L.; Chesshire, G.
The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.
X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less
NASA Astrophysics Data System (ADS)
Coon, E.; Jan, A.; Painter, S. L.; Moulton, J. D.; Wilson, C. J.
2017-12-01
Many permafrost-affected regions in the Arctic manifest a polygonal patterned ground, which contains large carbon stores and is vulnerability to climate change as warming temperatures drive melting ice wedges, polygon degradation, and thawing of the underlying carbon-rich soils. Understanding the fate of this carbon is difficult. The system is controlled by complex, nonlinear physics coupling biogeochemistry, thermal-hydrology, and geomorphology, and there is a strong spatial scale separation between microtopograpy (at the scale of an individual polygon) and the scale of landscape change (at the scale of many thousands of polygons). Physics-based models have come a long way, and are now capable of representing the diverse set of processes, but only on individual polygons or a few polygons. Empirical models have been used to upscale across land types, including ecotypes evolving from low-centered (pristine) polygons to high-centered (degraded) polygon, and do so over large spatial extent, but are limited in their ability to discern causal process mechanisms. Here we present a novel strategy that looks to use physics-based models across scales, bringing together multiple capabilities to capture polygon degradation under a warming climate and its impacts on thermal-hydrology. We use fine-scale simulations on individual polygons to motivate a mixed-dimensional strategy that couples one-dimensional columns representing each individual polygon through two-dimensional surface flow. A subgrid model is used to incorporate the effects of surface microtopography on surface flow; this model is described and calibrated to fine-scale simulations. And critically, a subsidence model that tracks volume loss in bulk ice wedges is used to alter the subsurface structure and subgrid parameters, enabling the inclusion of the feedbacks associated with polygon degradation. This combined strategy results in a model that is able to capture the key features of polygon permafrost degradation, but in a simulation across a large spatial extent of polygonal tundra.
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
NASA Astrophysics Data System (ADS)
Dündar, Furkan Semih
2018-01-01
We provide a theory of n-scales previously called as n dimensional time scales. In previous approaches to the theory of time scales, multi-dimensional scales were taken as product space of two time scales [1, 2]. n-scales make the mathematical structure more flexible and appropriate to real world applications in physics and related fields. Here we define an n-scale as an arbitrary closed subset of ℝn. Modified forward and backward jump operators, Δ-derivatives and Δ-integrals on n-scales are defined.
Scaling of near-wall flows in quasi-two-dimensional turbulent channels.
Samanta, D; Ingremeau, F; Cerbus, R; Tran, T; Goldburg, W I; Chakraborty, P; Kellay, H
2014-07-11
The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite the differences with three-dimensional flows, the laws prevail, albeit with notable distinctions: the two parameters of the log law are markedly distinct from their three-dimensional counterpart; further, one parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall-bounded turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.
Possibilities and limitations of current stereo-endoscopy.
Mueller-Richter, U D A; Limberger, A; Weber, P; Ruprecht, K W; Spitzer, W; Schilling, M
2004-06-01
Stereo-endoscopy has become a commonly used technology. In many comparative studies striking advantages of stereo-endoscopy over two-dimensional presentation could not be proven. To show the potential and fields for further improvement of this technology is the aim of this article. The physiological basis of three-dimensional vision limitations of current stereo-endoscopes is discussed and fields for further research are indicated. New developments in spatial picture acquisition and spatial picture presentation are discussed. Current limitations of stereo-endoscopy that prevent a better ranking in comparative studies with two-dimensional presentation are mainly based on insufficient picture acquisition. Devices for three-dimensional picture presentation are at a more advanced developmental stage than devices for three-dimensional picture acquisition. Further research should emphasize the development of new devices for three-dimensional picture acquisition.
NASA Astrophysics Data System (ADS)
Einkemmer, Lukas
2016-05-01
The recently developed semi-Lagrangian discontinuous Galerkin approach is used to discretize hyperbolic partial differential equations (usually first order equations). Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes (which are usually based on polynomial or spline interpolation). In this paper, we consider a parallel implementation of a semi-Lagrangian discontinuous Galerkin method for distributed memory systems (so-called clusters). Both strong and weak scaling studies are performed on the Vienna Scientific Cluster 2 (VSC-2). In the case of weak scaling we observe a parallel efficiency above 0.8 for both two and four dimensional problems and up to 8192 cores. Strong scaling results show good scalability to at least 512 cores (we consider problems that can be run on a single processor in reasonable time). In addition, we study the scaling of a two dimensional Vlasov-Poisson solver that is implemented using the framework provided. All of the simulations are conducted in the context of worst case communication overhead; i.e., in a setting where the CFL (Courant-Friedrichs-Lewy) number increases linearly with the problem size. The framework introduced in this paper facilitates a dimension independent implementation of scientific codes (based on C++ templates) using both an MPI and a hybrid approach to parallelization. We describe the essential ingredients of our implementation.
Martin, Colin R; Redshaw, Maggie
2018-06-01
The 10-item Edinburgh Postnatal Depression Scale (EPDS) is an established screening tool for postnatal depression. Inconsistent findings in factor structure and replication difficulties have limited the scope of development of the measure as a multi-dimensional tool. The current investigation sought to robustly determine the underlying factor structure of the EPDS and the replicability and stability of the most plausible model identified. A between-subjects design was used. EPDS data were collected postpartum from two independent cohorts using identical data capture methods. Datasets were examined with confirmatory factor analysis, model invariance testing and systematic evaluation of relational and internal aspects of the measure. Participants were two samples of postpartum women in England assessed at three months (n = 245) and six months (n = 217). The findings showed a three-factor seven-item model of the EPDS offered an excellent fit to the data, and was observed to be replicable in both datasets and invariant as a function of time point of assessment. Some EPDS sub-scale scores were significantly higher at six months. The EPDS is multi-dimensional and a robust measurement model comprises three factors that are replicable. The potential utility of the sub-scale components identified requires further research to identify a role in contemporary screening practice. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Scaling relations for a functionally two-dimensional plant: Chamaesyce setiloba (Euphorbiaceae).
Koontz, Terri L; Petroff, Alexander; West, Geoffrey B; Brown, James H
2009-05-01
Many characteristics of plants and animals scale with body size as described by allometric equations of the form Y = βM(α), where Y is an attribute of the organism, β is a coefficient that varies with attribute, M is a measure of organism size, and α is another constant, the scaling exponent. In current models, the frequently observed quarter-power scaling exponents are hypothesized to be due to fractal-like structures. However, not all plants or animals conform to the assumptions of these models. Therefore, they might be expected to have different scaling relations. We studied one such plant, Chamaesyce setiloba, a prostrate annual herb that grows to functionally fill a two-dimensional space. Number of leaves scaled slightly less than isometrically with total aboveground plant mass (α ≈ 0.9) and substantially less than isometrically with dry total stem mass (α = 0.82), showing reduced allocation to leaf as opposed to stem tissue with increasing plant size. Additionally, scalings of the lengths and radii of parent and daughter branches differed from those predicted for three-dimensional trees and shrubs. Unlike plants with typical three-dimensional architectures, C. setiloba has distinctive scaling relations associated with its particular prostrate herbaceous growth form.
Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.
2018-04-01
The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.
On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Bouchaud, J.-P.
2007-12-01
An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium.
Kapfer, Sebastian C; Krauth, Werner
2017-12-15
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium
NASA Astrophysics Data System (ADS)
Kapfer, Sebastian C.; Krauth, Werner
2017-12-01
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.
Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru
2018-05-29
Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.
2016-11-01
Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.
Kim, Juyeon; Park, Jae-Woo; Ko, Seok-Jae; Jeon, Soo-Hyung; Kim, Jong-Won; Yeo, Inkwon; Kim, Jinsung
2017-01-01
Introduction . Functional dyspepsia (FD), a common upper gastrointestinal disease, is difficult to manage because of the limitations of current conventional treatments. Yukgunja-tang (YGJT) is widely used to treat FD in clinical practice in Korea, Japan, and China. However, YGJT significantly improves few symptoms of FD. In Korean medicine, FD is a well-known functional gastric disease that shows difference in the effect of herbal medicine depending on constitution or type of Korean medicine diagnosis. This study aims to investigate the efficacy of YGJT on FD patients classified by 3-dimensional facial measurement using a 3-dimensional facial shape diagnostic system (3-FSDS). Methods . A placebo-controlled, double-blind, randomized, two-center trial will be performed to evaluate the efficacy of YGJT on FD patients. Eligible subjects will be initially classified as two types by 3-dimensional facial measurement using the 3-FSDS. Ninety-six subjects (48 subjects per each type) will be enrolled. These subjects will be randomly allocated into treatment or control groups in a 2 : 1 ratio. YGJT or placebo will be administered to each group during the 8-week treatment period. The primary outcome is total dyspepsia symptom scale, and the secondary outcomes include single dyspepsia symptom scale, proportion of responders with adequate symptom relief, visual analog scale, Nepean dyspepsia index-Korean version, functional dyspepsia-related quality of life, and spleen qi deficiency questionnaire. Discussion . This is the first randomized controlled trial to assess the efficacy of the YGJT on FD patients classified by 3-dimensional facial measurement. We will compare the treatment effect of the YGJT on FD patients classified as two types using the 3-FSDS. The results of this trial will help the FD patients improve the symptoms and quality of life effectively and provide objective evidence for prescribing the YGJT to FD patients in clinical practice. Trial Registration . This trial is registered with Clinical Research Information Service Identifier: KCT0001920, 15 May, 2016.
Seshasayanan, Kannabiran; Alexakis, Alexandros
2016-01-01
We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.
Rathfelder, K M; Abriola, L M; Taylor, T P; Pennell, K D
2001-04-01
A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, batch and column experiments. These parameters included viscosity, density, solubilization capacity, surfactant sorption, interfacial tension, permeability, capillary retention functions, and interphase mass transfer correlations. Model predictive capability was assessed for the evaluation of the micellar solubilization of tetrachloroethylene (PCE) in the two-dimensional systems. Predicted effluent concentrations and mass recovery agreed reasonably well with measured values. Accurate prediction of enhanced solubilization behavior in the sand tanks was found to require the incorporation of pore-scale, system-dependent, interphase mass transfer limitations, including an explicit representation of specific interfacial contact area. Predicted effluent concentrations and mass recovery were also found to depend strongly upon the initial NAPL entrapment configuration. Numerical results collectively indicate that enhanced solubilization processes in heterogeneous, laboratory sand tank systems can be successfully simulated using independently measured soil parameters and column-measured mass transfer coefficients, provided that permeability and NAPL distributions are accurately known. This implies that the accuracy of model predictions at the field scale will be constrained by our ability to quantify soil heterogeneity and NAPL distribution.
NASA Astrophysics Data System (ADS)
Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.
2018-03-01
A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.
The third-order structure function in two dimensions: The Rashomon effect
NASA Astrophysics Data System (ADS)
Cerbus, Rory T.; Chakraborty, Pinaki
2017-11-01
We study the third-order longitudinal structure function, S3(r), in two-dimensional turbulence. In three dimensions, there is considerable theoretical, experimental, and numerical consensus regarding the validity of Kolmogorov's arch-famous " /4 5 th law" for S3(r). By contrast, in two dimensions, two disparate cascades, changed dissipation anomalies, a large-scale drag, and other factors conspire to create several versions of the S3(r) "law." This single quantity can vary considerably when viewed from different perspectives, reminiscent of the "Rashomon effect" in anthropology. After reviewing the history and usage of S3(r) in two-dimensional turbulence, we show that S3(r) generically embodies a mixture of energy and enstrophy fluxes. Building on this result, we derive S3(r) laws for freely decaying and forced two-dimensional turbulent flows, where we also account for the effects of a large-scale drag, an inextricable feature of quasi two-dimensional turbulence in experimental and atmospheric flows. We draw attention to the caution needed in interpreting S3(r) in two-dimensional turbulence.
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...
2018-01-01
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton
Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László
2016-01-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370
Entropy and temperature from black-hole/near-horizon-CFT duality
NASA Astrophysics Data System (ADS)
Rodriguez, Leo; Yildirim, Tuna
2010-08-01
We construct a two-dimensional CFT, in the form of a Liouville theory, in the near-horizon limit of four- and three-dimensional black holes. The near-horizon CFT assumes two-dimensional black hole solutions first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two-dimensional black holes admit a Diff(S1) subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. This charge and the lowest Virasoro eigen-mode reproduce the correct Bekenstein-Hawking entropy of the four- and three-dimensional black holes via the known Cardy formula (Blöte et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two-dimensional CFT's energy-momentum tensor is anomalous. However, in the horizon limit the energy-momentum tensor becomes holomorphic equaling the Hawking flux of the four- and three-dimensional black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamic and statistical quantities for the non-local effective action approach.
Quantum phase transition and quench dynamics in the anisotropic Rabi model
NASA Astrophysics Data System (ADS)
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao
2017-01-01
We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Configuration memory in patchwork dynamics for low-dimensional spin glasses
NASA Astrophysics Data System (ADS)
Yang, Jie; Middleton, A. Alan
2017-12-01
A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.
Scaling in the aggregation dynamics of a magnetorheological fluid.
Domínguez-García, P; Melle, Sonia; Pastor, J M; Rubio, M A
2007-11-01
We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-limited cluster-cluster aggregation. The kinetic exponents z and z' are obtained from the temporal evolution of the mean cluster size S(t) and the number of clusters N(t), respectively. The crossover exponent Delta is calculated in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggregated particles, n1(t). We report on results of Brownian two-dimensional dynamics simulations and compare the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the crossover exponent.
Estimating oxygen distribution from vasculature in three-dimensional tumour tissue
Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike
2016-01-01
Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806
Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.
Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike
2016-03-01
Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Hidden symmetries on Kerr-NUT-(A)dS metrics of Einstein-Sasaki type
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
2013-01-01
The hidden symmetries of higher dimensional Euclideanised Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. As a concrete example we present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
Inglis, Stephen; Melko, Roger G
2013-01-01
We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.
Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.
Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna
2011-05-20
We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.
High-dimensional entanglement certification
NASA Astrophysics Data System (ADS)
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-06-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.
Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato
2012-01-06
We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9).
Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.
NASA Technical Reports Server (NTRS)
Vahala, G.
1972-01-01
The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
A comparison of four self-report scales of pain intensity in 6- to 8-year-old children.
Sánchez-Rodríguez, Elisabet; Miró, Jordi; Castarlenas, Elena
2012-08-01
There are many different instruments for assessing pain intensity in children, but the agreement between them is unclear. The aims of this study were to determine the 1-dimensionality of 4 widely used self-report scales for measuring the intensity of pediatric pain, and the agreement between them. A sample of 126 school children between 6 and 8 years of age (mean = 6.87 years; SD = 0.68 year) were interviewed individually and asked to identify the most frequent pain that they had experienced in the 3 months before the interview, and to report their maximum pain intensity using all 4 scales (Visual Analogue Scale, Coloured Analogue Scale, Faces Pain Scale-Revised and Numerical Rating Scale-11). A factor analysis was conducted to determine the 1-dimensionality of these 4 scales. Agreement was calculated with the Bland-Altman method with a maximum limit of agreement set at ± 20 mm. Our data show the 1-dimensionality of the scales. The 95% limits of agreement between each pair of measures were as follows: VAS/CAS (-23.8, 23.4); VAS/NRS-11 (-41, 31.1); VAS/FPS-R (-38.3, 33.6); CAS/NRS-11 (-35.6, 26.2); CAS/FPS-R (-36.4, 32.1), and FPS-R/NRS-11 (-36.3, 31). Our data suggest that these 4 instruments measure 1 common factor but that they are not concordant. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing
NASA Astrophysics Data System (ADS)
Rasuo, Bosko
The establishment of exact two-dimensional flow conditions in wind tunnels is a very difficult problem. This has been evident for wind tunnels of all types and scales. In this paper, the principal factors that influence the accuracy of two-dimensional wind tunnel test results are analyzed. The influences of the Reynolds number, Mach number and wall interference with reference to solid and flow blockage (blockage of wake) as well as the influence of side-wall boundary layer control are analyzed. Interesting results are brought to light regarding the Reynolds number effects of the test model versus the Reynolds number effects of the facility in subsonic and transonic flow.
Cardiovascular Imaging Using Two-Photon Microscopy
Scherschel, John A.; Rubart, Michael
2008-01-01
Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer. PMID:18986603
Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.
We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scalemore » for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.« less
Confined One Dimensional Harmonic Oscillator as a Two-Mode System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueorguiev, V G; Rau, A P; Draayer, J P
2005-07-11
The one-dimensional harmonic oscillator in a box problem is possibly the simplest example of a two-mode system. This system has two exactly solvable limits, the harmonic oscillator and a particle in a (one-dimensional) box. Each of the two limits has a characteristic spectral structure describing the two different excitation modes of the system. Near each of these limits, one can use perturbation theory to achieve an accurate description of the eigenstates. Away from the exact limits, however, one has to carry out a matrix diagonalization because the basis-state mixing that occurs is typically too large to be reproduced in anymore » other way. An alternative to casting the problem in terms of one or the other basis set consists of using an ''oblique'' basis that uses both sets. Through a study of this alternative in this one-dimensional problem, we are able to illustrate practical solutions and infer the applicability of the concept for more complex systems, such as in the study of complex nuclei where oblique-basis calculations have been successful.« less
Grain coarsening in two-dimensional phase-field models with an orientation field
NASA Astrophysics Data System (ADS)
Korbuly, Bálint; Pusztai, Tamás; Henry, Hervé; Plapp, Mathis; Apel, Markus; Gránásy, László
2017-05-01
In the literature, contradictory results have been published regarding the form of the limiting (long-time) grain size distribution (LGSD) that characterizes the late stage grain coarsening in two-dimensional and quasi-two-dimensional polycrystalline systems. While experiments and the phase-field crystal (PFC) model (a simple dynamical density functional theory) indicate a log-normal distribution, other works including theoretical studies based on conventional phase-field simulations that rely on coarse grained fields, like the multi-phase-field (MPF) and orientation field (OF) models, yield significantly different distributions. In a recent work, we have shown that the coarse grained phase-field models (whether MPF or OF) yield very similar limiting size distributions that seem to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the case of OF models [R. Kobayashi, J. A. Warren, and W. C. Carter, Physica D 140, 141 (2000), 10.1016/S0167-2789(00)00023-3; H. Henry, J. Mellenthin, and M. Plapp, Phys. Rev. B 86, 054117 (2012), 10.1103/PhysRevB.86.054117] that an insufficient resolution of the small angle grain boundaries leads to a log-normal distribution close to those seen in the experiments and the molecular scale PFC simulations. Our paper indicates, furthermore, that the LGSD is critically sensitive to the details of the evaluation process, and raises the possibility that the differences among the LGSD results from different sources may originate from differences in the detection of small angle grain boundaries.
NASA Astrophysics Data System (ADS)
Di Cintio, Pierfrancesco; Livi, Roberto; Lepri, Stefano; Ciraolo, Guido
2017-04-01
By means of hybrid multiparticle collsion-particle-in-cell (MPC-PIC) simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled two-dimensional (2D) and quasi-one-dimensional (1D) plasmas. We find that the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for 2D systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.
Two-dimensional turbulent convection
NASA Astrophysics Data System (ADS)
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
The Episodic Nature of Experience: A Dynamical Systems Analysis.
Sreekumar, Vishnu; Dennis, Simon; Doxas, Isidoros
2017-07-01
Context is an important construct in many domains of cognition, including learning, memory, and emotion. We used dynamical systems methods to demonstrate the episodic nature of experience by showing a natural separation between the scales over which within-context and between-context relationships operate. To do this, we represented an individual's emails extending over about 5 years in a high-dimensional semantic space and computed the dimensionalities of the subspaces occupied by these emails. Personal discourse has a two-scaled geometry with smaller within-context dimensionalities than between-context dimensionalities. Prior studies have shown that reading experience (Doxas, Dennis, & Oliver, 2010) and visual experience (Sreekumar, Dennis, Doxas, Zhuang, & Belkin, 2014) have a similar two-scaled structure. Furthermore, the recurrence plot of the emails revealed that experience is predictable and hierarchical, supporting the constructs of some influential theories of memory. The results demonstrate that experience is not scale-free and provide an important target for accounts of how experience shapes cognition. Copyright © 2016 Cognitive Science Society, Inc.
Johnson, J L
1994-09-10
The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.
Dimensionality and entropy of spontaneous and evoked rate activity
NASA Astrophysics Data System (ADS)
Engelken, Rainer; Wolf, Fred
Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.
High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography
Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...
2016-11-21
Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee
2016-01-01
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits. PMID:27892463
The prospects of transition metal dichalcogenides for ultimately scaled CMOS
NASA Astrophysics Data System (ADS)
Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.
2018-05-01
MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.
Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Chaos in high-dimensional dissipative dynamical systems
Ispolatov, Iaroslav; Madhok, Vaibhav; Allende, Sebastian; Doebeli, Michael
2015-01-01
For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE’s with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from ~10−5 − 10−4 for d = 3 to essentially one for d ~ 50. In the limit of large d, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity, but not on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling, universality, and for the probability of chaos. PMID:26224119
Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye
2003-10-01
A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.
Decay of Bogoliubov excitations in one-dimensional Bose gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ristivojevic, Zoran; Matveev, K. A.
For this research, we study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossovermore » region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. Finally, we account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.« less
Decay of Bogoliubov excitations in one-dimensional Bose gases
Ristivojevic, Zoran; Matveev, K. A.
2016-07-11
For this research, we study the decay of Bogoliubov quasiparticles in one-dimensional Bose gases. Starting from the hydrodynamic Hamiltonian, we develop a microscopic theory that enables one to systematically study both the excitations and their decay. At zero temperature, the leading mechanism of decay of a quasiparticle is disintegration into three others. We find that low-energy quasiparticles (phonons) decay with the rate that scales with the seventh power of momentum, whereas the rate of decay of the high-energy quasiparticles does not depend on momentum. In addition, our approach allows us to study analytically the quasiparticle decay in the whole crossovermore » region between the two limiting cases. When applied to integrable models, including the Lieb-Liniger model of bosons with contact repulsion, our theory confirms the absence of the decay of quasiparticle excitations. Finally, we account for two types of integrability-breaking perturbations that enable finite decay: three-body interaction between the bosons and two-body interaction of finite range.« less
NASA Astrophysics Data System (ADS)
Kum, Hyun; Seong, Han-Kyu; Lim, Wantae; Chun, Daemyung; Kim, Young-Il; Park, Youngsoo; Yoo, Geonwook
2017-01-01
We present a method of epitaxially growing thermodynamically stable gallium nitride (GaN) nanorods via metal-organic chemical vapor deposition (MOCVD) by invoking a two-step self-limited growth (TSSLG) mechanism. This allows for growth of nanorods with excellent geometrical uniformity with no visible extended defects over a 100 mm sapphire (Al2O3) wafer. An ex-situ study of the growth morphology as a function of growth time for the two self-limiting steps elucidate the growth dynamics, which show that formation of an Ehrlich-Schwoebel barrier and preferential growth in the c-plane direction governs the growth process. This process allows monolithic formation of dimensionally uniform nanowires on templates with varying filling matrix patterns for a variety of novel electronic and optoelectronic applications. A color tunable phosphor-free white light LED with a coaxial architecture is fabricated as a demonstration of the applicability of these nanorods grown by TSSLG.
Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction
NASA Astrophysics Data System (ADS)
Sid, S.; Terrapon, V. E.; Dubief, Y.
2018-02-01
The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed turbulence, eventually leading to flow laminarization. A sufficiently high Schmidt number (weakly diffusive polymers) is necessary to allow self-sustained turbulence to settle. Although EIT can withstand a low amount of diffusion and remains in a nonlaminar chaotic state, adding a finite amount of GAD in the system can have an impact on the dynamics and lead to important quantitative changes, even for Schmidt numbers as large as 102. The use of GAD should therefore be avoided in viscoelastic flow simulations.
Intermittency in two-dimensional Ekman-Navier-Stokes turbulence.
Boffetta, G; Celani, A; Musacchio, S; Vergassola, M
2002-08-01
We study the statistics of the vorticity field in two-dimensional Navier-Stokes turbulence with linear Ekman friction. We show that the small-scale vorticity fluctuations are intermittent, as conjectured by Bernard [Europhys. Lett. 50, 333 (2000)] and Nam et al. [Phys. Rev. Lett. 84, 5134 (2000)]. The small-scale statistics of vorticity fluctuations coincide with that of a passive scalar with finite lifetime transported by the velocity field itself.
Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations
Jia, Kebin
2015-01-01
This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed. PMID:26120356
Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations.
