Sample records for two-dimensional source expansion

  1. Series expansions of rotating two and three dimensional sound fields.

    PubMed

    Poletti, M A

    2010-12-01

    The cylindrical and spherical harmonic expansions of oscillating sound fields rotating at a constant rate are derived. These expansions are a generalized form of the stationary sound field expansions. The derivations are based on the representation of interior and exterior sound fields using the simple source approach and determination of the simple source solutions with uniform rotation. Numerical simulations of rotating sound fields are presented to verify the theory.

  2. Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K.

    PubMed

    Eder, S D; Bracco, G; Kaltenbacher, T; Holst, B

    2014-01-09

    Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors.

  3. Expansion of Human Induced Pluripotent Stem Cells in Stirred Suspension Bioreactors.

    PubMed

    Almutawaa, Walaa; Rohani, Leili; Rancourt, Derrick E

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) hold great promise as a cell source for therapeutic applications and regenerative medicine. Traditionally, hiPSCs are expanded in two-dimensional static culture as colonies in the presence or absence of feeder cells. However, this expansion procedure is associated with lack of reproducibility and low cell yields. To fulfill the large cell number demand for clinical use, robust large-scale production of these cells under defined conditions is needed. Herein, we describe a scalable, low-cost protocol for expanding hiPSCs as aggregates in a lab-scale bioreactor.

  4. Generalized moments expansion applied to the two-dimensional S= 1 /2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Mancini, Jay D.; Murawski, Robert K.; Fessatidis, Vassilios; Bowen, Samuel P.

    2005-12-01

    In this work we derive a generalized moments expansion (GMX), to third order, of which the well-established connected moments expansion and the alternate moments expansion are shown to be special cases. We discuss the benefits of the GMX with respect to the avoidance of singularities which are known to plague such moments methods. We then apply the GMX estimates for the ground-state energy for the two-dimensional S=1/2 Heisenberg square lattice and compare these results to those of both spin-wave theory and the linked-cluster expansion.

  5. Numerical simulation of a turbulent flame stabilized behind a rearward-facing step

    NASA Technical Reports Server (NTRS)

    Hsiao, C. C.; Oppenheim, A. K.; Chorin, A. J.; Ghoniem, A. F.

    1985-01-01

    Flow of combustible mixtures in a plane channel past a smooth contraction followed by an abrupt expansion, in a typical dump combustor configuration, is modeled by a two-dimensional numerical technique based on the random vortex method. Both the inert and the reacting case are considered. In the latter, the flame is treated as an interface, self-advancing at a prescribed normal burning speed, while the dynamic effects of expansion due to the exothermicity of combustion are expressed by volumetric source lines delineated by its front. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and the reattachment length. The stochastic turbulent velocity components manifest interesting differences, especially near the walls where three-dimensional effects of turbulence are expected to be of importance.

  6. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  7. The three-dimensional steady radial expansion of a viscous gas from a sonic source into a vacuum.

    NASA Technical Reports Server (NTRS)

    Bush, W. B.; Rosen, R.

    1971-01-01

    The three-dimensional steady radial expansion of a viscous, heat-conducting, compressible fluid from a spherical sonic source into a vacuum is analyzed using the Navier-Stokes equations as a basis. It is assumed that the model fluid is a perfect gas having constant specific heats, a constant Prandtl number of order unity, and viscosity coefficients varying as a power of the absolute temperature. Limiting forms for the flow variable solutions are studied for the Reynolds number based on the sonic source conditions, going to infinity and the Newtonian parameter both fixed and going to zero. For the case of the viscosity-temperature exponent between .5 and 1, it is shown that the velocity as well as the pressure approach zero as the radial distance goes to infinity. The formulations of the distinct regions that span the domain extending from the sonic source to the vacuum are presented.

  8. Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system

    NASA Astrophysics Data System (ADS)

    Qureshi, Mumnuna A.; Zhong, Johnny; Qureshi, Zihad; Mason, Peter; Betouras, Joseph J.; Zagoskin, Alexandre M.

    2018-03-01

    We consider the evolution of the quantum states of a Hamiltonian that is parametrically perturbed via a term proportional to the adiabatic parameter λ (t ) . Starting with the Pechukas-Yukawa mapping of the energy eigenvalue evolution in a generalized Calogero-Sutherland model of a one-dimensional classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of d λ /d t and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of nonadiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfiability problem, we obtain the occupation dynamics, which provides insight into the population of states and sources of decoherence in a quantum system.

  9. Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency.

    PubMed

    Alamein, Mohammad A; Wolvetang, Ernst J; Ovchinnikov, Dmitry A; Stephens, Sebastien; Sanders, Katherine; Warnke, Patrick H

    2015-09-01

    Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids, rather than two-dimensional (2D) monolayers, is advantageous for many regenerative, biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only. Importantly, we could show that such 3D growth as patties maintained the pluripotency of cells as long as they were kept on nanofibres. The generation of complex multilayered 3D structures consisting of only pluripotent cells on biodegradable nanofibre matrices of the desired shape and size will enable both industrial-scale expansion and intricate organ-tissue engineering applications with human pluripotent stem cells, where simultaneous coupling of differentiation pathways of all germ layers from one stem cell source may be required for organ formation. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Heat transfer of phase-change materials in two-dimensional cylindrical coordinates

    NASA Technical Reports Server (NTRS)

    Labdon, M. B.; Guceri, S. I.

    1981-01-01

    Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.

  11. Radiation from a D-dimensional collision of shock waves: Two-dimensional reduction and Carter-Penrose diagram

    NASA Astrophysics Data System (ADS)

    Coelho, Flávio S.; Sampaio, Marco O. P.

    2016-05-01

    We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg-Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter-Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.

  12. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    PubMed

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  13. Dimensional stability tests over time and temperature for several low-expansion glass ceramics.

    PubMed

    Hall, D B

    1996-04-01

    The dimensional stabilities of five commercially available low-expansion glass ceramics have been measured between -40 °C and +90 °C. Materials tested include Zerodur, Zerodur M, Astrositall, Clearceram 55, and Clearceram 63. With the use of a standardized thermal testing procedure, the thermal expansion, isothermal shrinkage, and hysteresis behavior of the various materials are compared with one another. A detailed comparison of three separate melts of Astrositall, two separate melts of Zerodur, and one melt of Zerodur M indicates that between -40 °C and +90 °C the dimensional stability and uniformity characteristics of two of the melts of Astrositall are somewhat better than those of the other two materials. To my knowledge, this is the first published comparison of data from these glass ceramics taken with identical test procedures.

  14. Light-front Ward-Takahashi identity for two-fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinho, J. A. O.; Frederico, T.; Pace, E.

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, andmore » the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.« less

  15. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  16. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    NASA Astrophysics Data System (ADS)

    Mansfield, Paul

    1994-04-01

    We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.

  17. Multi-objective optimization and design for free piston Stirling engines based on the dimensionless power

    NASA Astrophysics Data System (ADS)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.

  18. Boby-Vortex Interaction, Sound Generation and Destructive Interference

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    2000-01-01

    It is generally recognized that interaction of vortices with downstream blades is a major source of noise production. To analyze this problem numerically, a two-dimensional model of inviscid flow together with the method of matched asymptotic expansions is proposed. The method of matched asymptotic expansions is used to match the inner region of incompressible flow to the outer region of compressible flow. Because of incompressibility, relatively simple numerical methods are available to treat multiple vortices and multiple bodies of arbitrary shape. Disturbances from vortices and bodies propagate outward as sound waves. Due to their interactions, either constructive or destructive interference may result. When it is destructive, the combined sound intensity can be reduced, sometimes substantially. In addition, an analytical solution to sound generation by the cascade-vonex interaction is given.

  19. Design of a three-dimensional scramjet nozzle considering lateral expansion and geometric constraints

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Xu, Jinglei; Mo, Jianwei

    2017-12-01

    A new method based on quasi two-dimensional supersonic flow and maximum thrust theory to design a three-dimensional nozzle while considering lateral expansion and geometric constraints is presented in this paper. To generate the configuration of the three-dimensional nozzle, the inviscid flowfield is calculated through the method of characteristics, and the reference temperature method is applied to correct the boundary layer thickness. The computational fluid dynamics approach is used to obtain the aerodynamic performance of the nozzle. Results show that the initial arc radius slightly influences the axial thrust coefficient, whereas the variations in the lateral expansion contour, the length and initial expansion angle of the lower cowl significantly affect the axial thrust coefficient. The three-dimensional nozzle designed by streamline tracing technique is also investigated for comparison to verify the superiority of the new method. The proposed nozzle shows increases in the axial thrust coefficient, lift, and pitching moment of 6.86%, 203.15%, and 642.86%, respectively, at the design point, compared with the nozzle designed by streamline tracing approach. In addition, the lateral expansion accounts for 22.46% of the entire axial thrust, while it has no contribution to the lift and pitching moment in the proposed nozzle.

  20. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2016-09-01

    We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.

  1. Large-D gravity and low-D strings.

    PubMed

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  2. Fast trimers in a one-dimensional extended Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Törmä, P.; Kinnunen, J. J.

    2018-04-01

    We consider a one-dimensional two-component extended Fermi-Hubbard model with nearest-neighbor interactions and mass imbalance between the two species. We study the binding energy of trimers, various observables for detecting them, and expansion dynamics. We generalize the definition of the trimer gap to include the formation of different types of clusters originating from nearest-neighbor interactions. Expansion dynamics reveal rapidly propagating trimers, with speeds exceeding doublon propagation in the strongly interacting regime. We present a simple model for understanding this unique feature of the movement of the trimers, and we discuss the potential for experimental realization.

  3. Bigravity from gradient expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Yasuho; Tanaka, Takahiro; Department of Physics, Kyoto University,606-8502, Kyoto

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takesmore » the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.« less

  4. Mach 4 and Mach 8 axisymmetric nozzles for a shock tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.; Stalker, R. J.

    1991-01-01

    The performance of two axisymmetric nozzles which were designed to produce uniform, parallel flow with nominal Mach numbers of 4 and 8 is examined. A free-piston-driven shock tube was used to supply the nozzle with high-temperature, high-pressure test gas. The inviscid design procedure treated the nozzle expansion in two stages. Close to the nozzle throat, the nozzle wall was specified as conical and the gas flow was treated as a quasi-one-dimensional chemically-reacting flow. At the end of the conical expansion, the gas was assumed to be calorically perfect, and a contoured wall was designed (using method of characteristics) to convert the source flow into a uniform and parallel flow at the end of the nozzle. Performance was assessed by measuring Pitot pressures across the exit plane of the nozzles and, over the range of operating conditions examined, the nozzles produced satisfactory test flows. However, there were flow disturbances in the Mach 8 nozzle flow that persisted for significant times after flow initiation.

  5. Nonclassical models of the theory of plates and shells

    NASA Astrophysics Data System (ADS)

    Annin, Boris D.; Volchkov, Yuri M.

    2017-11-01

    Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the complete system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each of the unknown functions (stresses and displacements) by segments of the Legendre polynomials are also reviewed.

  6. Landau ghost pole problem in quantum field theory: From 50th of last century to the present day

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarov, Rauf G., E-mail: rauf-jafarov@hotmail.com; Mutallimov, Mutallim M.

    2016-03-25

    In this paper we present our results of the investigation of asymptotical behavior of amplitude at short distances in four-dimensional scalar field theory with ϕ{sup 4} interaction. To formulate of our calculating model – two-particle approximation of the mean-field expansion we have used an Rochev’s iteration scheme of solution of the Schwinger-Dyson equations with the fermion bilocal source. We have considered the nonlinear integral equations in deep-inelastic region of momenta. As result we have a non-trivial behavior of amplitude at large momenta.

  7. The modified semi-discrete two-dimensional Toda lattice with self-consistent sources

    NASA Astrophysics Data System (ADS)

    Gegenhasi

    2017-07-01

    In this paper, we derive the Grammian determinant solutions to the modified semi-discrete two-dimensional Toda lattice equation, and then construct the semi-discrete two-dimensional Toda lattice equation with self-consistent sources via source generation procedure. The algebraic structure of the resulting coupled modified differential-difference equation is clarified by presenting its Grammian determinant solutions and Casorati determinant solutions. As an application of the Grammian determinant and Casorati determinant solution, the explicit one-soliton and two-soliton solution of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources are given. We also construct another form of the modified semi-discrete two-dimensional Toda lattice equation with self-consistent sources which is the Bäcklund transformation for the semi-discrete two-dimensional Toda lattice equation with self-consistent sources.

  8. Crossflow in two-dimensional asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Lee, L. P.

    1975-01-01

    An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.

  9. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  10. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.

    PubMed

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F

    2018-02-02

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.

  11. Comparison of Slab and Cylinder Expansion Test Geometries for PBX 9501

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Anderson, Eric; Aslam, Tariq; Whitley, Von

    2017-06-01

    The slab expansion test or ``sandwich test'' is the two-dimensional analog of the axisymmetric cylinder expansion test. The test consists of a high-aspect-ratio rectangular cuboid of high explosive with the two large sides confined by a thin metal confiner. Analysis of the confiner motion after the passage of the detonation yields the detonation product isentrope, which is a specialized form of the product equation of state. The slab expansion geometry inherently exhibits a lower product expansion rate and lower plastic work on the confiner than the cylinder expansion geometry. The slab geometry does, however, have a shorter test time. We review recent slab and cylinder expansion data with PBX 9501, the associated equation of state analysis, and the advantages of each geometry for different applications.

  12. Simulation of short period Lg, expansion of three-dimensional source simulation capabilities and simulation of near-field ground motion from the 1971 San Fernando, California, earthquake. Final report 1 Oct 79-30 Nov 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bache, T.C.; Swanger, H.J.; Shkoller, B.

    1981-07-01

    This report summarizes three efforts performed during the past fiscal year. The first these efforts is a study of the theoretical behavior of the regional seismic phase Lg in various tectonic provinces. Synthetic seismograms are used to determine the sensitivity of Lg to source and medium properties. The primary issues addressed concern the relationship of regional Lg characteristics to the crustal attenuation properties, the comparison of the Lg in many crustal structures and the source depth dependence of Lg. The second effort described is an expansion of hte capabilities of the three-dimensional finite difference code TRES. The present capabilities aremore » outlined with comparisons of the performance of the code on three computer systems. The last effort described is the development of an algorithm for simulation of the near-field ground motions from the 1971 San Fernando, California, earthquake. A computer code implementing this algorithm has been provided to the Mission Research Corporation foe simulation of the acoustic disturbances from such an earthquake.« less

  13. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  14. 77 FR 58404 - Announcing the Award of Three Single-Source Program Expansion Supplement Grants to Unaccompanied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ...] Announcing the Award of Three Single-Source Program Expansion Supplement Grants to Unaccompanied Alien... its Unaccompanied Alien Children's Program to two organizations, Florence Crittenton Services of... unaccompanied alien children through September 30, 2012. The supplement grant will support the expansion of bed...

  15. Hadronic expansion dynamics in central Pb+Pb collisions at 158 GeV per nucleon

    DOE PAGES

    Appelshäuser, H.

    1998-03-24

    Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and twomore » particle spectra are analysed separately. Lastly, the source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.« less

  16. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-04-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  17. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  18. Solution of the exact equations for three-dimensional atmospheric entry using directly matched asymptotic expansions

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1976-01-01

    The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.

  19. Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.

    We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scalemore » for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.« less

  20. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    DTIC Science & Technology

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  1. Evolution of relative drifts and temperature anisotropies in expanding collisionless plasmas—1.5D vs. 2.5D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, S.; Araneda, J. A.

    2016-02-01

    We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.

  2. Bacterial Colony from Two-Dimensional Division to Three-Dimensional Development

    PubMed Central

    Su, Pin-Tzu; Liao, Chih-Tang; Roan, Jiunn-Ren; Wang, Shao-Hung; Chiou, Arthur; Syu, Wan-Jr

    2012-01-01

    On agar surface, bacterial daughter cells form a 4-cell array after the first two rounds of division, and this phenomenon has been previously attributed to a balancing of interactions among the daughter bacteria and the underneath agar. We studied further the organization and development of colony after additional generations. By confocal laser scanning microscopy and real-time imaging, we observed that bacterial cells were able to self-organize and resulted in a near circular micro-colony consisting of monolayer cells. After continuous dividing, bacteria transited from two-dimensional expansion into three-dimensional growth and formed two to multi-layers in the center but retained a monolayer in the outer ring of the circular colony. The transverse width of this outer ring appeared to be approximately constant once the micro-colony reached a certain age. This observation supports the notion that balanced interplays of the forces involved lead to a gross morphology as the bacteria divide into offspring on agar surface. In this case, the result is due to a balance between the expansion force of the dividing bacteria, the non-covalent force among bacterial offspring and that between bacteria and substratum. PMID:23155376

  3. Teleparallel dark energy in a system of D0-branes

    NASA Astrophysics Data System (ADS)

    Sharma, Umesh Kumar; Sepehri, Alireza; Pradhan, Anirudh

    A new model which allows a non-minimal coupling between gravity and quintessence in the configuration of teleparallel gravity was recently proposed by Geng et al. [“Teleparallel” dark energy, Phys. Lett. B 704 (2011) 384-387] and they named it teleparallel dark energy. Now the main problem which arises is to know what is the source of this dark energy? The answer of this question is given by us in M-theory. This type of dark energy may be produced at three stages in our model. First, one six-dimensional universe is formed by combining and expanding D0-branes. We know that this universe-brane is polarized on two circles and our four-dimensional cosmos and two D1-branes are yielded. At third stage, two D1-branes glued to each other and one D2-brane is formed. This D2 connects our universe with another universe, gives its energy to them and causes the production of dark energy. Thus, the D2-brane is unstable and dissolves in our four-dimensional universes and supplies the needed teleparallel dark energy for expansion. These calculations are extended to M-theory and shown that the amount of teleparallel dark energy which is produced by compactification of universe-branes in M-theory is more than string theory.

  4. Two- and three-dimensional accuracy of dental impression materials: effects of storage time and moisture contamination.

    PubMed

    Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E

    2010-01-01

    Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.

  5. Correlations and sum rules in a half-space for a quantum two-dimensional one-component plasma

    NASA Astrophysics Data System (ADS)

    Jancovici, B.; Šamaj, L.

    2007-05-01

    This paper is the continuation of a previous one (Šamaj and Jancovici, 2007 J. Stat. Mech. P02002); for a nearly classical quantum fluid in a half-space bounded by a plain plane hard wall (no image forces), we had generalized the Wigner Kirkwood expansion of the equilibrium statistical quantities in powers of Planck's constant \\hbar . As a model system for a more detailed study, we consider the quantum two-dimensional one-component plasma: a system of charged particles of one species, interacting through the logarithmic Coulomb potential in two dimensions, in a uniformly charged background of opposite sign, such that the total charge vanishes. The corresponding classical system is exactly solvable in a variety of geometries, including the present one of a half-plane, when βe2 = 2, where β is the inverse temperature and e is the charge of a particle: all the classical n-body densities are known. In the present paper, we have calculated the expansions of the quantum density profile and truncated two-body density up to order \\hbar ^2 (instead of only to order \\hbar as in the previous paper). These expansions involve the classical n-body densities up to n = 4; thus we obtain exact expressions for these quantum expansions in this special case. For the quantum one-component plasma, two sum rules involving the truncated two-body density (and, for one of them, the density profile) have been derived, a long time ago, by using heuristic macroscopic arguments: one sum rule concerns the asymptotic form along the wall of the truncated two-body density; the other one concerns the dipole moment of the structure factor. In the two-dimensional case at βe2 = 2, we now have explicit expressions up to order \\hbar^2 for these two quantum densities; thus we can microscopically check the sum rules at this order. The checks are positive, reinforcing the idea that the sum rules are correct.

  6. Systematic expansion in the order parameter for replica theory of the dynamical glass transition.

    PubMed

    Jacquin, Hugo; Zamponi, Francesco

    2013-03-28

    It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.

  7. 3D relativistic MHD numerical simulations of X-shaped radio sources

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.

    2017-10-01

    Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.

  8. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    PubMed Central

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161

  9. Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1972-01-01

    A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.

  10. Crystalline phases by an improved gradient expansion technique

    NASA Astrophysics Data System (ADS)

    Carignano, S.; Mannarelli, M.; Anzuini, F.; Benhar, O.

    2018-02-01

    We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical considerations. The method is remarkably reliable and fast as compared to performing the full numerical diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with previous results, we find that the energetically favored modulation is the so-called one-dimensional real-kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.

  11. Combined study of the solar neighbourhood kinematics - Spherical harmonics and Taylor expansions

    NASA Astrophysics Data System (ADS)

    Hernandez-Pajares, M.; Nunez, J.

    1990-08-01

    This paper relates two methods of analyzing the kinematic parameters of the local macroscopic motions of the Galaxy: (1) the Ogorodnikov-Milne model (OM) that consists in the three-dimensional Taylor expansion of the mean velocity field, and (2) the two-dimensional spherical harmonic development of the velocity components (SH). The theoretical relations between the SH coefficients and the second-order OM ones for the radial velocity v(r), and the galactic heliocentric components of the velocity U, V, W are presented. Only the hypothesis of separability of the stellar density function of the sample into angular and radial parts is needed. They are applied to 4732 A-M stars included in the Figueras (1986) sample.

  12. VNAP2: A Computer Program for Computation of Two-dimensional, Time-dependent, Compressible, Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1981-01-01

    A computer program, VNAP2, for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow is presented. It solves the two dimensional, time dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing length model, a one equation model, or the Jones-Launder two equation model. The geometry may be a single or a dual flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference plane characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet powered afterbodies, airfoils, and free jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  13. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing.

    PubMed

    Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R

    2018-04-01

    A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

  14. Space-time asymptotics of the two dimensional Navier-Stokes flow in the whole plane

    NASA Astrophysics Data System (ADS)

    Okabe, Takahiro

    2018-01-01

    We consider the space-time behavior of the two dimensional Navier-Stokes flow. Introducing some qualitative structure of initial data, we succeed to derive the first order asymptotic expansion of the Navier-Stokes flow without moment condition on initial data in L1 (R2) ∩ Lσ2 (R2). Moreover, we characterize the necessary and sufficient condition for the rapid energy decay ‖ u (t) ‖ 2 = o (t-1) as t → ∞ motivated by Miyakawa-Schonbek [21]. By weighted estimated in Hardy spaces, we discuss the possibility of the second order asymptotic expansion of the Navier-Stokes flow assuming the first order moment condition on initial data. Moreover, observing that the Navier-Stokes flow u (t) lies in the Hardy space H1 (R2) for t > 0, we consider the asymptotic expansions in terms of Hardy-norm. Finally we consider the rapid time decay ‖ u (t) ‖ 2 = o (t - 3/2 ) as t → ∞ with cyclic symmetry introduced by Brandolese [2].

  15. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  16. Investigation of chemically reacting and radiating supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Mani, M.; Tiwari, S. N.

    1986-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations are used to investigate the chemically reacting and radiating supersonic flow of the hydrogen-air system between two parallel plates and in a channel with a ten degree compression-expansion ramp at the lower boundary. The explicit unsplit finite-difference technique of MacCormack is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The tangent slab approximation is employed in the radiative flux formation. Both pseudo-gray and nongray models are used to represent the absorption characteristics of the participating species. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the flow field.

  17. Analytical theory of two-dimensional ring dark soliton in nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Qi; Shi, Jielong; Shen, Ming

    2017-11-01

    Completely stable two-dimensional ring dark soliton in nonlocal media with an arbitrary degree of nonlocality are investigated. The exact solution of the ring dark solitons is obtained with the variational method and a cylindrical nonlocal response function. The analytical results are confirmed by directly numerical simulations. We also analytically and numerically study the expansion dynamics of the gray ring dark solitons in detail.

  18. Parametric analysis of diffuser requirements for high expansion ratio space engine

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Anderson, P. G.

    1981-01-01

    A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated.

  19. Dimensionality effects in void-induced explosive sensitivity

    DOE PAGES

    Herring, Stuart Davis; Germann, Timothy Clark; Gronbech-Jensen, Niels

    2016-09-02

    Here, the dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.

  20. Wake-shock interaction at a Mach number of 6

    NASA Technical Reports Server (NTRS)

    Walsh, M. J.

    1978-01-01

    Measurements of mean pitot pressure, static pressure, and total temperature were made in the two dimensional turbulent mixing region of a wake downstream of an interaction with a shock-expansion wave system. The results indicated that: (1) the shock increased the mixing, and (2) the expansion field that followed the shock decreased the turbulent mixing. The overall effect of the shock-expansion wave interaction was dependent on the orientation of the expansion wave with respect to the intersecting shock wave. These data could be used to validate nonequilibrium turbulence modeling and numerical solution of the time averaged Navier-Stokes equations.

  1. Three-dimensional, two-species magnetohydrodynamic studies of the early time behaviors of the Combined Release and Radiation Effects Satellite G2 barium release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Lianghai, E-mail: xielh@nssc.ac.cn; Li, Lei; Wang, Jingdong

    2014-04-15

    We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions aremore » constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.« less

  2. High Expansion Foam for Protecting Large Volume Mission Critical Shipboard Spaces

    DTIC Science & Technology

    2009-01-01

    aqueous film - forming foam ( AFFF ) sprinklers designed only to combat Class B two-dimensional pool fires.1 The...Validation Tests, Series 1 – An Evaluation of Aqueous Film Foaming Foam ( AFFF ) Suppression Systems for Protection of LHA(R) Well Deck and Vehicle... firefighting system design. NRL further recognized that employing a traditional high expansion foam generator would impact shipboard

  3. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments

    NASA Astrophysics Data System (ADS)

    Nam, Sungmin; Chaudhuri, Ovijit

    2018-06-01

    During mitosis, or cell division, mammalian cells undergo extensive morphological changes, including elongation along the mitotic axis, which is perpendicular to the plane that bisects the two divided cells. Although much is known about the intracellular dynamics of mitosis, it is unclear how cells are able to divide in tissues, where the changes required for mitosis are mechanically constrained by surrounding cells and extracellular matrix. Here, by confining cells three dimensionally in hydrogels, we show that dividing cells generate substantial protrusive forces that deform their surroundings along the mitotic axis, clearing space for mitotic elongation. When forces are insufficient to create space for mitotic elongation, mitosis fails. We identify one source of protrusive force as the elongation of the interpolar spindle, an assembly of microtubules aligned with the mitotic axis. Another source of protrusive force is shown to be contraction of the cytokinetic ring, the polymeric structure that cleaves a dividing cell at its equator, which drives expansion along the mitotic axis. These findings reveal key functions for the interpolar spindle and cytokinetic ring in protrusive extracellular force generation, and explain how dividing cells overcome mechanical constraints in confining microenvironments, including some types of tumour.

  4. Comparisons of two-dimensional shock-expansion theory with experimental aerodynamic data for delta-planform wings at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1974-01-01

    An investigation has been conducted to explore the potential for optimizing airfoil shape at high supersonic speeds by utilizing the two-dimensional shock-expansion method. Theoretical and experimental force and moment coefficients are compared for four delta-planform semispan wings having a leading-edge sweep angle of 65 deg and incorporating modified diamond airfoils with a thickness-chord ratio of 0.06. The wings differ only in airfoil maximum-thickness position and camber. The experimental data are obtained at Mach numbers of 3.95 and 4.63 and at a Reynolds number of 9.84 million per meter. A relatively simple method is developed for predicting, in terms of lift-drag ratio, the optimum modified diamond airfoil at high supersonic and hypersonic speeds.

  5. Boundary condition computational procedures for inviscid, supersonic steady flow field calculations

    NASA Technical Reports Server (NTRS)

    Abbett, M. J.

    1971-01-01

    Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.

  6. Transverse momentum dependent two-pion Bose-Einstein correlations in Au + Au collisions at 11.6 A (center-dot) GeV/c

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1998-01-01

    Bose-Einstein correlations of (pi)(sup +)(pi)(sup +) and (pi)(sup -) (pi)(sup -) pairs collected by the BNL-E866 Forward Spectrometer in 11.6 A(center-dot)GeV/c Au + Au collisions have been measured. The data were analyzed using three-dimensional correlation functions parameterized by the Yano-Koonin-Potgoretskii and Bertsch-Pratt formalism to study transverse momentum dependent source parameters. Rapid decreases of longitudinal source radii and slower decreases in the transverse parameters with increasing transverse momentum were observed, which suggests a strong longitudinal and some transverse expansion. A freeze-out time (tau)(sub 0) was derived as 4.5--5 fm/c, under the assumption of the freeze-out temperature T = 130 MeV, and the duration of emission was found to be (delta)(tau) (approx) 2--4 fm/c.

  7. Comparisons between thermodynamic and one-dimensional combustion models of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Ramos, J. I.

    1986-01-01

    Results from a one-dimensional combustion model employing a constant eddy diffusivity and a one-step chemical reaction are compared with those of one-zone and two-zone thermodynamic models to study the flame propagation in a spark-ignition engine. One-dimensional model predictions are found to be very sensitive to the eddy diffusivity and reaction rate data. The average mixing temperature found using the one-zone thermodynamic model is higher than those of the two-zone and one-dimensional models during the compression stroke, and that of the one-dimensional model is higher than those predicted by both thermodynamic models during the expansion stroke. The one-dimensional model is shown to predict an accelerating flame even when the front approaches the cold cylinder wall.

  8. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  9. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.

    Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.

  10. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less

  11. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  12. Pharyngeal airway changes following maxillary expansion or protraction: A meta-analysis.

    PubMed

    Lee, W-C; Tu, Y-K; Huang, C-S; Chen, R; Fu, M-W; Fu, E

    2018-02-01

    The aim of this meta-analysis was to investigate the changes in airway dimensions after rapid maxillary expansion (RME) and facemask (FM) protraction. Using PubMed, Medline, ScienceDirect and Web of Science, only controlled clinical trials, published up to November 2016, with RME and/or FM as keywords that had ≥6 months follow-up period were included in this meta-analysis. The changes in pharyngeal airway dimension in both two-dimensional and three-dimensional images were included in the analysis. Nine studies met the criteria. There are statically significant changes in upper airway and nasal passage airway in the intervention groups as compared to the control groups, assessed in two-dimensional and three-dimensional images. However , in the lower airway and the airway below the palatal plane, no statistically significant changes are seen in 2D and 3D images. RME/FM treatments might increase the upper airway space in children and young adolescents. However, more RCTs and long-term cohort studies are needed to further clarify the effects on pharyngeal airway changes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Thermomagnetic instabilities in a vertical layer of ferrofluid: nonlinear analysis away from a critical point

    NASA Astrophysics Data System (ADS)

    Dey, Pinkee; Suslov, Sergey A.

    2016-12-01

    A finite amplitude instability has been analysed to discover the exact mechanism leading to the appearance of stationary magnetoconvection patterns in a vertical layer of a non-conducting ferrofluid heated from the side and placed in an external magnetic field perpendicular to the walls. The physical results have been obtained using a version of a weakly nonlinear analysis that is based on the disturbance amplitude expansion. It enables a low-dimensional reduction of a full nonlinear problem in supercritical regimes away from a bifurcation point. The details of the reduction are given in comparison with traditional small-parameter expansions. It is also demonstrated that Squire’s transformation can be introduced for higher-order nonlinear terms thus reducing the full three-dimensional problem to its equivalent two-dimensional counterpart and enabling significant computational savings. The full three-dimensional instability patterns are subsequently recovered using the inverse transforms The analysed stationary thermomagnetic instability is shown to occur as a result of a supercritical pitchfork bifurcation.

  14. Promotion of initiated cells by radiation-induced cell inactivation.

    PubMed

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  15. Seeking fixed points in multiple coupling scalar theories in the ɛ expansion

    NASA Astrophysics Data System (ADS)

    Osborn, Hugh; Stergiou, Andreas

    2018-05-01

    Fixed points for scalar theories in 4 - ɛ, 6 - ɛ and 3 - ɛ dimensions are discussed. It is shown how a large range of known fixed points for the four dimensional case can be obtained by using a general framework with two couplings. The original maximal symmetry, O( N), is broken to various subgroups, both discrete and continuous. A similar discussion is applied to the six dimensional case. Perturbative applications of the a-theorem are used to help classify potential fixed points. At lowest order in the ɛ-expansion it is shown that at fixed points there is a lower bound for a which is saturated at bifurcation points.

  16. Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2010-11-01

    This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified.more » Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.« less

  17. Universal thermal corrections to single interval entanglement entropy for two dimensional conformal field theories.

    PubMed

    Cardy, John; Herzog, Christopher P

    2014-05-02

    We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle.

  18. Two-dimensional problem of two Coulomb centers at small intercenter distances

    NASA Astrophysics Data System (ADS)

    Bondar, D. I.; Hnatich, M.; Lazur, V. Yu.

    2006-08-01

    We use analytic methods to analyze the discrete spectrum for the problem (Z1eZ2)2 in the united-atom limit ( R ≪ 1) and obtain asymptotic expansions for the quantum defect and energy terms of the system (Z1eZ2)2 at small intercenter distances R up to terms of the order O(R6). We investigate the effect of the dimensionality factor on the energy spectrum of the hydrogen molecular ion H{2/+}.

  19. Two-Dimensional One-Component Plasma on Flamm's Paraboloid

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo; Téllez, Gabriel

    2008-11-01

    We study the classical non-relativistic two-dimensional one-component plasma at Coulomb coupling Γ=2 on the Riemannian surface known as Flamm's paraboloid which is obtained from the spatial part of the Schwarzschild metric. At this special value of the coupling constant, the statistical mechanics of the system are exactly solvable analytically. The Helmholtz free energy asymptotic expansion for the large system has been found. The density of the plasma, in the thermodynamic limit, has been carefully studied in various situations.

  20. Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer

    NASA Astrophysics Data System (ADS)

    Wang, Chunqi; Huang, Lixi

    2008-06-01

    When a segment of a rigid duct is replaced by a plate backed by a hard-walled cavity, grazing incident sound waves induce plate vibration, hence sound reflection. Based on this mechanism, a broadband plate silencer, which works effectively from low-to-medium frequencies have been developed recently. A typical plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. Such a configuration is two-dimensional in nature. In this paper, numerical study is extended to three-dimensional configurations to investigate the potential improvement in sound reflection. Finite element simulation shows that the three-dimensional configurations perform better than the corresponding two-dimensional design, especially in the relatively high frequency region. Further analysis shows that the three-dimensional design gives better plate response at higher axial modes than the simple two-dimensional design. Sound absorption mechanism is also introduced to the plate silencer by adding two dissipative chambers on the two lateral sides of a two-cavity wave reflector, hence a hybrid silencer. Numerical simulation shows that the proposed hybrid silencer is able to achieve a good moderate bandwidth with much reduced total length in comparison with pure absorption design.

  1. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  2. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.

    1990-01-01

    An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.

  3. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.

    2016-10-01

    Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

  4. Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with External Shelf

    NASA Technical Reports Server (NTRS)

    Lamb, Milton; Taylor, John G.; Frassinelli, Mark C.

    1996-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a two-dimensional convergent-divergent nozzle. The nozzle design was tested with dry and afterburning throat areas, which represent different power settings and three expansion ratios. For each of these configurations, three trailing-edge geometries were tested. The baseline geometry had a straight trailing edge. Two different shaping techniques were applied to the baseline nozzle design to reduce radar observables: the scarfed design and the sawtooth design. A flat plate extended downstream of the lower divergent flap trailing edge parallel to the model centerline to form a shelf-like expansion surface. This shelf was designed to shield the plume from ground observation (infrared radiation (IR) signature suppression). The shelf represents the part of the aircraft structure that might be present in an installed configuration. These configurations were tested at nozzle pressure ratios from 2.0 to 12.0.

  5. Investigation of two-dimensional wedge exhaust nozzles for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.; Petit, J. E.

    1975-01-01

    Two-dimensional wedge nozzle performance characteristics were investigated in a series of wind-tunnel tests. An isolated single-engine/nozzle model was used to study the effects of internal expansion area ratio, aftbody cowl boattail angle, and wedge length. An integrated twin-engine/nozzle model, tested with and without empenage surfaces, included cruise, acceleration, thrust vectoring and thrust reversing nozzle operating modes. Results indicate that the thrust-minus-aftbody drag performance of the twin two-dimensional nozzle integration is significantly higher, for speeds greater than Mach 0.8, than the performance achieved with twin axisymmetric nozzle installations. Significant jet-induced lift was obtained on an aft-mounted lifting surface using a cambered wedge center body to vector thrust. The thrust reversing capabilities of reverser panels installed on the two-dimensional wedge center body were very effective for static or in-flight operation.

  6. Low-Reynolds-number predator.

    PubMed

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.

  7. Low-Reynolds-number predator

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.

  8. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  9. Coupled chaotic fluctuations in a model of international trade and innovation: Some preliminary results

    NASA Astrophysics Data System (ADS)

    Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori

    2018-05-01

    We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.

  10. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  11. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

  12. Expansion of Non-Quasi-Neutral Limited Plasmas Driven by Two-Temperature Electron Clouds

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Honrubia, Javier

    2017-10-01

    Fast heating of an isolated solid mass, under irradiation of ultra-intense ultra-short laser pulse, to averaged temperatures of order of keV is theoretically studied. Achievable maximum ion temperatures are determined as a consequence of the interplay of the electron-to-ion energy deposition and nonrelativistic plasma expansion, where fast ion emission plays an important role in the energy balance. To describe the plasma expansion, we develop a self-similar solution, in which the plasma is composed of three fluids, i.e., ions and two-temperature electrons. Under the condition of isothermal electron expansion in cylindrical geometry, such a fluid system, self-consistently incorporated with the Poisson equation, is fully solved. The charge separation and resultant accelerated ion population due to the induced electrostatic field are quantitatively presented. The analytical model is compared with two-dimensional hydrodynamic simulations to provide practical working windows for the target and laser parameters for the fast heating.

  13. Survival probabilities at spherical frontiers.

    PubMed

    Lavrentovich, Maxim O; Nelson, David R

    2015-06-01

    Motivated by tumor growth and spatial population genetics, we study the interplay between evolutionary and spatial dynamics at the surfaces of three-dimensional, spherical range expansions. We consider range expansion radii that grow with an arbitrary power-law in time: R(t) = R0(1 + t/t(∗))Θ, where Θ is a growth exponent, R0 is the initial radius, and t(∗) is a characteristic time for the growth, to be affected by the inflating geometry. We vary the parameters t(∗) and Θ to capture a variety of possible growth regimes. Guided by recent results for two-dimensional inflating range expansions, we identify key dimensionless parameters that describe the survival probability of a mutant cell with a small selective advantage arising at the population frontier. Using analytical techniques, we calculate this probability for arbitrary Θ. We compare our results to simulations of linearly inflating expansions (Θ = 1 spherical Fisher-Kolmogorov-Petrovsky-Piscunov waves) and treadmilling populations (Θ = 0, with cells in the interior removed by apoptosis or a similar process). We find that mutations at linearly inflating fronts have survival probabilities enhanced by factors of 100 or more relative to mutations at treadmilling population frontiers. We also discuss the special properties of "marginally inflating" (Θ = 1/2) expansions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less

  15. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    DTIC Science & Technology

    2011-10-01

    Energy Distribution Function M. Merino-Mart́ınez∗ Universidad Politécnica de Madrid, Spain A two-dimensional plasma beam model is used to investigate the...2D model of the supersonic expansion of a collisionless plasma in a divergent magnetic nozzle was de - veloped by Ahedo and Merino.7 An important...Universidad Politecnica de Madrid, Spain A magnetic nozzle model for the supersonic expansion of a collisionless, low-beta plasma characterizes the

  16. Topology of Large-Scale Structures of Galaxies in two Dimensions—Systematic Effects

    NASA Astrophysics Data System (ADS)

    Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan

    2017-02-01

    We study the two-dimensional topology of galactic distribution when projected onto two-dimensional spherical shells. Using the latest Horizon Run 4 simulation data, we construct the genus of the two-dimensional field and consider how this statistic is affected by late-time nonlinear effects—principally gravitational collapse and redshift space distortion (RSD). We also consider systematic and numerical artifacts, such as shot noise, galaxy bias, and finite pixel effects. We model the systematics using a Hermite polynomial expansion and perform a comprehensive analysis of known effects on the two-dimensional genus, with a view toward using the statistic for cosmological parameter estimation. We find that the finite pixel effect is dominated by an amplitude drop and can be made less than 1% by adopting pixels smaller than 1/3 of the angular smoothing length. Nonlinear gravitational evolution introduces time-dependent coefficients of the zeroth, first, and second Hermite polynomials, but the genus amplitude changes by less than 1% between z = 1 and z = 0 for smoothing scales {R}{{G}}> 9 {Mpc}/{{h}}. Non-zero terms are measured up to third order in the Hermite polynomial expansion when studying RSD. Differences in the shapes of the genus curves in real and redshift space are small when we adopt thick redshift shells, but the amplitude change remains a significant ˜ { O }(10 % ) effect. The combined effects of galaxy biasing and shot noise produce systematic effects up to the second Hermite polynomial. It is shown that, when sampling, the use of galaxy mass cuts significantly reduces the effect of shot noise relative to random sampling.

  17. Transport calculations and sensitivity analyses for air-over-ground and air-over-seawater weapons environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, J.V. III; Bartine, D.E.; Mynatt, F.R.

    1976-01-01

    Two-dimensional neutron and secondary gamma-ray transport calculations and cross-section sensitivity analyses have been performed to determine the effects of varying source heights and cross sections on calculated doses. The air-over-ground calculations demonstrate the existence of an optimal height of burst for a specific ground range and indicate under what conditions they are conservative with respect to infinite air calculations. The air-over-seawater calculations showed the importance of hydrogen and chlorine in gamma production. Additional sensitivity analyses indicated the importance of water in the ground, the amount of reduction in ground thickness for calculational purposes, and the effect of the degree ofmore » Legendre angular expansion of the scattering cross-sections (P/sub l/) on the calculated dose.« less

  18. On three-dimensional reconstruction of a neutron/x-ray source from very few two-dimensional projections

    DOE PAGES

    Volegov, P. L.; Danly, C. R.; Merrill, F. E.; ...

    2015-11-24

    The neutron imaging system at the National Ignition Facility is an important diagnostic tool for measuring the two-dimensional size and shape of the source of neutrons produced in the burning deuterium-tritium plasma during the stagnation phase of inertial confinement fusion implosions. Few two-dimensional projections of neutronimages are available to reconstruct the three-dimensionalneutron source. In our paper, we present a technique that has been developed for the 3Dreconstruction of neutron and x-raysources from a minimal number of 2D projections. Here, we present the detailed algorithms used for this characterization and the results of reconstructedsources from experimental data collected at Omega.

  19. Percolation and epidemics in a two-dimensional small world

    NASA Astrophysics Data System (ADS)

    Newman, M. E.; Jensen, I.; Ziff, R. M.

    2002-02-01

    Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant diseases. In this paper we give an analytic solution of this model using a combination of generating function methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the position of the percolation threshold and the typical size of disease outbreaks as a function of the density of ``shortcuts'' in the small-world network. Our results agree with scaling hypotheses and numerical simulations for the same model.

  20. On non-exponential cosmological solutions with two factor spaces of dimensions m and 1 in the Einstein-Gauss-Bonnet model with a Λ-term

    NASA Astrophysics Data System (ADS)

    Ernazarov, K. K.

    2017-12-01

    We consider a (m + 2)-dimensional Einstein-Gauss-Bonnet (EGB) model with the cosmological Λ-term. We restrict the metrics to be diagonal ones and find for certain Λ = Λ(m) class of cosmological solutions with non-exponential time dependence of two scale factors of dimensions m > 2 and 1. Any solution from this class describes an accelerated expansion of m-dimensional subspace and tends asymptotically to isotropic solution with exponential dependence of scale factors.

  1. A two-dimensional contaminant fate and transport model for the lower Athabasca River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, B.G.; Booty, W.G.; MacInnis, G.A.

    1995-12-31

    The lower Athabasca River flows through the Athabasca Oil Sands deposits in northeastern Alberta. Two oil sands mining/extraction/upgrading plants operate near the river downstream from Fort McMurray. Process water is stored in large tailings ponds. One of the plants (Suncor) has a licensed discharge (mostly cooling water) to the river. This effluent contains low concentrations ({<=} 1 {micro}g/L) of various polycyclic aromatic compounds (PACs). Several tributary streams which cut through oil sands deposits are potential sources of hydrocarbons to the Athabasca. The authors have found that river suspended sediments give positive responses in a number of toxicity tests, using bothmore » direct and indirect (organic-solvent extract) methods. Several environmental impact assessments are required as a result of industry expansion. To provide an assessment tool for PACs, the authors are developing a two-dimensional contaminant fate and transport model for a 120-km portion of the Athabasca River downstream from Fort McMurray. Hydraulic calibration of the model was done using sodium and chloride from a major tributary as tracers. Two groups of compounds are being modelled: (1) PACs from the Suncor effluent, and (2) PACs from natural/background sources. PAC concentrations in the river were typically < 1 ng/L, requiring large volume extractions and highly sensitive analysis. Processes such as sediment-water partitioning and biodegradation are being estimated from field experiments using river water and suspended sediment. Photodegradation is likely unimportant in this turbid river due to low penetration of 280--350 nm light. Initially, volatilization will be modelled using estimated or literature values for Henry`s constants, but may require more refined estimates from laboratory experiments.« less

  2. The 2.5-dimensional equivalent sources method for directly exposed and shielded urban canyons.

    PubMed

    Hornikx, Maarten; Forssén, Jens

    2007-11-01

    When a domain in outdoor acoustics is invariant in one direction, an inverse Fourier transform can be used to transform solutions of the two-dimensional Helmholtz equation to a solution of the three-dimensional Helmholtz equation for arbitrary source and observer positions, thereby reducing the computational costs. This previously published approach [D. Duhamel, J. Sound Vib. 197, 547-571 (1996)] is called a 2.5-dimensional method and has here been extended to the urban geometry of parallel canyons, thereby using the equivalent sources method to generate the two-dimensional solutions. No atmospheric effects are considered. To keep the error arising from the transform small, two-dimensional solutions with a very fine frequency resolution are necessary due to the multiple reflections in the canyons. Using the transform, the solution for an incoherent line source can be obtained much more efficiently than by using the three-dimensional solution. It is shown that the use of a coherent line source for shielded urban canyon observer positions leads mostly to an overprediction of levels and can yield erroneous results for noise abatement schemes. Moreover, the importance of multiple facade reflections in shielded urban areas is emphasized by vehicle pass-by calculations, where cases with absorptive and diffusive surfaces have been modeled.