Zhao, Liya; Jia, Kebin
2015-01-01
This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D) images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs) and then identifies scale and translation parameters separately. For three-dimensional (3D) images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA) is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.
Large-D gravity and low-D strings.
Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro
2013-06-21
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
Stability of the Nagaoka-type ferromagnetic state in a t2 g orbital system on a cubic lattice
NASA Astrophysics Data System (ADS)
Bobrow, Eric; Li, Yi
2018-04-01
We generalize the previous exact results of the Nagaoka-type itinerant ferromagnetic states in a three-dimensional t2 g orbital system to allow for multiple holes. The system is a simple cubic lattice with each site possessing dx y,dy z, and dx z orbitals, which allow two-dimensional hopping within each orbital plane. In the strong-coupling limit of U →∞ , the orbital-generalized Nagaoka ferromagnetic states are proved to be degenerate with the ground state in the thermodynamic limit when the hole number per orbital layer scales slower than L1/2. This result is valid for arbitrary values of the ferromagnetic Hund's coupling J >0 and interorbital repulsion V ≥0 . The stability of the Nagaoka-type state at finite electron densities with respect to a single spin flip is investigated. These results provide helpful guidance for studying the mechanism of itinerant ferromagnetism for the t2 g orbital materials.
On the Linearly-Balanced Kinetic Energy Spectrum
NASA Technical Reports Server (NTRS)
Lu, Huei,-Iin; Robertson, F. R.
1999-01-01
It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.
Conditions where random phase approximation becomes exact in the high-density limit
NASA Astrophysics Data System (ADS)
Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain
2018-04-01
It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.
Coherent and radiative couplings through two-dimensional structured environments
NASA Astrophysics Data System (ADS)
Galve, F.; Zambrini, R.
2018-03-01
We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.
NASA Astrophysics Data System (ADS)
Kreer, Torsten; Meyer, Hendrik; Baschnagel, Joerg
2008-03-01
By means of numerical investigations we demonstrate that the structural relaxation of linear polymers in two dimensional (space-filling) melts is characterized by ameba-like diffusion, where the chains relax via frictional dissipation at their interfacial contact lines. The perimeter length of the contact line determines a new length scale, which does not exist in three dimensions. We show how this length scale follows from the critical exponents, which hence characterize not only the static but also the dynamic properties of the melt. Our data is in agreement with recent theoretical predictions, concerning the time-dependence of single-monomer mean-square displacements and the scaling of concomitant relaxation times with the degree of polymerization. For the latter we demonstrate a density crossover-scaling as an additional test for ameba-like relaxation. We compare our results to the conceptually different Rouse model, which predicts numerically close exponents. Our data can clearly rule out the classical picture as the relevant relaxation mechanism in two-dimensional polymer melts.
Using Multidimensional Scaling To Assess the Dimensionality of Dichotomous Item Data.
ERIC Educational Resources Information Center
Meara, Kevin; Robin, Frederic; Sireci, Stephen G.
2000-01-01
Investigated the usefulness of multidimensional scaling (MDS) for assessing the dimensionality of dichotomous test data. Focused on two MDS proximity measures, one based on the PC statistic (T. Chen and M. Davidson, 1996) and other, on interitem Euclidean distances. Simulation results show that both MDS procedures correctly identify…
Hierarchical algorithms for modeling the ocean on hierarchical architectures
NASA Astrophysics Data System (ADS)
Hill, C. N.
2012-12-01
This presentation will describe an approach to using accelerator/co-processor technology that maps hierarchical, multi-scale modeling techniques to an underlying hierarchical hardware architecture. The focus of this work is on making effective use of both CPU and accelerator/co-processor parts of a system, for large scale ocean modeling. In the work, a lower resolution basin scale ocean model is locally coupled to multiple, "embedded", limited area higher resolution sub-models. The higher resolution models execute on co-processor/accelerator hardware and do not interact directly with other sub-models. The lower resolution basin scale model executes on the system CPU(s). The result is a multi-scale algorithm that aligns with hardware designs in the co-processor/accelerator space. We demonstrate this approach being used to substitute explicit process models for standard parameterizations. Code for our sub-models is implemented through a generic abstraction layer, so that we can target multiple accelerator architectures with different programming environments. We will present two application and implementation examples. One uses the CUDA programming environment and targets GPU hardware. This example employs a simple non-hydrostatic two dimensional sub-model to represent vertical motion more accurately. The second example uses a highly threaded three-dimensional model at high resolution. This targets a MIC/Xeon Phi like environment and uses sub-models as a way to explicitly compute sub-mesoscale terms. In both cases the accelerator/co-processor capability provides extra compute cycles that allow improved model fidelity for little or no extra wall-clock time cost.
Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals
Schmittfull, Marcel; Vlah, Zvonimir
2016-11-28
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals thatmore » are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.« less
Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal
NASA Technical Reports Server (NTRS)
Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric
2016-01-01
Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.
NASA Astrophysics Data System (ADS)
Korycansky, D. G.; Zahnle, Kevin J.
2011-01-01
We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn's moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion. We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s -1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan's surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results. Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/ Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/ Mi ˜ 1-2 were found in the simulations.
Fast saturation of the two-plasmon-decay instability for shock-ignition conditions
NASA Astrophysics Data System (ADS)
Weber, S.; Riconda, C.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.
2012-01-01
Two-plasmon-decay (TPD) instability is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion. Two-dimensional particle-in-cell simulations show that in a hot, large-scale plasma, TPD develops in concomitance with stimulated Raman scattering (SRS). It is active only during the first picosecond of interaction, and then it is rapidly saturated due to plasma cavitation. TPD-excited plasma waves extend to small wavelengths, above the standard Landau cutoff. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below 100 keV, which should not be a danger for the fuel core preheat in the SI scenario.
EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2015-03-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István
2016-11-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.
Large-scale Vortex Generation and Evolution in Short-crested Isolated Wave Breaking
NASA Astrophysics Data System (ADS)
Derakhti, M.; Kirby, J. T., Jr.
2016-12-01
Peregrine (1999), in discussing the effect of localization of wave energy dissipation as a generation mechanism for vorticity at the scale of individual waves, spurred a wave of study of vorticity dynamics and mixing processes in the wave-driven ocean. In deep water, the limited depth of penetration of breaking effects leads to the conceptual forcing of a "smoke-ring" resulting from the localized cross-section of impulsive forcing (Pizzo and Melville, 2013). In shallow water, depth limitations favor the generation of a quasi-two-dimensional field of vertical vortex structures, with a resulting inverse cascade of energy to low wavenumbers and the evolution of flows such as transient rip currents (Johnson and Pattiaratchi, 2006). In this study, we are examining a more detailed picture of the vorticity field evolving during a localized breaking event, with particular interest in the span from deep water to shallow water, with special attention to the transition from weak to strong bottom control. Using an LES/VOF model (Derakhti and Kirby, 2014), we examine the evolution of coherent vortex structures whose initial scales are determined by the width of the breaking region, and are much larger than the locally-controlled reverse horseshoe structures seen in typical studies of along-crest uniform breaking. We study the persistence of three-dimensionality of these structures and their contribution to the development of depth-integrated vertical vorticity, and comment on the suitability of 2D or quasi-3D models to represent nearshore flow fields.
NASA Astrophysics Data System (ADS)
Khan, Abu M. A. S.
We study the continuous spin representation (CSR) of the Poincare group in arbitrary dimensions. In d dimensions, the CSRs are characterized by the length of the light-cone vector and the Dynkin labels of the SO(d-3) short little group which leaves the light-cone vector invariant. In addition to these, a solid angle Od-3 which specifies the direction of the light-cone vector is also required to label the states. We also find supersymmetric generalizations of the CSRs. In four dimensions, the supermultiplet contains one bosonic and one fermionic CSRs which transform into each other under the action of the supercharges. In a five dimensional case, the supermultiplet contains two bosonic and two fermionic CSRs which is like N = 2 supersymmetry in four dimensions. When constructed using Grassmann parameters, the light-cone vector becomes nilpotent. This makes the representation finite dimensional, but at the expense of introducing central charges even though the representation is massless. This leads to zero or negative norm states. The nilpotent constructions are valid only for even dimensions. We also show how the CSRs in four dimensions can be obtained from five dimensions by the combinations of Kaluza-Klein (KK) dimensional reduction and the Inonu-Wigner group contraction. The group contraction is a singular transformation. We show that the group contraction is equivalent to imposing periodic boundary condition along one direction and taking a double singular limit. In this form the contraction parameter is interpreted as the inverse KK radius. We apply this technique to both five dimensional regular massless and massive representations. For the regular massless case, we find that the contraction gives the CSR in four dimensions under a double singular limit and the representation wavefunction is the Bessel function. For the massive case, we use Majorana's infinite component theory as a model for the SO(4) little group. In this case, a triple singular limit is required to yield any CSR in four dimensions. The representation wavefunction is the Bessel function, as expected, but the scale factor is not the length of the light-cone vector. The amplitude and the scale factor are implicit functions of the parameter y which is a ratio of the internal and external coordinates. We also state under what conditions our solutions become identical to Wigner's solution.
Exact results for quench dynamics and defect production in a two-dimensional model.
Sengupta, K; Sen, Diptiman; Mondal, Shreyoshi
2008-02-22
We show that for a d-dimensional model in which a quench with a rate tau(-1) takes the system across a (d-m)-dimensional critical surface, the defect density scales as n approximately 1/tau(mnu/(znu+1)), where nu and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d = 2 and m = nu = z = 1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model that can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.
Cost-effective MEMS piezoresistive cantilever-based sensor fabrication for gait movement analysis
NASA Astrophysics Data System (ADS)
Saadon, Salem; Anuar, A. F. M.; Wahab, Yufridin
2017-03-01
The conventional photolithography of crystalline silicon technique is limited to two-dimensional and structure scaling. It's also requiring a lot of time and chemical involves for the whole process. These problems can be overcome by using laser micromachining technique, that capable to produce three-dimensional structure and simultaneously avoiding the photo mask needs. In this paper, we reported on the RapidX-250 Excimer laser micromachining with 248 nm KrF to create in-time mask design and assisting in the fabrication process of piezo-resistive micro cantilever structures. Firstly, laser micromachining parameters have been investigated in order to fabricate the acceleration sensor to analyzing human gait movement. Preliminary result shows that the fabricated sensor able to define the movement difference of human motion regarding the electrical characteristic of piezo-resistor.
Characterization of double continuum formulations of transport through pore-scale information
NASA Astrophysics Data System (ADS)
Porta, G.; Ceriotti, G.; Bijeljic, B.
2016-12-01
Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed methodology and discuss its capability also in comparison with alternative approaches grounded, e.g., on nonlocal and particle-based approximations.
NASA Astrophysics Data System (ADS)
Khalaf, E.; Skvortsov, M. A.; Ostrovsky, P. M.
2016-03-01
We study electron transport at the edge of a generic disordered two-dimensional topological insulator, where some channels are topologically protected from backscattering. Assuming the total number of channels is large, we consider the edge as a quasi-one-dimensional quantum wire and describe it in terms of a nonlinear sigma model with a topological term. Neglecting localization effects, we calculate the average distribution function of transmission probabilities as a function of the sample length. We mainly focus on the two experimentally relevant cases: a junction between two quantum Hall (QH) states with different filling factors (unitary class) and a relatively thick quantum well exhibiting quantum spin Hall (QSH) effect (symplectic class). In a QH sample, the presence of topologically protected modes leads to a strong suppression of diffusion in the other channels already at scales much shorter than the localization length. On the semiclassical level, this is accompanied by the formation of a gap in the spectrum of transmission probabilities close to unit transmission, thereby suppressing shot noise and conductance fluctuations. In the case of a QSH system, there is at most one topologically protected edge channel leading to weaker transport effects. In order to describe `topological' suppression of nearly perfect transparencies, we develop an exact mapping of the semiclassical limit of the one-dimensional sigma model onto a zero-dimensional sigma model of a different symmetry class, allowing us to identify the distribution of transmission probabilities with the average spectral density of a certain random-matrix ensemble. We extend our results to other symmetry classes with topologically protected edges in two dimensions.
NASA Astrophysics Data System (ADS)
Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-03-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.
Myer, Gregory D; Wordeman, Samuel C; Sugimoto, Dai; Bates, Nathaniel A; Roewer, Benjamin D; Medina McKeon, Jennifer M; DiCesare, Christopher A; Di Stasi, Stephanie L; Barber Foss, Kim D; Thomas, Staci M; Hewett, Timothy E
2014-05-01
Multi-center collaborations provide a powerful alternative to overcome the inherent limitations to single-center investigations. Specifically, multi-center projects can support large-scale prospective, longitudinal studies that investigate relatively uncommon outcomes, such as anterior cruciate ligament injury. This project was conceived to assess within- and between-center reliability of an affordable, clinical nomogram utilizing two-dimensional video methods to screen for risk of knee injury. The authors hypothesized that the two-dimensional screening methods would provide good-to-excellent reliability within and between institutions for assessment of frontal and sagittal plane biomechanics. Nineteen female, high school athletes participated. Two-dimensional video kinematics of the lower extremity during a drop vertical jump task were collected on all 19 study participants at each of the three facilities. Within-center and between-center reliability were assessed with intra- and inter-class correlation coefficients. Within-center reliability of the clinical nomogram variables was consistently excellent, but between-center reliability was fair-to-good. Within-center intra-class correlation coefficient for all nomogram variables combined was 0.98, while combined between-center inter-class correlation coefficient was 0.63. Injury risk screening protocols were reliable within and repeatable between centers. These results demonstrate the feasibility of multi-site biomechanical studies and establish a framework for further dissemination of injury risk screening algorithms. Specifically, multi-center studies may allow for further validation and optimization of two-dimensional video screening tools. 2b.
Dimensionality Assessment for Dichotomously Scored Items Using Multidimensional Scaling.
ERIC Educational Resources Information Center
Jones, Patricia B.; And Others
In order to determine the effectiveness of multidimensional scaling (MDS) in recovering the dimensionality of a set of dichotomously-scored items, data were simulated in one, two, and three dimensions for a variety of correlations with the underlying latent trait. Similarity matrices were constructed from these data using three margin-sensitive…
Scaling relations for watersheds
NASA Astrophysics Data System (ADS)
Fehr, E.; Kadau, D.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, H. J.
2011-09-01
We study the morphology of watersheds in two and three dimensional systems subjected to different degrees of spatial correlations. The response of these objects to small, local perturbations is also investigated with extensive numerical simulations. We find the fractal dimension of the watersheds to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations. Moreover, in two dimensions, our results match the range of fractal dimensions 1.10≤df≤1.15 observed for natural landscapes. We report that the watershed is strongly affected by local perturbations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior for the distribution of areas (volumes) enclosed by the original and the displaced watershed and for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation between watershed and invasion percolation, as well as relations between exponents conjectured in previous studies with two dimensional systems, are now confirmed by our results in three dimensions.
Current status of one- and two-dimensional numerical models: Successes and limitations
NASA Technical Reports Server (NTRS)
Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.
1985-01-01
The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.
Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers
NASA Technical Reports Server (NTRS)
Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.
2014-01-01
Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.
NASA Technical Reports Server (NTRS)
Huang, Norden E. (Inventor)
2001-01-01
A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s).
NASA Astrophysics Data System (ADS)
Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.
2017-08-01
Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties' efficiently because we need to run microseconds or longer simulations using femtosecond time steps. To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However, the WE method requires an appropriate partitioning of phase space into discrete macrostates, which can be problematic when we have a high-dimensional collective space or when little is known a priori about the molecular system. Hence, we developed a new WE-based method, called the "Concurrent Adaptive Sampling (CAS) algorithm," to tackle these issues. The CAS algorithm is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the high-dimensional space. This is especially useful for systems in which we do not know what the right reaction coordinates are, in which case we can use many collective variables to sample conformations and pathways. In addition, a clustering technique based on the committor function is used to accelerate sampling the slowest process in the molecular system. In this paper, we introduce the new method and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a triazine trimer.
EDDA: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2014-11-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Goldstein, Melvyn L.
2011-01-01
Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
Two-dimensional Ising model on random lattices with constant coordination number
NASA Astrophysics Data System (ADS)
Schrauth, Manuel; Richter, Julian A. J.; Portela, Jefferson S. E.
2018-02-01
We study the two-dimensional Ising model on networks with quenched topological (connectivity) disorder. In particular, we construct random lattices of constant coordination number and perform large-scale Monte Carlo simulations in order to obtain critical exponents using finite-size scaling relations. We find disorder-dependent effective critical exponents, similar to diluted models, showing thus no clear universal behavior. Considering the very recent results for the two-dimensional Ising model on proximity graphs and the coordination number correlation analysis suggested by Barghathi and Vojta [Phys. Rev. Lett. 113, 120602 (2014), 10.1103/PhysRevLett.113.120602], our results indicate that the planarity and connectedness of the lattice play an important role on deciding whether the phase transition is stable against quenched topological disorder.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
Nonuniversal k-3 energy spectrum in stationary two-dimensional homogeneous turbulence
NASA Astrophysics Data System (ADS)
Kaneda, Yukio; Ishihara, Takashi
2001-05-01
A spectral closure analysis and numerical simulations suggest that there may be a class of two-dimensional turbulence in which the energy spectrum E(k) scales with the wave number k like E(k)=Ak-3 in the enstrophy transfer range in accordance with the Kraichnan-Leith-Batchelor (KLB) spectrum, but the prefactor A is different from the KLB spectrum and depends in a nontrivial way on the flow conditions at large scales.
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
Zooming in on AdS3/CFT2 near a BPS bound
NASA Astrophysics Data System (ADS)
Hartong, Jelle; Lei, Yang; Obers, Niels; Oling, Gerben
2018-05-01
Any ( d + 1)-dimensional CFT with a U(1) flavor symmetry, a BPS bound and an exactly marginal coupling admits a decoupling limit in which one zooms in on the spectrum close to the bound. This limit is an Inönü-Wigner contraction of so(2 , d+1)⊕ u(1) that leads to a relativistic algebra with a scaling generator but no conformal generators. In 2D CFTs, Lorentz boosts are abelian and by adding a second u(1) we find a contraction of two copies of sl(2, ℝ) ⊕ u(1) to two copies of P 2 c , the 2-dimensional centrally extended Poincaré algebra. We show that the bulk is described by a novel non-Lorentzian geometry that we refer to as pseudo-Newton-Cartan geometry. Both the Chern-Simons action on sl(2, ℝ) ⊕ u(1) and the entire phase space of asymptotically AdS3 spacetimes are well-behaved in the corresponding limit if we fix the radial component for the u(1) connection. With this choice, the resulting Newton-Cartan foliation structure is now associated not with time, but with the emerging holographic direction. Since the leaves of this foliation do not mix, the emergence of the holographic direction is much simpler than in AdS3 holography. Furthermore, we show that the asymptotic symmetry algebra of the limit theory consists of a left- and a right-moving warped Virasoro algebra.
Concurrent Spectral and Separation-space Views of Small-scale Anisotropy in Rotating Turbulence
NASA Astrophysics Data System (ADS)
Vallefuoco, D.; Godeferd, F. S.; Naso, A.
2017-12-01
Rotating turbulence is central in astrophysical, geophysical and industrial flows. A background rotation about a fixed axis introduces significant anisotropy in the turbulent dynamics through both linear and nonlinear mechanisms. The flow regime can be characterized by two independent non-dimensional parameters, e.g. the Reynolds and Rossby numbers or, equivalently, the ratio of the integral scale to the Kolmogorov scale L/η, and the ratio rZ/L, where rZ=√(ɛ/Ω3) is the Zeman scale, ɛ is the mean dissipation and Ω is the rotation rate. rZ is the scale at which the inertial timescale equals the rotation timescale. According to classical dimensional arguments (Zeman 1994), if the Reynolds number is large, scales much larger than rZ are mainly affected by rotation while scales much smaller than rZare dominated by the nonlinear dynamics and are expected to recover isotropy. In this work, we characterize incompressible rotating turbulence scale- and direction-dependent anisotropy through high Reynolds number pseudo-spectral forced DNS. We first focus on energy direction-dependent spectra in Fourier space: we show that a high anisotropy small wavenumber range and a low anisotropy large wavenumber range arise. Importantly, anisotropy arises even at scales much smaller than rZ and no small-scale isotropy is observed in our DNS, in contrast with previous numerical results (Delache et al. 2014, Mininni et al. 2012) but in agreement with experiments (Lamriben et al. 2011). Then, we estimate the value of the threshold wavenumber kT between these two anisotropic ranges for a large number of runs, and show that it corresponds to the scale at which dissipative effects are of the same order as those of rotation. Therefore, in the asymptotic inviscid limit, kT tends to infinity and only the low-wavenumber anisotropic range should persist. In this range anisotropy decreases with wavenumber, which is consistent with the classical Zeman argument. In addition, anisotropy at scales much smaller than rZ can be detected in physical space too, in particular for the third-order two-point vector moment F=<δu2 δu>, where δu is the velocity increment. We find the expected inertial trends for F (Galtier 2009) at scales sufficiently larger than the dissipative scale, while smaller scales exhibit qualitatively opposite anisotropic features.
Method and apparatus for two-dimensional absolute optical encoding
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2004-01-01
This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.
Results of Tests Performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel
NASA Technical Reports Server (NTRS)
Barna, P. S.
1995-01-01
The test results briefly described in this report were obtained on the three-dimensional 1:48 scale tunnel modeled on the design proposed by Messrs. D.S.M.A. Corporation. More particularly, while the test chamber dimensions were indeed scaled down in the ration of 1:48, including the contraction and the collector as well, the duct system itself leading to and from the chamber was adapted to suit laboratory conditions and space limitations. Earlier tests with the two-dimensional model showed that blowing mode was preferred as against the suction mode, hence all tests were performed with blowing only. At the exit of the contraction the maximum airspeed attained with the 1 HP blower unit was about 200 ft/sec. This airspeed may be increased in future if desired. The test results show that pressure recovery in the diffuser was about 34 percent due to the large blockage at its entrance. Velocity traverses taken across the diffuser entrance explain the reason for this blockage. Recirculation, studied with both, hot-wire anemometry and flow-visualization techniques, was largely affected by the design of the test chamber itself and the amount of vent-air admitted to the chamber. Vent-air helped to decrease the level of turbulence.
NASA Astrophysics Data System (ADS)
Anguy, Yannick; Bernard, Dominique; Ehrlich, Robert
1996-05-01
This work is part of an attempt to quantify the relationship between the permeability tensor ( K) and the micro-structure of natural porous media. A brief account is first provided of popular theories used to relate the micro-structure to K. Reasons for the lack of predictive power and restricted generality of current models are discussed. An alternative is an empirically based implicit model wherein K is expressed as a consequence of a few “pore-types” arising from the dynamics of depositional processes. The analytical form of that implicit model arises from evidence of universal association between pore-type and throat size in sandstones and carbonates. An explicit model, relying on the local change of scale technique is then addressed. That explicit model allows, from knowledge of the three-dimensional micro-geometry to calculate K explicitly without having recourse to any constitutive assumptions. The predictive and general character of the explicit model is underlined. The relevance of the change of scale technique is recalled to be contingent on the availability of rock-like three-dimensional synthetic media. A random stationary ergodic process is developed, that allows us to generate three-dimensional synthetic media from a two-dimensional autocorrelation function r(λ x ,λ y ) and associated probability density function ∈ β measured on a single binary image. The focus of this work is to ensure the rock-like character of those synthetic media. This is done first through a direct approach: n two-dimensional synthetic media, derived from single set ( ∈ β , r(λ x ,λ y )) yield n permeability tensors K {/i-1,n i} (calculated by the local change of scale) of the same order. This is a necessary condition to ensure that r(λ x ,λ y ) and ∈ β carry all structural information relevant to K. The limits of this direct approach, in terms of required Central Process Unit time and Memory is underlined, raising the need for an alternative. This is done by comparing the pore-type content of a sandstone sample and n synthetic media derived from r(λ x ,λ y ) and ∈ β measured on that sandstone-sample. Achievement of a good match ensures that the synthetic media comprise the fundamental structural level of all natural sandstones, that is a domainal structure of well-packed clusters of grains bounded by loose-packed pores.
USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)
Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...
Two-dimensional DFA scaling analysis applied to encrypted images
NASA Astrophysics Data System (ADS)
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2015-01-01
The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.
Vortex clustering and universal scaling laws in two-dimensional quantum turbulence.