  3. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  4. Romans supergravity from five-dimensional holograms

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan

    2018-05-01

    We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the conformal and flavor central charges can be extracted from the six-dimensional supergravity action, by carefully analyzing its embedding into type I' string theory. The results match on the two sides of the holographic duality. Our results also provide analytic evidence for the symmetry enhancement in five-dimensional superconformal field theories.

  5. Measurement of spatial refractive index distributions of fusion spliced optical fibers by digital holographic microtomography

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Deng, Yating; Ma, Xichao; Xiao, Wen

    2017-11-01

    Digital holographic microtomography is improved and applied to the measurements of three-dimensional refractive index distributions of fusion spliced optical fibers. Tomographic images are reconstructed from full-angle phase projection images obtained with a setup-rotation approach, in which the laser source, the optical system and the image sensor are arranged on an optical breadboard and synchronously rotated around the fixed object. For retrieving high-quality tomographic images, a numerical method is proposed to compensate the unwanted movements of the object in the lateral, axial and vertical directions during rotation. The compensation is implemented on the two-dimensional phase images instead of the sinogram. The experimental results exhibit distinctly the internal structures of fusion splices between a single-mode fiber and other fibers, including a multi-mode fiber, a panda polarization maintaining fiber, a bow-tie polarization maintaining fiber and a photonic crystal fiber. In particular, the internal structure distortion in the fusion areas can be intuitively observed, such as the expansion of the stress zones of polarization maintaining fibers, the collapse of the air holes of photonic crystal fibers, etc.

  6. Optimality of Thermal Expansion Bounds in Three Dimensions

    DOE PAGES

    Watts, Seth E.; Tortorelli, Daniel A.

    2015-02-20

    In this short note, we use topology optimization to design multi-phase isotropic three-dimensional composite materials with extremal combinations of isotropic thermal expansion and bulk modulus. In so doing, we provide evidence that the theoretical bounds for this combination of material properties are optimal. This has been shown in two dimensions, but not heretofore in three dimensions. Finally, we also show that restricting the design space by enforcing material symmetry by construction does not prevent one from obtaining extremal designs.

  7. Ideal Magnetohydrodynamic Simulations of Magnetic Bubble Expansion as a Model for Extragalactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Hsu, Scott; Li, Hui; Li, Shengtai; Lynn, Alan

    2009-05-01

    Recent astronomical observations indicate that radio lobes are gigantic relaxed magnetized plasmas with kilo-to-megaparsec scale jets providing a source of magnetic energy from the galaxy to the lobes. Therefore we are conducting a laboratory plasma experiment, the Plasma Bubble Expansion Experiment (PBEX) in which a higher pressure magnetized plasma bubble (i.e., the lobe) is injected into a lower pressure background plasma (i.e., the intergalactic medium) to study key nonlinear plasma physics issues. Here we present detailed ideal magnetohydrodynamic (MHD) three-dimensional simulations of PBEX. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a leading MHD shock and a trailing slow-mode compressible MHD wave front are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection arising from numerical resistivity and to inhomogeneous angular momentum transport due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.

  8. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1990-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).

  9. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    PubMed

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  10. Thermal Expansion Properties of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  11. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.

    PubMed

    Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E

    2018-03-01

    Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

  12. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  13. Short interval expansion of Rényi entropy on torus

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wu, Jun-Bao; Zhang, Jia-ju

    2016-08-01

    We investigate the short interval expansion of the Rényi entropy for two-dimensional conformal field theory (CFT) on a torus. We require the length of the interval ℓ to be small with respect to the spatial and temporal sizes of the torus. The operator product expansion of the twist operators allows us to compute the short interval expansion of the Rényi entropy at any temperature. In particular, we pay special attention to the large c CFTs dual to the AdS3 gravity and its cousins. At both low and high temperature limits, we read the Rényi entropies to order ℓ6, and find good agreements with holographic results. Moreover, the expansion allows us to read 1 /c contribution, which is hard to get by expanding the thermal density matrix. We generalize the study to the case with the chemical potential as well.

  14. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system

    NASA Astrophysics Data System (ADS)

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement—of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  15. Computational aspects of the smectization process in liquid crystals: An example study of a perfectly aligned two-dimensional hard-boomerang system.

    PubMed

    Chrzanowska, Agnieszka

    2017-06-01

    A replica method for calculation of smectic liquid crystal properties within the Onsager theory has been presented and applied to an exemplary case of two-dimensional perfectly aligned needlelike boomerangs. The method allows one to consider the complete influence of the interaction terms in contrast to the Fourier expansion method which uses mostly first or second order terms of expansion. The program based on the replica algorithm is able to calculate a single representative layer as an equivalent set of layers, depending on the size of the considered width of the sample integration interval. It predicts successfully smectic density distributions, energies, and layer thicknesses for different types of layer arrangement-of the antiferroelectric or of the smectic A order type. Specific features of the algorithm performance and influence of the numerical accuracy on the physical properties are presented. Future applications of the replica method to freely rotating molecules are discussed.

  16. A shock wave capability for the improved Two-Dimensional Kinetics (TDK) computer program

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1984-01-01

    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket engine performance prediction procedures. The purpose of this contract has been to improve the TDK computer program so that it can be applied to rocket engine designs of advanced type. In particular, future orbit transfer vehicles (OTV) will require rocket engines that operate at high expansion ratio, i.e., in excess of 200:1. Because only a limited length is available in the space shuttle bay, it is possible that OTV nozzles will be designed with both relatively short length and high expansion ratio. In this case, a shock wave may be present in the flow. The TDK computer program was modified to include the simulation of shock waves in the supersonic nozzle flow field. The shocks induced by the wall contour can produce strong perturbations of the flow, affecting downstream conditions which need to be considered for thrust chamber performance calculations.

  17. Analytical and numerical studies of positive ion beam expansion for surface treatment applications

    NASA Astrophysics Data System (ADS)

    Lounes-Mahloul, Soumya; Bendib, Abderrezeg; Oudini, Noureddine

    2018-01-01

    The aim of this work is to study the expansion in vacuum, of a positive ion beam with the use of one dimensional (1D) analytic model and a two dimensional Particle-In-Cell (2D-PIC) simulation. The ion beam is extracted and accelerated from preformed plasma by an extraction system composed of two polarized parallel perforated grids. The results obtained with both approaches reveal the presence of a potential barrier downstream the extraction system which tends to reflect the ion flux. The dependence of the critical distance for which all extracted ions are reflected, is investigated as a function of the extracted ion beam current density. In particular, it is shown that the 1D model recovers the well-known Child-Langmuir law and that the 2D simulation presents a significant discrepancy with respect to the 1D prediction. Indeed, for a given value of current density, the transverse effects lead to a greater critical distance.

  18. Patterns of muscular strain in the embryonic heart wall.

    PubMed

    Damon, Brooke J; Rémond, Mathieu C; Bigelow, Michael R; Trusk, Thomas C; Xie, Wenjie; Perucchio, Renato; Sedmera, David; Denslow, Stewart; Thompson, Robert P

    2009-06-01

    The hypothesis that inner layers of contracting muscular tubes undergo greater strain than concentric outer layers was tested by numerical modeling and by confocal microscopy of strain within the wall of the early chick heart. We modeled the looped heart as a thin muscular shell surrounding an inner layer of sponge-like trabeculae by two methods: calculation within a two-dimensional three-variable lumped model and simulated expansion of a three-dimensional, four-layer mesh of finite elements. Analysis of both models, and correlative microscopy of chamber dimensions, sarcomere spacing, and membrane leaks, indicate a gradient of strain decreasing across the wall from highest strain along inner layers. Prediction of wall thickening during expansion was confirmed by ultrasonography of beating hearts. Degree of stretch determined by radial position may thus contribute to observed patterns of regional myocardial conditioning and slowed proliferation, as well as to the morphogenesis of ventricular trabeculae and conduction fascicles. Developmental Dynamics 238:1535-1546, 2009. (c) 2009 Wiley-Liss, Inc.

  19. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  20. Soft Expansion of Double-Real-Virtual Corrections to Higgs Production at N$^3$LO

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...

    2015-05-15

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N 3LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N 3LO Higgs production.more » The second uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.« less

  1. Two dimensional nonplanar evolution of electrostatic shock waves in pair-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2012-01-15

    Electrostatic waves in a two dimensional nonplanar geometry are studied in an unmagnetized, dissipative pair-ion plasma in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The nonplanar Kadomtsev-Petviashvili-Burgers (KPB) as well as the Burgers Kadomtsev-Petviashvili (Burgers KP) equations are derived using the small amplitude expansion method and the range of applicability of both the equations are discussed. The system under consideration is observed to admit compressive rarefactive shocks. The present study may have relevance to understand the formation of twomore » dimensional nonplanar electrostatic shocks in laboratory plasmas.« less

  2. A photonic crystal waveguide with silicon on insulator in the near-infrared band

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming

    2007-07-01

    A two-dimensional (2D) photonic crystal waveguide in the Γ-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.

  3. Supercritical flow characteristics at abrupt expansion structure

    NASA Astrophysics Data System (ADS)

    Lim, Jia Jun; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    When dealing with the design of a hydraulic structure, lateral expansion is often necessary for flow emerging at high velocity served as a cross-sectional transition. If the abrupt expansion structure is made to diverge rapidly, it will cause the major part of the flow fail to follow the boundaries. If the transition is too gradual, it will result in a waste of structural material. A preliminary study on the flow structure near the expansion and its relationship with flow parameter is carried out in this study. A two-dimensional depth-averaged model is developed to simulate the supercritical flow at the abrupt expansion structure. Constrained Interpolation Profile (CIP) scheme (which is of third order accuracy) is adopted in the numerical model. Results show that the flow structure and flow characteristics at the abrupt expansion can be reproduced numerically. The validation of numerical result is done against analytical studies. The result from numerical simulation showed good agreement with the analytical solution.

  4. A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces

    NASA Astrophysics Data System (ADS)

    Lee, P. C. Y.; Yu, J. D.; Lin, W. S.

    1998-02-01

    A system of two-dimensional (2-D) governing equations for piezoelectric plates with general crystal symmetry and with electroded faces is deduced from the three-dimensional (3-D) equations of linear piezoelectricity by expansion in series of trigonometric functions of thickness coordinate. The essential difference of the present derivation from the earlier studies by trigonometrical series expansion is that the antisymmetric in-plane displacements induced by gradients of the bending deflection (the zero-order component of transverse displacement) are expressed by the linear functions of the thickness coordinate, and the rest of displacements are expanded in cosine series of the thickness coordinate. For the electric potential, a sine-series expansion is used for it is well suited for satisfying the electrical conditions at the faces covered with conductive electrodes. A system of approximate first-order equations is extracted from the infinite system of 2-D equations. Dispersion curves for thickness shear, flexure, and face-shear modes varying along x1 and those for thickness twist and face shear varying along x3 for AT-cut quartz plates are calculated from the present 2-D equations as well as from the 3-D equations, and comparison shows that the agreement is very close without introducing any corrections. Predicted frequency spectra by the present equations are shown to agree closely with the experimental data by Koga and Fukuyo [J. Inst. Elec. Comm. Engrs. of Japan 36, 59 (1953)] and those by Nakazawa, Horiuchi, and Ito [Proceedings of 1990 IEEE Ultrasonics Symposium (IEEE, New York, 1990)].

  5. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    PubMed

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  6. Reduced-Stress Mounting for Thermocouples

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1986-01-01

    Mounting accommodates widely different coefficients of thermal expansion. In new method, legs of thermocouple placed in separate n- and p-type arrays. Two arrays contact common heat pipe as source but have separate heatpipe sinks. Net expansion (or contraction) taken up by spring mounting on heat-pipe sinks.

  7. Siegert-state expansion for nonstationary systems. IV. Three-dimensional case

    NASA Astrophysics Data System (ADS)

    Tolstikhin, Oleg I.

    2008-03-01

    The Siegert-state expansion approach [O. I. Tolstikhin, Phys. Rev. A 73, 062705 (2006)] is extended to the three-dimensional case. Coupled equations defining the time evolution of coefficients in the expansion of the solution to the time-dependent Schrödinger equation in terms of partial-wave Siegert states are derived, and physical observables (probabilities of transitions to discrete states and the momentum distribution of ejected particles) are expressed in terms of these coefficients. The approach is implemented in terms of Siegert pseudostates and illustrated by calculations of the photodetachment of H- by strong high-frequency laser pulses. The present calculations demonstrate that the interference effect in the laser-atom interaction dynamics found recently in the one-dimensional case [K. Toyota , Phys. Rev. A 76, 043418 (2007)] reveals itself in the three-dimensional case as well.

  8. Higher-order nonclassicalities of finite dimensional coherent states: A comparative study

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Verma, Amit; Pathak, Anirban

    2018-07-01

    Conventional coherent states (CSs) are defined in various ways. For example, CS is defined as an infinite Poissonian expansion in Fock states, as displaced vacuum state, or as an eigenket of annihilation operator. In the infinite dimensional Hilbert space, these definitions are equivalent. However, these definitions are not equivalent for the finite dimensional systems. In this work, we present a comparative description of the lower- and higher-order nonclassical properties of the finite dimensional CSs which are also referred to as qudit CSs (QCSs). For the comparison, nonclassical properties of two types of QCSs are used: (i) nonlinear QCS produced by applying a truncated displacement operator on the vacuum and (ii) linear QCS produced by the Poissonian expansion in Fock states of the CS truncated at (d - 1)-photon Fock state. The comparison is performed using a set of nonclassicality witnesses (e.g., higher order antibunching, higher order sub-Poissonian statistics, higher order squeezing, Agarwal-Tara parameter, Klyshko's criterion) and a set of quantitative measures of nonclassicality (e.g., negativity potential, concurrence potential and anticlassicality). The higher order nonclassicality witnesses have found to reveal the existence of higher order nonclassical properties of QCS for the first time.

  9. Data processing from lobster eye type optics

    NASA Astrophysics Data System (ADS)

    Nentvich, Ondrej; Stehlikova, Veronika; Urban, Martin; Hudec, Rene; Sieger, Ladislav

    2017-05-01

    Wolter I optics are commonly used for imaging in X-Ray spectrum. This system uses two reflections, and at higher energies, this system is not so much efficient but has a very good optical resolution. Here is another type of optics Lobster Eye, which is using also two reflections for focusing rays in Schmidt's or Angel's arrangement. Here is also possible to use Lobster eye optics as two one dimensional independent optics. This paper describes advantages of one dimensional and two dimensional Lobster Eye optics in Schmidt's arrangement and its data processing - find out a number of sources in wide field of view. Two dimensional (2D) optics are suitable to detect the number of point X-ray sources and their magnitude, but it is necessary to expose for a long time because a 2D system has much lower transitivity, due to double reflection, compared to one dimensional (1D) optics. Not only for this reason, two 1D optics are better to use for lower magnitudes of sources. In this case, additional image processing is necessary to achieve a 2D image. This article describes of approach an image reconstruction and advantages of two 1D optics without significant losses of transitivity.

  10. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  11. Three-dimensional reconstruction of coronary stents in vivo based on motion compensated X-ray angiography

    NASA Astrophysics Data System (ADS)

    Schäfer, Dirk; Movassaghi, Babak; Grass, Michael; Schoonenberg, Gert; Florent, Raoul; Wink, Onno; Klein, Andrew J. P.; Chen, James Y.; Garcia, Joel; Messenger, John C.; Carroll, John D.

    2007-03-01

    The complete expansion of the stent during a percutaneous transluminal coronary angioplasty (PTCA) procedure is essential for treatment of a stenotic segment of a coronary artery. Inadequate expansion of the stent is a major predisposing factor to in-stent restenosis and acute thrombosis. Stents are positioned and deployed by fluoroscopic guidance. Although the current generation of stents are made of materials with some degree of radio-opacity to detect their location after deployment, proper stent expansion is hard to asses. In this work, we introduce a new method for the three-dimensional (3D) reconstruction of the coronary stents in-vivo utilizing two-dimensional projection images acquired during rotational angiography (RA). The acquisition protocol consist of a propeller rotation of the X-ray C-arm system of 180°, which ensures sufficient angular coverage for volume reconstruction. The angiographic projections were acquired at 30 frames per second resulting in 180 projections during a 7 second rotational run. The motion of the stent is estimated from the automatically tracked 2D coordinates of the markers on the balloon catheter. This information is used within a motion-compensated reconstruction algorithm. Therefore, projections from different cardiac phases and motion states can be used, resulting in improved signal-to-noise ratio of the stent. Results of 3D reconstructed coronary stents in vivo, with high spatial resolution are presented. The proposed method allows for a comprehensive and unique quantitative 3D assessment of stent expansion that rivals current X-ray and intravascular ultrasound techniques.

  12. Gluon scattering amplitudes from gauge/string duality and integrability

    NASA Astrophysics Data System (ADS)

    Satoh, Yuji

    2014-06-01

    We discuss the gluon scattering amplitudes of the four-dimensional maximally supersymmetric Yang-Mills theory. By the gauge/string duality, the amplitudes at strong coupling are given by the area of the minimal surfaces in anti-de Sitter space, which can be analyzed by a set of integral equations of the thermodynamic Bethe ansatz (TBA) type. By using the two-dimensional integrable models and conformal field theories underlying the TBA system, we derive analytic expansions of the amplitudes around certain kinematic configurations.

  13. AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1994-01-01

    Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included in the price of the program. Source code is written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly Languages. This program is available on a 5.25 inch 360K MS-DOS format diskette. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  14. Micro-CT evaluation and histological analysis of screw-bone interface of expansive pedicle screw in osteoporotic sheep.

    PubMed

    Wan, Shi-yong; Lei, Wei; Wu, Zi-xiang; Lv, Rong; Wang, Jun; Fu, Suo-chao; Li, Bo; Zhan, Ce

    2008-04-01

    To investigate the properties of screw-bone interface of expansive pedicle screw (EPS) in osteoporotic sheep by micro-CT and histological observation. Six female sheep with bilateral ovariectomy-induced osteoporosis were employed in this experiment. After EPS insertion in each femoral condyle, the sheep were randomly divided into two groups: 3 sheep were bred for 3 months (Group A), while the other 3 were bred for 6 months (Group B). After the animals being killed, the femoral condyles with EPS were obtained, which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter. The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within the spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional (3-D) parameters, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), were significantly better in expansive sections than non-expansive sections (P less than 0.05). Histologically, newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bones at the bone-screw interface, closely contacted with the EPS and constructed four compartments. The findings of the current study, based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.

  15. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  16. Use of the PARC code to estimate the off-design transonic performance of an over/under turboramjet nozzle

    NASA Technical Reports Server (NTRS)

    Lam, David W.

    1995-01-01

    The transonic performance of a dual-throat, single-expansion-ramp nozzle (SERN) was investigated with a PARC computational fluid dynamics (CFD) code, an external flow Navier-Stokes solver. The nozzle configuration was from a conceptual Mach 5 cruise aircraft powered by four air-breathing turboramjets. Initial test cases used the two-dimensional version of PARC in Euler mode to investigate the effect of geometric variation on transonic performance. Additional cases used the two-dimensional version in viscous mode and the three-dimensional version in both Euler and viscous modes. Results of the analysis indicate low nozzle performance and a highly three-dimensional nozzle flow at transonic conditions. In another comparative study using the PARC code, a single-throat SERN configuration for which experimental data were available at transonic conditions was used to validate the results of the over/under turboramjet nozzle.

  17. The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1997-01-01

    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N 3LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N 3LO Higgs production.more » The second uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.« less

  19. Design of compact and ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry

    PubMed Central

    Wu, Rengmao; Hua, Hong; Benítez, Pablo; Miñano, Juan C.; Liang, Rongguang

    2016-01-01

    The energy efficiency and compactness of an illumination system are two main concerns in illumination design for extended sources. In this paper, we present two methods to design compact, ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry. The light rays are directed by using two aspherical surfaces in the first method and one aspherical surface along with an optimized parabola in the second method. The principles and procedures of each design method are introduced in detail. Three examples are presented to demonstrate the effectiveness of these two methods in terms of performance and capacity in designing compact, ultra efficient aspherical lenses. The comparisons made between the two proposed methods indicate that the second method is much simpler and easier to be implemented, and has an excellent extensibility to three-dimensional designs. PMID:29092336

  20. Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Jimenez, J.; Linan, A.

    1996-01-01

    The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments.

  1. Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra

    NASA Astrophysics Data System (ADS)

    Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio

    2018-03-01

    By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.

  2. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    NASA Astrophysics Data System (ADS)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  3. Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Lassas, Matti; Uhlmann, Gunther; Wang, Yiran

    2018-06-01

    We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.

  4. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  5. Analysis of plasma-controlled laser evaporation of Al target in vacuum

    NASA Astrophysics Data System (ADS)

    Mazhukin, Vladimir I.; Nossov, Vadim V.; Smurov, Igor Y.

    2004-04-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 8 x 108 W/cm2 and wavelength of 1.06 μm is analyzed with account for the two-dimensional effects. The self consistent model is applied, consisting of the heat transfer equation in condensed medium, the system of radiation gas dynamics in evaporated substance, and the Knudsen layer model at the two media boundary. It is established that the phase transition of the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity and the plasma pressure, governed by the expansion regime. The process comes through three characteristics stages -- the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion and, finally, the recommence of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapor flow and the mass removal rate is much higher near the beam boundaries than in the center due to smaller plasma counter-pressure. The vapor plasma pattern is characterized by the dense hot zone near the surface where the deposition of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion. The application of the laser beam of smaller radius at the same intensity leads to the formation of more rarefied and more transparent plasma, that allows to improve the mass removal efficiency.

  6. Statistics of the stochastically forced Lorenz attractor by the Fokker-Planck equation and cumulant expansions.

    PubMed

    Allawala, Altan; Marston, J B

    2016-11-01

    We investigate the Fokker-Planck description of the equal-time statistics of the three-dimensional Lorenz attractor with additive white noise. The invariant measure is found by computing the zero (or null) mode of the linear Fokker-Planck operator as a problem of sparse linear algebra. Two variants are studied: a self-adjoint construction of the linear operator and the replacement of diffusion with hyperdiffusion. We also access the low-order statistics of the system by a perturbative expansion in equal-time cumulants. A comparison is made to statistics obtained by the standard approach of accumulation via direct numerical simulation. Theoretical and computational aspects of the Fokker-Planck and cumulant expansion methods are discussed.

  7. New solitary wave solutions to the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff and the Kadomtsev-Petviashvili hierarchy equations

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan

    2017-10-01

    In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.

  8. Age, size, and position of H ii regions in the Galaxy. Expansion of ionized gas in turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Anderson, L. D.; Didelon, P.; Raga, A. C.; Minier, V.; Ntormousi, E.; Pettitt, A.; Pinto, C.; Samal, M. R.; Schneider, N.; Zavagno, A.

    2014-08-01

    Aims: This work aims to improve the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Methods: Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulence level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed us to date a large sample of OB associations that we obtained from the H ii Region Discovery Survey (HRDS). Results: Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we built a grid of 1D models of the expansion of H ii regions in a profile based on Larson's laws. We take the 3D turbulence into account with an effective 1D temperature profile. The ages estimated by the isochrones of this grid agree well with literature values of well known regions such as Rosette, RCW 36, RCW 79, and M 16. We thus propose that this method can be used to find ages of young OB associations through the Galaxy and also in nearby extra-galactic sources.

  9. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  10. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  11. The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation

    PubMed Central

    Arkin, Adam

    2006-01-01

    Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used. PMID:17083272

  12. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  13. Direct Simulation of Evolution and Control of Three-Dimensional Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1995-01-01

    The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.

  14. Conical twist fields and null polygonal Wilson loops

    NASA Astrophysics Data System (ADS)

    Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide

    2018-06-01

    Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.

  15. Emergence of gravity, fermion, gauge and Chern-Simons fields during formation of N-dimensional manifolds from joining point-like ones

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Shoorvazi, Somayyeh

    In this paper, we will consider the birth and evolution of fields during formation of N-dimensional manifolds from joining point-like ones. We will show that at the beginning, only there are point-like manifolds which some strings are attached to them. By joining these manifolds, 1-dimensional manifolds are appeared and gravity, fermion, and gauge fields are emerged. By coupling these manifolds, higher dimensional manifolds are produced and higher orders of fermion, gauge fields and gravity are emerged. By decaying N-dimensional manifold, two child manifolds and a Chern-Simons one are born and anomaly is emerged. The Chern-Simons manifold connects two child manifolds and leads to the energy transmission from the bulk to manifolds and their expansion. We show that F-gravity can be emerged during the formation of N-dimensional manifold from point-like manifolds. This type of F-gravity includes both type of fermionic and bosonic gravity. G-fields and also C-fields which are produced by fermionic strings produce extra energy and change the gravity.

  16. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices

    NASA Astrophysics Data System (ADS)

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.

  17. Thermality and excited state Rényi entropy in two-dimensional CFT

    NASA Astrophysics Data System (ADS)

    Lin, Feng-Li; Wang, Huajia; Zhang, Jia-ju

    2016-11-01

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  18. Strain-engineered growth of two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here in this paper, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1%more » tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2, respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.« less

  19. Strain-engineered growth of two-dimensional materials

    DOE PAGES

    Ahn, Geun Ho; Amani, Matin; Rasool, Haider; ...

    2017-09-20

    The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here in this paper, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1%more » tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2, respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.« less

  20. On the emergence of the ΛCDM model from self-interacting Brans-Dicke theory in d= 5

    NASA Astrophysics Data System (ADS)

    Reyes, Luz Marina; Perez Bergliaffa, Santiago Esteban

    2018-01-01

    We investigate whether a self-interacting Brans-Dicke theory in d=5 without matter and with a time-dependent metric can describe, after dimensional reduction to d=4, the FLRW model with accelerated expansion and non-relativistic matter. By rewriting the effective 4-dimensional theory as an autonomous 3-dimensional dynamical system and studying its critical points, we show that the ΛCDM cosmology cannot emerge from such a model. This result suggests that a richer structure in d=5 may be needed to obtain the accelerated expansion as well as the matter content of the 4-dimensional universe.

  1. Two-Dimensional Numerical Model of coupled Heat and Moisture Transport in Frost Heaving Soils.

    DTIC Science & Technology

    1982-08-01

    integrated relations become: The exact solution is the %%ell-known series expansion: At -11)e )+bO! -201, +Li j I:IAx), " 2" 4 ,, sin 3 .x )fx. t=-szf...giethe complete mab balance formula tion. Integrating .patiall% and temporall % on eac:n R ~ .% fl, Icc .1’l i l Ilt,.’. ,l~llc "jaJ i l C tl~ I1I’ .El~lt...diffusivity model can be approximately linearized by using values of diffusivitv assumed constant for small intervals of space and time. By a series expansion

  2. First derivatives of flow quantities behind two-dimensional, nonuniform supersonic flow over a convex corner. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1985-01-01

    A method of determining spatial derivatives of flow quantities behind an expansion fan as a function of the curvature of the streamline behind the fan is developed. Taylor series expansions of flow quantities within the fan are used and boundary conditions satisfied to the first and second order so that the curvature of the characteristics in the fan may be determined. A system of linear equations for the spatial derivatives is then developed. An application of the method to shock coalescence including asymmetric effects is described.

  3. Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment

    PubMed Central

    Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng

    2018-01-01

    Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981

  4. Modal Ring Method for the Scattering of Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1993-01-01

    The modal ring method for electromagnetic scattering from perfectly electric conducting (PEC) symmetrical bodies is presented. The scattering body is represented by a line of finite elements (triangular) on its outer surface. The infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The modal ring method effectively reduces the two dimensional scattering problem to a one-dimensional problem similar to the method of moments. The modal element method is capable of handling very high frequency scattering because it has a highly banded solution matrix.

  5. Manufacturing Distortions of Curved Composite Panels

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr. (Technical Monitor); Ochinero, T. T.; Hyer, M. W.

    2002-01-01

    This papa briefly discusses the influences of through-thickness thermal expansion, a misaligned ply, and a resin-rich slightly thicker ply on the deformations of a curved composite laminate during cool down from tbc cure temperature. Both two-dimensional and three-dimensional level finite-element analyses are used. The deformations are categorized as to radial and tangential deformations and twist, and for each of the three influences, these deformations are quantified. An additional outcome of the study is an indication of the level of analysis needed to study each of these three influences.

  6. Multiple two-dimensional versus three-dimensional PTV definition in treatment planning for conformal radiotherapy.

    PubMed

    Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J

    1998-06-01

    To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.

  7. Extended quantum jump description of vibronic two-dimensional spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Falge, Mirjam; Keß, Martin

    2015-06-07

    We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic methodmore » and provides an efficient method for the calculation of the 2D-spectra.« less

  8. CFRP composite mirrors for space telescopes and their micro-dimensional stability

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2010-07-01

    Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.

  9. Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Thain, A.; Hannay, J. H.

    2004-02-01

    The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.

  10. A convergent series expansion for hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Harabetian, E.

    1985-01-01

    The discontinuities piecewise analytic initial value problem for a wide class of conservation laws is considered which includes the full three-dimensional Euler equations. The initial interaction at an arbitrary curved surface is resolved in time by a convergent series. Among other features the solution exhibits shock, contact, and expansion waves as well as sound waves propagating on characteristic surfaces. The expansion waves correspond to he one-dimensional rarefactions but have a more complicated structure. The sound waves are generated in place of zero strength shocks, and they are caused by mismatches in derivatives.

  11. Nonlocal symmetries, solitary waves and cnoidal periodic waves of the (2+1)-dimensional breaking soliton equation

    NASA Astrophysics Data System (ADS)

    Zou, Li; Tian, Shou-Fu; Feng, Lian-Li

    2017-12-01

    In this paper, we consider the (2+1)-dimensional breaking soliton equation, which describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. By virtue of the truncated Painlevé expansion method, we obtain the nonlocal symmetry, Bäcklund transformation and Schwarzian form of the equation. Furthermore, by using the consistent Riccati expansion (CRE), we prove that the breaking soliton equation is solvable. Based on the consistent tan-function expansion, we explicitly derive the interaction solutions between solitary waves and cnoidal periodic waves.

  12. Twelve inequivalent Dirac cones in two-dimensional ZrB2

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro

    2018-01-01

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB2 is presented. Two-dimensional ZrB2 is a mechanically stable d - and p -orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is able to remove selectively the Dirac cones. A rational explanation in terms of d - and p -orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. The versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.

  13. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  14. Twelve inequivalent Dirac cones in two-dimensional ZrB 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Bezanilla, Alejandro

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less

  15. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  16. Twelve inequivalent Dirac cones in two-dimensional ZrB 2

    DOE PAGES

    Lopez-Bezanilla, Alejandro

    2018-01-29

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less

  17. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  18. Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.

    2018-01-01

    We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.

  19. Two-dimensional dispersion of magnetostatic volume spin waves

    NASA Astrophysics Data System (ADS)

    Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.

    2018-06-01

    Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.

  20. Similarity between the superconductivity in the graphene with the spin transport in the two-dimensional antiferromagnet in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-02-01

    We have used the Dirac's massless quasi-particles together with the Kubo's formula to study the spin transport by electrons in the graphene monolayer. We have calculated the electric conductivity and verified the behavior of the AC and DC currents of this system, that is a relativistic electron plasma. Our results show that the AC conductivity tends to infinity in the limit ω → 0 , similar to the behavior obtained for the spin transport in the two-dimensional frustrated antiferromagnet in the honeycomb lattice. We have made a diagrammatic expansion for the Green's function and we have not gotten significative change in the results.

  1. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  2. Exploring Evidence Aggregation Methods and External Expansion Sources for Medical Record Search

    DTIC Science & Technology

    2012-11-01

    Equation 3 using Indri in the same way as our previous work [12]. We denoted this model as MRM . A Combined Model We linearly combine MRF and MRM to get...retrieving indexing visits ranking III RbM VRM baseline/MRF/ MRM models ICD, NEG MbR Figure 1: Merging results from two different...retrieval model MRM with one expansion collection at a time to explore the expansion effectiveness of each collection as show in Table 5. As we can

  3. Scattering in discrete random media with implications to propagation through rain. Ph.D. Thesis George Washingtion Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J., Jr.

    1977-01-01

    The multiple scattering effects on wave propagation through a volume of discrete scatterers were investigated. The mean field and intensity for a distribution of scatterers was developed using a discrete random media formulation, and second order series expansions for the mean field and total intensity derived for one-dimensional and three-dimensional configurations. The volume distribution results were shown to proceed directly from the one-dimensional results. The multiple scattering intensity expansion was compared to the classical single scattering intensity and the classical result was found to represent only the first three terms in the total intensity expansion. The Foldy approximation to the mean field was applied to develop the coherent intensity, and was found to exactly represent all coherent terms of the total intensity.

  4. Two-dimensional turning of thermal flux from normal to lateral propagation in thin metal film irradiated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Shepelev, V. V.; Inogamov, N. A.

    2018-01-01

    There are various geometrical variants of laser illumination and target design. Important direction of investigations is connected with tightly focused action (spot size may be less than micron) onto a thin metal film: thickness of a film is just few skin-layer depths. Duration of a pulse is τ L ˜ 0.1 ps. In these conditions energy absorbed in a skin layer first propagates normally to a surface: gradient ∂Te /∂x dominates, here and below x and y are normal and lateral directions. This process in 1-2 ps homogenizes electron temperature T e along thickness of a film. We consider conditions when a film or is supported by weakly conducting substrate, or is free standing. Therefore all absorbed energy is confined inside the film. At the next stage the internal energy begin to flow along the lateral direction—thus direction of energy expansion is changed from x to y because of the heat non-penetrating boundary condition imposed on the rear-side of the film. At the short two-temperature stage of lateral expansion the thermal conductivity κ is high. After that electron and ion temperatures equilibrates and later on the heat propagates with usual value of κ. Lateral expansion cools down the hot spot on long time scales and finally the molten spot recrystallizes. Two-dimensional approach allows us to consider all these stages from propagation in x direction (normal to a film) to propagation in y direction (along a film).

  5. Intra-hydrogel culture prevents transformation of mesenchymal stem cells induced by monolayer expansion.

    PubMed

    Jiang, Tongmeng; Liu, Junting; Ouyang, Yiqiang; Wu, Huayu; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong

    2018-05-01

    In this study, we report that the intra-hydrogel culture system mitigates the transformation of mesenchymal stem cells (MSCs) induced by two-dimensional (2D) expansion. MSCs expanded in monolayer culture prior to encapsulation in collagen hydrogels (group eMSCs-CH) featured impaired stemness in chondrogenesis, comparing with the freshly isolated bone marrow mononuclear cells seeded directly in collagen hydrogels (group fMSCs-CH). The molecular mechanism of the in vitro expansion-triggered damage to MSCs was detected through genome-wide microarray analysis. Results indicated that pathways such as proteoglycans in cancer and pathways in cancer expansion were highly enriched in eMSCs-CH. And multiple up-regulated oncoma-associated genes were verified in eMSCs-CH compared with fMSCs-CH, indicating that expansion in vitro triggered cellular transformation was associated with signaling pathways related to tumorigenicity. Besides, focal adhesion (FA) and mitogen-activated protein kinase (MAPK) signaling pathways were also involved in in vitro expansion, indicating restructuring of the cell architecture. Thus, monolayer expansion in vitro may contribute to vulnerability of MSCs through the regulation of FA and MAPK. This study indicates that intra-hydrogel culture can mitigate the monolayer expansion induced transformation of MSCs and maintain the uniformity of the stem cells, which is a viable in vitro culture system for stem cell therapy.

  6. Reaction-diffusion systems and external morphogen gradients: the two-dimensional case, with an application to skeletal pattern formation.

    PubMed

    Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A

    2012-03-01

    We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.

  7. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electricmore » and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.« less

  8. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    NASA Astrophysics Data System (ADS)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  9. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

    PubMed

    Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J

    2012-02-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

  10. Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion

    PubMed Central

    Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.

    2012-01-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354

  11. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor.

    PubMed

    Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia

    2017-05-23

    Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.

  12. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells.

    PubMed

    de Soure, António M; Fernandes-Platzgummer, Ana; da Silva, Cláudia L; Cabral, Joaquim M S

    2016-10-20

    Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transformation between surface spherical harmonic expansion of arbitrary high degree and order and double Fourier series on sphere

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2018-02-01

    In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.

  14. Thermal expansion of composites: Methods and results. [large space structures

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.

    1981-01-01

    The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.

  15. Two-dimensional magnetohydrodynamic model of emerging magnetic flux in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Tajima, T.; Steinolfson, R. S.; Matsumoto, R.

    1989-01-01

    The nonlinear undular mode of the magnetic buoyancy instability in an isolated horizontal magnetic flux embedded in a two-temperature layered atmosphere (solar corona-chromosphere/photosphere) is investigated using a two-dimensional magnetohydrodynamic code. The results show that the flux sheet with beta of about 1 is initially located at the bottom of the photosphere, and that the gas slides down the expanding loop as the instability develops, with the evacuated loop rising as a result of enhanced magnetic buoyancy. The expansion of the magnetic loop in the nonlinear regime displays self-similar behavior. The rise velocity of the magnetic loop in the high chromosphere (10-15 km/s) and the velocity of downflow noted along the loop (30-50 km/s) are consistent with observed values for arch filament systems.

  16. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.

  17. Wavepacket propagation using time-sliced semiclassical initial value methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Brett B.; Reimers, Jeffrey R.; School of Chemistry, University of Sydney, Sydney NSW 2006

    2004-12-22

    A new semiclassical initial value representation (SC-IVR) propagator and a SC-IVR propagator originally introduced by Kay [J. Chem. Phys. 100, 4432 (1994)], are investigated for use in the split-operator method for solving the time-dependent Schroedinger equation. It is shown that the SC-IVR propagators can be derived from a procedure involving modified Filinov filtering of the Van Vleck expression for the semiclassical propagator. The two SC-IVR propagators have been selected for investigation because they avoid the need to perform a coherent state basis set expansion that is necessary in other time-slicing propagation schemes. An efficient scheme for solving the propagators ismore » introduced and can be considered to be a semiclassical form of the effective propagators of Makri [Chem. Phys. Lett. 159, 489 (1989)]. Results from applications to a one-dimensional, two-dimensional, and three-dimensional Hamiltonian for a double-well potential are presented.« less

  18. Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry

    PubMed Central

    Wu, Rengmao; Hua, Hong; Benítez, Pablo; Miñano, Juan C.

    2016-01-01

    Illumination design for extended sources is very important for practical applications. The existing direct methods that are all developed for extended Lambertian sources are not applicable to extended non-Lambertian sources whose luminance is a function of position and direction. What we present in this Letter is to our knowledge the first direct method for extended non-Lambertian sources. In this method, the edge rays and the interior rays are both used, and the output intensity at a given direction is calculated to be the integral of the luminance function of all the outgoing rays at this direction. No cumbersome iterative illuminance compensation is needed. Two examples are presented to demonstrate the elegance of this method in prescribed intensity design for extended non-Lambertian sources in two-dimensional geometry. PMID:26125361

  19. A versatile, pulsed anion source utilizing plasma-entrainment: Characterization and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yu-Ju; Lehman, Julia H.; Lineberger, W. Carl, E-mail: wcl@jila.colorado.edu

    2015-01-28

    A novel pulsed anion source has been developed, using plasma entrainment into a supersonic expansion. A pulsed discharge source perpendicular to the main gas expansion greatly reduces unwanted “heating” of the main expansion, a major setback in many pulsed anion sources in use today. The design principles and construction information are described and several examples demonstrate the range of applicability of this anion source. Large OH{sup −}(Ar){sub n} clusters can be generated, with over 40 Ar solvating OH{sup −}. The solvation energy of OH{sup −}(Ar){sub n}, where n = 1-3, 7, 12, and 18, is derived from photoelectron spectroscopy andmore » shows that by n = 12-18, each Ar is bound by about 10 meV. In addition, cis– and trans– HOCO{sup −} are generated through rational anion synthesis (OH{sup −} + CO + M → HOCO{sup −} + M) and the photoelectron spectra compared with previous results. These results, along with several further proof-of-principle experiments on solvation and transient anion synthesis, demonstrate the ability of this source to efficiently produce cold anions. With modifications to two standard General Valve assemblies and very little maintenance, this anion source provides a versatile and straightforward addition to a wide array of experiments.« less

  20. Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2005-01-01

    A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  1. Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

    NASA Astrophysics Data System (ADS)

    James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.

    2018-03-01

    Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.

  2. Efficient propagation-inside-layer expansion algorithm for solving the scattering from three-dimensional nested homogeneous dielectric bodies with arbitrary shape.

    PubMed

    Bellez, Sami; Bourlier, Christophe; Kubické, Gildas

    2015-03-01

    This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.

  3. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system I. Vacuum charge density

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Based on the original combination of analytical methods, computer algebra tools and numerical calculations, proposed recently in Refs. 1-3, the nonperturbative vacuum polarization effects in the 2+1D supercritical Dirac-Coulomb system with Z > Zcr,1 are explored. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. The main result of the work is that in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. Due to a lot of details of calculation the whole work is divided into two parts I and II. In the present part I, we consider the evaluation and behavior of the vacuum density ρV P, which further is used in part II for evaluation of the vacuum energy, with emphasis on the renormalization, convergence of the partial expansion for ρV P and behavior of the integral induced charge QV P in the overcritical region.

  4. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hu, D.

    2017-03-01

    To overcome the bottleneck of traditional gas wave refrigeration, an improved wave rotor refrigerator (WRR) cycle has been proposed, in which the expansion work was recycled during the process of refrigeration. Thermodynamic analysis of the two cycles shows that the refrigeration efficiency of the improved WRR cycle has been greatly increased compared with the traditional WRR. The performance of an improved WRR was investigated by adjusting the major operational parameters, such as the rotational speed of the wave rotor, port size, and inflow overpressure. The experimental results show that pressure loss can be reduced by nearly 40 % in this improved refrigeration system. Meanwhile, a two-dimensional numerical simulation was performed to understand the wave interactions that take place inside the rotor channels.

  5. Quasi Sturmian basis for the two-electon continuum

    NASA Astrophysics Data System (ADS)

    Zaytsev, A. S.; Ancarani, L. U.; Zaytsev, S. A.

    2016-02-01

    A new type of basis functions is proposed to describe a two-electron continuum which arises as a final state in electron-impact ionization and double photoionization of atomic systems. We name these functions, which are calculated in terms of the recently introduced quasi Sturmian functions, Convoluted Quasi Sturmian functions (CQS); by construction, they look asymptotically like a six-dimensional spherical wave. The driven equation describing an ( e, 3 e) process on helium in the framework of the Temkin-Poet model is solved numerically in the entire space (rather than in a finite region of space) using expansions on CQS basis functions. We show that quite rapid convergence of the solution expansion can be achieved by multiplying the basis functions by the logarithmic phase factor corresponding to the Coulomb electron-electron interaction.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Lin, Guang

    In decision-making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU-demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high-dimensional models, i.e., models containing many uncertain input parameters.more » To address these issues, we propose an efficient two-stage MC approach for small failure probability analysis in high-dimensional groundwater contaminant transport modeling. In the first stage, a low-dimensional representation of the original high-dimensional model is sought with Karhunen–Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate-based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re-evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy.« less

  7. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  8. Thrust performance of a variable-geometry, divergent exhaust nozzle on a turbojet engine at altitude

    NASA Technical Reports Server (NTRS)

    Straight, D. M.; Collom, R. R.

    1983-01-01

    A variable geometry, low aspect ratio, nonaxisymmetric, two dimensional, convergent-divergent exhaust nozzle was tested at simulated altitude on a turbojet engine to obtain baseline axial, dry thrust performance over wide ranges of operating nozzle pressure ratios, throat areas, and internal expansion area ratios. The thrust data showed good agreement with theory and scale model test results after the data were corrected for seal leakage and coolant losses. Wall static pressure profile data were also obtained and compared with one dimensional theory and scale model data. The pressure data indicate greater three dimensional flow effects in the full scale tests than with models. The leakage and coolant penalties were substantial, and the method to determine them is included.