Skaugen, Audun; Angheluta, Luiza
2016-03-01
We investigate numerically the statistics of quantized vortices in two-dimensional quantum turbulence using the Gross-Pitaevskii equation. We find that a universal -5/3 scaling law in the turbulent energy spectrum is intimately connected with the vortex statistics, such as number fluctuations and vortex velocity, which is also characterized by a similar scaling behavior. The -5/3 scaling law appearing in the power spectrum of vortex number fluctuations is consistent with the scenario of passive advection of isolated vortices by a turbulent superfluid velocity generated by like-signed vortex clusters. The velocity probability distribution of clustered vortices is also sensitive to spatial configurations, and exhibits a power-law tail distribution with a -5/3 exponent.
Anomalous glassy dynamics in simple models of dense biological tissue
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa
2018-02-01
In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suo, Tongchuan, E-mail: suotc@physics.umanitoba.ca; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca
We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a “mushroom” regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the othermore » limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ{sup 1/3} scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ{sup 1/3}. In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ{sup 1/3}. We also compare the results for two different solvents with each other, and with earlier Θ solvent results.« less
Distinguishing Error from Chaos in Ecological Time Series
NASA Astrophysics Data System (ADS)
Sugihara, George; Grenfell, Bryan; May, Robert M.
1990-11-01
Over the years, there has been much discussion about the relative importance of environmental and biological factors in regulating natural populations. Often it is thought that environmental factors are associated with stochastic fluctuations in population density, and biological ones with deterministic regulation. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show that completely deterministic regulatory factors can lead to apparently random fluctuations in population density, and we then develop a new method (that can be applied to limited data sets) to make practical distinctions between apparently noisy dynamics produced by low-dimensional chaos and population variation that in fact derives from random (high-dimensional)noise, such as environmental stochasticity or sampling error. To show its practical use, the method is first applied to models where the dynamics are known. We then apply the method to several sets of real data, including newly analysed data on the incidence of measles in the United Kingdom. Here the additional problems of secular trends and spatial effects are explored. In particular, we find that on a city-by-city scale measles exhibits low-dimensional chaos (as has previously been found for measles in New York City), whereas on a larger, country-wide scale the dynamics appear as a noisy two-year cycle. In addition to shedding light on the basic dynamics of some nonlinear biological systems, this work dramatizes how the scale on which data is collected and analysed can affect the conclusions drawn.
Length and Dimensional Measurements at NIST
Swyt, Dennis A.
2001-01-01
This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10−8 m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts. PMID:27500015
Three-Dimensionally Printed Micro-electromechanical Switches.
Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin
2018-05-09
Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.
SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yun-Ting; Bock, James; Bradford, C. Matt
2016-12-01
Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube.more » The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C ii] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C ii] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C ii] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments.« less
Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes
Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He
2015-01-01
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797
Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes.
Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He
2015-09-08
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented.
von Diezmann, Alex; Shechtman, Yoav; Moerner, W. E.
2017-01-01
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers, or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information of single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field-dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems. PMID:28151646
Direct and inverse energy cascades in a forced rotating turbulence experiment
NASA Astrophysics Data System (ADS)
Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe
2014-12-01
We present experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps, which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic particle image velocimetry in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical three-dimensional turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in two-dimensional turbulence. At the largest rotation rate, the flow is nearly two-dimensional, and a pure inverse energy cascade is found for the horizontal energy. To describe the scale-by-scale energy budget, we consider a generalization of the Kármán-Howarth-Monin equation to inhomogeneous turbulent flows, in which the energy input is explicitly described as the advection of turbulent energy from the flaps through the surface of the control volume where the measurements are performed.
Vectorization of a particle simulation method for hypersonic rarefied flow
NASA Technical Reports Server (NTRS)
Mcdonald, Jeffrey D.; Baganoff, Donald
1988-01-01
An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.
Electrohydrodynamic channeling effects in narrow fractures and pores
NASA Astrophysics Data System (ADS)
Bolet, Asger; Linga, Gaute; Mathiesen, Joachim
2018-04-01
In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.
Three-dimensional Aerodynamic Instability in Multi-stage Axial Compressors
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
Four separate tasks are reported. The first task: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors; the second task: Three-dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors; the third task:Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37; and the fourth task:Development of Circumferential Inlet Distortion through a Representative Eleven Stage High-speed axial compressor. The common theme that threaded throughout these four tasks is the conceptual framework that consists of quantifying flow processes at the fadcompressor blade passage level to define the compressor performance characteristics needed for addressing physical phenomena such compressor aerodynamic instability and compressor response to flow distoriton with length scales larger than compressor blade-to-blade spacing at the system level. The results from these two levels can be synthesized to: (1) simulate compressor aerodynamic instability inception local to a blade rotor tip and its development from a local flow event into the nonlinear limit cycle instability that involves the entire compressor as was demonstrated in the first task; (2) determine the conditions under which compressor stability assessment based on two-dimensional model may not be adequate and the effects of self-induced flow distortion on compressor stability limit as in the second task; (3) quantify multistage compressor response to inlet distortion in stagnation pressure as illustrated in the fourth task; and (4) elucidate its potential applicability for compressor map generation under uniform as well as non-uniform inlet flow given three-dimensional Navier-Stokes solution for each individual blade row as was demonstrated in the third task.
ERIC Educational Resources Information Center
Hassad, Rossi A.
2009-01-01
This study examined the teaching practices of 227 college instructors of introductory statistics (from the health and behavioral sciences). Using primarily multidimensional scaling (MDS) techniques, a two-dimensional, 10-item teaching practice scale, TISS (Teaching of Introductory Statistics Scale), was developed and validated. The two dimensions…
Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking
NASA Astrophysics Data System (ADS)
Xiao, Jun; Zhu, Hanyu; Wang, Ying; Feng, Wei; Hu, Yunxia; Dasgupta, Arvind; Han, Yimo; Wang, Yuan; Muller, David A.; Martin, Lane W.; Hu, PingAn; Zhang, Xiang
2018-06-01
Out-of-plane ferroelectricity with a high transition temperature in ultrathin films is important for the exploration of new domain physics and scaling down of memory devices. However, depolarizing electrostatic fields and interfacial chemical bonds can destroy this long-range polar order at two-dimensional (2D) limit. Here we report the experimental discovery of the locking between out-of-plane dipoles and in-plane lattice asymmetry in atomically thin In2Se3 crystals, a new stabilization mechanism leading to our observation of intrinsic 2D out-of-plane ferroelectricity. Through second harmonic generation spectroscopy and piezoresponse force microscopy, we found switching of out-of-plane electric polarization requires a flip of nonlinear optical polarization that corresponds to the inversion of in-plane lattice orientation. The polar order shows a very high transition temperature (˜700 K ) without the assistance of extrinsic screening. This finding of intrinsic 2D ferroelectricity resulting from dipole locking opens up possibilities to explore 2D multiferroic physics and develop ultrahigh density memory devices.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-03-30
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.
Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation
Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn
2016-01-01
Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070
Nonlocal electrodynamics in Weyl semimetals
NASA Astrophysics Data System (ADS)
Rosenstein, B.; Kao, H. C.; Lewkowicz, M.
2017-02-01
Recently synthesized three-dimensional materials with Dirac spectrum exhibit peculiar electric transport qualitatively different from its two-dimensional analog, graphene. By neglecting impurity scattering, the real part of the conductivity is strongly frequency dependent, while the imaginary part is nonzero unlike in undoped, clean graphene. The Coulomb interaction between electrons is unscreened as in a dielectric and hence is long range. We demonstrate that the interaction correction renders the electrodynamics nonlocal on a mesoscopic scale. The longitudinal conductivity σL and the transverse conductivity σT are different in the long-wavelength limit and consequently the standard local Ohm's law description does not apply. This leads to several remarkable effects in optical response. The p -polarized light generates in these materials bulk plasmons as well as the transversal waves. At a specific frequency the two modes coincide, a phenomenon impossible in a local medium. For any frequency there is a Brewster angle where total absorption occurs, turning the Weyl semimetals opaque. The effect of the surface, including the Fermi arcs, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...
2015-09-12
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
Freshwater-Brine Mixing Zone Hydrodynamics in Salt Flats (Salar de Atacama)
NASA Astrophysics Data System (ADS)
Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.
2017-12-01
The increase in the demand of strategic minerals for the development of medicines and batteries require detailed knowledge of the salt flats freshwater-brine interface to make its exploitation efficient. The interface zone is the result of a physical balance between the recharged and evaporated water. The sharp interface approach assumes the immiscibility of the fluids and thus neglects the mixing between them. As a consequence, for miscible fluids it is more accurate and often needed to use the mixing zone concept, which results from the dynamic equilibrium of flowing freshwater and brine. In this study, we consider two and three-dimensional scale approaches for the management of the mixing zone. The two-dimensional approach is used to understand the dynamics and the characteristics of the salt flat mixing zone, especially in the Salar de Atacama (Atacama salt flat) case. By making use of this model we analyze and quantify the effects of the aquitards on the mixing zone geometry. However, the understanding of the complex physical processes occurring in the salt flats and the management of these environments requires the adoption of three-dimensional regional scale numerical models. The models that take into account the effects of variable density represent the best management tool, but they require large computational resources, especially in the three-dimensional case. In order to avoid these computational limitations in the modeling of salt flats and their valuable ecosystems, we propose a three-step methodology, consisting of: (1) collection, validation and interpretation of the hydrogeochemical data, (2) identification and three-dimensional mapping of the mixing zone on the land surface and in depth, and (3) application of a water head correction to the freshwater and mixed water heads in order to compensate the density variations and to transform them to brine water heads. Finally, an evaluation of the sensibility of the mixing zone to anthropogenic and climate changes is included.
Power, Thomas J; Dombrowski, Stefan C; Watkins, Marley W; Mautone, Jennifer A; Eagle, John W
2007-06-01
Efforts to develop interventions to improve homework performance have been impeded by limitations in the measurement of homework performance. This study was conducted to develop rating scales for assessing homework performance among students in elementary and middle school. Items on the scales were intended to assess student strengths as well as deficits in homework performance. The sample included 163 students attending two school districts in the Northeast. Parents completed the 36-item Homework Performance Questionnaire - Parent Scale (HPQ-PS). Teachers completed the 22-item teacher scale (HPQ-TS) for each student for whom the HPQ-PS had been completed. A common factor analysis with principal axis extraction and promax rotation was used to analyze the findings. The results of the factor analysis of the HPQ-PS revealed three salient and meaningful factors: student task orientation/efficiency, student competence, and teacher support. The factor analysis of the HPQ-TS uncovered two salient and substantive factors: student responsibility and student competence. The findings of this study suggest that the HPQ is a promising set of measures for assessing student homework functioning and contextual factors that may influence performance. Directions for future research are presented.
Power, Thomas J.; Dombrowski, Stefan C.; Watkins, Marley W.; Mautone, Jennifer A.; Eagle, John W.
2007-01-01
Efforts to develop interventions to improve homework performance have been impeded by limitations in the measurement of homework performance. This study was conducted to develop rating scales for assessing homework performance among students in elementary and middle school. Items on the scales were intended to assess student strengths as well as deficits in homework performance. The sample included 163 students attending two school districts in the Northeast. Parents completed the 36-item Homework Performance Questionnaire – Parent Scale (HPQ-PS). Teachers completed the 22-item teacher scale (HPQ-TS) for each student for whom the HPQ-PS had been completed. A common factor analysis with principal axis extraction and promax rotation was used to analyze the findings. The results of the factor analysis of the HPQ-PS revealed three salient and meaningful factors: student task orientation/efficiency, student competence, and teacher support. The factor analysis of the HPQ-TS uncovered two salient and substantive factors: student responsibility and student competence. The findings of this study suggest that the HPQ is a promising set of measures for assessing student homework functioning and contextual factors that may influence performance. Directions for future research are presented. PMID:18516211
Nanometric holograms based on a topological insulator material.
Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min
2017-05-18
Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.
Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.
Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae
2018-01-10
One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
NASA Astrophysics Data System (ADS)
Fan, Qingju; Wu, Yonghong
2015-08-01
In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.
One-step volumetric additive manufacturing of complex polymer structures
Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; Henriksson, Johannes; Weisgraber, Todd H.; Panas, Robert M.; Fang, Nicholas X.; Spadaccini, Christopher M.
2017-01-01
Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s. PMID:29230437
One-step volumetric additive manufacturing of complex polymer structures.
Shusteff, Maxim; Browar, Allison E M; Kelly, Brett E; Henriksson, Johannes; Weisgraber, Todd H; Panas, Robert M; Fang, Nicholas X; Spadaccini, Christopher M
2017-12-01
Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s.
Three-dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B.
2005-10-01
Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5×107 g cm-3, and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.
Posttest analysis of the 1:6-scale reinforced concrete containment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.
A prediction of the response of the Sandia National Laboratories 1:6- scale reinforced concrete containment model test was made by Argonne National Laboratory. ANL along with nine other organizations performed a detailed nonlinear response analysis of the 1:6-scale model containment subjected to overpressurization in the fall of 1986. The two-dimensional code TEMP-STRESS and the three-dimensional NEPTUNE code were utilized (1) to predict the global response of the structure, (2) to identify global failure sites and the corresponding failure pressures and (3) to identify some local failure sites and pressure levels. A series of axisymmetric models was studied with the two-dimensionalmore » computer program TEMP-STRESS. The comparison of these pretest computations with test data from the containment model has provided a test for the capability of the respective finite element codes to predict global failure modes, and hence serves as a validation of these codes. Only the two-dimensional analyses will be discussed in this paper. 3 refs., 10 figs.« less
Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Choi, Jin-Ho; Cui, Ping; Lan, Haiping; Zhang, Zhenyu
2015-08-01
The exciton is one of the most crucial physical entities in the performance of optoelectronic and photonic devices, and widely varying exciton binding energies have been reported in different classes of materials. Using first-principles calculations within the G W -Bethe-Salpeter equation approach, here we investigate the excitonic properties of two recently discovered layered materials: phosphorene and graphene fluoride. We first confirm large exciton binding energies of, respectively, 0.85 and 2.03 eV in these systems. Next, by comparing these systems with several other representative two-dimensional materials, we discover a striking linear relationship between the exciton binding energy and the band gap and interpret the existence of the linear scaling law within a simple hydrogenic picture. The broad applicability of this novel scaling law is further demonstrated by using strained graphene fluoride. These findings are expected to stimulate related studies in higher and lower dimensions, potentially resulting in a deeper understanding of excitonic effects in materials of all dimensionalities.
SUSY’s Ladder: Reframing sequestering at Large Volume
Reece, Matthew; Xue, Wei
2016-04-07
Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less
NASA Technical Reports Server (NTRS)
Szalay, Alexander S.; Jain, Bhuvnesh; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.
2003-01-01
We present measurements of parameters of the three-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey (SDSS). The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve (KL) eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the three-dimensional power spectrum of galaxies in the SDSS magnitude-limited sample with r* less than 21. Our best estimates are gamma = 0.188 +/- 0.04 and sigma(sub 8L) = 0.915 +/- 0.06 (statistical errors only), for a flat universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the three-dimensional power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sample size, and limiting magnitude. We find that the impact of most of these uncertainties stay within the 2 sigma uncertainties of our fiducial result.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Ronco, Michele
2017-10-01
We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.
Field-scale and wellbore modeling of compaction-induced casing failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.
1999-06-01
Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less
Grassi, Mario; Nucera, Andrea
2010-01-01
The objective of this study was twofold: 1) to confirm the hypothetical eight scales and two-component summaries of the questionnaire Short Form 36 Health Survey (SF-36), and 2) to evaluate the performance of two alternative measures to the original physical component summary (PCS) and mental component summary (MCS). We performed principal component analysis (PCA) based on 35 items, after optimal scaling via multiple correspondence analysis (MCA), and subsequently on eight scales, after standard summative scoring. Item-based summary measures were planned. Data from the European Community Respiratory Health Survey II follow-up of 8854 subjects from 25 centers were analyzed to cross-validate the original and the novel PCS and MCS. Overall, the scale- and item-based comparison indicated that the SF-36 scales and summaries meet the supposed dimensionality. However, vitality, social functioning, and general health items did not fit data optimally. The novel measures, derived a posteriori by unit-rule from an oblique (correlated) MCA/PCA solution, are simple item sums or weighted scale sums where the weights are the raw scale ranges. These item-based scores yielded consistent scale-summary results for outliers profiles, with an expected known-group differences validity. We were able to confirm the hypothesized dimensionality of eight scales and two summaries of the SF-36. The alternative scoring reaches at least the same required standards of the original scoring. In addition, it can reduce the item-scale inconsistencies without loss of predictive validity.
Shot noise at high temperatures
NASA Astrophysics Data System (ADS)
Gutman, D. B.; Gefen, Yuval
2003-07-01
We consider the possibility of measuring nonequilibrium properties of the current correlation functions at high temperatures (and small bias). Through the example of the third cumulant of the current (S3) we demonstrate that odd-order correlation functions represent nonequilibrium physics even at small external bias and high temperatures. We calculate S3=y(eV/T)e2I for a quasi-one-dimensional diffusive constriction. We calculate the scaling function y in two regimes: when the scattering processes are purely elastic and when the inelastic electron-electron scattering is strong. In both cases we find that y interpolates between two constants. In the low- (high-) temperature limit y is strongly (weakly) enhanced (suppressed) by the electron-electron scattering.
Scanning tunneling microscope with two-dimensional translator.
Nichols, J; Ng, K-W
2011-01-01
Since the invention of the scanning tunneling microscope (STM), it has been a powerful tool for probing the electronic properties of materials. Typically STM designs capable of obtaining resolution on the atomic scale are limited to a small area which can be probed. We have built an STM capable of coarse motion in two dimensions, the z- and x-directions which are, respectively, parallel and perpendicular to the tip. This allows us to image samples with very high resolution at sites separated by macroscopic distances. This device is a single unit with a compact design making it very stable. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures.
Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model.
Seeboonruang, Uma; Ginn, Timothy R
2006-03-20
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.
NASA Astrophysics Data System (ADS)
Titze, Michael; Li, Bo; Zhang, Xiang; Ajayan, Pulickel M.; Li, Hebin
2018-05-01
Quantum coherence and its dynamics in monolayer transition metal dichalcogenides (TMDs) are essential information to fully control valley pseudospin for valleytronics applications. Experimental understanding of coherence dephasing dynamics has been limited for excitons and largely unexplored for trions in monolayer TMDs. Here we use optical two-dimensional coherent spectroscopy to measure the trion coherence dephasing time in monolayer MoSe2 by analyzing the homogeneous linewidth. An intrinsic coherence time of 182 fs is extrapolated from the excitation density and temperature dependence measurement. The results show that trion-trion and trion-phonon interactions strongly affect the coherence dephasing time, while the intrinsic coherence time at zero excitation and zero temperature is primarily limited by the pure dephasing due to defect states. Our experiment also confirms optical two-dimensional coherent spectroscopy as a reliable technique for studying valley quantum dynamics in two-dimensional layered materials.
Posttest analysis of a 1:6-scale reinforced concrete reactor containment building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weatherby, J.R.
In an experiment conducted at Sandia National Laboratories, 1:6-scale model of a reinforced concrete light water reactor containment building was pressurized with nitrogen gas to more than three times its design pressure. The pressurization produced one large tear and several smaller tears in the steel liner plate that functioned as the primary pneumatic seal for the structure. The data collected from the overpressurization test have been used to evaluate and further refine methods of structural analysis that can be used to predict the performance of containment buildings under conditions produced by a severe accident. This report describes posttest finite elementmore » analyses of the 1:6-scale model tests and compares pretest predictions of the structural response to the experimental results. Strain and displacements calculated in axisymmetric finite element analyses of the 1:6-scale model are compared to strains and displacement measured in the experiment. Detailed analyses of the liner plate are also described in the report. The region of the liner surrounding the large tear was analyzed using two different two-dimensional finite elements model. The results from these analyzed indicate that the primary mechanisms that initiated the tear can be captured in a two- dimensional finite element model. Furthermore, the analyses show that studs used to anchor the liner to the concrete wall, played an important role in initiating the liner tear. Three-dimensional finite element analyses of liner plates loaded by studs are also presented. Results from the three-dimensional analyses are compared to results from two-dimensional analyses of the same problems. 12 refs., 56 figs., 1 tab.« less
Energy transfer in turbulence under rotation
NASA Astrophysics Data System (ADS)
Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz
2018-03-01
It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.
NASA Astrophysics Data System (ADS)
Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia
2013-03-01
Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.
NASA Astrophysics Data System (ADS)
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
Caveats for the spatial arrangement method: Comment on Hout, Goldinger, and Ferguson (2013).
Verheyen, Steven; Voorspoels, Wouter; Vanpaemel, Wolf; Storms, Gert
2016-03-01
The gold standard among proximity data collection methods for multidimensional scaling is the (dis)similarity rating of pairwise presented stimuli. A drawback of the pairwise method is its lengthy duration, which may cause participants to change their strategy over time, become fatigued, or disengage altogether. Hout, Goldinger, and Ferguson (2013) recently made a case for the Spatial Arrangement Method (SpAM) as an alternative to the pairwise method, arguing that it is faster and more engaging. SpAM invites participants to directly arrange stimuli on a computer screen such that the interstimuli distances are proportional to psychological proximity. Based on a reanalysis of the Hout et al. (2013), data we identify three caveats for SpAM. An investigation of the distributional characteristics of the SpAM proximity data reveals that the spatial nature of SpAM imposes structure on the data, invoking a bias against featural representations. Individual-differences scaling of the SpAM proximity data reveals that the two-dimensional nature of SpAM allows individuals to only communicate two dimensions of variation among stimuli properly, invoking a bias against high-dimensional scaling representations. Monte Carlo simulations indicate that in order to obtain reliable estimates of the group average, SpAM requires more individuals to be tested. We conclude with an overview of considerations that can inform the choice between SpAM and the pairwise method and offer suggestions on how to overcome their respective limitations. (c) 2016 APA, all rights reserved).
Continental diatom biodiversity in stream benthos declines as more nutrients become limiting
Passy, Sophia I.
2008-01-01
Biodiversity of both terrestrial ecosystems and lacustrine phytoplankton increases with niche dimensionality, which can be determined by the number of limiting resources (NLR) in the environment. In the present continental study, I tested whether niche dimensionality and, with this species, richness scale positively with NLR in running waters. Diatom richness in 2,426 benthic and 383 planktonic communities from 760 and 127 distinct localities, respectively, was examined as a function of NLR, including basic cations, silica, iron, ammonia, nitrate, and dissolved phosphorus. The patterns found in the two communities were opposite: as more resources became limiting, diatom richness declined in the benthos but increased in the phytoplankton. The divergence of benthic from both planktonic and terrestrial communities is attributed to the complex spatial organization of the benthos, generating strong internal resource gradients. Differential stress tolerance among benthic diatoms allows substantial overgrowth, which greatly reduces nutrient transport to the biofilm base and can be supported only by high ambient resource levels. Therefore, niche dimensionality in the benthos increases with the number of resources at high supply. These findings provide a mechanistic explanation of the well documented phenomenon of increased species richness after fertilization in freshwater as opposed to terrestrial ecosystems. Clearly, however, new theoretical approaches, retaining resource availability as an environmental constraint but incorporating a trade-off between tolerance and spatial positioning, are necessary to address coexistence in one of the major producer communities in streams, the algae. PMID:18599459
Predicting Upscaled Behavior of Aqueous Reactants in Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Wright, E. E.; Hansen, S. K.; Bolster, D.; Richter, D. H.; Vesselinov, V. V.
2017-12-01
When modeling reactive transport, reaction rates are often overestimated due to the improper assumption of perfect mixing at the support scale of the transport model. In reality, fronts tend to form between participants in thermodynamically favorable reactions, leading to segregation of reactants into islands or fingers. When such a configuration arises, reactions are limited to the interface between the reactive solutes. Closure methods for estimating control-volume-effective reaction rates in terms of quantities defined at the control volume scale do not presently exist, but their development is crucial for effective field-scale modeling. We attack this problem through a combination of analytical and numerical means. Specifically, we numerically study reactive transport through an ensemble of realizations of two-dimensional heterogeneous porous media. We then employ regression analysis to calibrate an analytically-derived relationship between reaction rate and various dimensionless quantities representing conductivity-field heterogeneity and the respective strengths of diffusion, reaction and advection.
Rubin, D.M.