  9. Effects of spatial curvature and anisotropy on the asymptotic regimes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Pavluchenko, Sergey A.; Toporensky, Alexey

    2018-05-01

    In this paper we address two important issues which could affect reaching the exponential and Kasner asymptotes in Einstein-Gauss-Bonnet cosmologies—spatial curvature and anisotropy in both three- and extra-dimensional subspaces. In the first part of the paper we consider the cosmological evolution of spaces that are the product of two isotropic and spatially curved subspaces. It is demonstrated that the dynamics in D=2 (the number of extra dimensions) and D ≥ 3 is different. It was already known that for the Λ -term case there is a regime with "stabilization" of extra dimensions, where the expansion rate of the three-dimensional subspace as well as the scale factor (the "size") associated with extra dimensions reaches a constant value. This regime is achieved if the curvature of the extra dimensions is negative. We demonstrate that it takes place only if the number of extra dimensions is D ≥ 3. In the second part of the paper we study the influence of the initial anisotropy. Our study reveals that the transition from Gauss-Bonnet Kasner regime to anisotropic exponential expansion (with three expanding and contracting extra dimensions) is stable with respect to breaking the symmetry within both three- and extra-dimensional subspaces. However, the details of the dynamics in D=2 and D ≥ 3 are different. Combining the two described effects allows us to construct a scenario in D ≥ 3, where isotropization of outer and inner subspaces is reached dynamically from rather general anisotropic initial conditions.

  10. Accurate estimates of 3D Ising critical exponents using the coherent-anomaly method

    NASA Astrophysics Data System (ADS)

    Kolesik, Miroslav; Suzuki, Masuo

    1995-02-01

    An analysis of the critical behavior of the three-dimensional Ising model using the coherent-anomaly method (CAM) is presented. Various sources of errors in CAM estimates of critical exponents are discussed, and an improved scheme for the CAM data analysis is tested. Using a set of mean-field type approximations based on the variational series expansion approach, accuracy comparable to the most precise conventional methods has been achieved. Our results for the critical exponents are given by α = 0.108(5), β = 0.327(4), γ = 1.237(4) and δ = 4.77(5).

  11. Black hole mining in the RST model

    NASA Astrophysics Data System (ADS)

    Basavaraju, Rohitvarma; Lowe, David A.

    2017-06-01

    We consider the possibility of mining black holes in the 1  +  1-dimensional dilaton gravity model of Russo, Susskind and Thorlacius. The model correctly incorporates Hawking radiation and back-reaction in a semiclassical expansion in 1/N, where N is the number of matter species. It is shown that the lifetime of a perturbed black hole is independent of the addition of any extra apparatus when realized by an arbitrary positive energy matter source. We conclude that mining does not occur in the RST model and comment on the implications of this for the black hole information paradox.

  12. Fully kinetic simulations of collisionless, mesothermal plasma emission: Macroscopic plume structure and microscopic electron characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Wang, Joseph

    2017-03-01

    This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.

  13. Two-dimensional grid-free compressive beamforming.

    PubMed

    Yang, Yang; Chu, Zhigang; Xu, Zhongming; Ping, Guoli

    2017-08-01

    Compressive beamforming realizes the direction-of-arrival (DOA) estimation and strength quantification of acoustic sources by solving an underdetermined system of equations relating microphone pressures to a source distribution via compressive sensing. The conventional method assumes DOAs of sources to lie on a grid. Its performance degrades due to basis mismatch when the assumption is not satisfied. To overcome this limitation for the measurement with plane microphone arrays, a two-dimensional grid-free compressive beamforming is developed. First, a continuum based atomic norm minimization is defined to denoise the measured pressure and thus obtain the pressure from sources. Next, a positive semidefinite programming is formulated to approximate the atomic norm minimization. Subsequently, a reasonably fast algorithm based on alternating direction method of multipliers is presented to solve the positive semidefinite programming. Finally, the matrix enhancement and matrix pencil method is introduced to process the obtained pressure and reconstruct the source distribution. Both simulations and experiments demonstrate that under certain conditions, the grid-free compressive beamforming can provide high-resolution and low-contamination imaging, allowing accurate and fast estimation of two-dimensional DOAs and quantification of source strengths, even with non-uniform arrays and noisy measurements.

  14. On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nariyuki, Y.

    A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation ofmore » Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.« less

  15. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  16. Design, fabrication, and test of a Graphite/Epoxy Metering Shell (GEMS). [for the large space telescope

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program to design, fabricate and test a dimensionally stable metering structure in support of the large space telescope (LST) program is discussed. Graphite/epoxy was the material selected as the only viable candidate material which can meet the stringent thermal expansion criteria of the LST. A metering shell was designed and fabricated, with emphasis on dimensional stability in conjunction with low cost. Thermal expansion test coupons extracted from the layups of the skin panels indicated the attainment of a coefficient of thermal expansion of 0.0666 micrometers/m K. Subsequent thermal vacuum chamber tests on the complete metering shell demonstrated an expansion of the 2.95-meter overall length of 0.27 micrometers/K. Static and dynamics tests, which demonstrated adequacy with respect to limit loads and stiffness, were also accomplished.

  17. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  18. Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments.

    PubMed

    Mokhtari, Saloomeh; Baptista, Pedro M; Vyas, Dipen A; Freeman, Charles Jordan; Moran, Emma; Brovold, Matthew; Llamazares, Guillermo A; Lamar, Zanneta; Porada, Christopher D; Soker, Shay; Almeida-Porada, Graça

    2018-03-01

    Despite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271-282. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation.

    PubMed

    Murphy, Meghan K; Masters, Taylor E; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-01-01

    Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in a monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II-to-I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage.

  20. Engineering a Fibrocartilage Spectrum Through Modulation of Aggregate Redifferentiation

    PubMed Central

    Murphy, Meghan K.; Masters, Taylor E.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II to I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage. PMID:24380383

  1. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  2. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.

  3. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Gaurav; Raju, Mandhapati P.; Sung, Chih-Jen

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluidmore » dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)« less

  4. Asymptotic structure and similarity solutions for three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Walker, J. D. A.

    1989-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer is investigated in the limit of large Reynolds numbers. A self-consistent, but relatively complex, two-layer structure exists and the simplest situation, corresponding to a plane of symmetry, is considered in this paper as a first step. The adjustment of the streamwise velocity to relative rest, through an outer defect layer and then an inner wall layer, is similar to that in two-dimensional flow. The adjustment of the cross-streamwise velocity is more complicated and it is shown that two terms in the expansion are required to obtain useful results, and in particular to obtain the velocity skew angle at the wall near the symmetry plane. The conditions under which self-similarity is achieved near a plane of symmetry are investigated. A set of ordinary differential equations is developed which describe the streamwise and cross-streamwise velocities near a plane of symmetry in a self-similar flow through two orders of magnitude. Calculated numerical solutions of these equations yield trends which are consistent with experimental observations.

  5. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  6. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis

    PubMed Central

    Lee, Haofu; Nguyen, Alan; Hong, Christine; Hoang, Paul; Pham, John; Ting, Kang

    2017-01-01

    Introduction The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model. Methods A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP. Results High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment. Conclusions The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP. PMID:27476365

  7. Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis.

    PubMed

    Lee, Haofu; Nguyen, Alan; Hong, Christine; Hoang, Paul; Pham, John; Ting, Kang

    2016-08-01

    The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model. A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP. High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment. The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  8. Linkage mechanisms in the vertebrate skull: Structure and function of three-dimensional, parallel transmission systems.

    PubMed

    Olsen, Aaron M; Westneat, Mark W

    2016-12-01

    Many musculoskeletal systems, including the skulls of birds, fishes, and some lizards consist of interconnected chains of mobile skeletal elements, analogous to linkage mechanisms used in engineering. Biomechanical studies have applied linkage models to a diversity of musculoskeletal systems, with previous applications primarily focusing on two-dimensional linkage geometries, bilaterally symmetrical pairs of planar linkages, or single four-bar linkages. Here, we present new, three-dimensional (3D), parallel linkage models of the skulls of birds and fishes and use these models (available as free kinematic simulation software), to investigate structure-function relationships in these systems. This new computational framework provides an accessible and integrated workflow for exploring the evolution of structure and function in complex musculoskeletal systems. Linkage simulations show that kinematic transmission, although a suitable functional metric for linkages with single rotating input and output links, can give misleading results when applied to linkages with substantial translational components or multiple output links. To take into account both linear and rotational displacement we define force mechanical advantage for a linkage (analogous to lever mechanical advantage) and apply this metric to measure transmission efficiency in the bird cranial mechanism. For linkages with multiple, expanding output points we propose a new functional metric, expansion advantage, to measure expansion amplification and apply this metric to the buccal expansion mechanism in fishes. Using the bird cranial linkage model, we quantify the inaccuracies that result from simplifying a 3D geometry into two dimensions. We also show that by combining single-chain linkages into parallel linkages, more links can be simulated while decreasing or maintaining the same number of input parameters. This generalized framework for linkage simulation and analysis can accommodate linkages of differing geometries and configurations, enabling novel interpretations of the mechanics of force transmission across a diversity of vertebrate feeding mechanisms and enhancing our understanding of musculoskeletal function and evolution. J. Morphol. 277:1570-1583, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Two-dimensional beam profiles and one-dimensional projections

    NASA Astrophysics Data System (ADS)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  10. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    PubMed

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  11. An adaptive least-squares global sensitivity method and application to a plasma-coupled combustion prediction with parametric correlation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Massa, Luca; Wang, Jonathan; Freund, Jonathan B.

    2018-05-01

    We introduce an efficient non-intrusive surrogate-based methodology for global sensitivity analysis and uncertainty quantification. Modified covariance-based sensitivity indices (mCov-SI) are defined for outputs that reflect correlated effects. The overall approach is applied to simulations of a complex plasma-coupled combustion system with disparate uncertain parameters in sub-models for chemical kinetics and a laser-induced breakdown ignition seed. The surrogate is based on an Analysis of Variance (ANOVA) expansion, such as widely used in statistics, with orthogonal polynomials representing the ANOVA subspaces and a polynomial dimensional decomposition (PDD) representing its multi-dimensional components. The coefficients of the PDD expansion are obtained using a least-squares regression, which both avoids the direct computation of high-dimensional integrals and affords an attractive flexibility in choosing sampling points. This facilitates importance sampling using a Bayesian calibrated posterior distribution, which is fast and thus particularly advantageous in common practical cases, such as our large-scale demonstration, for which the asymptotic convergence properties of polynomial expansions cannot be realized due to computation expense. Effort, instead, is focused on efficient finite-resolution sampling. Standard covariance-based sensitivity indices (Cov-SI) are employed to account for correlation of the uncertain parameters. Magnitude of Cov-SI is unfortunately unbounded, which can produce extremely large indices that limit their utility. Alternatively, mCov-SI are then proposed in order to bound this magnitude ∈ [ 0 , 1 ]. The polynomial expansion is coupled with an adaptive ANOVA strategy to provide an accurate surrogate as the union of several low-dimensional spaces, avoiding the typical computational cost of a high-dimensional expansion. It is also adaptively simplified according to the relative contribution of the different polynomials to the total variance. The approach is demonstrated for a laser-induced turbulent combustion simulation model, which includes parameters with correlated effects.

  12. The TORSED method for construction of TORT boundary sources from external DORT flux files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhoades, W.A.

    1993-08-01

    The TORSED method provides a means of coupling cylindrical two-dimensional DORT fluxes or fluences to a three-dimensional TORT calculation in Cartesian geometry through construction of external boundary sources for TORT. This can be important for several reasons. The two-dimensional environment may be too large for TORT simulation. The two-dimensional environment may be truly cylindrical in nature, and thus, better treated in that geometry. It may be desired to use a single environment calculation to study numerous local perturbations. In Section I the TORSED code is described in detail and the diverse demonstration problems that accompany the code distribution are discussed.more » In Section II, an updated discussion of the VISA code is given. VISA is required to preprocess the DORT files for use in TORSED. In Section III, the references are listed.« less

  13. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  14. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  15. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  16. Beam shaping of light sources using circular photonic crystal funnel

    NASA Astrophysics Data System (ADS)

    Kumar, Mrityunjay; Kumar, Mithun; Dinesh Kumar, V.

    2012-10-01

    A novel two-dimensional circular photonic crystal (CPC) structure with a sectorial opening for shaping the beam of light sources was designed and investigated. When combined with light sources, the structure acts like an antenna emitting a directional beam which could be advantageously used in several nanophotonic applications. Using the two-dimensional finite-difference time-domain (2D FDTD) method, we examined the effects of geometrical parameters of the structure on the directional and transmission properties of emitted radiation. Further, we examined the transmitting and receiving properties of a pair of identical structures as a function of distance between them.

  17. Analytical and numerical construction of vertical periodic orbits about triangular libration points based on polynomial expansion relations among directions

    NASA Astrophysics Data System (ADS)

    Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei

    2017-08-01

    Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.

  18. Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study.

    PubMed

    Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice

    2017-12-06

    We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Numerical simulation of detonation reignition in H 2-O 2 mixtures in area expansions

    NASA Astrophysics Data System (ADS)

    Jones, D. A.; Kemister, G.; Tonello, N. A.; Oran, E. S.; Sichel, M.

    Time-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened transverse waves. The simulations were performed using an improved chemical kinetic model for stoichiometric H 2-O 2 mixtures. The initial conditions were a propagating, two-dimensional detonation resolved enough to show transverse wave structure. The calculations provide clarification of the reignition mechanism seen in previous H 2-O 2-Ar simulations, and again demonstrate that the transverse wave structure of the detonation front is critical to the reignition process.

  20. A simple method for calculating growth rates of petroleum hydrocarbon plumes

    USGS Publications Warehouse

    Bekins, B.A.; Cozzarelli, I.M.; Curtis, G.P.

    2005-01-01

    Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources. Copyright ?? 2005 National Ground Water Association.

  1. Mars Science Laboratory Rover Integrated Pump Assembly Bellows Jamming Failure

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Johnson, Joel; Birur, Gajanana; Bhandari, Pradeep; Karlmann, Paul

    2012-01-01

    The Mars Science Laboratory rover and spacecraft utilize two mechanically pumped fluid loops for heat transfer to and from the internal electronics assemblies and the Radioisotope Thermo-Electric Generator (RTG). The heat transfer fluid is Freon R-11 (CFC-11) which has a large coefficient of thermal expansion. The Freon within the heat transfer system must have a volume for safe expansion of the fluid as the system temperature rises. The device used for this function is a gas-over-liquid accumulator. The accumulator uses a metal bellows to separate the fluid and gas sections. During expansion and contraction of the fluid in the system, the bellows extends and retracts to provide the needed volume change. During final testing of a spare unit, the bellows would not extend the full distance required to provide the needed expansion volume. Increasing the fluid pressure did not loosen the jammed bellows either. No amount of stroking the bellows back and forth would get it to pass the jamming point. This type of failure, if it occurred during flight, would result in significant overpressure of the heat transfer system leading to a burst failure at some point in the system piping. A loss of the Freon fluid would soon result in a loss of the mission. The determination of the source of the jamming of the bellows was quite elusive, leading to an extensive series of tests and analyses. The testing and analyses did indicate the root cause of the failure, qualitatively. The results did not provide a set of dimensional limits for the existing hardware design that would guarantee proper operation of the accumulator. In the end, a new design was developed that relied on good engineering judgment combined with the test results to select a reliable enough solution that still met other physical constraints of the hardware, the schedule, and the rover system.

  2. Localization and separation of acoustic sources by using a 2.5-dimensional circular microphone array.

    PubMed

    Bai, Mingsian R; Lai, Chang-Sheng; Wu, Po-Chen

    2017-07-01

    Circular microphone arrays (CMAs) are sufficient in many immersive audio applications because azimuthal angles of sources are considered more important than the elevation angles in those occasions. However, the fact that CMAs do not resolve the elevation angle well can be a limitation for some applications which involves three-dimensional sound images. This paper proposes a 2.5-dimensional (2.5-D) CMA comprised of a CMA and a vertical logarithmic-spacing linear array (LLA) on the top. In the localization stage, two delay-and-sum beamformers are applied to the CMA and the LLA, respectively. The direction of arrival (DOA) is estimated from the product of two array output signals. In the separation stage, Tikhonov regularization and convex optimization are employed to extract the source amplitudes on the basis of the estimated DOA. The extracted signals from two arrays are further processed by the normalized least-mean-square algorithm with the internal iteration to yield the source signal with improved quality. To validate the 2.5-D CMA experimentally, a three-dimensionally printed circular array comprised of a 24-element CMA and an eight-element LLA is constructed. Objective perceptual evaluation of speech quality test and a subjective listening test are also undertaken.

  3. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies.

    PubMed

    Dinh, Phuong-Uyen C; Cores, Jhon; Hensley, M Taylor; Vandergriff, Adam C; Tang, Junnan; Allen, Tyler A; Caranasos, Thomas G; Adler, Kenneth B; Lobo, Leonard J; Cheng, Ke

    2017-06-30

    Resident stem and progenitor cells have been identified in the lung over the last decade, but isolation and culture of these cells remains a challenge. Thus, although these lung stem and progenitor cells provide an ideal source for stem-cell based therapy, mesenchymal stem cells (MSCs) remain the most popular cell therapy product for the treatment of lung diseases. Surgical lung biopsies can be the tissue source but such procedures carry a high risk of mortality. In this study we demonstrate that therapeutic lung cells, termed "lung spheroid cells" (LSCs) can be generated from minimally invasive transbronchial lung biopsies using a three-dimensional culture technique. The cells were then characterized by flow cytometry and immunohistochemistry. Angiogenic potential was tested by in-vitro HUVEC tube formation assay. In-vivo bio- distribution of LSCs was examined in athymic nude mice after intravenous delivery. From one lung biopsy, we are able to derive >50 million LSC cells at Passage 2. These cells were characterized by flow cytometry and immunohistochemistry and were shown to represent a mixture of lung stem cells and supporting cells. When introduced systemically into nude mice, LSCs were retained primarily in the lungs for up to 21 days. Here, for the first time, we demonstrated that direct culture and expansion of human lung progenitor cells from pulmonary tissues, acquired through a minimally invasive biopsy, is possible and straightforward with a three-dimensional culture technique. These cells could be utilized in long-term expansion of lung progenitor cells and as part of the development of cell-based therapies for the treatment of lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).

  4. Geometry and mechanics of two-dimensional defects in amorphous materials

    PubMed Central

    Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran

    2015-01-01

    We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331

  5. Central Pb+Pb collisions at 158 A GeV/c studied by $$\\pi^-\\pi^-$$ interferometry

    DOE PAGES

    Aggarwal et al., M. M.

    2000-05-18

    Two-particle correlations have been measured for identifiedmore » $$\\pi^-$$ from central 158 A GeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of k T is presented, including a full correction for the resolution effects of the apparatus. The cross term R 2 out-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the v L parameter of the generalised Yano-Koonin fit are compatible with o, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Q inv and Q space = √Q$$2\\atop{x}$$ + Q$$2\\atop{y}$$ + Q$$2\\atop{z}$$ have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.« less

  6. Novel features of the nonlinear model arising in nano-ionic currents throughout microtubules

    NASA Astrophysics Data System (ADS)

    Celik, E.; Bulut, H.; Baskonus, H. M.

    2018-05-01

    In this manuscript, the modified exp (- Ω (ξ )) -expansion function method is implemented to find the new solutions to the nonlinear differential equation being the transmission line model. We obtain some new solutions to this model such as complex, exponential, trigonometric and hyperbolic functions. We plot the two- and three-dimensional surfaces of each solutions obtained in this manuscript.

  7. On the pressure field of nonlinear standing water waves

    NASA Technical Reports Server (NTRS)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  8. Plane wave scattering by bow-tie posts

    NASA Astrophysics Data System (ADS)

    Lech, Rafal; Mazur, Jerzy

    2004-04-01

    The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.

  9. Exact semiclassical expansions for one-dimensional quantum oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delabaere, E.; Dillinger, H.; Pham, F.

    1997-12-01

    A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borelmore » resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}« less

  10. 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source

    PubMed Central

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan

    2014-01-01

    Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166

  11. Analytical approximation and numerical simulations for periodic travelling water waves

    NASA Astrophysics Data System (ADS)

    Kalimeris, Konstantinos

    2017-12-01

    We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.

  12. A two-dimensional solution of the FW-H equation for rectilinear motion of sources

    NASA Astrophysics Data System (ADS)

    Bozorgi, Alireza; Siozos-Rousoulis, Leonidas; Nourbakhsh, Seyyed Ahmad; Ghorbaniasl, Ghader

    2017-02-01

    In this paper, a subsonic solution of the two-dimensional Ffowcs Williams and Hawkings (FW-H) equation is presented for calculation of noise generated by sources moving with constant velocity in a medium at rest or in a moving medium. The solution is represented in the frequency domain and is valid for observers located far from the noise sources. In order to verify the validity of the derived formula, three test cases are considered, namely a monopole, a dipole, and a quadrupole source in a medium at rest or in motion. The calculated results well coincide with the analytical solutions, validating the applicability of the formula to rectilinear subsonic motion problems.

  13. Experimental study of flow reattachment in a single-sided sudden expansion

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Johnston, J. P.; Eaton, J. K.

    1984-01-01

    The reattachment of a fully turbulent, two dimensional, separated shear layer downstream of a single-sided sudden expansion in a planar duct flow was examined experimentally. The importance of changing the structure of the separated shear layer on the reattachment process itself was examined. For all cases, the Reynolds number based on step height was greater than 20,000, the expansion ratio was 5/3, and the inlet boundary layer was less than one-half step height in thickness. A crucially important phase was the development of a pulsed wall probe for measurement of skin friction in the reattachment region, thus providing an unambiguous definition of the reattachment length. Quantitative features of reattachment - including streamwise development of the mean and fluctuating velocity field, pressure rise, and skin friction - were found to be similar for all cases studied when scaled by the reattachment length. A definition of the reattachment zone is proposed.

  14. Twisting perturbed parafermions

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2017-07-01

    The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang-Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6) nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current-current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3) sigma model which is reformulated as perturbed parafermions.

  15. Mixed-state fidelity susceptibility through iterated commutator series expansion

    NASA Astrophysics Data System (ADS)

    Tonchev, N. S.

    2014-11-01

    We present a perturbative approach to the problem of computation of mixed-state fidelity susceptibility (MFS) for thermal states. The mathematical techniques used provide an analytical expression for the MFS as a formal expansion in terms of the thermodynamic mean values of successively higher commutators of the Hamiltonian with the operator involved through the control parameter. That expression is naturally divided into two parts: the usual isothermal susceptibility and a constituent in the form of an infinite series of thermodynamic mean values which encodes the noncommutativity in the problem. If the symmetry properties of the Hamiltonian are given in terms of the generators of some (finite-dimensional) algebra, the obtained expansion may be evaluated in a closed form. This issue is tested on several popular models, for which it is shown that the calculations are much simpler if they are based on the properties from the representation theory of the Heisenberg or SU(1, 1) Lie algebra.

  16. Improved finite difference schemes for transonic potential calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Osher, S.; Whitlow, W., Jr.

    1984-01-01

    Engquist and Osher (1980) have introduced a finite difference scheme for solving the transonic small disturbance equation, taking into account cases in which only compression shocks are admitted. Osher et al. (1983) studied a class of schemes for the full potential equation. It is proved that these schemes satisfy a new discrete 'entropy inequality' which rules out expansion shocks. However, the conducted analysis is restricted to steady two-dimensional flows. The present investigation is concerned with the adoption of a heuristic approach. The full potential equation in conservation form is solved with the aid of a modified artificial density method, based on flux biasing. It is shown that, with the current scheme, expansion shocks are not possible.

  17. Regional Detection of Decoupled Explosions, Yield Estimation from Surface Waves, Two-Dimensional Source Effects, Three-Dimensional Earthquake Modeling and Automated Magnitude Measures

    DTIC Science & Technology

    1980-07-01

    41 3.2 EXPERIMENTAL DETERMINATION OF THE DEPENDENCE OF RAYLEIGH WAVE AMPLITUDE ON PROPERTIES OF THE SOURCE MATERIAL ...Surface Wave Observations ...... ................ 48 3.3.3 Surface Wave Dependence on Source Material Properties ..... ................ .. 51 SYSTEMS...with various aspects of the problem of estimating yield from single station recordings of surface waves. The material in these four summaries has been

  18. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen; Safta, Cosmin; Sargsyan, Khachik

    2014-09-01

    In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO 2 . This will allow for the examination of regional-scale transport and distribution of CO 2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developedmore » a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO 2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO 2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF assimilated meteorology fields, making it possible to perform a hybrid simulation, in which the Eulerian model (CMAQ) can be used to compute the initial condi- tion needed by the Lagrangian model, while the source-receptor relationships for a large state vector can be efficiently computed using the Lagrangian model in its backward mode. In ad- dition, CMAQ has a complete treatment of atmospheric chemistry of a suite of traditional air pollutants, many of which could help attribute GHGs from different sources. The inference of emissions sources using atmospheric observations is cast as a Bayesian model calibration problem, which is solved using a variety of Bayesian techniques, such as the bias-enhanced Bayesian inference algorithm, which accounts for the intrinsic model deficiency, Polynomial Chaos Expansion to accelerate model evaluation and Markov Chain Monte Carlo sampling, and Karhunen-Lo %60 eve (KL) Expansion to reduce the dimensionality of the state space. We have established an atmospheric measurement site in Livermore, CA and are collect- ing continuous measurements of CO 2 , CH 4 and other species that are typically co-emitted with these GHGs. Measurements of co-emitted species can assist in attributing the GHGs to different emissions sectors. Automatic calibrations using traceable standards are performed routinely for the gas-phase measurements. We are also collecting standard meteorological data at the Livermore site as well as planetary boundary height measurements using a ceilometer. The location of the measurement site is well suited to sample air transported between the San Francisco Bay area and the California Central Valley.« less

  19. Scaling and modeling of three-dimensional, end-wall, turbulent boundary layers. Ph.D. Thesis - Final Report

    NASA Technical Reports Server (NTRS)

    Goldberg, U. C.; Reshotko, E.

    1984-01-01

    The method of matched asymptotic expansion was employed to identify the various subregions in three dimensional, turbomachinery end wall turbulent boundary layers, and to determine the proper scaling of these regions. The two parts of the b.l. investigated are the 3D pressure driven part over the endwall, and the 3D part located at the blade/end wall juncture. Models are proposed for the 3d law of the wall and law of the wake. These models and the data of van den Berg and Elsenaar and of Mueller are compared and show good agreement between models and experiments.

  20. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.

    PubMed

    Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells.

  1. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    NASA Technical Reports Server (NTRS)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  2. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  3. Complete Sets of Radiating and Nonradiating Parts of a Source and Their Fields with Applications in Inverse Scattering Limited-Angle Problems

    PubMed Central

    Louis, A. K.

    2006-01-01

    Many algorithms applied in inverse scattering problems use source-field systems instead of the direct computation of the unknown scatterer. It is well known that the resulting source problem does not have a unique solution, since certain parts of the source totally vanish outside of the reconstruction area. This paper provides for the two-dimensional case special sets of functions, which include all radiating and all nonradiating parts of the source. These sets are used to solve an acoustic inverse problem in two steps. The problem under discussion consists of determining an inhomogeneous obstacle supported in a part of a disc, from data, known for a subset of a two-dimensional circle. In a first step, the radiating parts are computed by solving a linear problem. The second step is nonlinear and consists of determining the nonradiating parts. PMID:23165060

  4. Two-Dimensional Analysis of Conical Pulsed Inductive Plasma Thruster Performance

    NASA Technical Reports Server (NTRS)

    Hallock, A. K.; Polzin, K. A.; Emsellem, G. D.

    2011-01-01

    A model of the maximum achievable exhaust velocity of a conical theta pinch pulsed inductive thruster is presented. A semi-empirical formula relating coil inductance to both axial and radial current sheet location is developed and incorporated into a circuit model coupled to a momentum equation to evaluate the effect of coil geometry on the axial directed kinetic energy of the exhaust. Inductance measurements as a function of the axial and radial displacement of simulated current sheets from four coils of different geometries are t to a two-dimensional expression to allow the calculation of the Lorentz force at any relevant averaged current sheet location. This relation for two-dimensional inductance, along with an estimate of the maximum possible change in gas-dynamic pressure as the current sheet accelerates into downstream propellant, enables the expansion of a one-dimensional circuit model to two dimensions. The results of this two-dimensional model indicate that radial current sheet motion acts to rapidly decouple the current sheet from the driving coil, leading to losses in axial kinetic energy 10-50 times larger than estimations of the maximum available energy in the compressed propellant. The decreased available energy in the compressed propellant as compared to that of other inductive plasma propulsion concepts suggests that a recovery in the directed axial kinetic energy of the exhaust is unlikely, and that radial compression of the current sheet leads to a loss in exhaust velocity for the operating conditions considered here.

  5. Morphologic changes of the nasal cavity induced by rapid maxillary expansion: a study on 3-dimensional computed tomography models.

    PubMed

    Haralambidis, Adam; Ari-Demirkaya, Arzu; Acar, Ahu; Küçükkeleş, Nazan; Ateş, Mustafa; Ozkaya, Selin

    2009-12-01

    The aim of this study was to evaluate the effect of rapid maxillary expansion on the volume of the nasal cavity by using computed tomography. The sample consisted of 24 patients (10 boys, 14 girls) in the permanent dentition who had maxillary constriction and bilateral posterior crossbite. Ten patients had skeletal Class I and 14 had Class II relationships. Skeletal maturity was assessed with the modified cervical vertebral maturation method. Computed tomograms were taken before expansion and at the end of the 3-month retention period, after active expansion. The tomograms were analyzed by Mimics software (version 10.11, Materialise Medical Co, Leuven, Belgium) to reconstruct 3-dimensional images and calculate the volume of the nasal cavities before and after expansion. A significant (P = 0.000) average increase of 11.3% in nasal volume was found. Sex, growth, and skeletal relationship did not influence measurements or response to treatment. A significant difference was found in the volume increase between the Class I and Class II patients, but it was attributed to the longer expansion period of the latter. Therefore, rapid maxillary expansion induces a significant average increase of the nasal volume and consequently can increase nasal permeability and establish a predominant nasal respiration pattern.

  6. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru

    2015-07-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.

  7. A critical assessment of flux and source term closures in shallow water models with porosity for urban flood simulations

    NASA Astrophysics Data System (ADS)

    Guinot, Vincent

    2017-11-01

    The validity of flux and source term formulae used in shallow water models with porosity for urban flood simulations is assessed by solving the two-dimensional shallow water equations over computational domains representing periodic building layouts. The models under assessment are the Single Porosity (SP), the Integral Porosity (IP) and the Dual Integral Porosity (DIP) models. 9 different geometries are considered. 18 two-dimensional initial value problems and 6 two-dimensional boundary value problems are defined. This results in a set of 96 fine grid simulations. Analysing the simulation results leads to the following conclusions: (i) the DIP flux and source term models outperform those of the SP and IP models when the Riemann problem is aligned with the main street directions, (ii) all models give erroneous flux closures when is the Riemann problem is not aligned with one of the main street directions or when the main street directions are not orthogonal, (iii) the solution of the Riemann problem is self-similar in space-time when the street directions are orthogonal and the Riemann problem is aligned with one of them, (iv) a momentum balance confirms the existence of the transient momentum dissipation model presented in the DIP model, (v) none of the source term models presented so far in the literature allows all flow configurations to be accounted for(vi) future laboratory experiments aiming at the validation of flux and source term closures should focus on the high-resolution, two-dimensional monitoring of both water depth and flow velocity fields.

  8. Dynamic equations for an isotropic spherical shell using the power series method and surface differential operators

    NASA Astrophysics Data System (ADS)

    Okhovat, Reza; Boström, Anders

    2017-04-01

    Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.

  9. Delineating the role of ripples on the thermal expansion of 2D honeycomb materials: graphene, 2D h-BN and monolayer (ML)-MoS2.

    PubMed

    Anees, P; Valsakumar, M C; Panigrahi, B K

    2017-04-19

    We delineated the role of thermally excited ripples on the thermal expansion properties of 2D honeycomb materials (free-standing graphene, 2D h-BN, and ML-MoS 2 ), by explicitly carrying out three-dimensional (3D) and two-dimensional (2D) molecular dynamics simulations. In 3D simulations, the in-plane lattice parameter (a-lattice) of graphene and 2D h-BN shows thermal contraction over a wide range of temperatures and exhibits a strong system size dependence. The 2D simulations of the very same system show a reverse trend, where the a-lattice expands in the whole computed temperature range. In contrast to graphene and 2D h-BN, the a-lattice of ML-MoS 2 shows thermal expansion in both 2D and 3D simulations and their system size dependence is marginal. By analyzing the phonon dispersion at 300 K, we found that the discrepancy between 2D and 3D simulations of graphene and 2D h-BN is due to the absence of out-of-plane bending modes (ZA) in 2D simulations, which is responsible for the thermal contraction of the a-lattice at low temperature. Meanwhile, all the phonon modes are present in the 2D phonon dispersion of ML-MoS 2 , which indicates that the origin of the ZA mode is not purely due to the out-of-plane movement of atoms and also its effect on thermal expansion is not significant as found in graphene and 2D h-BN.

  10. A Two-Dimensional Fourth-Order CESE Method for the Euler Equations on Triangular Unstructured Meshes (Post-Print)

    DTIC Science & Technology

    2012-01-12

    include area code) 661 275-5649 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 A Two-Dimensional Fourth-Order CESE Method for the...remark that Eq. (4) is a special case of Eq. (5) with A = N . Similarly, the Taylor expansion of fluxes can be expressed as ∂ Cfx ,yi ∂xI∂yJ∂tK (x, y, t) = A...x2′ , y2′) and within t n − 1/2 ≤ t ≤ tn, the flux fx,yi can be expressed as (fx,yi ) ∗ = A ∑ a=0 A−a ∑ b=0 A−a−b ∑ c=0 ∂a+b+ cfx ,yi ∂xa∂yb∂tc ∆xa∆yb

  11. A Short Note on the Scaling Function Constant Problem in the Two-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas

    2018-02-01

    We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297-311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697-721, 1998) using Fredholm determinant representations of the correlation function and Wiener-Hopf approximation results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058-1092, 1977).

  12. Two dimensional fully nonlinear numerical wave tank based on the BEM

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Pang, Yongjie; Li, Hongwei

    2012-12-01

    The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.

  13. Collective modes of a two-dimensional Fermi gas at finite temperature

    NASA Astrophysics Data System (ADS)

    Mulkerin, Brendan C.; Liu, Xia-Ji; Hu, Hui

    2018-05-01

    We examine the breathing mode of a strongly interacting two-dimensional Fermi gas and the role of temperature on the anomalous breaking of scale invariance. By calculating the equation of state with different many-body T -matrix theories and the virial expansion, we obtain a hydrodynamic equation of the harmonically trapped Fermi gas (with trapping frequency ω0) through the local density approximation. By solving the hydrodynamic equations, we determine the breathing mode frequencies as a function of interaction strength and temperature. We find that the breathing mode anomaly depends sensitively on both interaction strength and temperature. In particular, in the strongly interacting regime, we predict a significant downshift of the breathing mode frequency, below the scale invariant value of 2 ω0 , for temperatures of the order of the Fermi temperature.

  14. Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-04-01

    We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.

  15. Finite-Size Effects in Non-neutral Two-Dimensional Coulomb Fluids

    NASA Astrophysics Data System (ADS)

    Šamaj, Ladislav

    2017-07-01

    Thermodynamic potential of a neutral two-dimensional (2D) Coulomb fluid, confined to a large domain with a smooth boundary, exhibits at any (inverse) temperature β a logarithmic finite-size correction term whose universal prefactor depends only on the Euler number of the domain and the conformal anomaly number c=-1. A minimal free boson conformal field theory, which is equivalent to the 2D symmetric two-component plasma of elementary ± e charges at coupling constant Γ =β e^2, was studied in the past. It was shown that creating a non-neutrality by spreading out a charge Qe at infinity modifies the anomaly number to c(Q,Γ ) = - 1 + 3Γ Q^2. Here, we study the effect of non-neutrality on the finite-size expansion of the free energy for another Coulomb fluid, namely the 2D one-component plasma (jellium) composed of identical pointlike e-charges in a homogeneous background surface charge density. For the disk geometry of the confining domain we find that the non-neutrality induces the same change of the anomaly number in the finite-size expansion. We derive this result first at the free-fermion coupling Γ ≡ β e^2=2 and then, by using a mapping of the 2D one-component plasma onto an anticommuting field theory formulated on a chain, for an arbitrary even coupling constant.

  16. Multifrequency observations of a solar microwave burst with two-dimensional spatial resolution

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1990-01-01

    Frequency-agile interferometry observations using three baselines and the technique of frequency synthesis were used to obtain two-dimensional positions of multiple microwave sources at several frequency ranges in a solar flare. Source size and brightness temperature spectra were obtained near the peak of the burst. The size spectrum shows that the source size decreases rapidly with increasing frequency, but the brightness temperature spectrum can be well-fitted by gyrosynchrotron emission from a nonthermal distribution of electrons with power-law index of 4.8. The spatial structure of the burst showed several characteristics in common with primary/secondary bursts discussed by Nakajima et al. (1985). A source of coherent plasma emission at low frequencies is found near the secondary gyrosynchrotron source, associated with the leader spots of the active region.

  17. Temporal and Spatial Development of dB/dt During Substorms

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Chu, X.

    2017-12-01

    Ground induced currents (GICs) due to space weather are a threat to high voltage power transmission systems. However, knowledge of ground conductivity is the largest source of errors in the determination of GICs. A good proxy for GICs is dB/dt obtained from the Bx and By components of the magnetic field fluctuations. It is known that dB/dt values associated with magnetic storms can reach dangerous levels for power transmission systems. On the other hand, it is not uncommon for dB/dt values associated with substorms to exceed critical thresholds of 1.5 nT/s [Pulkkinen et al., 2011; 2013] and 5 nT/s [Molinski et al., 2000] and the temporal and spatial changes of the dB/dt associated with substorms, unlike storms, are not well understood. Using two dimensional maps of dB/dt over North America and Greenland derived from the spherical elementary currents [Weygand et al., 2011], we investigate the temporal and spatial change of dB/dt for both a single substorm event and a two dimensional superposed epoch analysis of many substorms. Both the single event and the statistical analysis show a sudden increase of dB/dt at substorm onset followed by an expansion poleward, westward, and eastward after the onset during the expansion phase. This temporal and spatial development of the dB/dt resembles the temporal and spatial change of the auroral emissions. Substorm values of dB/dt peak shortly after the auroral onset time and in at least one event exceeded 6.5 nT/s for a non-storm time substorm. In many of our 24 cases the area that exceeds the Pulkkinen et al. [2011; 2013] threshold of 1.5 nT/s over several million square kilometers and after about 30 minutes the dB/dt values fall below the threshold level. These results address one of goals of the Space Weather Action Plan, which are to establish benchmarks for space weather events and improve modeling and prediction of their impacts on infrastructure.

  18. Statistical correlation analysis for comparing vibration data from test and analysis

    NASA Technical Reports Server (NTRS)

    Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.

    1986-01-01

    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.

  19. Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar

    2016-06-01

    The aim of this paper is to design a current source obtained as a representation of p information symbols \\{I_k\\} so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U( T) that is as close as possible to a given unitary gate U_g. The design procedure involves calculating the EM field produced by \\{I_k\\} and hence the perturbing Hamiltonian produced by \\{I_k\\} finally resulting in the evolution operator produced by \\{I_k\\} up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in \\{I_k\\} which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.

  20. System-size and beam energy dependence of the space-time extent of the pion emission source

    NASA Astrophysics Data System (ADS)

    Pak, Robert; Phenix Collaboration

    2014-09-01

    Two-pion interferometry measurements are used to extract the Gaussian source radii Rout ,Rside and Rlong , of the pion emission sources produced in d + Au, Cu +Cu and Au +Au collisions for several beam collision energies at PHENIX experiment. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse geometric size of the collision system, and the transverse mass of the emitted pion pairs. These scaling patterns indicate a linear dependence of Rside on the initial transverse size, as well as a smaller freeze-out size for the d + Au system. Mathematical combinations of the extracted radii generally associated with the emission source duration and expansion rate exhibit non-monotonic behavior, suggesting a change in the expansion dynamics over this beam energy range.

  1. The three-dimensional turbulent boundary layer near a plane of symmetry

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1992-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer near a plane of symmetry is considered in the limit of large Reynolds number. A self-consistent two-layer structure is shown to exist wherein the streamwise velocity is brought to rest through an outer defect layer and an inner wall layer in a manner similar to that in two-dimensional boundary layers. The cross-stream velocity distribution is more complex and two terms in the asymptotic expansion are required to yield a complete profile which is shown to exhibit a logarithmic region. The flow in the inner wall layer is demonstrated to be collateral to leading order; pressure-gradient effects are formally of higher order but can cause the velocity profile to skew substantially near the wall at the large but finite Reynolds numbers encountered in practice. The governing set of ordinary differential equations describing a self-similar flow is derived. The calculated numerical solutions of these equations are matched asymptotically to an inner wall-layer solution and the results show trends that are consistent with experimental observations.

  2. Development of new flux splitting schemes. [computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1992-01-01

    Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.

  3. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  4. Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach

    NASA Astrophysics Data System (ADS)

    Chowdhury, R.; Adhikari, S.

    2012-10-01

    Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.

  5. Thermal Convection in Two-Dimensional Soap Films

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wu, X. L.

    2002-11-01

    Thermal convection in a fluid is a common phenomenon. Due to thermal expansion, the light warm fluid at the bottom tends to rise and the cold, heavier fluid at the top tends to fall. This so-called thermal convection exists in earth atmosphere and in oceans. It is also an important mechanism by which energy is transported in stars. In this study we investigate thermal convection in a vertical soap film.

  6. Quantum gravity and the holographic principle

    NASA Astrophysics Data System (ADS)

    de Haro Ollé, S.

    2001-06-01

    In this thesis we study two different approaches to holography, and comment on the possible relation between them. The first approach is an analysis of the high-energy regime of quantum gravity in the eikonal approximation, where the theory reduces to a topological field theory. This is the regime where particles interact at high energies but with small momentum transfer. We do this for the cases of asymptotically dS and AdS geometries and find that in both cases the theory is topological. We discuss the relation of our solutions in AdS to those of Horowitz and Itzhaki. We also consider quantum gravity away from the extreme eikonal limit and explain the sense in which the covariance of the theory is equivalent to taking into account transfer of momentum. The second approach we pursue is the AdS/CFT correspondence. We provide a holographic reconstruction of the bulk space-time metric and of bulk fields on this space-time, out of conformal field theory data. Knowing which sources are turned on is sufficient in order to obtain an asymptotic expansion of the bulk metric and of bulk fields near the boundary to high enough order so that all infrared divergences of the on-shell action are obtained. We provide explicit formulae for the holographic stress-energy tensors associated with an arbitrary asymptotically AdS geometry. We also study warped compactifications, where our d-dimensional world is regarded as a slice of a (d+1)-dimensional space-time, and analyse in detail the question as to where the d-dimensional observer can find the information about the extra dimension.

  7. Inflation in the early universe.

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1998-04-01

    In this talk it will be assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the Universe at the very early stage when gravity was negligible and thus the transformation is applicable. The author calculates the ratio of the volumes of the Universe at two different times T1 and T2 after the big bang. The result conforms with the standard inflationary universe theory, but now it is obtained without assuming that the Universe is propelled by antigravity.

  8. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Acoustic near-field characteristics of a conical, premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Doh-Hyoung; Lieuwen, Tim C.

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  10. Acoustic near-field characteristics of a conical, premixed flame.

    PubMed

    Lee, Doh-Hyoung; Lieuwen, Tim C

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  11. A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Jehan, Nusrat; Mirza, Arshad M.

    2010-03-15

    Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KPmore » shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.« less

  12. A Parameter-Free Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems.

    PubMed

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-04-05

    The method of constructing semilocal density functional for exchange in two dimensions using one of the premier approaches, i.e., density matrix expansion, is revisited, and an accurate functional is constructed. The form of the functional is quite simple and includes no adjustable semiempirical parameters. In it, the kinetic energy dependent momentum is used to compensate nonlocal effects of the system. The functional is then examined by considering the very well-known semiconductor quantum dot systems. And despite its very simple form, the results obtained for quantum dots containing a higher number of electrons agrees pretty well with that of the standard exact exchange theory. Some of the desired properties relevant for the two-dimensional exchange functional and the lower bound associated with it are also discussed. It is observed that the above parameter-free semilocal exchange functional satisfies most of the discussed conditions.

  13. Renormalized asymptotic enumeration of Feynman diagrams

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2017-10-01

    A method to obtain all-order asymptotic results for the coefficients of perturbative expansions in zero-dimensional quantum field is described. The focus is on the enumeration of the number of skeleton or primitive diagrams of a certain QFT and its asymptotics. The procedure heavily applies techniques from singularity analysis. To utilize singularity analysis, a representation of the zero-dimensional path integral as a generalized hyperelliptic curve is deduced. As applications the full asymptotic expansions of the number of disconnected, connected, 1PI and skeleton Feynman diagrams in various theories are given.

  14. Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.