1992-01-01
Forecasting of one-dimensional time series previously has been used to help distinguish periodicity, chaos, and noise. This paper presents two-dimensional generalizations for making such distinctions for spatial patterns. The techniques are evaluated using synthetic spatial patterns and then are applied to a natural example: ripples formed in sand by blowing wind. Tests with the synthetic patterns demonstrate that the forecasting techniques can be applied to two-dimensional spatial patterns, with the same utility and limitations as when applied to one-dimensional time series. One limitation is that some combinations of periodicity and randomness exhibit forecasting signatures that mimic those of chaos. For example, sine waves distorted with correlated phase noise have forecasting errors that increase with forecasting distance, errors that, are minimized using nonlinear models at moderate embedding dimensions, and forecasting properties that differ significantly between the original and surrogates. Ripples formed in sand by flowing air or water typically vary in geometry from one to another, even when formed in a flow that is uniform on a large scale; each ripple modifies the local flow or sand-transport field, thereby influencing the geometry of the next ripple downcurrent. Spatial forecasting was used to evaluate the hypothesis that such a deterministic process - rather than randomness or quasiperiodicity - is responsible for the variation between successive ripples. This hypothesis is supported by a forecasting error that increases with forecasting distance, a greater accuracy of nonlinear relative to linear models, and significant differences between forecasts made with the original ripples and those made with surrogate patterns. Forecasting signatures cannot be used to distinguish ripple geometry from sine waves with correlated phase noise, but this kind of structure can be ruled out by two geometric properties of the ripples: Successive ripples are highly correlated in wavelength, and ripple crests display dislocations such as branchings and mergers. ?? 1992 American Institute of Physics.
Entropic Barriers for Two-Dimensional Quantum Memories
NASA Astrophysics Data System (ADS)
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
NASA Astrophysics Data System (ADS)
Falceta-Gonçalves, D.; Lazarian, A.; Houde, M.
2010-04-01
Theoretical and observational studies on the turbulence of the interstellar medium developed fast in the past decades. The theory of supersonic magnetized turbulence, as well as the understanding of the projection effects of observed quantities, is still in progress. In this work, we explore the characterization of the turbulent cascade and its damping from observational spectral line profiles. We address the difference of ion and neutral velocities by clarifying the nature of the turbulence damping in the partially ionized. We provide theoretical arguments in favor of the explanation of the larger Doppler broadening of lines arising from neutral species compared to ions as arising from the turbulence damping of ions at larger scales. Also, we compute a number of MHD numerical simulations for different turbulent regimes and explicit turbulent damping, and compare both the three-dimensional distributions of velocity and the synthetic line profile distributions. From the numerical simulations, we place constraints on the precision with which one can measure the three-dimensional dispersion depending on the turbulence sonic Mach number. We show that no universal correspondence between the three-dimensional velocity dispersions measured in the turbulent volume and minima of the two-dimensional velocity dispersions available through observations exist. For instance, for subsonic turbulence the correspondence is poor at scales much smaller than the turbulence injection scale, while for supersonic turbulence the correspondence is poor for the scales comparable with the injection scale. We provide a physical explanation of the existence of such a two-dimensional to three-dimensional correspondence and discuss the uncertainties in evaluating the damping scale of ions that can be obtained from observations. However, we show that the statistics of velocity dispersion from observed line profiles can provide the spectral index and the energy transfer rate of turbulence. Also, by comparing two similar simulations with different viscous coefficients, it was possible to constrain the turbulent cut-off scale. This may especially prove useful since it is believed that ambipolar diffusion may be one of the dominant dissipative mechanisms in star-forming regions. In this case, the determination of the ambipolar diffusion scale may be used as a complementary method for the determination of magnetic field intensity in collapsing cores. We discuss the implications of our findings in terms of a new approach to magnetic field measurement proposed by Li & Houde.
A stochastic multi-scale method for turbulent premixed combustion
NASA Astrophysics Data System (ADS)
Cha, Chong M.
2002-11-01
The stochastic chemistry algorithm of Bunker et al. and Gillespie is used to perform the chemical reactions in a transported probability density function (PDF) modeling approach of turbulent combustion. Recently, Kraft & Wagner have demonstrated a 100-fold gain in computational speed (for a 100 species mechanism) using the stochastic approach over the conventional, direct integration method of solving for the chemistry. Here, the stochastic chemistry algorithm is applied to develop a new transported PDF model of turbulent premixed combustion. The methodology relies on representing the relevant spatially dependent physical processes as queuing events. The canonical problem of a one-dimensional premixed flame is used for validation. For the laminar case, molecular diffusion is described by a random walk. For the turbulent case, one of two different material transport submodels can provide the necessary closure: Taylor dispersion or Kerstein's one-dimensional turbulence approach. The former exploits ``eddy diffusivity'' and hence would be much more computationally tractable for practical applications. Various validation studies are performed. Results from the Monte Carlo simulations compare well to asymptotic solutions of laminar premixed flames, both with and without high activation temperatures. The correct scaling of the turbulent burning velocity is predicted in both Damköhler's small- and large-scale turbulence limits. The effect of applying the eddy diffusivity concept in the various regimes is discussed.
Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation
2015-04-27
significant inhomogeneous broadening of the spectral gain. SK QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak...QDs inherently form on top of a two-dimensional “ wetting layer”, leading to weak electron and hole confinement to the QD, which results in low gain...exhibit full three- dimensional nano-scale confinement and elimination of the wetting layer states. The objectives of this project were to develop
Hierarchical Freezing in a Lattice Model
NASA Astrophysics Data System (ADS)
Byington, Travis W.; Socolar, Joshua E. S.
2012-01-01
A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.
An evaluation method for nanoscale wrinkle
NASA Astrophysics Data System (ADS)
Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.
2016-06-01
In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.
Effective equations and the inverse cascade theory for Kolmogorov flows
NASA Technical Reports Server (NTRS)
Weinan, E.; Shu, Chi-Wang
1992-01-01
We study the two dimensional Kolmogorov flows in the limit as the forcing frequency goes to infinity. Direct numerical simulation indicates that the low frequency energy spectrum evolves to a universal kappa (exp -4) decay law. We derive effective equations governing the behavior of the large scale flow quantities. We then present numerical evidence that with smooth initial data, the solution to the effective equation develops a kappa (exp -4) type singularity at a finite time. This gives a convenient explanation for the kappa (exp -4) decay law exhibited by the original Kolmogorov flows.
FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations
NASA Astrophysics Data System (ADS)
Ding, Jianmin; Lyczkowski, R. W.; Burge, S. W.
1993-02-01
A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
Differences in Student Evaluations of Limited-Term Lecturers and Full-Time Faculty
ERIC Educational Resources Information Center
Cho, Jeong-Il; Otani, Koichiro; Kim, B. Joon
2014-01-01
This study compared student evaluations of teaching (SET) for limited-term lecturers (LTLs) and full-time faculty (FTF) using a Likert-scaled survey administered to students (N = 1,410) at the end of university courses. Data were analyzed using a general linear regression model to investigate the influence of multi-dimensional evaluation items on…
Hard Two-Body Photodisintegration of He3
NASA Astrophysics Data System (ADS)
Pomerantz, I.; Ilieva, Y.; Gilman, R.; Higinbotham, D. W.; Piasetzky, E.; Strauch, S.; Adhikari, K. P.; Aghasyan, M.; Allada, K.; Amaryan, M. J.; Anefalos Pereira, S.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Beck, A.; Beck, S.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Boeglin, W.; Bono, J.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bubis, N.; Burkert, V.; Camsonne, A.; Canan, M.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chirapatpimol, K.; Cisbani, E.; Cole, P. L.; Contalbrigo, M.; Crede, V.; Cusanno, F.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Jager, C. W.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Dutta, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Fradi, A.; Garibaldi, F.; Geagla, O.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Glister, J.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, X.; Jo, H. S.; Joo, K.; Katramatou, A. T.; Keller, D.; Khandaker, M.; Khetarpal, P.; Khrosinkova, E.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lee, B.; LeRose, J. J.; Lewis, S.; Lindgren, R.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McCullough, E.; McKinnon, B.; Meekins, D.; Meyer, C. A.; Michaels, R.; Mineeva, T.; Mirazita, M.; Moffit, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Petratos, G. G.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rodriguez, I.; Ron, G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saha, A.; Saini, M. S.; Sarty, A. J.; Sawatzky, B.; Saylor, N. A.; Schott, D.; Schulte, E.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Shneor, R.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Subedi, R.; Sulkosky, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wang, Y.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wojtsekhowski, B.; Wood, M. H.; Yan, X.; Yao, H.; Zachariou, N.; Zhan, X.; Zhang, J.; Zhao, Z. W.; Zheng, X.; Zonta, I.
2013-06-01
We have measured cross sections for the γHe3→pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.
Hard two-body photodisintegration of 3He.
Pomerantz, I; Ilieva, Y; Gilman, R; Higinbotham, D W; Piasetzky, E; Strauch, S; Adhikari, K P; Aghasyan, M; Allada, K; Amaryan, M J; Anefalos Pereira, S; Anghinolfi, M; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Beck, A; Beck, S; Bedlinskiy, I; Berman, B L; Biselli, A S; Boeglin, W; Bono, J; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Bubis, N; Burkert, V; Camsonne, A; Canan, M; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Chirapatpimol, K; Cisbani, E; Cole, P L; Contalbrigo, M; Crede, V; Cusanno, F; D'Angelo, A; Daniel, A; Dashyan, N; de Jager, C W; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dodge, G E; Doughty, D; Dupre, R; Dutta, C; Egiyan, H; El Alaoui, A; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Fradi, A; Garibaldi, F; Geagla, O; Gevorgyan, N; Giovanetti, K L; Girod, F X; Glister, J; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, X; Jo, H S; Joo, K; Katramatou, A T; Keller, D; Khandaker, M; Khetarpal, P; Khrosinkova, E; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Lee, B; LeRose, J J; Lewis, S; Lindgren, R; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Martinez, D; Mayer, M; McCullough, E; McKinnon, B; Meekins, D; Meyer, C A; Michaels, R; Mineeva, T; Mirazita, M; Moffit, B; Mokeev, V; Montgomery, R A; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Petratos, G G; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Procureur, S; Protopopescu, D; Puckett, A J R; Qian, X; Qiang, Y; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rodriguez, I; Ron, G; Rosner, G; Rossi, P; Sabatié, F; Saha, A; Saini, M S; Sarty, A J; Sawatzky, B; Saylor, N A; Schott, D; Schulte, E; Schumacher, R A; Seder, E; Seraydaryan, H; Shneor, R; Smith, G D; Sokhan, D; Sparveris, N; Stepanyan, S S; Stepanyan, S; Stoler, P; Subedi, R; Sulkosky, V; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voskanyan, H; Voutier, E; Walford, N K; Wang, Y; Watts, D P; Weinstein, L B; Weygand, D P; Wojtsekhowski, B; Wood, M H; Yan, X; Yao, H; Zachariou, N; Zhan, X; Zhang, J; Zhao, Z W; Zheng, X; Zonta, I
2013-06-14
We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.
Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Laurie, Jason; Boffetta, Guido; Falkovich, Gregory; Kolokolov, Igor; Lebedev, Vladimir
2014-12-01
An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry out theoretical analysis based on momentum and energy exchanges between the turbulence and the vortices. We show that the vortices have a universal internal structure independent of the type of small-scale dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner region profile, but also the amplitude, which both perfectly agree with the numerical data.
NASA Astrophysics Data System (ADS)
Ernazarov, K. K.
2017-12-01
We consider a (m + 2)-dimensional Einstein-Gauss-Bonnet (EGB) model with the cosmological Λ-term. We restrict the metrics to be diagonal ones and find for certain Λ = Λ(m) class of cosmological solutions with non-exponential time dependence of two scale factors of dimensions m > 2 and 1. Any solution from this class describes an accelerated expansion of m-dimensional subspace and tends asymptotically to isotropic solution with exponential dependence of scale factors.
Two-dimensional materials as catalysts for energy conversion
Siahrostami, Samira; Tsai, Charlie; Karamad, Mohammadreza; ...
2016-08-24
Although large efforts have been dedicated to studying two-dimensional materials for catalysis, a rationalization of the associated trends in their intrinsic activity has so far been elusive. In the present work we employ density functional theory to examine a variety of two-dimensional materials, including, carbon based materials, hexagonal boron nitride ( h-BN), transition metal dichalcogenides (e.g. MoS 2, MoSe 2) and layered oxides, to give an overview of the trends in adsorption energies. By examining key reaction intermediates relevant to the oxygen reduction, and oxygen evolution reactions we find that binding energies largely follow the linear scaling relationships observed formore » pure metals. Here, this observation is very important as it suggests that the same simplifying assumptions made to correlate descriptors with reaction rates in transition metal catalysts are also valid for the studied two-dimensional materials. By means of these scaling relations, for each reaction we also identify several promising candidates that are predicted to exhibit a comparable activity to the state-of-the-art catalysts.« less
A small-scale turbulence model
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
1992-01-01
A model for the small-scale structure of turbulence is reformulated in such a way that it may be conveniently computed. The model is an ensemble of randomly oriented structured two dimensional vortices stretched by an axially symmetric strain flow. The energy spectrum of the resulting flow may be expressed as a time integral involving only the enstrophy spectrum of the time evolving two-dimensional cross section flow, which may be obtained numerically. Examples are given in which a k(exp -5/3) spectrum is obtained by this method without using large wave number asymptotic analysis. The k(exp -5/3) inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the two-dimensional enstrophy spectrum. The results are insensitive to time dependence of the strain-rate, including even intermittent on-or-off strains.
Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors
NASA Astrophysics Data System (ADS)
Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.
2015-08-01
In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.
Two- to three-dimensional crossover in a dense electron liquid in silicon
NASA Astrophysics Data System (ADS)
Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel
2018-04-01
Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.
Nanometric holograms based on a topological insulator material
Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min
2017-01-01
Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security. PMID:28516906
Continuous development of current sheets near and away from magnetic nulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.
2016-04-15
The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scalingmore » than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.« less
NASA Astrophysics Data System (ADS)
Ibuki, Takero; Suzuki, Sei; Inoue, Jun-ichi
We investigate cross-correlations between typical Japanese stocks collected through Yahoo!Japan website ( http://finance.yahoo.co.jp/ ). By making use of multi-dimensional scaling (MDS) for the cross-correlation matrices, we draw two-dimensional scattered plots in which each point corresponds to each stock. To make a clustering for these data plots, we utilize the mixture of Gaussians to fit the data set to several Gaussian densities. By minimizing the so-called Akaike Information Criterion (AIC) with respect to parameters in the mixture, we attempt to specify the best possible mixture of Gaussians. It might be naturally assumed that all the two-dimensional data points of stocks shrink into a single small region when some economic crisis takes place. The justification of this assumption is numerically checked for the empirical Japanese stock data, for instance, those around 11 March 2011.
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
Domain-area distribution anomaly in segregating multicomponent superfluids
NASA Astrophysics Data System (ADS)
Takeuchi, Hiromitsu
2018-01-01
The domain-area distribution in the phase transition dynamics of Z2 symmetry breaking is studied theoretically and numerically for segregating binary Bose-Einstein condensates in quasi-two-dimensional systems. Due to the dynamic-scaling law of the phase ordering kinetics, the domain-area distribution is described by a universal function of the domain area, rescaled by the mean distance between domain walls. The scaling theory for general coarsening dynamics in two dimensions hypothesizes that the distribution during the coarsening dynamics has a hierarchy with the two scaling regimes, the microscopic and macroscopic regimes with distinct power-law exponents. The power law in the macroscopic regime, where the domain size is larger than the mean distance, is universally represented with the Fisher's exponent of the percolation theory in two dimensions. On the other hand, the power-law exponent in the microscopic regime is sensitive to the microscopic dynamics of the system. This conjecture is confirmed by large-scale numerical simulations of the coupled Gross-Pitaevskii equation for binary condensates. In the numerical experiments of the superfluid system, the exponent in the microscopic regime anomalously reaches to its theoretical upper limit of the general scaling theory. The anomaly comes from the quantum-fluid effect in the presence of circular vortex sheets, described by the hydrodynamic approximation neglecting the fluid compressibility. It is also found that the distribution of superfluid circulation along vortex sheets obeys a dynamic-scaling law with different power-law exponents in the two regimes. An analogy to quantum turbulence on the hierarchy of vorticity distribution and the applicability to chiral superfluid 3He in a slab are also discussed.
Numerically exploring the 1D-2D dimensional crossover on spin dynamics in the doped Hubbard model
Kung, Y. F.; Bazin, C.; Wohlfeld, K.; ...
2017-11-02
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Painter, S. L.
2004-12-01
Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
Li, Jiaqiang; Xu, Jing; Xie, Ziqian; Gao, Xin; Zhou, Jingyuan; Xiong, Yan; Chen, Changguo; Zhang, Jin; Liu, Zhongfan
2018-05-01
Graphdiyne (GDY), a new kind of two-dimensional (2D) carbon allotropes, has extraordinary electrical, mechanical, and optical properties, leading to advanced applications in the fields of energy storage, photocatalysis, electrochemical catalysis, and sensors. However, almost all reported methods require metallic copper as a substrate, which severely limits their large-scale application because of the high cost and low specific surface area (SSA) of copper substrate. Here, freestanding three-dimensional GDY (3DGDY) is successfully prepared using naturally abundant and inexpensive diatomite as template. In addition to the intrinsic properties of GDY, the fabricated 3DGDY exhibits a porous structure and high SSA that enable it to be directly used as a lithium-ion battery anode material and a 3D scaffold to create Rh@3DGDY composites, which would hold great potential applications in energy storage and catalysts, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional displacement measurement based on two parallel gratings
NASA Astrophysics Data System (ADS)
Wei, Peipei; Lu, Xi; Qiao, Decheng; Zou, Limin; Huang, Xiangdong; Tan, Jiubin; Lu, Zhengang
2018-06-01
In this paper, a two-dimensional (2-D) planar encoder based on two parallel gratings, which includes a scanning grating and scale grating, is presented. The scanning grating is a combined transmission rectangular grating comprised of a 2-D grating located at the center and two one-dimensional (1-D) gratings located at the sides. The grating lines of the two 1-D gratings are perpendicular to each other and parallel with the 2-D grating lines. The scale grating is a 2-D reflective-type rectangular grating placed in parallel with the scanning grating, and there is an angular difference of 45° between the grating lines of the two 2-D gratings. With the special structural design of the scanning grating, the encoder can measure the 2-D displacement in the grating plane simultaneously, and the measured interference signals in the two directions are uncoupled. Moreover, by utilizing the scanning grating to modulate the phase of the interference signals instead of the prisms, the structure of the encoder is compact. Experiments were implemented, and the results demonstrate the validity of the 2-D planar grating encoder.
2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION
A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...
NASA Astrophysics Data System (ADS)
Bhateja, Ashish; Khakhar, Devang V.
2018-06-01
We consider the rheology of steady two-dimensional granular flows, in different geometries, using discrete element method-based simulations of soft spheres. The flow classification parameter (ψ ), which defines the local flow type (ranging from pure rotation to simple shear to pure extension), varies spatially, to a significant extent, in the flows. We find that the material behaves as a generalized Newtonian fluid. The μ -I scaling proposed by Jop et al. [Nature (London) 441, 727 (2006), 10.1038/nature04801] is found to be valid in both two-dimensional and unidirectional flows, as observed in previous studies; however, the data for each flow geometry fall on a different curve. The results for the two-dimensional silo flow indicate that the viscosity does not depend directly on the flow type parameter, ψ . We find that the scaling based on "granular fluidity" [Zhang and Kamrin, Phys. Rev. Lett. 118, 058001 (2017), 10.1103/PhysRevLett.118.058001] gives good collapse of the data to a single curve for all the geometries. The data for the variation of the solid faction with inertial number show a reasonable collapse for the different geometries.
NASA Astrophysics Data System (ADS)
Franci, Luca; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
2016-04-01
We investigate the properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional, large-scale, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add a spectrum of in-plane large- scale magnetic and kinetic fluctuations, with energy equipartition and vanishing correlation. We perform a set of ten simulations with different values of the ion plasma beta, β_i. In all cases, we observe the power spectrum of the total magnetic fluctuations following a power law with a spectral index of -5/3 in the inertial range, with a smooth break around ion scales and a steeper power law in the sub-ion range. This spectral break always occurs at spatial scales of the order of the proton gyroradius, ρ_i, and the proton inertial length, di = ρi / √{β_i}. When the plasma beta is of the order of 1, the two scales are very close to each other and determining which is directly related to the steepening of the spectra it's not straightforward at all. In order to overcome this limitation, we extended the range of values of βi over three orders of magnitude, from 0.01 to 10, so that the two ion scales were well separated. This let us observe that the break always seems to occur at the larger of the two scales, i.e., at di for βi 1. The effect of βi on the spectra of the parallel and perpendicular magnetic components separately and of the density fluctuations is also investigated. We compare all our numerical results with solar wind observations and suggest possible explanations for our findings.
Numerical analysis of field-scale transport of bromacil
NASA Astrophysics Data System (ADS)
Russo, David; Tauber-Yasur, Inbar; Laufer, Asher; Yaron, Bruno
Field-scale transport of bromacil (5-bromo-3- sec-butyl-6-methyluracil) was analyzed using two different model processes for local description of the transport. The first was the classical, one-region convection dispersion equation (CDE) model while the second was the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional, numerical simulations of the flow and the transport [Russo, D., Zaidel, J. and Laufer, A., Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil. Water Resour. Res., 1998, in press], employing local soil hydraulic properties parameters from field measurements and local adsorption/desorption coefficients and the first-order degradation rate coefficient from laboratory measurements. Results of the analyses suggest that for a given flow regime, mass exchange between the mobile and the immobile regions retards the bromacil degradation, considerably affects the distribution of the bromacil resident concentration, c, at relatively large travel times, slightly affects the spatial moments of the distribution of c, and increases the skewing of the bromacil breakthrough and the uncertainty in its prediction, compared with the case in which the soil contained only a single (mobile) region. Mean and standard deviation of the simulated concentration profiles at various elapsed times were compared with measurements from a field-scale transport experiment [Tauber-Yasur, I., Hadas, A., Russo, D. and Yaron, B., Leaching of terbuthylazine and bromacil through field soils. Water, Air Soil Poln., 1998, in press] conducted at the Bet Dagan site. Given the limitations of the present study (e.g. the lack of detailed field data on the spatial variability of the soil chemical properties) the main conclusion of the present study is that the field-scale transport of bromacil at the Bet Dagan site is better quantified with the MIM model than the CDE model.
Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion
NASA Astrophysics Data System (ADS)
Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.
2016-10-01
Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.
BSIFT: toward data-independent codebook for large scale image search.
Zhou, Wengang; Li, Houqiang; Hong, Richang; Lu, Yijuan; Tian, Qi
2015-03-01
Bag-of-Words (BoWs) model based on Scale Invariant Feature Transform (SIFT) has been widely used in large-scale image retrieval applications. Feature quantization by vector quantization plays a crucial role in BoW model, which generates visual words from the high- dimensional SIFT features, so as to adapt to the inverted file structure for the scalable retrieval. Traditional feature quantization approaches suffer several issues, such as necessity of visual codebook training, limited reliability, and update inefficiency. To avoid the above problems, in this paper, a novel feature quantization scheme is proposed to efficiently quantize each SIFT descriptor to a descriptive and discriminative bit-vector, which is called binary SIFT (BSIFT). Our quantizer is independent of image collections. In addition, by taking the first 32 bits out from BSIFT as code word, the generated BSIFT naturally lends itself to adapt to the classic inverted file structure for image indexing. Moreover, the quantization error is reduced by feature filtering, code word expansion, and query sensitive mask shielding. Without any explicit codebook for quantization, our approach can be readily applied in image search in some resource-limited scenarios. We evaluate the proposed algorithm for large scale image search on two public image data sets. Experimental results demonstrate the index efficiency and retrieval accuracy of our approach.
Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor
NASA Astrophysics Data System (ADS)
Park, Jun Hong
For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part, the effect of ambient air on TMDs will be investigated and partial oxidation of TMDs. In the last part, uniform deposition of dielectric layers on 2D materials will be presented, employing organic seedling layer. Although 2D materials have been expected as next generation semiconductor platform, direct deposition of dielectric is still challenging and induces leakage current commonly, because inertness of their surface resulted from absent of dangling bond. Here, metal phthalocyanine monolayer (ML) is employed as seedling layers and the growth of atomic layer deposition (ALD) dielectric is investigated in each step using STM.
A k-space method for acoustic propagation using coupled first-order equations in three dimensions.
Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C
2009-09-01
A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
NASA Astrophysics Data System (ADS)
Sharma, Neetika; Verma, Neha; Jogi, Jyotika
2017-11-01
This paper models the scattering limited electron transport in a nano-dimensional In0.52Al0.48As/In0.53Ga0.47As/InP heterostructure. An analytical model for temperature dependent sheet carrier concentration and carrier mobility in a two dimensional electron gas, confined in a triangular potential well has been developed. The model accounts for all the major scattering process including ionized impurity scattering and lattice scattering. Quantum mechanical variational technique is employed for studying the intrasubband scattering mechanism in the two dimensional electron gas. Results of various scattering limited structural parameters such as energy band-gap and functional parameters such as sheet carrier concentration, scattering rate and mobility are presented. The model corroborates the dominance of ionized impurity scattering mechanism at low temperatures and that of lattice scattering at high temperatures, both in turn limiting the carrier mobility. Net mobility obtained taking various scattering mechanisms into account has been found in agreement with earlier reported results, thus validating the model.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas
2012-07-01
Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.