    The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less

  15. A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity.

    PubMed

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M

    2017-05-01

    In this work, we present an analytical chlorinated vapor intrusion (CVI) model that can estimate source-to-indoor air concentration attenuation by simulating two-dimensional (2-D) vapor concentration profile in vertically heterogeneous soils overlying a homogenous vapor source. The analytical solution describing the 2-D soil gas transport was obtained by applying a modified Schwarz-Christoffel mapping method. A partial field validation showed that the developed model provides results (especially in terms of indoor emission rates) in line with the measured data from a case involving a building overlying a layered soil. In further testing, it was found that the new analytical model can very closely replicate the results of three-dimensional (3-D) numerical models at steady state in scenarios involving layered soils overlying homogenous groundwater sources. By contrast, by adopting a two-layer approach (capillary fringe and vadose zone) as employed in the EPA implementation of the Johnson and Ettinger model, the spatially and temporally averaged indoor concentrations in the case of groundwater sources can be higher than the ones estimated by the numerical model up to two orders of magnitude. In short, the model proposed in this work can represent an easy-to-use tool that can simulate the subsurface soil gas concentration in layered soils overlying a homogenous vapor source while keeping the simplicity of an analytical approach that requires much less computational effort.

  16. Cycle expansions: From maps to turbulence

    NASA Astrophysics Data System (ADS)

    Lan, Y.

    2010-03-01

    We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.

  17. Quantum integrability and functional equations

    NASA Astrophysics Data System (ADS)

    Volin, Dmytro

    2010-03-01

    In this thesis a general procedure to represent the integral Bethe Ansatz equations in the form of the Reimann-Hilbert problem is given. This allows us to study in simple way integrable spin chains in the thermodynamic limit. Based on the functional equations we give the procedure that allows finding the subleading orders in the solution of various integral equations solved to the leading order by the Wiener-Hopf technics. The integral equations are studied in the context of the AdS/CFT correspondence, where their solution allows verification of the integrability conjecture up to two loops of the strong coupling expansion. In the context of the two-dimensional sigma models we analyze the large-order behavior of the asymptotic perturbative expansion. Obtained experience with the functional representation of the integral equations allowed us also to solve explicitly the crossing equations that appear in the AdS/CFT spectral problem.

  18. Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries

    NASA Astrophysics Data System (ADS)

    Patel, Manu U. M.; Luong, Nguyen Dang; Seppälä, Jukka; Tchernychova, Elena; Dominko, Robert

    2014-05-01

    Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a two-dimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life.

  19. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  20. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOEpatents

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  1. Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; van der Slot, P. J. M.; Grimminck, D. L. A. G.; Setija, I. D.; Falgari, P.

    2017-02-01

    Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise. In addition, FELs that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In this paper, we develop a three-dimensional, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations. We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. This formulation uses the full Newton-Lorentz force equations to track the particles through the optical and magnetostatic fields. As a result, arbitrary three-dimensional representations for different undulator configurations are implemented, including planar, helical, and elliptical undulators. In particular, we present an analytic model of an APPLE-II undulator to treat arbitrary elliptical polarizations, which is used to treat general elliptical polarizations. To model oscillator configurations, and allow propagation of the optical field outside the undulator and interact with optical elements, we link the FEL simulation with the optical propagation code OPC. We present simulations using the APPLE-II undulator model to produce elliptically polarized output radiation, and present a detailed comparison with recent experiments using a tapered undulator configuration at the Linac Coherent Light Source. Validation of the nonlinear formation is also shown by comparison with experimental results obtained in the Sorgente Pulsata Auto-amplificata di Radiazione Coerente SASE FEL experiment at ENEA Frascati, a seeded tapered amplifier experiment at Brookhaven National Laboratory, and the 10 kW upgrade oscillator experiment at the Thomas Jefferson National Accelerator Facility.

  2. Population dynamics on heterogeneous bacterial substrates

    NASA Astrophysics Data System (ADS)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  3. Kaluza-Klein two-brane-worlds cosmology at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feranie, S.; Arianto; Zen, Freddy P.

    2010-04-15

    We study two (4+n)-dimensional branes embedded in (5+n)-dimensional spacetime. Using the gradient expansion approximation, we find that the effective theory is described by (4+n)-dimensional scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions. In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann equation depends on the equations of state of the brane matter, and the dark radiation term naturally appears. In the nonstatic case we take a relation between the external and internalmore » scale factors of the form b(t)=a{sup {gamma}(t)} in which the brane world evolves with two scale factors. In this case, the induced Friedmann equation on the brane is modified in the effective gravitational constant and the term proportional to a{sup -4{beta}.} For dark radiation, we find {gamma}=-2/(1+n). Finally, we discuss the issue of conformal frames which naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame may become nonstatic in the Einstein frame.« less

  4. Thermal mapping on male genital and skin tissues of laptop thermal sources and electromagnetic interaction.

    PubMed

    Safari, Mahdi; Mosleminiya, Navid; Abdolali, Ali

    2017-10-01

    Since the development of communication devices and expansion of their applications, there have been concerns about their harmful health effects. The main aim of this study was to investigate laptop thermal effects caused by exposure to electromagnetic fields and thermal sources simultaneously; propose a nondestructive, replicable process that is less expensive than clinical measurements; and to study the effects of positioning any new device near the human body in steady state conditions to ensure safety by U.S. and European standard thresholds. A computer simulation was designed to obtain laptop heat flux from SolidWorks flow simulation. Increase in body temperature due to heat flux was calculated, and antenna radiation was calculated using Computer Simulation Technology (CST) Microwave Studio software. Steady state temperature and specific absorption rate (SAR) distribution in user's body, and heat flux beneath the laptop, were obtained from simulations. The laptop in its high performance mode caused 420 (W/m 2 ) peak two-dimensional heat flux beneath it. The cumulative effect of laptop in high performance mode and 1 W antenna radiation resulted in temperatures of 42.9, 38.1, and 37.2 °C in lap skin, scrotum, and testis, that is, 5.6, 2.1, and 1.4 °C increase in temperature, respectively. Also, 1 W antenna radiation caused 0.37 × 10 -3 and 0.13 × 10 -1 (W/kg) peak three-dimensional SAR at 2.4 and 5 GHz, respectively, which could be ignored in reference to standards and temperature rise due to laptop use. Bioelectromagnetics. 38:550-558, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Improvements to the missile aerodynamic prediction code DEMON3

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.; Johnson, David L.; Lesieutre, Daniel J.

    1992-01-01

    The computer program DEMON3 was developed for the aerodynamic analysis of nonconventional supersonic configurations comprising a body with noncircular cross section and up to two wing or fin sections. Within a wing or fin section, the lifting surfaces may be cruciform, triform, planar, or low profile layouts; the planforms of the lifting surfaces allow for breaks in sweep. The body and fin sections are modeled by triplet and constant u-velocity panels, respectively, accounting for mutual body-fin interference. Fin thickness effects are included for the use of supersonic planar source panels. One of the unique features of DEMON3 is the modeling of high angle of attack vortical effects associated with the lifting surfaces and the body. In addition, shock expansion and Newtonian pressure calculation methods can be optionally engaged. These two dimensional nonlinear methods are augmented by aerodynamic interference determined from the linear panel methods. Depending on the geometric details of the body, the DEMON3 program can be used to analyze nonconventional configurations at angles of attack up to 25 degrees for Mach numbers from 1.1 to 6. Calculative results and comparisons with experimental data demonstrate the capabilities of DEMON3. Limitations and deficiencies are listed.

  7. How is the presence of horizons and localized matter encoded in the entanglement entropy?

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Jain, Parul

    2017-05-01

    Motivated by the new theoretical paradigm that views space-time geometry as emerging from the entanglement of a pre-geometric theory, we investigate the issue of the signature of the presence of horizons and localized matter on the entanglement entropy (EE) SE for the case of three-dimensional AdS (AdS3) gravity. We use the holographically dual two-dimensional CFT on the torus and the related modular symmetry in order to treat bulk black holes and conical singularities (sourced by pointlike masses not shielded by horizons) on the same footing. In the regime where boundary tori can be approximated by cylinders, we are able to give universal expressions for the EE of black holes and conical singularities. We argue that the presence of horizons/localized matter in the bulk is encoded in the EE in terms of (i) enhancement/reduction of the entanglement of the AdS3 vacuum, (ii) scaling as area/volume of the leading term of the perturbative expansion of SE, (iii) exponential/periodic behavior of SE and (iv) presence of unaccessible regions in the noncompact/compact dimension of the boundary cylinder. In particular, we show that the reduction effect of matter on the entanglement of the vacuum found by Verlinde for the de Sitter vacuum extends to the AdS3 vacuum.

  8. The novel implicit LU-SGS parallel iterative method based on the diffusion equation of a nuclear reactor on a GPU cluster

    NASA Astrophysics Data System (ADS)

    Zhang, Jilin; Sha, Chaoqun; Wu, Yusen; Wan, Jian; Zhou, Li; Ren, Yongjian; Si, Huayou; Yin, Yuyu; Jing, Ya

    2017-02-01

    GPU not only is used in the field of graphic technology but also has been widely used in areas needing a large number of numerical calculations. In the energy industry, because of low carbon, high energy density, high duration and other characteristics, the development of nuclear energy cannot easily be replaced by other energy sources. Management of core fuel is one of the major areas of concern in a nuclear power plant, and it is directly related to the economic benefits and cost of nuclear power. The large-scale reactor core expansion equation is large and complicated, so the calculation of the diffusion equation is crucial in the core fuel management process. In this paper, we use CUDA programming technology on a GPU cluster to run the LU-SGS parallel iterative calculation against the background of the diffusion equation of the reactor. We divide one-dimensional and two-dimensional mesh into a plurality of domains, with each domain evenly distributed on the GPU blocks. A parallel collision scheme is put forward that defines the virtual boundary of the grid exchange information and data transmission by non-stop collision. Compared with the serial program, the experiment shows that GPU greatly improves the efficiency of program execution and verifies that GPU is playing a much more important role in the field of numerical calculations.

  9. Infrared spectroscopy of the methanol cation and its methylene-oxonium isomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosley, J. D.; Young, J. W.; Duncan, M. A., E-mail: mccoy@chemistry.ohio-state.edu, E-mail: maduncan@uga.edu

    2015-03-21

    The carbenium ion with nominal formula [C,H{sub 4},O]{sup +} is produced from methanol or ethylene glycol in a pulsed-discharge supersonic expansion source. The ion is mass selected, and its infrared spectrum is measured from 2000 to 4000 cm{sup −1} using laser photodissociation spectroscopy and the method of rare gas atom tagging. Computational chemistry predicts two isomers, the methanol and methylene-oxonium cations. Predicted vibrational spectra based on scaled harmonic and reduced dimensional treatments are compared to the experimental spectra. The methanol cation is the only isomer produced when methanol is used as a precursor. When ethylene glycol is used as themore » precursor, methylene-oxonium is produced in addition to the methanol cation. Theoretical results at the CCSD(T)/cc-pVTZ level show that methylene-oxonium is lower in energy than methanol cation by 6.4 kcal/mol, and is in fact the global minimum isomer on the [C,H{sub 4},O]{sup +} potential surface. Methanol cation is trapped behind an isomerization barrier in our source, providing a convenient method to produce and characterize this transient species. Analysis of the spectrum of the methanol cation provides evidence for strong CH stretch vibration/torsion coupling in this molecular ion.« less

  10. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    PubMed

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  11. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Kenny; Najm, Habib N.

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  12. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE PAGES

    Chowdhary, Kenny; Najm, Habib N.

    2016-04-13

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  13. Precision Composite Space Structures

    DTIC Science & Technology

    2007-10-15

    large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume

  14. Viscous, resistive MHD stability computed by spectral techniques

    NASA Technical Reports Server (NTRS)

    Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.

    1983-01-01

    Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.

  15. Engineering and programming manual: Two-dimensional kinetic reference computer program (TDK)

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.; Coats, D. E.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology. The development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference is presented. Recent interest in rocket engines that operate at high expansion ratio, such as most Orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program. This new material reflects the new capabilities of the TDK computer program, the most important of which are described.

  16. Solution of the one-dimensional consolidation theory equation with a pseudospectral method

    USGS Publications Warehouse

    Sepulveda, N.; ,

    1991-01-01

    The one-dimensional consolidation theory equation is solved for an aquifer system using a pseudospectral method. The spatial derivatives are computed using Fast Fourier Transforms and the time derivative is solved using a fourth-order Runge-Kutta scheme. The computer model calculates compaction based on the void ratio changes accumulated during the simulated periods of time. Compactions and expansions resulting from groundwater withdrawals and recharges are simulated for two observation wells in Santa Clara Valley and two in San Joaquin Valley, California. Field data previously published are used to obtain mean values for the soil grain density and the compression index and to generate depth-dependent profiles for hydraulic conductivity and initial void ratio. The water-level plots for the wells studied were digitized and used to obtain the time dependent profiles of effective stress.

  17. Cellular automaton formulation of passive scalar dynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    Cellular automata modeling of the advection of a passive scalar in a two-dimensional flow is examined in the context of discrete lattice kinetic theory. It is shown that if the passive scalar is represented by tagging or 'coloring' automation particles a passive advection-diffusion equation emerges without use of perturbation expansions. For the specific case of the hydrodynamic lattice gas model of Frisch et al. (1986), the diffusion coefficient is calculated by perturbation.

  18. A quantum description of linear, and non-linear optical interactions in arrays of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Arabahmadi, Ehsan; Ahmadi, Zabihollah; Rashidian, Bizhan

    2018-06-01

    A quantum theory for describing the interaction of photons and plasmons, in one- and two-dimensional arrays is presented. Ohmic losses and inter-band transitions are not considered. We use macroscopic approach, and quantum field theory methods including S-matrix expansion, and Feynman diagrams for this purpose. Non-linear interactions are also studied, and increasing the probability of such interactions, and its application are also discussed.

  19. Source Distributions of Substorm Ions Observed in the Near-Earth Magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.

  20. Volumetric dimensional change of six direct core materials.

    PubMed

    Chutinan, Supattriya; Platt, Jeffrey A; Cochran, Michael A; Moore, B Keith

    2004-05-01

    This study evaluated the influence of water on the volumetric dimensional change of six direct placement core build-up materials by using Archimedes' principle. The effect on dimensional change due to the setting reaction was determined through the use of a silicone oil storage medium. The materials used were two dual-cured resin composites (CoreStore and Build-It FR), two chemically activated resin composites (CorePaste and Ti-Core), one metal-reinforced glass ionomer cement (Ketac-Silver), and one resin-modified glass ionomer (Fuji II LC Core). Using the manufacturers' instructions for each material, cylindrical specimens were prepared with dimensions of 7+/-0.1 mm in diameter and 2+/-0.1 mm in height. Each material had four groups (n = 5) based on storage conditions; silicone oil at 23 and 37 degrees C and distilled water at 23 and 37 degrees C. A 0.01 mg resolution balance was used to determine volumetric dimensional change using an Archimedean equation. Measurements were made 30 min after mixing, and at the time intervals of 1, 14, and 56 days. All materials exhibited dimensional change. Ketac-Silver had the most shrinkage in silicone oil and Fuji II LC showed the highest expansion in distilled water. The glass ionomer materials showed more change than did any of the resin composite materials. Current direct placement core materials show variation in the amount of volumetric dimensional change seen over a period of 56 days.

  1. Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-06-01

    In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.

  2. Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2014-06-01

    We propose acceleration of color computer-generated holograms (CGHs) from three-dimensional (3D) scenes that are expressed as texture (RGB) and depth (D) images. These images are obtained by 3D graphics libraries and RGB-D cameras: for example, OpenGL and Kinect, respectively. We can regard them as two-dimensional (2D) cross-sectional images along the depth direction. The generation of CGHs from the 2D cross-sectional images requires multiple diffraction calculations. If we use convolution-based diffraction such as the angular spectrum method, the diffraction calculation takes a long time and requires large memory usage because the convolution diffraction calculation requires the expansion of the 2D cross-sectional images to avoid the wraparound noise. In this paper, we first describe the acceleration of the diffraction calculation using "Band-limited double-step Fresnel diffraction," which does not require the expansion. Next, we describe color CGH acceleration using color space conversion. In general, color CGHs are generated on RGB color space; however, we need to repeat the same calculation for each color component, so that the computational burden of the color CGH generation increases three-fold, compared with monochrome CGH generation. We can reduce the computational burden by using YCbCr color space because the 2D cross-sectional images on YCbCr color space can be down-sampled without the impairing of the image quality.

  3. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    PubMed

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  4. Two-dimensional modulated ion-acoustic excitations in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.

    2017-09-01

    Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.

  5. Semilocal Exchange Energy Functional for Two-Dimensional Quantum Systems: A Step Beyond Generalized Gradient Approximations.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2017-06-29

    Semilocal density functionals for the exchange-correlation energy of electrons are extensively used as they produce realistic and accurate results for finite and extended systems. The choice of techniques plays a crucial role in constructing such functionals of improved accuracy and efficiency. An accurate and efficient semilocal exchange energy functional in two dimensions is constructed by making use of the corresponding hole which is derived based on the density matrix expansion. The exchange hole involved is localized under the generalized coordinate transformation and satisfies all the relevant constraints. Comprehensive testing and excellent performance of the functional is demonstrated versus exact exchange results. The accuracy of results obtained by using the newly constructed functional is quite remarkable as it substantially reduces the errors present in the local and nonempirical exchange functionals proposed so far for two-dimensional quantum systems. The underlying principles involved in the functional construction are physically appealing and hold promise for developing range separated and nonlocal exchange functionals in two dimensions.

  6. Spectroscopy of Dipolar Fermions in Layered Two-Dimensional and Three-Dimensional Lattices

    DTIC Science & Technology

    2011-09-06

    Moreover, we consider other sources of spectral broadening: interaction-induced quasiparticle lifetimes and the different polarizabilities of the...and study Cooper pair binding [7,8], polaron quasiparticle residue [9], and pseudogap behavior of ultracold fermions across the BEC/BCS crossover [10...imaginary part of this energy is the quasiparticle lifetime, and the only source of quasiparticle decay is the p-wave particle loss. Thus the cloud

  7. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  8. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  9. The role of magnetic fields in the structure and interaction of supershells

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Dawson, Joanne R.; Hennebelle, Patrick; Fierlinger, Katharina

    2017-03-01

    Context. Large-scale shocks formed by clustered feedback of young OB stars are considered an important source of mechanical energy for the interstellar medium (ISM) and a trigger of molecular cloud formation. Their interaction sites are locations where kinetic energy and magnetic fields are redistributed between ISM phases. Aims: In this work we address two questions, both involving the role of galactic magnetic fields in the dynamics of supershells and their interactions. On the one hand, we study the effect of the magnetic field on the expansion and fragmentation of supershells and, on the other hand, we look for the signatures of supershell collisions on dense structures and on the kinetic and magnetic energy distribution of the ISM. Methods: We performed a series of high-resolution, three-dimensional simulations of colliding supershells. The shocks are created by time-dependent feedback and evolve in a diffuse turbulent environment that is either unmagnetized or has different initial magnetic field configurations. Results: In the hydrodynamical situation, the expansion law of the superbubbles is consistent with the radius-time relation R ∝ t3/5 that is theoretically predicted for wind-blown bubbles. The supershells fragment over their entire surface into small dense clumps that carry more than half of the total kinetic energy in the volume. However, this is not the case when a magnetic field is introduced, either in the direction of the collision or perpendicular to the collision. In both situations, the shell surfaces are more stable to dynamical instabilities. When the magnetic field opposes the collision, the expansion law of the supershells also becomes significantly flatter than in the hydrodynamical case. Although a two-phase medium arises in all cases, in the magnetohydrodynamical (MHD) simulations the cold phase is limited to lower densities and the cold clumps are located further away from the shocks with respect to the hydrodynamical simulations. Conclusions: For the parameters we explored, self-gravity has no effect on either the superbubble expansion or the shock fragmentation. In contrast, a magnetic field, whether mostly parallel or mostly perpendicular to the collision axis, causes a deceleration of the shocks, deforms them significantly, and largely suppresses the formation of the dense gas on their surface. The result is a multi-phase medium in which the cold clumps are not spatially correlated with the supershells.

  10. Current-free double layers: A review

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    2011-12-01

    During the last decade, there has been an upsurge in the research on current-free DLs (CFDLs). Research includes theory, laboratory measurements, and various applications of CFDLs ranging from plasma thrusters to acceleration of charged particles in space and astrophysical plasmas. The purpose of this review is to present a unified understanding of the basic plasma processes, which lead to the formation of CFDLs. The review starts with the discussion on early research on electric fields and double layers (DLs) and ion acceleration in planar plasma expansion. The review continues with the formation of DLs and rarefaction shocks (RFS) in expanding plasma with two electron populations with different temperatures. The basic theory mitigating the formation of a CFDL by two-electron temperature population is reviewed; we refer to such CFDLs as double layers structures formation by two-temperature electron populations (TET-CFDLs). Application of TET-CFDLS to ion acceleration in laboratory and space plasmas was discussed including the formation of stationary steady-state DLs. A quite different type of CFDLs forms in a helicon plasma device (HPD), in which plasma abruptly expands from a narrow plasma source tube into a wide diffusion tube with abruptly diverging magnetic fields. The formation mechanism of the CFDL in HPD, referred here as current free double layer structure in helicon plasma device (HPD-CFDL), and its applications are reviewed. The formation of a TET-CFDL is due to the self-consistent separation of the two electron populations parallel to the ambient magnetic field. In contrast, a HPD-CFDL forms due to self-consistent separation of electrons and ion perpendicular to the abruptly diverging magnetic field in conjunction with the conducting wall of the expansion chamber in the HPD. One-dimensional theoretical models of CFDLs based on steady-state solution of Vlasov-Poisson system of equations are briefly discussed. Applications of CFDLs ranging from helicon double-layer thrusters (HDLTs) to the accelerations of ions in space and astrophysical plasmas are summarized.