The Edge States of the BF System and the London Equations
NASA Astrophysics Data System (ADS)
Balachandran, A. P.; Teotonio-Sobrinho, P.
It is known that the 3D Chern-Simons interaction describes the scaling limit of a quantum Hall system and predicts edge currents in a sample with boundary, the currents generating a chiral U(1) Kac-Moody algebra. It is no doubt also recognized that, in a somewhat similar way, the 4D BF interaction (with B a two-form, dB the dual *j of the electromagnetic current, and F the electromagnetic field form) describes the scaling limit of a superconductor. We show in this paper that there are edge excitations in this model as well for manifolds with boundaries. They are the modes of a scalar field with invariance under the group of diffeomorphisms (diffeos) of the bounding spatial two-manifold. Not all diffeos of this group seem implementable by operators in quantum theory, the implementable group being a subgroup of volume-preserving diffeos. The BF system in this manner can lead to the w1+∞ algebra and its variants. Lagrangians for fields on the bounding manifold which account for the edge observables on quantization are also presented. They are the analogs of the (1+1)-dimensional massless scalar field Lagrangian describing the edge modes of an Abelian Chern-Simons theory with a disk as the spatial manifold. We argue that the addition of “Maxwell” terms constructed from F∧*F and dB∧*dB does not affect the edge states, and that the augmented Lagrangian has an infinite number of conserved charges—the aforementioned scalar field modes—localized at the edges. This Lagrangian is known to describe London equations and a massive vector field. A (3+1)-dimensional generalization of the Hall effect involving vortices coupled to B is also proposed.
Annealed Scaling for a Charged Polymer
NASA Astrophysics Data System (ADS)
Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.
2016-03-01
This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arciprete, F.; Placidi, E.; Sessi, V.
2006-07-24
The two- to three-dimensional growth mode transition in the InAs/GaAs(001) heterostructure has been investigated by means of atomic force microscopy. The kinetics of the density of three-dimensional islands indicates two transition onsets at 1.45 and 1.59 ML of InAs coverage, corresponding to two separate families, small and large dots. According to the scaling analysis and volume measurements, the transition between the two families of quantum dots and the explosive nucleation of the large ones is triggered by the erosion of the step edges.
Structure and coarsening at the surface of a dry three-dimensional aqueous foam.
Roth, A E; Chen, B G; Durian, D J
2013-12-01
We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.
Ecosystem processes at the watershed scale: extending optimality theory from plot to catchment
Taehee Hwang; Lawrence Band; T.C. Hale
2009-01-01
The adjustment of local vegetation conditions to limiting soil water by either maximizing productivity or minimizing water stress has been an area of central interest in ecohydrology since Eaglesonâs classic study. This work has typically been limited to consider one-dimensional exchange and cycling within patches and has not incorporated the effects of lateral...
Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids
NASA Astrophysics Data System (ADS)
Szasz, Aaron; Ilan, Roni; Moore, Joel E.
2017-02-01
We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.
Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence
NASA Astrophysics Data System (ADS)
Reeves, Matthew T.; Billam, Thomas P.; Yu, Xiaoquan; Bradley, Ashton S.
2017-11-01
We report evidence for an enstrophy cascade in large-scale point-vortex simulations of decaying two-dimensional quantum turbulence. Devising a method to generate quantum vortex configurations with kinetic energy narrowly localized near a single length scale, the dynamics are found to be well characterized by a superfluid Reynolds number Res that depends only on the number of vortices and the initial kinetic energy scale. Under free evolution the vortices exhibit features of a classical enstrophy cascade, including a k-3 power-law kinetic energy spectrum, and constant enstrophy flux associated with inertial transport to small scales. Clear signatures of the cascade emerge for N ≳500 vortices. Simulating up to very large Reynolds numbers (N =32 768 vortices), additional features of the classical theory are observed: the Kraichnan-Batchelor constant is found to converge to C'≈1.6 , and the width of the k-3 range scales as Res1 /2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Y. F.; Bazin, C.; Wohlfeld, K.
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
Estimation of the vortex length scale and intensity from two-dimensional samples
NASA Technical Reports Server (NTRS)
Reuss, D. L.; Cheng, W. P.
1992-01-01
A method is proposed for estimating flow features that influence flame wrinkling in reciprocating internal combustion engines, where traditional statistical measures of turbulence are suspect. Candidate methods were tested in a computed channel flow where traditional turbulence measures are valid and performance can be rationally evaluated. Two concepts are tested. First, spatial filtering is applied to the two-dimensional velocity distribution and found to reveal structures corresponding to the vorticity field. Decreasing the spatial-frequency cutoff of the filter locally changes the character and size of the flow structures that are revealed by the filter. Second, vortex length scale and intensity is estimated by computing the ensemble-average velocity distribution conditionally sampled on the vorticity peaks. The resulting conditionally sampled 'average vortex' has a peak velocity less than half the rms velocity and a size approximately equal to the two-point-correlation integral-length scale.
Brownian Dynamics simulations of model colloids in channel geometries and external fields
NASA Astrophysics Data System (ADS)
Siems, Ullrich; Nielaba, Peter
2018-04-01
We review the results of Brownian Dynamics simulations of colloidal particles in external fields confined in channels. Super-paramagnetic Brownian particles are well suited two- dimensional model systems for a variety of problems on different length scales, ranging from pedestrian walking through a bottleneck to ions passing ion-channels in living cells. In such systems confinement into channels can have a great influence on the diffusion and transport properties. Especially we will discuss the crossover from single file diffusion in a narrow channel to the diffusion in the extended two-dimensional system. Therefore a new algorithm for computing the mean square displacement (MSD) on logarithmic time scales is presented. In a different study interacting colloidal particles were dragged over a washboard potential and are additionally confined in a two-dimensional micro-channel. In this system kink and anti-kink solitons determine the depinning process of the particles from the periodic potential.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Borovsky, Joseph E.
1992-01-01
The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.
Avalanches and plasticity for colloids in a time dependent optical trap
Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles
2015-08-25
Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.
Simulation of wave propagation in three-dimensional random media
NASA Astrophysics Data System (ADS)
Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1995-04-01
Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of
Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A
2011-03-01
Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.
Thrust performance of a variable-geometry, divergent exhaust nozzle on a turbojet engine at altitude
NASA Technical Reports Server (NTRS)
Straight, D. M.; Collom, R. R.
1983-01-01
A variable geometry, low aspect ratio, nonaxisymmetric, two dimensional, convergent-divergent exhaust nozzle was tested at simulated altitude on a turbojet engine to obtain baseline axial, dry thrust performance over wide ranges of operating nozzle pressure ratios, throat areas, and internal expansion area ratios. The thrust data showed good agreement with theory and scale model test results after the data were corrected for seal leakage and coolant losses. Wall static pressure profile data were also obtained and compared with one dimensional theory and scale model data. The pressure data indicate greater three dimensional flow effects in the full scale tests than with models. The leakage and coolant penalties were substantial, and the method to determine them is included.
Irreversibility inversions in two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew D.; De Lillo, Filippo; Boffetta, Guido
2018-02-01
In this paper, we consider a recent theoretical prediction [Bragg et al., Phys. Fluids 28, 013305 (2016), 10.1063/1.4939694] that for inertial particles in two-dimensional (2D) turbulence, the nature of the irreversibility of the particle-pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This nontrivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In three-dimensional (3D) turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D turbulence, the two mechanisms have opposite effects because of the flux of energy from the small to the large scales. We supplement the qualitative argument given by Bragg et al. [Phys. Fluids 28, 013305 (2016), 10.1063/1.4939694] by deriving quantitative predictions of this effect in the short time limit. We confirm the theoretical predictions using results of inertial particle dispersion in a direct numerical simulation of 2D turbulence. A more general finding of this analysis is that in turbulent flows with an inverse energy flux, inertial particles may yet exhibit a net downscale flux of kinetic energy because of their nonlocal-in-time dynamics.
Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.
Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto
2012-12-14
We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.
Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.
Jiang, Zhang; Lin, Xiao-Min; Sprung, Michael; Narayanan, Suresh; Wang, Jin
2010-03-10
Critical photonic, electronic, and magnetic applications of two-dimensional nanocrystal superlattices often require nanostructures in perfect single-crystal phases with long-range order and limited defects. Here we discovered a crystalline phase with quasi-long-range positional order for two-dimensional nanocrystal superlattice domains self-assembled at the liquid-air interface during droplet evaporation, using in situ time-resolved X-ray scattering along with rigorous theories on two dimensional crystal structures. Surprisingly, it was observed that drying these superlattice domains preserved only an orientational order but not a long-range positional order, also supported by quantitative analysis of transmission electron microscopy images.
Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets
NASA Astrophysics Data System (ADS)
Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.
2017-06-01
We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.
Integrability of conformal fishnet theory
NASA Astrophysics Data System (ADS)
Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory
2018-01-01
We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Dongbin
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
Nano/biosensors based on large-area graphene
NASA Astrophysics Data System (ADS)
Ducos, Pedro Jose
Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an easily scalable fabrication process. A large-area graphene growth, transfer and photolithography process was developed that allowed the scaling of production of devices from a few devices per single transfer in a chip, to over a thousand devices per transfer in a full wafer of fabrication. Two approaches to biomolecules sensing were then investigated, through nanoparticles and through chemical linkers. Gold and platinum Nanoparticles were used as intermediary agents to immobilize a biomolecule. First, gold nanoparticles were monodispersed and functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Second, devices are modified with platinum nanoparticles and functionalized with thiolated genetically engineered scFv HER3 antibodies to realize a HER3 biosensor. Sensors retain the high affinity from the scFv fragment and show a detection limit of 300 pM. We then show covalent and non-covalent chemical linkers between graphene and antibodies. The chemical linker 1-pyrenebutanoic acid succinimidyl ester (pyrene) stacks to the graphene by Van der Waals interaction, being a completely non-covalent interaction. The linker 4-Azide-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester (azide) is a photoactivated perfluorophenyl azide that covalently binds to graphene. A comparison is shown for genetically engineered scFv HER3 antibodies and show a low detection limit of 10 nM and 100 pM for the pyrene and azide, respectively. Finally, we use the azide linker to demonstrate a large-scale fabrication of a multiplexed array for Lyme disease. Simultaneous detection of a mixture of two target proteins of the Lyme disease bacterium (Borrelia burgdorferi), this is done by separating the antibodies corresponding to each target in the mixture to different regions of the chip. We show we can differentiate concentrations of the two targets.
Solution of axisymmetric and two-dimensional inviscid flow over blunt bodies by the method of lines
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1978-01-01
Comparisons with experimental data and the results of other computational methods demonstrated that very accurate solutions can be obtained by using relatively few lines with the method of lines approach. This method is semidiscrete and has relatively low core storage requirements as compared with fully discrete methods since very little data were stored across the shock layer. This feature is very attractive for three dimensional problems because it enables computer storage requirements to be reduced by approximately an order of magnitude. In the present study it was found that nine lines was a practical upper limit for two dimensional and axisymmetric problems. This condition limits application of the method to smooth body geometries where relatively few lines would be adequate to describe changes in the flow variables around the body. Extension of the method to three dimensions was conceptually straightforward; however, three dimensional applications would also be limited to smooth body geometries although not necessarily to total of nine lines.
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Moorkamp, M.; Jones, A. G.
2014-12-01
Most electromagnetic (EM) geophysical methods focus on the electrical conductivity of rocks and sediments to determine the geological structure of the subsurface. Electric conductivity itself is measured in the laboratory with a wide range of instruments and techniques. These measurements seldom return a compatible result. The presence of partially-interconnected random pathways of electrically conductive materials in resistive hosts has been studied for decades, and recently with increasing interest. To comprehend which conductive mechanism scales from the microstructures up to field electrical conductivity measurements, two main branch of studies have been undertaken: statistical probability of having a conductive pathways and mixing laws. Several numerical approaches have been tested to understand the effects of interconnected pathways of conductors at field scale. Usually these studies were restricted in two ways: the sources are considered constant in time (i.e., DC) and the domain is, with few exception, two-dimensional. We simulated the effects of time-varying EM sources on the conductivity measured on the surface of a three-dimensional randomly generated body embedded in an uniform host by using electromagnetic induction equations. We modelled a two-phase mixture of resistive and conductive elements with the goal of comparing the conductivity measured on field scale with the one proper of the elements constituting the random rock, and to test how the internal structures influence the directionality of the responses. Moreover, we modelled data from randomly generated bodies characterized by coherent internal structures, to check the effect of the named structures on the anisotropy of the effective conductivity. We compared these values with the electrical conductivity limits predicted by Hashin-Shtrikman bounds and the effective conductivity predicted by the Archie's law, both cast in its classic form and in an updated that allow to take in account two materials. The same analysis was done for both the resistive and the conductive conductivity values for the anisotropic case.
Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min
Matsuba, Kazuaki; Wang, Chengxiang; Saruwatari, Kazuko; Uesusuki, Yusuke; Akatsuka, Kosho; Osada, Minoru; Ebina, Yasuo; Ma, Renzhi; Sasaki, Takayoshi
2017-01-01
Controlled arrangement of molecularly thin two-dimensional (2D) materials on a substrate, particularly into precisely organized mono- and multilayer structures, is a key to design a nanodevice using their unique and enhanced physical properties. Several techniques such as mechanical transfer process and Langmuir-Blodgett deposition have been applied for this purpose, but they have severe restrictions for large-scale practical applications, for example, limited processable area and long fabrication time, requiring skilled multistep operations. We report a facile one-pot spin-coating method to realize dense monolayer tiling of various 2D materials, such as graphene and metal oxide nanosheets, within 1 min over a wide area (for example, a 30-mmφ substrate). Centrifugal force drives the nanosheets in a thin fluid layer to the substrate edge where they are packed edge to edge all the way to the central region, without forming overlaps. We investigated the relationship between precursor concentration, rotation speed, and ultraviolet-visible absorbance and developed an effective method to optimize the parameters for neat monolayer films. The multilayer buildup is feasible by repeating the spin-coating process combined with a heat treatment at moderate temperature. This versatile solution-based technique will provide both fundamental and practical advancements in the rapid large-scale production of artificial lattice-like films and nanodevices based on 2D materials. PMID:28695198
Dark lump excitations in superfluid Fermi gases
NASA Astrophysics Data System (ADS)
Xu, Yan-Xia; Duan, Wen-Shan
2012-11-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
NASA Astrophysics Data System (ADS)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.
2017-12-01
We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.
NASA Astrophysics Data System (ADS)
Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus
2017-04-01
Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.
Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors
Liu, Erfu; Fu, Yajun; Wang, Yaojia; ...
2015-05-07
Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS₂) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS₂ field-effect transistors, which exhibit competitive performance with large current on/off ratios (~10⁷) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconductingmore » materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS₂ anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.« less
Current-voltage scaling of a Josephson-junction array at irrational frustration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granato, E.
1996-10-01
Numerical simulations of the current-voltage characteristics of an ordered two-dimensional Josephson-junction array at an irrational flux quantum per plaquette are presented. The results are consistent with a scaling analysis that assumes a zero-temperature vortex-glass transition. The thermal-correlation length exponent characterizing this transition is found to be significantly different from the corresponding value for vortex-glass models in disordered two-dimensional superconductors. This leads to a current scale where nonlinearities appear in the current-voltage characteristics decreasing with temperature {ital T} roughly as {ital T}{sup 2} in contrast with the {ital T}{sup 3} behavior expected for disordered models. {copyright} {ital 1996 The American Physicalmore » Society.}« less
Magnetic field line random walk in two-dimensional dynamical turbulence
NASA Astrophysics Data System (ADS)
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.
Universal entanglement spectra of gapped one-dimensional field theories
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei
2017-03-01
We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.
Edelbring, Samuel
2012-08-15
The degree of learners' self-regulated learning and dependence on external regulation influence learning processes in higher education. These regulation strategies are commonly measured by questionnaires developed in other settings than in which they are being used, thereby requiring renewed validation. The aim of this study was to psychometrically evaluate the learning regulation strategy scales from the Inventory of Learning Styles with Swedish medical students (N = 206). The regulation scales were evaluated regarding their reliability, scale dimensionality and interrelations. The primary evaluation focused on dimensionality and was performed with Mokken scale analysis. To assist future scale refinement, additional item analysis, such as item-to-scale correlations, was performed. Scale scores in the Swedish sample displayed good reliability in relation to published results: Cronbach's alpha: 0.82, 0.72, and 0.65 for self-regulation, external regulation and lack of regulation scales respectively. The dimensionalities in scales were adequate for self-regulation and its subscales, whereas external regulation and lack of regulation displayed less unidimensionality. The established theoretical scales were largely replicated in the exploratory analysis. The item analysis identified two items that contributed little to their respective scales. The results indicate that these scales have an adequate capacity for detecting the three theoretically proposed learning regulation strategies in the medical education sample. Further construct validity should be sought by interpreting scale scores in relation to specific learning activities. Using established scales for measuring students' regulation strategies enables a broad empirical base for increasing knowledge on regulation strategies in relation to different disciplinary settings and contributes to theoretical development.
Black-hole/near-horizon-CFT duality and 4 dimensional classical spacetimes
NASA Astrophysics Data System (ADS)
Rodriguez, Leo L.
2011-09-01
In this thesis we accomplish two goals: We construct a two dimensional conformal field theory (CFT), in the form of a Liouville theory, in the near horizon limit for three and four dimensions black holes. The near horizon CFT assumes the two dimensional black hole solutions that were first introduced by Christensen and Fulling (1977 Phys. Rev. D 15 2088-104) and later expanded to a greater class of black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two dimensions black holes admit a Diff( S1) or Witt subalgebra, which upon quantization in the horizon limit becomes Virasoro with calculable central charge. These charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking entropy of the four and three dimensions black holes via the Cardy formula (Blote et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Furthermore, the two dimensions CFT's energy momentum tensor is anomalous, i.e. its trace is nonzero. However, In the horizon limit the energy momentum tensor becomes holomorphic equaling the Hawking flux of the four and three dimensions black holes. This encoding of both entropy and temperature provides a uniformity in the calculation of black hole thermodynamics and statistical quantities for the non local effective action approach. We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS) black hole, given by its two dimensional analogue a la Robinson and Wilczek, is asymptotically AdS 2 and dual to a one dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy-momentum-tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy's Formula. Our derived central charge also agrees with the near extremal Kerr/CFT Correspondence in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two dimensional analogue (RW2DA) to conformal matter.
NASA Astrophysics Data System (ADS)
Evans, Kellie Michele
Larger than Life (LtL), is a four-parameter family of two-dimensional cellular automata that generalizes John Conway's Game of Life (Life) to large neighborhoods and general birth and survival thresholds. LtL was proposed by David Griffeath in the early 1990s to explore whether Life might be a clue to a critical phase point in the threshold-range scaling limit. The LtL family of rules includes Life as well as a rich set of two-dimensional rules, some of which exhibit dynamics vastly different from Life. In this chapter we present rigorous results and conjectures about the ergodic classifications of several sets of "simplified" LtL rules, each of which has a property that makes the rule easier to analyze. For example, these include symmetric rules such as the threshold voter automaton and the anti-voter automaton, monotone rules such as the threshold growth models, and others. We also provide qualitative results and speculation about LtL rules on various phase boundaries and summarize results and open questions about our favorite "Life-like" LtL rules.
The Two- and Three-Dimensional Models of the HK-WISC: A Confirmatory Factor Analysis.
ERIC Educational Resources Information Center
Chan, David W.; Lin, Wen-Ying
1996-01-01
Confirmatory analyses on the Hong Kong Wechsler Intelligence Scale for Children (HK-WISC) provided support for composite score interpretation based on the two- and three-dimensional models across age levels. Test sample was comprised of 1,100 children, ranging in age from 5 to 15 years at all 11 age levels specified by the HK-WISC. (KW)
A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells
NASA Astrophysics Data System (ADS)
Tourani, Abbas; White, Peter; Ivey, Paul
2014-06-01
Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-05-01
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
A one dimensional moving bed biofilm reactor model for nitrification of municipal wastewaters.
Barry, Ugo; Choubert, Jean-Marc; Canler, Jean-Pierre; Pétrimaux, Olivier; Héduit, Alain; Lessard, Paul
2017-08-01
This work presents a one-dimensional model of a moving bed bioreactor (MBBR) process designed for the removal of nitrogen from raw wastewaters. A comprehensive experimental strategy was deployed at a semi-industrial pilot-scale plant fed with a municipal wastewater operated at 10-12 °C, and surface loading rates of 1-2 g filtered COD/m 2 d and 0.4-0.55 g NH 4 -N/m 2 d. Data were collected on influent/effluent composition, and on measurement of key variables or parameters (biofilm mass and maximal thickness, thickness of the limit liquid layer, maximal nitrification rate, oxygen mass transfer coefficient). Based on time-course variations in these variables, the MBBR model was calibrated at two time-scales and magnitudes of dynamic conditions, i.e., short-term (4 days) calibration under dynamic conditions and long-term (33 days) calibration, and for three types of carriers. A set of parameters suitable for the conditions was proposed, and the calibrated parameter set is able to simulate the time-course change of nitrogen forms in the effluent of the MBBR tanks, under the tested operated conditions. Parameters linked to diffusion had a strong influence on how robustly the model is able to accurately reproduce time-course changes in effluent quality. Then the model was used to optimize the operations of MBBR layout. It was shown that the main optimization track consists of the limitation of the aeration supply without changing the overall performance of the process. Further work would investigate the influence of the hydrodynamic conditions onto the thickness of the limit liquid layer and the "apparent" diffusion coefficient in the biofilm parameters.
Steiner, Florian; Poelking, Carl; Niedzialek, Dorota; Andrienko, Denis; Nelson, Jenny
2017-05-03
We present a multi-scale model for charge transport across grain boundaries in molecular electronic materials that incorporates packing disorder, electrostatic and polarisation effects. We choose quasi two-dimensional films of tri-isopropylsilylethynyl pentacene (TIPS-P) as a model system representative of technologically relevant crystalline organic semiconductors. We use atomistic molecular dynamics, with a force-field specific for TIPS-P, to generate and equilibrate polycrystalline two-dimensional thin films. The energy landscape is obtained by calculating contributions from electrostatic interactions and polarization. The variation in these contributions leads to energetic barriers between grains. Subsequently, charge transport is simulated using a kinetic Monte-Carlo algorithm. Two-grain systems with varied mutual orientation are studied. We find relatively little effect of long grain boundaries due to the presence of low impedance pathways. However, effects could be more pronounced for systems with limited inter-grain contact areas. Furthermore, we present a lattice model to generalize the model for small molecular systems. In the general case, depending on molecular architecture and packing, grain boundaries can result in interfacial energy barriers, traps or a combination of both with qualitatively different effects on charge transport.
Mallari, K J B; Kim, H; Pak, G; Aksoy, H; Yoon, J
2015-01-01
At the hillslope scale, where the rill-interrill configuration plays a significant role, infiltration is one of the major hydrologic processes affecting the generation of overland flow. As such, it is important to achieve a good understanding and accurate modelling of this process. Horton's infiltration has been widely used in many hydrologic models, though it has been occasionally found limited in handling adequately the antecedent moisture conditions (AMC) of soil. Holtan's model, conversely, is thought to be able to provide better estimation of infiltration rates as it can directly account for initial soil water content in its formulation. In this study, the Holtan model is coupled to an existing overland flow model, originally using Horton's model to account for infiltration, in an attempt to improve the prediction of runoff. For calibration and validation, experimental data from a two-dimensional flume which is incorporated with hillslope configuration have been used. Calibration and validation results showed that Holtan's model was able to improve the modelling results with better performance statistics than the Horton-coupled model. Holtan's infiltration equation, which allows accounting for AMC, provided an advantage and resulted in better runoff prediction of the model.
The development of laser speckle velocimetry for the study of vortical flows
NASA Technical Reports Server (NTRS)
Krothapalli, A.
1991-01-01
A new experimental technique commonly known as PIDV (particle image displacement velocity) was developed to measure an instantaneous two dimensional velocity fluid in a selected plane of the flow field. This technique was successfully applied to the study of several problems: (1) unsteady flows with large scale vortical structures; (2) the instantaneous two dimensional flow in the transition region of a rectangular air jet; and (3) the instantaneous flow over a circular bump in a transonic flow. In several other experiments PIDV is routinely used as a non-intrusive measurement technique to obtain instantaneous two dimensional velocity fields.
Psychometric properties of the Brand Personality Scale: evidence from a business school.
Caruana, Albert; Pitt, Leyland F; Berthon, Pierre; Berthon, J-P
2007-06-01
The Brand Personality Scale has received considerable attention and has been frequently used and cited in the branding literature. This paper describes an investigation of the psychometric characteristics of the Brand Personality Scale in a business school context where umbrella branding is used. A sample (N=262) of students attending the MBA program of a major business school in eastern USA completed the scale. Results indicate problems with the scale's dimensionality, poor reliability, convergent and nomological validity of the Ruggedness dimension, and lack of support for discriminant validity. Managerial and research implications and limitations are noted.
Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Sahoo, G.; Biferale, L.; Alexakis, A.
2017-12-01
Direction of energy transfer among the scales in a turbulent flow has asignificant role in the macroscopic properties of the flow. It has been arguedthat the dimensionality and the ideal invariants of the flow determine thedirection of the cascade of energy. Because of two sign definite invariants,energy and enstrophy, of two-dimensional turbulence, energy is transferredbackwards from small scales to larger scales and enstrophy is transferred tosmaller scales. However in three-dimensions, while energy is sign-definite, theother invariant helicity does not have a definite sign and therefore there isno constraint on the direction of transfer. It is merely an empiricalobservation that the energy and helicity cascade to the smaller scales in athree-dimensional turbulent flow. Many systems, however, show bidirectionalsplit energy transfer, e.g., flows under strong rotation and stratification, inthin layers or under external magnetic field. The appearance of inverse energyflux in such systems are often considered as a result of enhancement ofquasi-2D Fourier interactions in a 3D background. We designed a model system[1] where the triadic interactions in Navier-Stokes equations are enhanced orsuppressed in a controlled manner without affecting the degrees of freedom,ideal invariants or breaking any of the symmetries of NSE. In our numericalsimulations that uses the tool of helical decomposition of velocity Fouriermodes, we introduced a parameter (0 ≤ λ ≤ 1) that controls therelative weight among homochiral triads and all the others in the nonlinearevolution. We show that by using this weighting protocol the turbulentevolution displays a sharp transition, for a critical value of the controlparameter, from forward to backward energy transfer but still keeping thedynamics fully three dimensional, isotropic, and parity invariant. [1] G Sahoo, A Alexakis and L Biferale, Phys. Rev. Lett. 118, 164501 (2017).
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
NASA Astrophysics Data System (ADS)
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
High-resolution two dimensional advective transport
Smith, P.E.; Larock, B.E.
1989-01-01
The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.
Flat dielectric metasurface lens array for three dimensional integral imaging
NASA Astrophysics Data System (ADS)
Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong
2018-05-01
In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.
Magnetotail dynamics under isobaric constraints
NASA Technical Reports Server (NTRS)
Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael
1994-01-01
Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.
NASA Astrophysics Data System (ADS)
Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo
2016-09-01
Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikheev, Evgeny; Himmetoglu, Burak; Kajdos, Adam P.
We analyze and compare the temperature dependence of the electron mobility of two- and three-dimensional electron liquids in SrTiO{sub 3}. The contributions of electron-electron scattering must be taken into account to accurately describe the mobility in both cases. For uniformly doped, three-dimensional electron liquids, the room temperature mobility crosses over from longitudinal optical (LO) phonon-scattering-limited to electron-electron-scattering-limited as a function of carrier density. In high-density, two-dimensional electron liquids, LO phonon scattering is completely screened and the mobility is dominated by electron-electron scattering up to room temperature. The possible origins of the observed behavior and the consequences for approaches to improvemore » the mobility are discussed.« less
Three-dimensional disc-satellite interaction: torques, migration, and observational signatures
NASA Astrophysics Data System (ADS)
Arzamasskiy, Lev; Zhu, Zhaohuan; Stone, James M.
2018-04-01
The interaction of a satellite with a gaseous disc results in the excitation of spiral density waves, which remove angular momentum from the orbit. In addition, if the orbit is not coplanar with the disc, three-dimensional effects will excite bending and eccentricity waves. We perform three-dimensional hydrodynamic simulations to study nonlinear disc-satellite interaction in inviscid protoplanetary discs for a variety of orbital inclinations from 0° to 180°. It is well known that three-dimensional effects are important even for zero inclination. In this work, we (1) show that for planets with small inclinations (as in the Solar system), effects such as the total torque and migration rate strongly depend on the inclination and are significantly different (about 2.5 times smaller) from the two-dimensional case, (2) give formulae for the migration rate, inclination damping, and precession rate of planets with different inclination angles in disc with different scale heights, and (3) present the observational signatures of a planet on an inclined orbit with respect to the protoplanetary disc. For misaligned planets, we find good agreement with linear theory in the limit of small inclinations, and with dynamical friction estimates for intermediate inclinations. We find that in the latter case, the dynamical friction force is not parallel to the relative planetary velocity. Overall, the derived formulae will be important for studying exoplanets with obliquity.
Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun
2018-06-01
The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.
On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows
NASA Technical Reports Server (NTRS)
Girimaji, S. S.; Ristorcelli, J. R.
1997-01-01
The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.
Exact solution of two interacting run-and-tumble random walkers with finite tumble duration
NASA Astrophysics Data System (ADS)
Slowman, A. B.; Evans, M. R.; Blythe, R. A.
2017-09-01
We study a model of interacting run-and-tumble random walkers operating under mutual hardcore exclusion on a one-dimensional lattice with periodic boundary conditions. We incorporate a finite, poisson-distributed, tumble duration so that a particle remains stationary whilst tumbling, thus generalising the persistent random walker model. We present the exact solution for the nonequilibrium stationary state of this system in the case of two random walkers. We find this to be characterised by two lengthscales, one arising from the jamming of approaching particles, and the other from one particle moving when the other is tumbling. The first of these lengthscales vanishes in a scaling limit where the continuous-space dynamics is recovered whilst the second remains finite. Thus the nonequilibrium stationary state reveals a rich structure of attractive, jammed and extended pieces.
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
Scaling analyses of the spectral dimension in 3-dimensional causal dynamical triangulations
NASA Astrophysics Data System (ADS)
Cooperman, Joshua H.
2018-05-01
The spectral dimension measures the dimensionality of a space as witnessed by a diffusing random walker. Within the causal dynamical triangulations approach to the quantization of gravity (Ambjørn et al 2000 Phys. Rev. Lett. 85 347, 2001 Nucl. Phys. B 610 347, 1998 Nucl. Phys. B 536 407), the spectral dimension exhibits novel scale-dependent dynamics: reducing towards a value near 2 on sufficiently small scales, matching closely the topological dimension on intermediate scales, and decaying in the presence of positive curvature on sufficiently large scales (Ambjørn et al 2005 Phys. Rev. Lett. 95 171301, Ambjørn et al 2005 Phys. Rev. D 72 064014, Benedetti and Henson 2009 Phys. Rev. D 80 124036, Cooperman 2014 Phys. Rev. D 90 124053, Cooperman et al 2017 Class. Quantum Grav. 34 115008, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151, Kommu 2012 Class. Quantum Grav. 29 105003). I report the first comprehensive scaling analysis of the small-to-intermediate scale spectral dimension for the test case of the causal dynamical triangulations of 3-dimensional Einstein gravity. I find that the spectral dimension scales trivially with the diffusion constant. I find that the spectral dimension is completely finite in the infinite volume limit, and I argue that its maximal value is exactly consistent with the topological dimension of 3 in this limit. I find that the spectral dimension reduces further towards a value near 2 as this case’s bare coupling approaches its phase transition, and I present evidence against the conjecture that the bare coupling simply sets the overall scale of the quantum geometry (Ambjørn et al 2001 Phys. Rev. D 64 044011). On the basis of these findings, I advance a tentative physical explanation for the dynamical reduction of the spectral dimension observed within causal dynamical triangulations: branched polymeric quantum geometry on sufficiently small scales. My analyses should facilitate attempts to employ the spectral dimension as a physical observable with which to delineate renormalization group trajectories in the hope of taking a continuum limit of causal dynamical triangulations at a nontrivial ultraviolet fixed point (Ambjørn et al 2016 Phys. Rev. D 93 104032, 2014 Class. Quantum Grav. 31 165003, Cooperman 2016 Gen. Relativ. Gravit. 48 1, Cooperman 2016 arXiv:1604.01798, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151).
Two Dimensional Mechanism for Insect Hovering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jane Wang, Z.
2000-09-04
Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitudemore » above which the averaged forces are sufficient. (c) 2000 The American Physical Society.« less
Universality of modular symmetries in two-dimensional magnetotransport
NASA Astrophysics Data System (ADS)
Olsen, K. S.; Limseth, H. S.; Lütken, C. A.
2018-01-01
We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.
NASA Astrophysics Data System (ADS)
Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David
2017-12-01
The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.
Rutkevich, Sergei B; Diehl, H W
2015-06-01
The O(n) ϕ(4) model on a strip bounded by a pair of planar free surfaces at separation L can be solved exactly in the large-n limit in terms of the eigenvalues and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. The scaling limit of a continuum version of this model is considered. It is shown that the self-consistent potential can be eliminated in favor of scattering data by means of appropriately extended methods of inverse scattering theory. The scattering data (Jost function) associated with the self-consistent potential are determined for the L=∞ semi-infinite case in the scaling regime for all values of the temperature scaling field t=(T-T(c))/T(c) above and below the bulk critical temperature T(c). These results are used in conjunction with semiclassical and boundary-operator expansions and a trace formula to derive exact analytical results for a number of quantities such as two-point functions, universal amplitudes of two excess surface quantities, the universal amplitude difference associated with the thermal singularity of the surface free energy, and potential coefficients. The asymptotic behaviors of the scaled eigenenergies and eigenfunctions of the self-consistent Schrödinger equation as function of x=t(L/ξ(+))(1/ν) are determined for x→-∞. In addition, the asymptotic x→-∞ forms of the universal finite-size scaling functions Θ(x) and ϑ(x) of the residual free energy and the Casimir force are computed exactly to order 1/x, including their x(-1)ln|x| anomalies.
Development of micromachine tool prototypes for microfactories
NASA Astrophysics Data System (ADS)
Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.
2002-11-01
At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.
Experimental two-dimensional quantum walk on a photonic chip
Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin
2018-01-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon–level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems. PMID:29756040
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
NASA Astrophysics Data System (ADS)
Morzfeld, M.; Fournier, A.; Hulot, G.
2014-12-01
We investigate the geophysical relevance of low-dimensional models of the geomagnetic dipole fieldby comparing these models to the signed relative paleomagnetic intensity over the past 2 Myr.The comparison is done via Bayesian statistics, implemented numerically by Monte Carlo (MC) sampling.We consider several MC schemes, as well as two data sets to show the robustness of our approach with respect to its numerical implementation and to the details of how the data are collected.The data we consider are the Sint-2000 [1] and PADM2M [2] data sets.We consider three stochastic differential equation (SDE) models and one deterministic model. Experiments with synthetic data show that it is feasible that a low dimensional modelcan learn the geophysical state from data of only the dipole field,and reveal the limitations of the low-dimensional models.For example, the G12 model [3] (a deterministic model that generates dipole reversals by crisis induced intermittency)can only match either one of the two important time scales we find in the data. The MC sampling approach also allows usto use the models to make predictions of the dipole field.We assess how reliably dipole reversals can be predictedwith our approach by hind-casting five reversals documented over the past 2 Myr. We find that, besides its limitations, G12 can be used to predict reversals reliably,however only with short lead times and over short horizons. The scalar SDE models on the other hand are not useful for prediction of dipole reversals.References Valet, J.P., Maynadier,L and Guyodo, Y., 2005, Geomagnetic field strength and reversal rate over the past 2 Million years, Nature, 435, 802-805. Ziegler, L.B., Constable, C.G., Johnson, C.L. and Tauxe, L., 2011, PADM2M: a penalized maximum likelihood model of the 0-2 Ma paleomagnetic axial dipole moment, Geophysical Journal International, 184, 1069-1089. Gissinger, C., 2012, A new deterministic model for chaotic reversals, European Physical Journal B, 85:137.
Catastrophic desert formation in Daisyworld.
Ackland, Graeme J; Clark, Michael A; Lenton, Timothy M
2003-07-07
Feedback between life and its environment is ubiquitous but the strength of coupling and its global implications remain hotly debated. Abrupt changes in the abundance of life for small changes in forcing provide one indicator of regulation, for example, when vegetation-climate feedback collapses in the formation of a desert. Here we use a two-dimensional "Daisyworld" model with curvature to show that catastrophic collapse of life under gradual forcing provides a testable indicator of environmental feedback. When solar luminosity increases to a critical value, a desert forms across a wide band of the planet. The scale of collapse depends on the strength of feedback. The efficiency of temperature regulation is limited by mutation rate in an analogous manner to the limitation of adaptive fitness in evolutionary theories. The final state of the system emerging from single-site rules can be described by two global quantities: optimization of temperature regulation and maximization of diversity, which are mathematically analogous to energy and entropy in thermodynamics.
Schramm-Loewner (SLE) analysis of quasi two-dimensional turbulent flows
NASA Astrophysics Data System (ADS)
Thalabard, Simon
2012-02-01
Quasi two-dimensional turbulence can be observed in several cases: for example, in the laboratory using liquid soap films, or as the result of a strong imposed rotation as obtained in three-dimensional large direct numerical simulations. We study and contrast SLE properties of such flows, in the former case in the inverse cascade of energy to large scale, and in the latter in the direct cascade of energy to small scales in the presence of a fully-helical forcing. We thus examine the geometric properties of these quasi 2D regimes in the context of stochastic geometry, as was done for the 2D inverse cascade by Bernard et al. (2006). We show that in both cases the data is compatible with self-similarity and with SLE behaviors, whose different diffusivities can be heuristically determined.
Three-disk microswimmer in a supported fluid membrane
NASA Astrophysics Data System (ADS)
Ota, Yui; Hosaka, Yuto; Yasuda, Kento; Komura, Shigeyuki
2018-05-01
A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.
A holographic model of the Kondo effect
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Wu, Jackson
2013-12-01
We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large- N limit, with spin SU( N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large- N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS 3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS 2 sub-space. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.
Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times
NASA Astrophysics Data System (ADS)
Tomita, K.
2014-12-01
Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J.
2013-10-01
Acoustically induced vibrations of the tympanic membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and three-dimensional (3-D) displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. Sound-induced 3-D displacements of the TM are estimated from shape and one-dimensional displacements measured in cadaveric chinchillas using a lensless dual-wavelength digital holography system (DWDHS). The DWDHS consists of laser delivery, optical head, and computing platform subsystems. Shape measurements are performed in double-exposure mode with the use of two wavelengths of a tunable laser, while nanometer-scale displacements are measured along a single sensitivity direction with a constant wavelength. Taking into consideration the geometrical and dimensional constrains imposed by the anatomy of the TM, we combine principles of thin-shell theory together with displacement measurements along a single sensitivity vector and TM surface shape to extract the three principal components of displacement in the full-field-of-view. We test, validate, and identify limitations of this approach via the application of finite element method to artificial geometries.
Small scale exact coherent structures at large Reynolds numbers in plane Couette flow
NASA Astrophysics Data System (ADS)
Eckhardt, Bruno; Zammert, Stefan
2018-02-01
The transition to turbulence in plane Couette flow and several other shear flows is connected with saddle node bifurcations in which fully three-dimensional, nonlinear solutions to the Navier-Stokes equation, so-called exact coherent states (ECS), appear. As the Reynolds number increases, the states undergo secondary bifurcations and their time-evolution becomes increasingly more complex. Their spatial complexity, in contrast, remains limited so that these states cannot contribute to the spatial complexity and cascade to smaller scales expected for higher Reynolds numbers. We here present families of scaling ECS that exist on ever smaller scales as the Reynolds number is increased. We focus in particular on two such families for plane Couette flow, one centered near the midplane and the other close to a wall. We discuss their scaling and localization properties and the bifurcation diagrams. All solutions are localized in the wall-normal direction. In the spanwise and downstream direction, they are either periodic or localized as well. The family of scaling ECS localized near a wall is reminiscent of attached eddies, and indicates how self-similar ECS can contribute to the formation of boundary layer profiles.
Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes
NASA Technical Reports Server (NTRS)
Evans, P. F.; Hackett, J. E.
1976-01-01
Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.
Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Lianyi; Lu, Haifeng; Cao, Gaoqing
2015-08-14
We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less
LHC multijet events as a probe for anomalous dimension-six gluon interactions
Krauss, Frank; Kuttimalai, Silvan; Plehn, Tilman
2017-02-22
Higher-dimensional multigluon interactions affect essentially all effective Lagrangian analyses at the LHC. We show that, contrary to common lore, such operators are best constrained in multijet production. Our limit on the corresponding new physics scale in the multi-TeV range exceeds the typical reach of global dimension-six Higgs boson and top analyses. As a result, this implies that the pure Yang-Mills operator can safely be neglected in almost all specific higher-dimensional analyses at Run II.
LHC multijet events as a probe for anomalous dimension-six gluon interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Frank; Kuttimalai, Silvan; Plehn, Tilman
Higher-dimensional multigluon interactions affect essentially all effective Lagrangian analyses at the LHC. We show that, contrary to common lore, such operators are best constrained in multijet production. Our limit on the corresponding new physics scale in the multi-TeV range exceeds the typical reach of global dimension-six Higgs boson and top analyses. As a result, this implies that the pure Yang-Mills operator can safely be neglected in almost all specific higher-dimensional analyses at Run II.
Percolation analysis of nonlinear structures in scale-free two-dimensional simulations
NASA Technical Reports Server (NTRS)
Dominik, Kurt G.; Shandarin, Sergei F.
1992-01-01
Results are presented of applying percolation analysis to several two-dimensional N-body models which simulate the formation of large-scale structure. Three parameters are estimated: total area (a(c)), total mass (M(C)), and percolation density (rho(c)) of the percolating structure at the percolation threshold for both unsmoothed and smoothed (with different scales L(s)) nonlinear with filamentary structures, confirming early speculations that this type of model has several features of filamentary-type distributions. Also, it is shown that, by properly applying smoothing techniques, many problems previously considered detrimental can be dealt with and overcome. Possible difficulties and prospects with the use of this method are discussed, specifically relating to techniques and methods already applied to CfA deep sky surveys. The success of this test in two dimensions and the potential for extrapolation to three dimensions is also discussed.
NASA Astrophysics Data System (ADS)
Hanifpour, M.; Francois, N.; Robins, V.; Kingston, A.; Vaez Allaei, S. M.; Saadatfar, M.
2015-06-01
Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕBernal≈0.64 . We study packings of monosized hard spheres whose density spans over a wide range (0.59 <ϕ <0.72 ) . These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕBernal≈0.64 and ϕc≈0.68 . These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable.
NASA Astrophysics Data System (ADS)
Lima, L. S.
2018-06-01
We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.
Efficient High Order Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations: Talk Slides
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Brian R. (Technical Monitor)
2002-01-01
This viewgraph presentation presents information on the attempt to produce high-order, efficient, central methods that scale well to high dimension. The central philosophy is that the equations should evolve to the point where the data is smooth. This is accomplished by a cyclic pattern of reconstruction, evolution, and re-projection. One dimensional and two dimensional representational methods are detailed, as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JiangTao Cheng; Ping Yu; William Headley
2001-12-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally and theoretically that the optical coherence imaging system is optimized for sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures that are statistically similar to real porous media has shown the existence of a unique relationship among these hydraulic parameters. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has the same length-scale as the values of IAV determined for the two-dimensional micro-models.« less
Experiments on an unsteady, three-dimensional separation
NASA Technical Reports Server (NTRS)
Henk, R. W.; Reynolds, W. C.; Reed, H. L.
1992-01-01
Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.
Analytical and phenomenological studies of rotating turbulence
NASA Technical Reports Server (NTRS)
Mahalov, Alex; Zhou, YE
1995-01-01
A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.
Bagley, James R; Galpin, Andrew J
2015-01-01
Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex biological systems. Here, we utilize technology available at most universities to print three-dimensional (3D) scale models of actual human muscle cells (myofibers) out of bioplastic materials. The same methodological approach could be applied to nearly any cell type or molecular structure. This advancement is significant because historically, two-dimensional (2D) myocellular images have proven insufficient for detailed analysis of organelle organization and morphology. 3D imaging fills this void by providing accurate and quantifiable myofiber structural data. Manipulating tangible 3D models combats 2D limitation and gives students new perspectives and alternative learning experiences that may assist their understanding. This approach also exposes learners to 1) human muscle cell extraction and isolation, 2) targeted fluorescence labeling, 3) confocal microscopy, 4) image processing (via open-source software), and 5) 3D printing bioplastic scale-models (×500 larger than the actual cells). Creating these physical models may further student's interest in the invisible world of molecular and cellular biology. Furthermore, this interdisciplinary laboratory project gives instructors of all biological disciplines a new teaching tool to foster integrative thinking. © 2015 The International Union of Biochemistry and Molecular Biology.
Finite-size scaling of clique percolation on two-dimensional Moore lattices
NASA Astrophysics Data System (ADS)
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Scaling ansatz for the ac magnetic response in two-dimensional spin ice
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi; Takatsu, Hiroshi; Goto, Kazuki; Kadowaki, Hiroaki
2014-10-01
A theory for frequency-dependent magnetic susceptibility χ (ω ) is developed for thermally activated magnetic monopoles in a two-dimensional (2D) spin ice. By modeling the system in the vicinity of the ground-state manifold as a 2D Coulomb gas with an entropic interaction, and then as a 2D sine-Gordon model, we have shown that the susceptibility has a scaling form χ (ω ) /χ (0 ) =F (ω /ω1) , where the characteristic frequency ω1 is related to a charge correlation length between diffusively moving monopoles, and to the principal-breather excitation. The dynamical scaling is universal and applicable not only for kagome ice, but also for superfluid and superconducting films and generic 2D ices possibly including the artificial spin ice.
Water-network percolation transitions in hydrated yeast
NASA Astrophysics Data System (ADS)
Sokołowska, Dagmara; Król-Otwinowska, Agnieszka; Mościcki, Józef K.
2004-11-01
We discovered two percolation processes in succession in dc conductivity of bulk baker’s yeast in the course of dehydration. Critical exponents characteristic for the three-dimensional network for heavily hydrated system, and two dimensions in the light hydration limit, evidenced a dramatic change of the water network dimensionality in the dehydration process.
Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.
Wang, Haining; Zhang, Changjian; Rana, Farhan
2015-01-14
In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons and holes recombine; a fast time scale that lasts ∼ 2 ps and a slow time scale that lasts longer than ∼ 100 ps. The temperature and the pump fluence dependence of the observed carrier dynamics are consistent with defect-assisted recombination as being the dominant mechanism for electron-hole recombination in which the electrons and holes are captured by defects via Auger processes. Strong Coulomb interactions in two-dimensional atomic materials, together with strong electron and hole correlations in two-dimensional metal dichalcogenides, make Auger processes particularly effective for carrier capture by defects. We present a model for carrier recombination dynamics that quantitatively explains all features of our data for different temperatures and pump fluences. The theoretical estimates for the rate constants for Auger carrier capture are in good agreement with the experimentally determined values. Our results underscore the important role played by Auger processes in two-dimensional atomic materials.
Development of Science Anxiety Scale for Primary School Students
ERIC Educational Resources Information Center
Guzeller, Cem Oktay; Dogru, Mustafa
2012-01-01
The principal aim of the study is to develop a new scale Science Anxiety Scale and to examine its the psychometric properties and construct validity of the Science Anxiety Scale in a sample of 797 primary school students. Exploratory factor analysis was applied and found to have a two-dimensional structure. Confirmatory factor analyses provide…
Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes
NASA Astrophysics Data System (ADS)
Antonaglia, James; van Anders, Greg; Glotzer, Sharon
Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.
Further studies of stall flutter and nonlinear divergence of two-dimensional wings
NASA Technical Reports Server (NTRS)
Dugundji, J.; Chopra, I.
1975-01-01
An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle.
NASA Astrophysics Data System (ADS)
Tzanis, Andreas
2013-02-01
The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale. In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.
Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng
2018-03-01
Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan
2017-10-01
We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Ng, Siu-Kuen; Barron, David; Swami, Viren
2015-03-01
Previous research has suggested that the factor structure of Body Appreciation Scale (BAS), a widely-used measure of positive body image, may not be cross-culturally equivalent. Here, we used confirmatory factor analysis to evaluate the conceptual equivalence of a Chinese (Cantonese) translation of the BAS among women (n=1319) and men (n=1084) in Hong Kong. Results showed that neither the one-dimensional nor proposed two-dimensional factor structures had adequate fit. Instead, a modified two-dimensional structure, which retained 9 of the 13 BAS items in two factors, had the best fit. However, only one of these factors, reflective of General Body Appreciation, had adequate internal consistency. This factor also had good patterns of construct validity, as indicated through significant correlations with participant body mass index, self-esteem, and (among women) actual-ideal weight discrepancy. The present results suggest that there may be cultural differences in the concept and experience of body appreciation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dionne, Jennifer A.
2016-09-01
Advances in metamaterials and metasurfaces have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhanced magnetic or chiral transitions in ions and molecules. However, most metamaterials to date have been limited to solid-state, static, narrow-band, and/or small-area structures. Here, we introduce the design, fabrication, and three-dimensional nano-optical characterization of large-area, dynamically-tunable metamaterials and gram-scale metafluids. First, we use transformation optics to design a broadband metamaterial constituent - a metallo-dielectric nanocrescent - characterized by degenerate electric and magnetic dipoles. A periodic array of nanocrescents exhibits large positive and negative refractive indices at optical frequencies, confirmed through simulations of plane wave refraction through a metamaterial prism. Simulations also reveal that the metamaterial optical properties are largely insensitive to the wavelength, orientation and polarization of incident light. Then, we introduce a new tomographic technique, cathodoluminescence (CL) spectroscopic tomography, to probe light-matter interactions in individual nanocrescents with nanometer-scale resolution. Two-dimensional CL maps of the three-dimensional nanostructure are obtained at various orientations, while a filtered back projection is used to reconstruct the CL intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. Finally, we demonstrate the fabrication of dynamically tunable large-area metamaterials and gram-scale metafluids, using a combination of colloidal synthesis, protein-directed assembly, self-assembly, etching, and stamping. The electric and magnetic response of the bulk metamaterial and metafluid are directly probed with optical scattering and spectroscopy. Using chemical swelling, these metamaterials exhibit reversible, unity-order refractive index changes that may provide a foundation for new adaptive optical materials in sensing, solar, and display applications.
Current developments in soil water sensing for climate, environment, hydrology and agriculture
USDA-ARS?s Scientific Manuscript database
Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in; Patel, Kartik
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beammore » plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.« less
Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors
Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching-Hwa; Huang, Ying-Sheng; Cao, Zhengyi; Wang, Laiguo; Li, Aidong; Zeng, Junwen; Song, Fengqi; Wang, Xinran; Shi, Yi; Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi; Miao, Feng; Xing, Dingyu
2015-01-01
Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS2) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS2 field-effect transistors, which exhibit competitive performance with large current on/off ratios (∼107) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconducting materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS2 anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications. PMID:25947630
Waterlike anomalies in a two-dimensional core-softened potential
NASA Astrophysics Data System (ADS)
Bordin, José Rafael; Barbosa, Marcia C.
2018-02-01
We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.
Astronomy Demonstrations and Models.
ERIC Educational Resources Information Center
Eckroth, Charles A.
Demonstrations in astronomy classes seem to be more necessary than in physics classes for three reasons. First, many of the events are very large scale and impossibly remote from human senses. Secondly, while physics courses use discussions of one- and two-dimensional motion, three-dimensional motion is the normal situation in astronomy; thus,…
Spreading of infection in a two species reaction-diffusion process in networks
NASA Astrophysics Data System (ADS)
Korosoglou, Paschalis; Kittas, Aristotelis; Argyrakis, Panos
2010-12-01
We study the dynamics of the infection of a two mobile species reaction from a single infected agent in a population of healthy agents. Historically, the main focus for infection propagation has been through spreading phenomena, where a random location of the system is initially infected and then propagates by successfully infecting its neighbor sites. Here both the infected and healthy agents are mobile, performing classical random walks. This may be a more realistic picture to such epidemiological models, such as the spread of a virus in communication networks of routers, where data travel in packets, the communication time of stations in ad hoc mobile networks, information spreading (such as rumor spreading) in social networks, etc. We monitor the density of healthy particles ρ(t) , which we find in all cases to be an exponential function in the long-time limit in two-dimensional and three-dimensional lattices and Erdős-Rényi (ER) and scale-free (SF) networks. We also investigate the scaling of the crossover time tc from short- to long-time exponential behavior, which we find to be a power law in lattices and ER networks. This crossover is shown to be absent in SF networks, where we reveal the role of the connectivity of the network in the infection process. We compare this behavior to ER networks and lattices and highlight the significance of various connectivity patterns, as well as the important differences of this process in the various underlying geometries, revealing a more complex behavior of ρ(t) .
Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography
NASA Astrophysics Data System (ADS)
Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.
2016-02-01
In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.
NASA Astrophysics Data System (ADS)
Miyaji, Kousuke; Hung, Chinglin; Takeuchi, Ken
2012-04-01
The scaling trends and limitation in sub-20 nm a bulk and silicon-on-insulator (SOI) NAND flash memory is studied by the three-dimensional (3D) device simulation focusing on short channel effects (SCE), channel boost leakage and channel voltage boosting characteristics during the program-inhibit operation. Although increasing punch-through stopper doping concentration is effective for suppressing SCE in bulk NAND cells, the generation of junction leakage becomes serious. On the other hand, SCE can be suppressed by thinning the buried oxide (BOX) in SOI NAND cells. However, the boosted channel voltage decreases by the higher BOX capacitance. It is concluded that the scaling limitation is dominated by the junction leakage and channel boosting capability for bulk and SOI NAND flash cells, respectively, and the scaling limit is decreased to 9 nm using SOI NAND flash memory cells from 13 nm in bulk NAND flash memory cells.
Three Dimensional Underwater Sound Propagation Over Sloping Bottoms
NASA Astrophysics Data System (ADS)
Glegg, Stewart A. L.; Riley, J. M.
This article reviews the work which has been carried out over the past few years on three dimensional underwater sound propagation over sloping bottoms. When sound propagates across a slope three dimensional effects can cause shadow zones and mode cut off effects to occur, which could not be predicted by a two dimensional model. For many years the theory for this type of propagation over realistic ocean floors, which can support both compressional and shear waves, eluded workers in this field. Recently the complete solution for the acoustic field in a "wedge domain with penetrable boundaries" has been developed, and this has allowed for complete understanding of three dimensional bottom interacting sound propagation. These theories have been verified by a series of laboratory scale experiments and excellent agreement has been obtained. However only one full scale ocean experiment has been carried out on three dimensional, bottom interacting, acoustic propagation. This showed significant horizontal refraction of sound propagating across a continental slope and further verifies the importance of bottom slopes on underwater sound propagation.
The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Ye, Zhou
1997-01-01
The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Schneider, C.
2012-12-01
The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences in root architecture on actual transpiration are explored. The energy components simulated with the microscopic modeling approach are tested against observational data. Through the improved spatiotemporal representation of small-scale root water uptake process, the microscopic modeling framework leads to a better agreement with the observational data than the Feddes-type approach. During dry periods, relatively high transpiration is sustained, as water uptake regions shift from densely to sparsely rooted layers, or from drier to moister soil areas. Implications and approaches for incorporating microscopic modeling methodologies within large-scale land-surface parameterizations are discussed.
Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection
2008-05-01
with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale
Critical behavior of two-dimensional vesicles in the deflated regime
NASA Technical Reports Server (NTRS)
Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio
1991-01-01
The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...
2017-12-15
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Model of chiral spin liquids with Abelian and non-Abelian topological phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Jáčová, Jaroslava; Gardlo, Alžběta; Friedecký, David; Adam, Tomáš; Dimandja, Jean-Marie D
2017-08-18
Orthogonality is a key parameter that is used to evaluate the separation power of chromatography-based two-dimensional systems. It is necessary to scale the separation data before the assessment of the orthogonality. Current scaling approaches are sample-dependent, and the extent of the retention space that is converted into a normalized retention space is set according to the retention times of the first and last analytes contained in a unique sample to elute. The presence or absence of a highly retained analyte in a sample can thus significantly influence the amount of information (in terms of the total amount of separation space) contained in the normalized retention space considered for the calculation of the orthogonality. We propose a Whole Separation Space Scaling (WOSEL) approach that accounts for the whole separation space delineated by the analytical method, and not the sample. This approach enables an orthogonality-based evaluation of the efficiency of the analytical system that is independent of the sample selected. The WOSEL method was compared to two currently used orthogonality approaches through the evaluation of in silico-generated chromatograms and real separations of human biofluids and petroleum samples. WOSEL exhibits sample-to-sample stability values of 3.8% on real samples, compared to 7.0% and 10.1% for the two other methods, respectively. Using real analyses, we also demonstrate that some previously developed approaches can provide misleading conclusions on the overall orthogonality of a two-dimensional chromatographic system. Copyright © 2017 Elsevier B.V. All rights reserved.
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction
NASA Astrophysics Data System (ADS)
He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu
2015-01-01
Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.
Low frequency full waveform seismic inversion within a tree based Bayesian framework
NASA Astrophysics Data System (ADS)
Ray, Anandaroop; Kaplan, Sam; Washbourne, John; Albertin, Uwe
2018-01-01
Limited illumination, insufficient offset, noisy data and poor starting models can pose challenges for seismic full waveform inversion. We present an application of a tree based Bayesian inversion scheme which attempts to mitigate these problems by accounting for data uncertainty while using a mildly informative prior about subsurface structure. We sample the resulting posterior model distribution of compressional velocity using a trans-dimensional (trans-D) or Reversible Jump Markov chain Monte Carlo method in the wavelet transform domain of velocity. This allows us to attain rapid convergence to a stationary distribution of posterior models while requiring a limited number of wavelet coefficients to define a sampled model. Two synthetic, low frequency, noisy data examples are provided. The first example is a simple reflection + transmission inverse problem, and the second uses a scaled version of the Marmousi velocity model, dominated by reflections. Both examples are initially started from a semi-infinite half-space with incorrect background velocity. We find that the trans-D tree based approach together with parallel tempering for navigating rugged likelihood (i.e. misfit) topography provides a promising, easily generalized method for solving large-scale geophysical inverse problems which are difficult to optimize, but where the true model contains a hierarchy of features at multiple scales.
Scaling theory for the quasideterministic limit of continuous bifurcations.
Kessler, David A; Shnerb, Nadav M
2012-05-01
Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS) that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the fluctuation-dominated region scales like N^{-κ}, where N is the number of individuals per site and κ=2/(d_{u}-d), d_{u} is the upper critical dimension. Other exponents that control the approach to the deterministic limit are shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity above the transition. It is supported by the results of extensive numerical simulations for systems of various dimensionalities.
Multiple-time-scale motion in molecularly linked nanoparticle arrays.
George, Christopher; Szleifer, Igal; Ratner, Mark
2013-01-22
We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.
Seismic and Biological Sources of Ambient Ocean Sound
NASA Astrophysics Data System (ADS)
Freeman, Simon Eric
Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed. This distribution of sources could reveal small-scale spatial ecological limitations, such as the availability of food and shelter. While array-based passive acoustic sensing is well established in seismoacoustics, the technique is little utilized in the study of ambient biological sound. With the continuance of Moore's law and advances in battery and memory technology, inferring biological processes from ambient sound may become a more accessible tool in underwater ecological evaluation and monitoring.
A review of volume‐area scaling of glaciers
Bahr, David B.; Kaser, Georg
2015-01-01
Abstract Volume‐area power law scaling, one of a set of analytical scaling techniques based on principals of dimensional analysis, has become an increasingly important and widely used method for estimating the future response of the world's glaciers and ice caps to environmental change. Over 60 papers since 1988 have been published in the glaciological and environmental change literature containing applications of volume‐area scaling, mostly for the purpose of estimating total global glacier and ice cap volume and modeling future contributions to sea level rise from glaciers and ice caps. The application of the theory is not entirely straightforward, however, and many of the recently published results contain analyses that are in conflict with the theory as originally described by Bahr et al. (1997). In this review we describe the general theory of scaling for glaciers in full three‐dimensional detail without simplifications, including an improved derivation of both the volume‐area scaling exponent γ and a new derivation of the multiplicative scaling parameter c. We discuss some common misconceptions of the theory, presenting examples of both appropriate and inappropriate applications. We also discuss potential future developments in power law scaling beyond its present uses, the relationship between power law scaling and other modeling approaches, and some of the advantages and limitations of scaling techniques. PMID:27478877
McCaffrey, Stacey A; Black, Ryan A; Butler, Stephen F
2018-03-01
The PainCAS is a web-based clinical tool for assessing and tracking pain and opioid risk in chronic pain patients. Despite evidence for its utility within the clinical setting, the PainCAS scales have never been subject to psychometric evaluation. The current study is the first to evaluate the psychometric properties of the PainCAS Interference with Daily Activities, Psychological/Emotional Distress, and Pain scales. Patients (N = 4797) from treatment centers and hospitals in 16 different states completed the PainCAS as part of routine clinical assessment. A subsample (n = 73) from two hospital-based treatment centers also completed comparator measures. Rasch Rating Scale Models were employed to evaluate the Interference with Daily Activities and Psychological/Emotional Distress scales, and empirical evaluation included assessment of dimensionality, discrimination, item fit, reliability, information, and person-to-item targeting. Additionally, convergent and discriminant validity were evaluated through classical test theory approaches. Convergent validity of the Pain scales was evaluated through correlations with corresponding comparator items. One Interference with Daily Activities item was removed due to poor functioning and discrimination. The retained items from the Interference with Daily Activities and Psychological/Emotional Distress scales conformed to unidimensional Rasch measurement models, yielding satisfactory item fit, reliability, precision, and coverage. Further, results provided support for the convergent and discriminant validity of these two scales. Convergent validity between the PainCAS Pain and BPI Pain items was also strong. Taken together, results provide strong psychometric support for these PainCAS Pain scales. Strengths and limitations of the current study are discussed.
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Stochastic quasi-Newton molecular simulations
NASA Astrophysics Data System (ADS)
Chau, C. D.; Sevink, G. J. A.; Fraaije, J. G. E. M.
2010-08-01
We report a new and efficient factorized algorithm for the determination of the adaptive compound mobility matrix B in a stochastic quasi-Newton method (S-QN) that does not require additional potential evaluations. For one-dimensional and two-dimensional test systems, we previously showed that S-QN gives rise to efficient configurational space sampling with good thermodynamic consistency [C. D. Chau, G. J. A. Sevink, and J. G. E. M. Fraaije, J. Chem. Phys. 128, 244110 (2008)10.1063/1.2943313]. Potential applications of S-QN are quite ambitious, and include structure optimization, analysis of correlations and automated extraction of cooperative modes. However, the potential can only be fully exploited if the computational and memory requirements of the original algorithm are significantly reduced. In this paper, we consider a factorized mobility matrix B=JJT and focus on the nontrivial fundamentals of an efficient algorithm for updating the noise multiplier J . The new algorithm requires O(n2) multiplications per time step instead of the O(n3) multiplications in the original scheme due to Choleski decomposition. In a recursive form, the update scheme circumvents matrix storage and enables limited-memory implementation, in the spirit of the well-known limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, allowing for a further reduction of the computational effort to O(n) . We analyze in detail the performance of the factorized (FSU) and limited-memory (L-FSU) algorithms in terms of convergence and (multiscale) sampling, for an elementary but relevant system that involves multiple time and length scales. Finally, we use this analysis to formulate conditions for the simulation of the complex high-dimensional potential energy landscapes of interest.
Atomic-Scale Design, Synthesis and Characterization of Two-Dimensional Material Interfaces
NASA Astrophysics Data System (ADS)
Kiraly, Brian Thomas
The reduction of material dimensions to near atomic-scales leads to changes in the properties of these materials. The most recent development in reduced dimensionality is the isolation of atomically thin materials with 2 "bulk" or large-scale dimensions. The isolation of a single plane of carbon atoms has thus paved the way for the study of material properties when one of three dimensions is confined. Early studies revealed a wealth of exotic physical phenomena in these two-dimensional (2D) layers due to the valence and crystalline symmetry of the materials, focusing primarily on understanding the intrinsic properties of the system. Recent studies have begun to investigate the influence that the surroundings have on the 2D material properties and how those effects may be used to tune the composite system properties. In this thesis, I will examine the synthesis and characterization of these 2D interfaces to understand how the constituents impact the overall observations and discuss how these interfaces might be used to deliberately manipulate 2D materials. I will begin by demonstrating how ultra-high vacuum (UHV) conditions enable the preparation and synthesis of 2D materials on air-unstable surfaces by utilizing a characteristic example of crystalline silver. The lack of catalytic activity of silver toward carbon-containing precursors is overcome by using atomic carbon to grow the graphene on the surface. The resulting system provides unique insight into graphene-metal interactions as it marks the lower boundary for graphene-metal interaction strength. I will then show how new 2D materials can be grown utilizing this growth motif, demonstrating the methodology with elemental silicon. The atomically thin 2D silicon grown on the silver surfaces clearly demonstrates a diamond-cubic crystal structure, including an electronic bandgap of 1eV. This work marks the realization of both a new 2D semiconductor and the direct scaling limit for bulk sp3 silicon. The common growth technique is extended to integrate the two 2D materials onto the same silver surface under vacuum conditions; these new interfaces reveal characteristics of van der Waals interactions and electronic decoupling from the metallic substrate. The heterogeneous 2D system provides key insight into the competition between physical and chemical interactions in this novel material system. Finally, a larger scale graphene-semiconductor interface is examined between graphene and crystalline germanium. The covalent-bonding of the germanium crystal provides strong anisotropy at the surface, leading to symmetry-dependent growth and behavior. These systems show unique tunability afforded by strain at the interface, leading to the potential for wafer-scale manipulation. These results clearly call for the treatment of 2D material interfaces as composite material systems, with effective properties derived from each constituent material.
NASA Astrophysics Data System (ADS)
Cooper, Ryan C.
This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate the role of grain boundaries on the strength of chemical vapor deposited graphene. The results from these studies suggest that two dimensional films have remarkably high strength-reaching the intrinsic limit of molecular bonds. Chapter 5 explores the viscoelastic properties of heterogeneous polydimethylsiloxane (PDMS) microfilms through dynamic nanoindentation. PDMS microfilms are irradiated with an electron beam creating a 3 m-thick film with an increased cross-link density. The change in mechanical properties of PDMS due to thermal history and accelerator have been explored by a variety of tests, but the effect of electron beam irradiation is still unknown. The resulting structure is a stiff microfilm embedded in a soft rubber with some transformational strain induced by the cross-linking volume changes. Chapter 5 employs a combination of dynamic nanoindentation and finite element analysis to determine the change in stiffness as a function of electron beam irradiation. The experimental results are compared to the literature. The results of these experimental and numerical techniques provide exciting opportu- nities in future research. Two dimensional materials and flexible thin films are exciting materials for novel applications with new form factors, such as flexible electronics and microfluidic devices. The results herein indicate that you can accurately model the strength of two dimsensional materials and that these materials are robust against nanoscale defects. The results also reveal local variation of mechanical properties in PDMS microfilms. This allows one to design substrates that flex with varying amounts of strain on the surface. Combining the mechanics of two dimensional materials with that of a locally irradiated PDMS film could achieve a new class of flexible microelectromechanical systems. Large-scale growth of two dimensional materials will be structurally robust-even in the presence of nanostructural defects-and PDMS microfilms can be irradiated to vary strain of the electromechanical systems. These systems could be designed to investigate electromechanical coupling in two dimensional films or for a substitute to traditional silicon microdevices. (Abstract shortened by UMI.)
Montenegro-Johnson, Thomas D; Lauga, Eric
2014-06-01
Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.
Statistical conservation law in two- and three-dimensional turbulent flows.
Frishman, Anna; Boffetta, Guido; De Lillo, Filippo; Liberzon, Alex
2015-03-01
Particles in turbulence live complicated lives. It is nonetheless sometimes possible to find order in this complexity. It was proposed in Falkovich et al. [Phys. Rev. Lett. 110, 214502 (2013)] that pairs of Lagrangian tracers at small scales, in an incompressible isotropic turbulent flow, have a statistical conservation law. More specifically, in a d-dimensional flow the distance R(t) between two neutrally buoyant particles, raised to the power -d and averaged over velocity realizations, remains at all times equal to the initial, fixed, separation raised to the same power. In this work we present evidence from direct numerical simulations of two- and three-dimensional turbulence for this conservation. In both cases the conservation is lost when particles exit the linear flow regime. In two dimensions we show that, as an extension of the conservation law, an Evans-Cohen-Morriss or Gallavotti-Cohen type fluctuation relation exists. We also analyze data from a 3D laboratory experiment [Liberzon et al., Physica D 241, 208 (2012)], finding that although it probes small scales they are not in the smooth regime. Thus instead of 〈R-3〉, we look for a similar, power-law-in-separation conservation law. We show that the existence of an initially slowly varying function of this form can be predicted but that it does not turn into a conservation law. We suggest that the conservation of 〈R-d〉, demonstrated here, can be used as a check of isotropy, incompressibility, and flow dimensionality in numerical and laboratory experiments that focus on small scales.
NASA Astrophysics Data System (ADS)
Panagiotopoulos, Paris; Kolesik, Miroslav; Moloney, Jerome V.
2016-09-01
We numerically investigate the scaling behavior of midinfrared filaments at extremely high input energies. It is shown that, given sufficient power, kilometer-scale, low-loss atmospheric filamentation is attainable by prechirping the pulse. Fully resolved four-dimensional (x y z t ) simulations show that, while in a spatially imperfect beam the modulation instability can lead to multiple hot-spot formation, the individual filaments are still stabilized by the recently proposed mechanism that relies on the temporal walk-off of short-wavelength radiation.
Two-Dimensional Grids About Airfoils and Other Shapes
NASA Technical Reports Server (NTRS)
Sorenson, R.
1982-01-01
GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.
Surface shape affects the three-dimensional exploratory movements of nocturnal arboreal snakes.
Jayne, Bruce C; Olberding, Jeffrey P; Athreya, Dilip; Riley, Michael A
2012-12-01
Movement and searching behaviors at diverse spatial scales are important for understanding how animals interact with their environment. Although the shapes of branches and the voids in arboreal habitats seem likely to affect searching behaviors, their influence is poorly understood. To gain insights into how both environmental structure and the attributes of an animal may affect movement and searching, we compared the three-dimensional exploratory movements of snakes in the dark on two simulated arboreal surfaces (disc and horizontal cylinder). Most of the exploratory movements of snakes in the dark were a small fraction of the distances they could reach while bridging gaps in the light. The snakes extended farther away from the edge of the supporting surface at the ends of the cylinder than from the sides of the cylinder or from any direction from the surface of the disc. The exploratory movements were not random, and the surface shape and three-dimensional directions had significant interactive effects on how the movements were structured in time. Thus, the physical capacity for reaching did not limit the area that was explored, but the shape of the supporting surface and the orientation relative to gravity did create biased searching patterns.
Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions
Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...
2016-12-05
Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less
Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chun; Zhou, Quanlin; Oostrom, Mart
Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less
Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chun; Zhou, Quanlin; Oostrom, Mart
Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less
Turbulence closure for mixing length theories
NASA Astrophysics Data System (ADS)
Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.
2018-05-01
We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.
Contact engineering for 2D materials and devices.
Schulman, Daniel S; Arnold, Andrew J; Das, Saptarshi
2018-05-08
Over the past decade, the field of two-dimensional (2D) layered materials has surged, promising a new platform for studying diverse physical phenomena that are scientifically intriguing and technologically relevant. Contacts are the communication links between these 2D materials and the three-dimensional world for probing and harnessing their exquisite electronic properties. However, fundamental challenges related to contacts often limit the ultimate performance and potential of 2D materials and devices. This article provides a comprehensive overview of the basic understanding and importance of contacts to 2D materials and various strategies for engineering and improving them. In particular, we elucidate the phenomenon of Fermi level pinning at the metal/2D contact interface, the Schottky versus Ohmic nature of the contacts and various contact engineering approaches including interlayer contacts, phase engineered contacts, and basal versus edge plane contacts, among others. Finally, we also discuss some of the relatively under-addressed and unresolved issues, such as contact scaling, and conclude with a future outlook.
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
Pump CFD code validation tests
NASA Technical Reports Server (NTRS)
Brozowski, L. A.
1993-01-01
Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.
Enhanced mixing and spatial instability in concentrated bacterial suspensions
NASA Astrophysics Data System (ADS)
Sokolov, Andrey; Goldstein, Raymond E.; Feldchtein, Felix I.; Aranson, Igor S.
2009-09-01
High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latter state, qualitatively different from bioconvection in dilute bacterial suspensions, is characterized by enhanced diffusivities of oxygen and bacteria. These results emphasize the impact of self-organized bacterial locomotion on the onset of three-dimensional dynamics, and suggest key ingredients necessary to extend standard models of bioconvection to incorporate effects of large-scale collective motion.
Solution of the Burnett equations for hypersonic flows near the continuum limit
NASA Technical Reports Server (NTRS)
Imlay, Scott T.
1992-01-01
The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.
From particle condensation to polymer aggregation
NASA Astrophysics Data System (ADS)
Janke, Wolfhard; Zierenberg, Johannes
2018-01-01
We draw an analogy between droplet formation in dilute particle and polymer systems. Our arguments are based on finite-size scaling results from studies of a two-dimensional lattice gas to three-dimensional bead-spring polymers. To set the results in perspective, we compare with in part rigorous theoretical scaling laws for canonical condensation in a supersaturated gas at fixed temperature, and derive corresponding scaling predictions for an undercooled gas at fixed density. The latter allows one to efficiently employ parallel multicanonical simulations and to reach previously not accessible scaling regimes. While the asymptotic scaling can not be observed for the comparably small polymer system sizes, they demonstrate an intermediate scaling regime also observable for particle condensation. Altogether, our extensive results from computer simulations provide clear evidence for the close analogy between particle condensation and polymer aggregation in dilute systems.
Chung, Eva Yin-Han; Lam, Gigi
2018-05-29
The World Health Organization has asserted the importance of enhancing participation of people with disabilities within the International Classification of Functioning, Disability and Health framework. Participation is regarded as a vital outcome in community-based rehabilitation. The actualization of the right to participate is limited by social stigma and discrimination. To date, there is no validated instrument for use in Chinese communities to measure participation restriction or self-perceived stigma. This study aimed to translate and validate the Participation Scale and the Explanatory Model Interview Catalogue (EMIC) Stigma Scale for use in Chinese communities with people with physical disabilities. The Chinese versions of the Participation Scale and the EMIC stigma scale were administered to 264 adults with physical disabilities. The two scales were examined separately. The reliability analysis was studied in conjunction with the construct validity. Reliability analysis was conducted to assess the internal consistency and item-total correlation. Exploratory factor analysis was conducted to investigate the latent patterns of relationships among variables. A Rasch model analysis was conducted to test the dimensionality, internal validity, item hierarchy, and scoring category structure of the two scales. Both the Participation Scale and the EMIC stigma scale were confirmed to have good internal consistency and high item-total correlation. Exploratory factor analysis revealed the factor structure of the two scales, which demonstrated the fitting of a pattern of variables within the studied construct. The Participation Scale was found to be multidimensional, whereas the EMIC stigma scale was confirmed to be unidimensional. The item hierarchies of the Participation Scale and the EMIC stigma scale were discussed and were regarded as compatible with the cultural characteristics of Chinese communities. The Chinese versions of the Participation Scale and the EMIC stigma scale were thoroughly tested in this study to demonstrate their robustness and feasibility in measuring the participation restriction and perceived stigma of people with physical disabilities in Chinese communities. This is crucial as it provides valid measurements to enable comprehensive understanding and assessment of the participation and stigma among people with physical disabilities in Chinese communities.
Numerical Study of Rotating Turbulence with External Forcing
NASA Technical Reports Server (NTRS)
Yeung, P. K.; Zhou, Ye
1998-01-01
Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.
Extended self-similarity in the two-dimensional metal-insulator transition
NASA Astrophysics Data System (ADS)
Moriconi, L.
2003-09-01
We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows, holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the imposition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of extended self-similarity in the metal-insulator transition within the framework of the random β-model description of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to be verified as well.
NASA Astrophysics Data System (ADS)
Okamoto, Ryuichi; Komura, Shigeyuki; Fournier, Jean-Baptiste
2017-07-01
We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deformation excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress, the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.
The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs
NASA Astrophysics Data System (ADS)
Hallam, P. D.; Paardekooper, S.-J.
2017-08-01
It is known that an embedded massive planet will open a gap in a protoplanetary disc via angular momentum exchange with the disc material. The resulting surface density profile of the disc is investigated for one-dimensional and two-dimensional disc models and, in agreement with previous work, it is found that one-dimensional gaps are significantly deeper than their two-dimensional counterparts for the same initial conditions. We find, by applying one-dimensional torque density distributions to two-dimensional discs containing no planet, that the excitement of the Rossby wave instability and the formation of Rossby vortices play a critical role in setting the equilibrium depth of the gap. Being a two-dimensional instability, this is absent from one-dimensional simulations and does not limit the equilibrium gap depth there. We find similar gap depths between two-dimensional gaps formed by torque density distributions, in which the Rossby wave instability is present, and two-dimensional planet gaps, in which no Rossby wave instability is present. This can be understood if the planet gap is maintained at marginal stability, even when there is no obvious Rossby wave instability present. Further investigation shows the final equilibrium gap depth is very sensitive to the form of the applied torque density distribution, and using improved one-dimensional approximations from three-dimensional simulations can go even further towards reducing the discrepancy between one- and two-dimensional models, especially for lower mass planets. This behaviour is found to be consistent across discs with varying parameters.
Application of a liquid crystal spatial light modulator to laser marking.
Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P
2011-04-20
Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America
Marbà-Ardébol, Anna-Maria; Bockisch, Anika; Neubauer, Peter; Junne, Stefan
2018-02-01
Physiological responses of yeast to oscillatory environments as they appear in the liquid phase in large-scale bioreactors have been the subject of past studies. So far, however, the impact on the sterol content and intracellular regulation remains to be investigated. Since oxygen is a cofactor in several reaction steps within sterol metabolism, changes in oxygen availability, as occurs in production-scale aerated bioreactors, might have an influence on the regulation and incorporation of free sterols into the cell lipid layer. Therefore, sterol and fatty acid synthesis in two- and three-compartment scale-down Saccharomyces cerevisiae cultivation were studied and compared with typical values obtained in homogeneous lab-scale cultivations. While cells were exposed to oscillating substrate and oxygen availability in the scale-down cultivations, growth was reduced and accumulation of carboxylic acids was increased. Sterol synthesis was elevated to ergosterol at the same time. The higher fluxes led to increased concentrations of esterified sterols. The cells thus seem to utilize the increased availability of precursors to fill their sterol reservoirs; however, this seems to be limited in the three-compartment reactor cultivation due to a prolonged exposure to oxygen limitation. Besides, a larger heterogeneity within the single-cell size distribution was observed under oscillatory growth conditions with three-dimensional holographic microscopy. Hence the impact of gradients is also observable at the morphological level. The consideration of such a single-cell-based analysis provides useful information about the homogeneity of responses among the population. Copyright © 2017 John Wiley & Sons, Ltd.
Laser targets compensate for limitations in inertial confinement fusion drivers
NASA Astrophysics Data System (ADS)
Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.
2005-10-01
Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.
Nature of self-diffusion in two-dimensional fluids
NASA Astrophysics Data System (ADS)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun
2017-12-01
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.
The Torino Impact Hazard Scale
NASA Astrophysics Data System (ADS)
Binzel, Richard P.
2000-04-01
Newly discovered asteroids and comets have inherent uncertainties in their orbit determinations owing to the natural limits of positional measurement precision and the finite lengths of orbital arcs over which determinations are made. For some objects making predictable future close approaches to the Earth, orbital uncertainties may be such that a collision with the Earth cannot be ruled out. Careful and responsible communication between astronomers and the public is required for reporting these predictions and a 0-10 point hazard scale, reported inseparably with the date of close encounter, is recommended as a simple and efficient tool for this purpose. The goal of this scale, endorsed as the Torino Impact Hazard Scale, is to place into context the level of public concern that is warranted for any close encounter event within the next century. Concomitant reporting of the close encounter date further conveys the sense of urgency that is warranted. The Torino Scale value for a close approach event is based upon both collision probability and the estimated kinetic energy (collision consequence), where the scale value can change as probability and energy estimates are refined by further data. On the scale, Category 1 corresponds to collision probabilities that are comparable to the current annual chance for any given size impactor. Categories 8-10 correspond to certain (probability >99%) collisions having increasingly dire consequences. While close approaches falling Category 0 may be no cause for noteworthy public concern, there remains a professional responsibility to further refine orbital parameters for such objects and a figure of merit is suggested for evaluating such objects. Because impact predictions represent a multi-dimensional problem, there is no unique or perfect translation into a one-dimensional system such as the Torino Scale. These limitations are discussed.
Finite-size scaling study of the two-dimensional Blume-Capel model
NASA Astrophysics Data System (ADS)
Beale, Paul D.
1986-02-01
The phase diagram of the two-dimensional Blume-Capel model is investigated by using the technique of phenomenological finite-size scaling. The location of the tricritical point and the values of the critical and tricritical exponents are determined. The location of the tricritical point (Tt=0.610+/-0.005, Dt=1.9655+/-0.0010) is well outside the error bars for the value quoted in previous Monte Carlo simulations but in excellent agreement with more recent Monte Carlo renormalization-group results. The values of the critical and tricritical exponents, with the exception of the leading thermal tricritical exponent, are in excellent agreement with previous calculations, conjectured values, and Monte Carlo renormalization-group studies.
NASA Astrophysics Data System (ADS)
Hidema, R.
2014-08-01
In order to study the effects of extensional viscosities on turbulent drag reduction, experimental studies using two-dimensional turbulence have been made. Anisotropic structures and variations of energy transfer induced by polymers are considered. Polyethyleneoxide and hydroxypropyl cellulose having different flexibility, which is due to different characteristics of extensional viscosity, are added to 2D turbulence. Variations of the turbulence were visualized by interference patterns of 2D flow, and were analysed by an image processing. The effects of polymers on turbulence in the streamwise and normal directions were also analysed by 2D Fourier transform. In addition, characteristic scales in 2D turbulence were analysed by wavelet transform.
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Quantum friction in two-dimensional topological materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less
Quantum friction in two-dimensional topological materials
Farias, M. Belén; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.
2018-04-24
In this paper, we develop the theory of quantum friction in two-dimensional topological materials. The quantum drag force on a metallic nanoparticle moving above such systems is sensitive to the nontrivial topology of their electronic phases, shows a novel distance scaling law, and can be manipulated through doping or via the application of external fields. We use the developed framework to investigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and to topological phase transitions in the graphene family materials. Finally, it is shown that topologically nontrivial states in two-dimensional materials enable an increase ofmore » two orders of magnitude in the quantum drag force with respect to conventional neutral graphene systems.« less
Vantages on Scales: A Study of Russian Dimensional Adjectives
ERIC Educational Resources Information Center
Tribushinina, Elena
2010-01-01
The central claim of this paper is that Vantage Theory is able to provide a much-needed explanatory account of the seemingly unrelated differences between lexical and morphological antonyms of dimensional adjectives in Slavic languages. In a case study, I compare two antonyms of the Russian adjective "vysokij" "high", a morphologically unrelated…
Several vapor phase chemical treatments for dimensional stabilization of wood
H.M. Barnes; E.T. Choong; R.C. Mcllhenny
1969-01-01
A bench-scale system for the impregnation of wood with volatile compounds was constructed for the purpose of testing the system concept and evaluating various polymeric bulking materials as dimensional stabilizing agents. Provisions were incorporated for recycling the treating material, introduction of two separate materials alternately or simultaneously, timed-cycle...
Full-Color Plasmonic Metasurface Holograms.
Wan, Weiwei; Gao, Jie; Yang, Xiaodong
2016-12-27
Holography is one of the most attractive approaches for reconstructing optical images, due to its capability of recording both the amplitude and phase information on light scattered from objects. Recently, optical metasurfaces for manipulating the wavefront of light with well-controlled amplitude, phase, and polarization have been utilized to reproduce computer-generated holograms. However, the currently available metasurface holograms have only been designed to achieve limited colors and record either amplitude or phase information. This fact significantly limits the performance of metasurface holograms to reconstruct full-color images with low noise and high quality. Here, we report the design and realization of ultrathin plasmonic metasurface holograms made of subwavelength nanoslits for reconstructing both two- and three-dimensional full-color holographic images. The wavelength-multiplexed metasurface holograms with both amplitude and phase modulations at subwavelength scale can faithfully produce not only three primary colors but also their secondary colors. Our results will advance various holographic applications.
Novel nano materials for high performance logic and memory devices
NASA Astrophysics Data System (ADS)
Das, Saptarshi
After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect mobility with the layer thickness. The non-monotonic trend suggests that in order to harvest the maximum potential of MoS2 for high performance device applications, a layer thickness in the range of 6-12 nm would be ideal. Finally using scandium contacts on 10nm thick exfoliated MoS2 flakes that are covered by a 15nm ALD grown Al2O3 film, record high mobility of 700cm2/Vs is achieved at room-temperature which is extremely encouraging for the design of high performance logic devices. The destructive nature of the readout process in Ferroelectric Random Access Memories (FeRAMs) is one of the major limiting factors for their wide scale commercialization. Utilizing Ferroelectric Field-Effect Transistor RAM (FeTRAM) instead solves the destructive read out problem, but at the expense of introducing crystalline ferroelectrics that are hard to integrate into CMOS. In order to address these challenges a novel, fully functional, CMOS compatible, One-Transistor-One-Transistor (1T1T) memory cell architecture using an organic ferroelectric -- PVDF-TrFE -- as the memory storage unit (gate oxide) and a silicon nanowire as the memory read out unit (channel material) is proposed and experimentally demonstrated. While evaluating the scaling potential of the above mentioned organic FeTRAM, it is found that the switching time and switching voltage of this organic copolymer PVDF-TrFE exhibits an unexpected scaling behavior as a function of the lateral device dimensions. The phenomenological theory, that explains this abnormal scaling trend, involves in-plane interchain and intrachain interaction of the copolymer - resulting in a power-law dependence of the switching field on the device area (ESW alpha ACH0.1) that is ultimately responsible for the decrease in the switching time and switching voltage. These findings are encouraging since they indicate that scaling the switching voltage and switching time without aggressively scaling the copolymer thickness occurs naturally while scaling the device area -- in this way ultimately improving the packing density and leading towards high performance memory devices.
Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale
Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki
2014-01-01
A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910
Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma
Squire, J.; Kunz, M. W.; Quataert, E.; ...
2017-10-12
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less
Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Kunz, M. W.; Quataert, E.
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less
Area law microstate entropy from criticality and spherical symmetry
NASA Astrophysics Data System (ADS)
Dvali, Gia
2018-05-01
It is often assumed that the area law of microstate entropy and the holography are intrinsic properties exclusively of the gravitational systems, such as black holes. We construct a nongravitational model that exhibits an entropy that scales as area of a sphere of one dimension less. It is represented by a nonrelativistic bosonic field living on a d -dimensional sphere of radius R and experiencing an angular-momentum-dependent attractive interaction. We show that the system possesses a quantum critical point with the emergent gapless modes. Their number is equal to the area of a d -1 -dimensional sphere of the same radius R . These gapless modes create an exponentially large number of degenerate microstates with the corresponding microstate entropy given by the area of the same d -1 -dimensional sphere. Thanks to a double-scaling limit, the counting of the entropy and of the number of the gapless modes is made exact. The phenomenon takes place for arbitrary number of dimensions and can be viewed as a version of holography.
Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows
Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...
2015-12-08
In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George
2017-04-01
We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.
Relaxation in two dimensions and the 'sinh-Poisson' equation
NASA Technical Reports Server (NTRS)
Montgomery, D.; Matthaeus, W. H.; Stribling, W. T.; Martinez, D.; Oughton, S.
1992-01-01
Long-time states of a turbulent, decaying, two-dimensional, Navier-Stokes flow are shown numerically to relax toward maximum-entropy configurations, as defined by the "sinh-Poisson" equation. The large-scale Reynolds number is about 14,000, the spatial resolution is (512)-squared, the boundary conditions are spatially periodic, and the evolution takes place over nearly 400 large-scale eddy-turnover times.
Emergence of power-law scalings in shock-driven mixing transition
NASA Astrophysics Data System (ADS)
Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay
2016-11-01
We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.
The Billion Cell Construct: Will Three-Dimensional Printing Get Us There?
Miller, Jordan S.
2014-01-01
How structure relates to function—across spatial scales, from the single molecule to the whole organism—is a central theme in biology. Bioengineers, however, wrestle with the converse question: will function follow form? That is, we struggle to approximate the architecture of living tissues experimentally, hoping that the structure we create will lead to the function we desire. A new means to explore the relationship between form and function in living tissue has arrived with three-dimensional printing, but the technology is not without limitations. PMID:24937565
NASA Astrophysics Data System (ADS)
Kargin, Vladislav
2018-06-01
We introduce a family of three-dimensional random point fields using the concept of the quaternion determinant. The kernel of each field is an n-dimensional orthogonal projection on a linear space of quaternionic polynomials. We find explicit formulas for the basis of the orthogonal quaternion polynomials and for the kernel of the projection. For number of particles n → ∞, we calculate the scaling limits of the point field in the bulk and at the center of coordinates. We compare our construction with the previously introduced Fermi-sphere point field process.
Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria
NASA Astrophysics Data System (ADS)
Kramer, Tobias; Rodriguez, Mirta
2017-03-01
Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.
Gkioulekas, Eleftherios
2016-09-01
Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.
Multiscale multifractal detrended-fluctuation analysis of two-dimensional surfaces
NASA Astrophysics Data System (ADS)
Wang, Fang; Fan, Qingju; Stanley, H. Eugene
2016-04-01
Two-dimensional (2D) multifractal detrended fluctuation analysis (MF-DFA) has been used to study monofractality and multifractality on 2D surfaces, but when it is used to calculate the generalized Hurst exponent in a fixed time scale, the presence of crossovers can bias the outcome. To solve this problem, multiscale multifractal analysis (MMA) was recent employed in a one-dimensional case. MMA produces a Hurst surface h (q ,s ) that provides a spectrum of local scaling exponents at different scale ranges such that the positions of the crossovers can be located. We apply this MMA method to a 2D surface and identify factors that influence the results. We generate several synthesized surfaces and find that crossovers are consistently present, which means that their fractal properties differ at different scales. We apply MMA to the surfaces, and the results allow us to observe these differences and accurately estimate the generalized Hurst exponents. We then study eight natural texture images and two real-world images and find (i) that the moving window length (WL) and the slide length (SL) are the key parameters in the MMA method, that the WL more strongly influences the Hurst surface than the SL, and that the combination of WL =4 and SL =4 is optimal for a 2D image; (ii) that the robustness of h (2 ,s ) to four common noises is high at large scales but variable at small scales; and (iii) that the long-term correlations in the images weaken as the intensity of Gaussian noise and salt and pepper noise is increased. Our findings greatly improve the performance of the MMA method on 2D surfaces.
2012-01-01
Background Hierarchical scales are very useful in clinical practice due to their ability to discriminate precisely between individuals, and the original English version of the Myocardial Infarction Dimensional Assessment Scale has been shown to contain a hierarchy of items. The purpose of this study was to analyse a Mandarin Chinese translation of the Myocardial Infarction Dimensional Assessment Scale for a hierarchy of items according to the criteria of Mokken scaling. Data from 180 Chinese participants who completed the Chinese translation of the Myocardial Infarction Dimensional Assessment Scale were analysed using the Mokken Scaling Procedure and the 'R' statistical programme using the diagnostics available in these programmes. Correlation between Mandarin Chinese items and a Chinese translation of the Short Form (36) Health Survey was also analysed. Findings Fifteen items from the Mandarin Chinese Myocardial Infarction Dimensional Assessment Scale were retained in a strong and reliable Mokken scale; invariant item ordering was not evident and the Mokken scaled items of the Chinese Myocardial Infarction Dimensional Assessment Scale correlated with the Short Form (36) Health Survey. Conclusions Items from the Mandarin Chinese Myocardial Infarction Dimensional Assessment Scale form a Mokken scale and this offers further insight into how the items of the Myocardial Infarction Dimensional Assessment Scale relate to the measurement of health-related quality of life people with a myocardial infarction. PMID:22221696
Fokker-Planck description for the queue dynamics of large tick stocks.
Garèche, A; Disdier, G; Kockelkoren, J; Bouchaud, J-P
2013-09-01
Motivated by empirical data, we develop a statistical description of the queue dynamics for large tick assets based on a two-dimensional Fokker-Planck (diffusion) equation. Our description explicitly includes state dependence, i.e., the fact that the drift and diffusion depend on the volume present on both sides of the spread. "Jump" events, corresponding to sudden changes of the best limit price, must also be included as birth-death terms in the Fokker-Planck equation. All quantities involved in the equation can be calibrated using high-frequency data on the best quotes. One of our central findings is that the dynamical process is approximately scale invariant, i.e., the only relevant variable is the ratio of the current volume in the queue to its average value. While the latter shows intraday seasonalities and strong variability across stocks and time periods, the dynamics of the rescaled volumes is universal. In terms of rescaled volumes, we found that the drift has a complex two-dimensional structure, which is a sum of a gradient contribution and a rotational contribution, both stable across stocks and time. This drift term is entirely responsible for the dynamical correlations between the ask queue and the bid queue.
Fokker-Planck description for the queue dynamics of large tick stocks
NASA Astrophysics Data System (ADS)
Garèche, A.; Disdier, G.; Kockelkoren, J.; Bouchaud, J.-P.
2013-09-01
Motivated by empirical data, we develop a statistical description of the queue dynamics for large tick assets based on a two-dimensional Fokker-Planck (diffusion) equation. Our description explicitly includes state dependence, i.e., the fact that the drift and diffusion depend on the volume present on both sides of the spread. “Jump” events, corresponding to sudden changes of the best limit price, must also be included as birth-death terms in the Fokker-Planck equation. All quantities involved in the equation can be calibrated using high-frequency data on the best quotes. One of our central findings is that the dynamical process is approximately scale invariant, i.e., the only relevant variable is the ratio of the current volume in the queue to its average value. While the latter shows intraday seasonalities and strong variability across stocks and time periods, the dynamics of the rescaled volumes is universal. In terms of rescaled volumes, we found that the drift has a complex two-dimensional structure, which is a sum of a gradient contribution and a rotational contribution, both stable across stocks and time. This drift term is entirely responsible for the dynamical correlations between the ask queue and the bid queue.
Evaluation of scavenging in two-stroke-cycle engines
NASA Technical Reports Server (NTRS)
Venediger, Herbert J
1934-01-01
The viewpoints are discussed, according to which the scavenging of two-stroke-cycle engines can be evaluated, and the relations between scavenging pressure and the quantity of the scavenging medium required, as also between the scavenging pressure and the revolution speed, are developed. It is further shown that the power increase is limited by the scavenging process, so that further researches are desirable for qualitative improvement. These results lead to several conclusions regarding the propulsion of motor vehicles by the two-stroke-cycle engines. Lastly, attention is called to the fundamental defect of the two-dimensional treatment of the scavenging process and to the consequent distinction between the two-dimensional and three-dimensional scavenging-type efficiency.
Emergent dimensions and branes from large-N confinement
NASA Astrophysics Data System (ADS)
Cherman, Aleksey; Poppitz, Erich
2016-12-01
N =1 S U (N ) super-Yang-Mills theory on R3×S1 is believed to have a smooth dependence on the circle size L . Making L small leads to calculable nonperturbative color confinement, mass gap, and string tensions. For finite N , the small-L low-energy dynamics is described by a three-dimensional effective theory. The large-N limit, however, reveals surprises: the infrared dual description is in terms of a theory with an emergent fourth dimension, curiously reminiscent of T-duality in string theory. Here, however, the emergent dimension is a lattice, with momenta related to the S1-winding of the gauge field holonomy, which takes values in ZN. Furthermore, the low-energy description is given by a nontrivial gapless theory, with a space-like z =2 Lifshitz scale invariance and operators that pick up anomalous dimensions as L is increased. Supersymmetry-breaking deformations leave the long-distance theory scale-invariant, but change the Lifshitz scaling exponent to z =1 , and lead to an emergent Lorentz symmetry at small L . Adding a small number of fundamental fermion fields leads to matter localized on three-dimensional branes in the emergent four-dimensional theory.
Fluid dynamics of the shock wave reactor
NASA Astrophysics Data System (ADS)
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter dependence of shock recompression in ducts. Distinct variation of the flow Reynolds and Mach numbers and section height allow unique mapping of each of these parameter dependencies. Agreement with a new one-dimensional model is demonstrated, predicting an exponential pressure profile characterized by two key parameters, the maximum pressure recovery and a characteristic length scale. Transition from one to two-dimensional dependence of the length parameter is observed as the duct aspect ratio varies significantly from unity.
Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.
Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.
Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian
2018-05-22
Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.