  11. Investigation of advanced UQ for CRUD prediction with VIPRE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less

  12. Stepwise dynamics of an anionic micellar film - Formation of crown lenses.

    PubMed

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2017-06-15

    We studied the stepwise thinning of a microscopic circular foam film formed from an anionic micellar solution of sodium dodecyl sulfate (SDS). The foam film formed from the SDS micellar solution thins in a stepwise manner by the formation and expansion of a dark spot(s) of one layer less than the film thickness. During the last stages of film thinning (e.g., a film with one micellar layer), the dark spot expansion occurs via two steps. Initially, a small dark circular spot inside a film of several microns in size is formed, which expands at a constant rate. Then, a ridge along the expanding spot is formed. As the ridge grows, it becomes unstable and breaks into regular crown lenses, which are seen as white spots in the reflected light at the border of the dark spot with the surrounding thicker film. The Rayleigh type of instability contributes to the formation of the lenses, which results in the increase of the dark spot expansion rate with time. We applied the two-dimensional micellar-vacancy diffusion model and took into consideration the effects of the micellar layering and film volume on the rate of the dark spot expansion [Lee et al., 2016] to predict the rate of the dark spot expansion for a 0.06M SDS film in the presence of lenses. We briefly discuss the Rayleigh type of instability in the case of a 0.06M SDS foam film. The goals of this study are to reveal why the crown lenses are formed during the foam film stratification and to elucidate their effect on the rate of spot expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Pourabidi, Reza; Goshtasbi-Rad, Ebrahim

    2018-05-01

    The single expansion ramp nozzle is severely over-expanded when the vehicle is at low speed, which hinders its ability to provide optimal configurations for combined cycle engines. The over-expansion leads to flow separation as a result of shock wave/boundary-layer interaction. Flow separation, and the presence of shocks themselves, result in a performance loss in the single expansion ramp nozzle, leading to reduced thrust and increased pressure losses. In the present work, the unsteady two dimensional compressible flow in an over expanded single expansion ramp nozzle has been investigated using finite volume code. To achieve this purpose, the Reynolds stress turbulence model and full multigrid initialization, in addition to the Smirnov's method for examining the errors accumulation, have been employed and the results are compared with available experimental data. The results show that the numerical code is capable of predicting the experimental data with high accuracy. Afterward, the effect of discontinuity jump in wall temperature as well as the length of straight ramp on flow behavior have been studied. It is concluded that variations in wall temperature and length of straight ramp change the shock wave boundary layer interaction, shock structure, shock strength as well as the distance between Lambda shocks.

  14. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  15. Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using (G‧/G2) -expansion method

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Ullah, Rahmat; Ahmed, Naveed; Khan, Umar

    This article deals with finding some exact solutions of nonlinear fractional differential equations (NLFDEs) by applying a relatively new method known as (G‧/G2) -expansion method. Solutions of space-time fractional Sharma-Tasso-Olever (STO) equation of fractional order and (3+1)-dimensional KdV-Zakharov Kuznetsov (KdV-ZK) equation of fractional order are reckoned to demonstrate the validity of this method. The fractional derivative version of modified Riemann-Liouville, linked with Fractional complex transform is employed to transform fractional differential equations into the corresponding ordinary differential equations.

  16. Lattice properties of the Phase I BNL x-ray lithography source obtained from fits to magnetic measurement data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumberg, L.N.; Murphy, J.B.; Reusch, M.F.

    1991-01-01

    The orbit, tune, chromaticity and {beta} values for the Phase 1 XLS ring were computed by numerical integration of equations of motion using fields obtained from the coefficients of the 3-dimensional solution of Laplace's Equation evaluated by fits to magnetic measurements. The results are in good agreement with available data. The method has been extended to higher order fits of TOSCA generated fields in planes normal to the reference axis using the coil configuration proposed for the Superconducting X-Ray Lithography Source. Agreement with results from numerical integration through fields given directly by TOSCA is excellent. The formulation of the normalmore » multipole expansion presented by Brown and Servranckx has been extended to include skew multipole terms. The method appears appropriate for analysis of magnetic measurements of the SXLS. 8 refs. , 2 figs., 2 tabs.« less

  17. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three‐Dimensional Fibrin Gel

    PubMed Central

    Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey

    2017-01-01

    Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269

  18. Iogenic Plasma and its Rotation-Driven Transport in Jupiter's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Model calculations are reported for the Iogenic plasma source created by atomic oxygen and sulfur above Io's exobase in the corona and extended clouds (Outer Region). On a circumplanetary scale, two-dimensional distributions produced by integrating the proper three dimensional rate information for electron impact and charge exchange processes along the magnetic field lines are presented for the pickup ion rates, the net-mass and total-mass loading rates, the mass per unit magnetic flux rate, the pickup conductivity, the radial pickup current, and the net-energy loading rate for the plasma torus. All of the two-dimensional distributions are highly peaked at Io's location and hence highly asymmetric about Jupiter. The Iogenic plasma source is also calculated on a much smaller near-Io scale to investigate the structure of the highly peak rates centered about lo's instantaneous location. The Iogenic plasma source for the Inner Region (pickup rates produced below Io's exobase) is, however, expected to be the dominant source near lo for the formation of the plasma torus ribbon and to be a comparable source, if not a larger contributor, to the energy budget of the plasma torus, so as to provide the necessary power to sustain the plasma torus radiative loss rate.

  19. Path-integral approach to the Wigner-Kirkwood expansion.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2014-01-01

    We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.

  20. Cryogenic coefficient of thermal expansion measurements of type 440 and 630 stainless steel

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Flaugher, B.; Montes, J.

    2014-01-01

    The Dark Energy Camera is now installed on the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is cooled to 170K using a closed loop two-phase liquid nitrogen system. A submerged centrifugal pump is used to circulate the liquid from the base of the telescope to the camera in the prime focus cage. As part of the pump maintenance schedule, the rotor shaft bearings are periodically replaced. Common bearing and shaft materials are type 440 and 630 (17-4 PH) stainless steel. The coefficient of thermal expansion of the materials used is needed to predict the shaft and bearing housing dimensional changes at the 77K pump operating temperature. The thermal expansion from room temperature to 77K of type 440 and 630 stainless steel is presented . Measurements are performed using the ASTM E228 standard with a quartz push-rod dilatometer test stand. Aluminum 6061-T6 is used to calibrate the test stand.

  1. Coherence solution for bidirectional reflectance distributions of surfaces with wavelength-scale statistics.

    PubMed

    Hoover, Brian G; Gamiz, Victor L

    2006-02-01

    The scalar bidirectional reflectance distribution function (BRDF) due to a perfectly conducting surface with roughness and autocorrelation width comparable with the illumination wavelength is derived from coherence theory on the assumption of a random reflective phase screen and an expansion valid for large effective roughness. A general quadratic expansion of the two-dimensional isotropic surface autocorrelation function near the origin yields representative Cauchy and Gaussian BRDF solutions and an intermediate general solution as the sum of an incoherent component and a nonspecular coherent component proportional to an integral of the plasma dispersion function in the complex plane. Plots illustrate agreement of the derived general solution with original bistatic BRDF data due to a machined aluminum surface, and comparisons are drawn with previously published data in the examination of variations with incident angle, roughness, illumination wavelength, and autocorrelation coefficients in the bistatic and monostatic geometries. The general quadratic autocorrelation expansion provides a BRDF solution that smoothly interpolates between the well-known results of the linear and parabolic approximations.

  2. Dimensional changes of upper airway after rapid maxillary expansion: a prospective cone-beam computed tomography study.

    PubMed

    Chang, Yoon; Koenig, Lisa J; Pruszynski, Jessica E; Bradley, Thomas G; Bosio, Jose A; Liu, Dawei

    2013-04-01

    The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion cone-beam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P = 0.0000) and the first premolar (P = 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P = 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm(2) (59.6%) after rapid maxillary expansion (P = 0.0004). These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. The roles of the binodal curve and the spinodal curve in expansions from the supercritical state with flashing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knuth, Eldon L.; Miller, David R.; Even, Uzi

    2014-12-09

    Data extracted from time-of-flight (TOF) measurements made on steady-state He free jets at Göttingen already in 1986 and for pulsed Ne free jets investigated recently at Tel Aviv have been added to an earlier plot of terminal condensed-phase mass fraction x{sub 2∞} as a function of the dimensionless scaling parameter Γ. Γ characterizes the source (fluid species, temperature, pressure and throat diameter); values of x{sub 2∞} are extracted from TOF measurements using conservation of energy in the free-jet expansion. For nozzles consisting of an orifice in a thin plate; the extracted data yield 22 data points which are correlated satisfactorilymore » by a single curve. The Ne free jets were expanded from a conical nozzle with a 20° half angle; the three extracted data points stand together but apart from the aforementioned curve, indicating that the presence of the conical wall influences significantly the expansion and hence the condensation. The 22 data points for the expansions via an orifice consist of 15 measurements with expansions from the gas-phase side of the binodal curve which crossed the binodal curve downstream from the sonic point and 7 measurements with expansions of the gas-phase product of the flashing which occurred after an expansion from the liquid-phase side of the binodal curve crossed the binodal curve upstream from the sonic point. The association of these 22 points with a single curve supports the alternating-phase model for flows with flashing upstream from the sonic point proposed earlier. In order to assess the role of the spinodal curve in such expansions, the spinodal curves for He and Ne were computed using general multi-parameter Helmholtz-free-energy equation-of-state formulations. Then, for the several sets of source-chamber conditions used in the free-jet measurements, thermodynamic states at key locations in the free-jet expansions (binodal curve, sonic point and spinodal curve) were evaluated, with the expansion presumed to be metastable from the binodal curve to the spinodal curve. TOF distributions with more than two peaks (interpreted earlier as superimposed alternating-state TOF distributions) indicated flashing of the metastable flow downstream from the binodal curve but upstream from the sonic point. This relatively early flashing is due apparently to destabilizing interactions with the walls of the source. If the expansion crosses the binodal curve downstream from the nozzle, the metastable fluid does not interact with surfaces and flashing might be delayed until the expansion reaches the spinodal curve. It is concluded that, if the expansion crosses the binodal curve before reaching the sonic point, the resulting metastable fluid downstream from the binodal curve interacts with the adjacent surfaces and flashes into liquid and vapor phases which expand alternately through the nozzle; the two associated alternating TOF distributions are superposed by the chopping process so that the result has the appearance of a single distribution with three peaks.« less

  4. Composite asymptotic expansions and scaling wall turbulence.

    PubMed

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  5. Topological energy conversion through the bulk or the boundary of driven systems

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  6. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    PubMed Central

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-01-01

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method. PMID:27258271

  7. High resolution three-dimensional doping profiler

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    1999-01-01

    A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.

  8. Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Joyce, Michael; Sicard, François

    2013-03-01

    One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.

  9. Genetic demixing and evolution in linear stepping stone models

    NASA Astrophysics Data System (ADS)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial experiments on range expansions of inoculations of Escherichia coli and Saccharomyces cerevisiae.

  10. Molecular Dynamics Simulations of the Oil-Detachment from the Hydroxylated Silica Surface: Effects of Surfactants, Electrostatic Interactions, and Water Flows on the Water Molecular Channel Formation.

    PubMed

    Tang, Jian; Qu, Zhou; Luo, Jianhui; He, Lanyan; Wang, Pingmei; Zhang, Ping; Tang, Xianqiong; Pei, Yong; Ding, Bin; Peng, Baoliang; Huang, Yunqing

    2018-02-15

    The detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations. By tuning the polarity of model silica surfaces, as well as considering the different types of surfactant molecules and the water flow effects, more details about the formation of water molecular channel and the expansion processes are elucidated. It is found that for both ionic and nonionic type surfactant solutions, the perturbation of surfactant molecules on the two-dimensional oil molecule layer facilitates the injection and diffusion of water molecules between the oil layer and silica substrate. However, the water channel formation and expansion speed is strongly affected by the substrate polarity and properties of surfactant molecules. First, only for the silica surface with relative stronger polarity, the formation of water molecular channel is observed. Second, the expansion speed of the water molecular channel upon the ionic surfactant (dodecyl trimethylammonium bromide, DTAB and sodium dodecyl benzenesulfonate, SDBS) flooding is more rapidly than the nonionic surfactant system (octylphenol polyoxyethylene(10) ether, OP-10). Third, the water flow speed may also affect the injection and diffusion of water molecules. These simulation results indicate that the water molecular channel formation process is affected by multiple factors. The synergistic effects of perturbation of surfactant molecules and the electrostatic interactions between silica substrate and water molecules are two key factors aiding in the injection and diffusion of water molecules and helpful for the oil detachment from silica substrate.

  11. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  12. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion.

    PubMed

    Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J

    2014-02-01

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  13. Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

    NASA Astrophysics Data System (ADS)

    Conway, John T.; Cohl, Howard S.

    2010-06-01

    A new method is presented for Fourier decomposition of the Helmholtz Green function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Green function are split into their half advanced + half retarded and half advanced-half retarded components, and closed form solutions for these components are then obtained in terms of a Horn function and a Kampé de Fériet function respectively. Series solutions for the Fourier coefficients are given in terms of associated Legendre functions, Bessel and Hankel functions and a hypergeometric function. These series are derived either from the closed form 2-dimensional hypergeometric solutions or from an integral representation, or from both. A simple closed form far-field solution for the general Fourier coefficient is derived from the Hankel series. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented. Fourth order ordinary differential equations for the Fourier coefficients are also given and discussed briefly.

  14. Dimensional stability of curved panels with cocured stiffeners and cobonded frames

    NASA Technical Reports Server (NTRS)

    Mabson, G. E.; Flynn, B. W.; Swanson, G. D.; Lundquist, R. C.; Rupp, P. L.

    1993-01-01

    Closed form and finite element analyses are presented for axial direction and transverse direction dimensional stability of skin/stringer panels. Several sensitivity studies are presented to illustrate the influence of various design parameters on the dimensional stability of these panels. Panel geometry, material properties (stiffness and coefficient of thermal expansion), restraint conditions and local details, such as resin fillets, all combine to influence dimensional stability, residual and assembly forces.

  15. On Blockage Corrections for Two-dimensional Wind Tunnel Tests Using the Wall-pressure Signature Method

    NASA Technical Reports Server (NTRS)

    Allmaras, S. R.

    1986-01-01

    The Wall-Pressure Signature Method for correcting low-speed wind tunnel data to free-air conditions has been revised and improved for two-dimensional tests of bluff bodies. The method uses experimentally measured tunnel wall pressures to approximately reconstruct the flow field about the body with potential sources and sinks. With the use of these sources and sinks, the measured drag and tunnel dynamic pressure are corrected for blockage effects. Good agreement is obtained with simpler methods for cases in which the blockage corrections were about 10% of the nominal drag values.

  16. Asymptotic analysis of the narrow escape problem in dendritic spine shaped domain: three dimensions

    NASA Astrophysics Data System (ADS)

    Li, Xiaofei; Lee, Hyundae; Wang, Yuliang

    2017-08-01

    This paper deals with the three-dimensional narrow escape problem in a dendritic spine shaped domain, which is composed of a relatively big head and a thin neck. The narrow escape problem is to compute the mean first passage time of Brownian particles traveling from inside the head to the end of the neck. The original model is to solve a mixed Dirichlet-Neumann boundary value problem for the Poisson equation in the composite domain, and is computationally challenging. In this paper we seek to transfer the original problem to a mixed Robin-Neumann boundary value problem by dropping the thin neck part, and rigorously derive the asymptotic expansion of the mean first passage time with high order terms. This study is a nontrivial three-dimensional generalization of the work in Li (2014 J. Phys. A: Math. Theor. 47 505202), where a two-dimensional analogue domain is considered.

  17. Nonlinear theory for laminated and thick plates and shells including the effects of transverse shearing

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1985-01-01

    Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.

  18. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  19. Analytical model for three-dimensional Mercedes-Benz water molecules

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  20. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  1. Analytical model for three-dimensional Mercedes-Benz water molecules

    PubMed Central

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  2. Leak detection utilizing analog binaural (VLSI) techniques

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1995-01-01

    A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.

  3. On the effects of tidal interaction on thin accretion disks: An analytic study

    NASA Technical Reports Server (NTRS)

    Dgani, R.; Livio, M.; Regev, O.

    1994-01-01

    We calculate tidal effects on two-dimensional thin accretion disks in binary systems. We apply a perturbation expansion to obtain an analytic solution of the tidally induced waves. We obtain spiral waves that are stronger at the inner parts of the disks, in addition to a local disturbance which scales like the strength of the local tidal force. Our results agree with recent calculations of the linear response of the disk to tidal interaction.

  4. Direct and Inverse Scattering Problem Associated with the Elliptic Sinh-Gordon Equation

    DTIC Science & Technology

    1989-11-14

    the simple matter of an ambiguity in the quantization of two dimensional Hamiltonian systems, a problem that is easily handled. Our notation is as...siderable evidence has been found in support of a dark- matter fluctuation equations on a background satisfying an expansion hypothesis: suppose the... matter that does porate the case in which one of the fluids is a photon fluid. Of not interact directly with ordinary matter and in particular with

  5. Holographic turbulence in a large number of dimensions

    NASA Astrophysics Data System (ADS)

    Rozali, Moshe; Sabag, Evyatar; Yarom, Amos

    2018-04-01

    We consider relativistic hydrodynamics in the limit where the number of spatial dimensions is very large. We show that under certain restrictions, the resulting equations of motion simplify significantly. Holographic theories in a large number of dimensions satisfy the aforementioned restrictions and their dynamics are captured by hydrodynamics with a naturally truncated derivative expansion. Using analytic and numerical techniques we analyze two and three-dimensional turbulent flow of such fluids in various regimes and its relation to geometric data.

  6. Defense Small Business Innovation Research Program (SBIR). Volume 2. Navy Abstracts of Phase 1 Awards. 1990

    DTIC Science & Technology

    1990-01-01

    EXCELLENT DIELECTRIC PROPERTIES AND HIGH THERMAL CONDUCTIVITY. ASSUMING A GLASS -EPOXY DIELECTRIC, THE PWB THERMAL EXPANSION MUST BE MATCHED TO CHIP AND CASE...OF A GLASS FIBER-REINFORCED POLYMERIC RESIN AND IS PROJECTED TO REDUCE THE WEIGHT OF THE CARTRIDGE CASE ALONE BY 67%. THE TOTAL M855 CARTRIDGE WOULD...SENSOR DESIGN UTILIZES SURFACE PLASMON POLARITON(SPPs), TWO-DIMENSIONAL ELECTROGMAGNETIC WAVES GENERATED AT A METAL- GLASS BOUNDARY BY TAKING ENERGY FROM

  7. Water Waves Generated by a Slowly Moving Two-Dimensional Body. Part 2.

    DTIC Science & Technology

    1982-05-01

    Francis Ogilvie This research was carried out under the sPonsorship of the Naval Sea Systems Command General Hydromechanics Research (GHR) Program under...from Report) IS. SUPPLEMENTARY NOTES Sponsored by Naval Sea Systems Command General Hydromechanics Research Program, administered by the David W. Taylor...asymptotically ff 0 k . If the domain of x is - ’ x ’ + , tite only part of the d.;ymy ., t< expansion that represents waves comes fr m the iitemoqeneous

  8. Efficient energy absorption of intense ps-laser pulse into nanowire target

    NASA Astrophysics Data System (ADS)

    Habara, H.; Honda, S.; Katayama, M.; Sakagami, H.; Nagai, K.; Tanaka, K. A.

    2016-06-01

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  9. Stress-strain state on non-thin plates and shells. Generalized theory (survey)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemish, Yu.N.; Khoma, I.Yu.

    1994-05-01

    In the first part of this survey, we examined exact and approximate analytic solutions of specific problems for thick shells and plates obtained on the basis of three-dimensional equations of the mathematical theory of elasticity. The second part of the survey, presented here, is devoted to systematization and analysis of studies made in regard to a generalized theory of plates and shells based on expansion of the sought functions into Fourier series in Legendre polynomials of the thickness coordinate. Methods are described for constructing systems of differential equations in the coefficients of the expansions (as functions of two independent variablesmore » and time), along with the corresponding boundary and initial conditions. Matters relating to substantiation of the given approach and its generalizations are also discussed.« less

  10. The innovative concept of three-dimensional hybrid receptor modeling

    NASA Astrophysics Data System (ADS)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  11. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Debusschere, Bert J.; Najm, Habib N.; Matta, Alain; Knio, Omar M.; Ghanem, Roger G.; Le Maître, Olivier P.

    2003-08-01

    This paper presents a model for two-dimensional electrochemical microchannel flow including the propagation of uncertainty from model parameters to the simulation results. For a detailed representation of electroosmotic and pressure-driven microchannel flow, the model considers the coupled momentum, species transport, and electrostatic field equations, including variable zeta potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. Uncertainty from the model parameters and boundary conditions is propagated to the model predictions using a pseudo-spectral stochastic formulation with polynomial chaos (PC) representations for parameters and field quantities. Using a Galerkin approach, the governing equations are reformulated into equations for the coefficients in the PC expansion. The implementation of the physical model with the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as well as in two-dimensional electrochemical microchannel flow. The results for the two-dimensional channel show strong distortion of sample profiles due to ion movement and consequent buffer disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage across the channel.

  12. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  13. Generalized cable equation model for myelinated nerve fiber.

    PubMed

    Einziger, Pinchas D; Livshitz, Leonid M; Mizrahi, Joseph

    2005-10-01

    Herein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation. The general internal source response, expressed via repeated convolutions, uniformly converges provided that the entire periodic membrane is passive. The solution can be interpreted as an extended source response in an equivalent nonmyelinated axon (i.e., the response is governed by the classical cable equation). The extended source consists of the original source and a novel activation function, replacing the periodic membrane in the myelinated axon model. Hill's equation is explicitly integrated for the specific choice of piecewise constant membrane conductivity profile, thereby resulting in an explicit closed form expression for the transmembrane potential in terms of trigonometric functions. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model, provided that the periodic membrane point-wise passivity constraint is properly modified. Indeed, the modified condition, enforcing the periodic membrane passivity constraint on the average conductivity only leads, for the first time, to the inclusion of the nerve fiber activation modes in our novel model. The validity of the generalized transmission-line and cable equation models for a myelinated nerve fiber, is verified herein through a rigorous Green's function formulation and numerical simulations for transmembrane potential induced in three-dimensional myelinated cylindrical cell. It is shown that the dominant pole contribution of the exact modal expansion is the transmembrane potential solution of our generalized model.

  14. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berdowski, T.; Ferreira, C.; Walther, J.

    2016-09-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O(N log N)-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results.

  15. Two-dimensional echocardiographic estimates of left atrial function in healthy dogs and dogs with myxomatous mitral valve disease.

    PubMed

    Dickson, David; Caivano, Domenico; Matos, Jose Novo; Summerfield, Nuala; Rishniw, Mark

    2017-12-01

    To provide reference intervals for 2-dimensional linear and area-based estimates of left atrial (LA) function in healthy dogs and to evaluate the ability of estimates of LA function to differentiate dogs with subclinical myxomatous mitral valve disease (MMVD) and similarly affected dogs with congestive heart failure (CHF). Fifty-two healthy adult dogs, 88 dogs with MMVD of varying severity. Linear and area measurements from 2-dimensional echocardiographs in both right parasternal long and short axis views optimized for the left atrium were used to derive estimates of LA active emptying fraction, passive emptying fraction, expansion index, and total fractional emptying. Differences for each estimate were compared between healthy and MMVD dogs (based on ACVIM classification), and between MMVD dogs with subclinical disease and CHF that had similar LA dimensions. Diagnostic utility at identifying CHF was examined for dogs with subclinical MMVD and CHF. Relationships with bodyweight were assessed. All estimates of LA function decreased with increasing ACVIM stage of mitral valve disease (p<0.05) and showed negative relationships with increasing LA size (all r 2 values < 0.2), except for LA passive emptying fraction, which did not differ or correlate with LA size (p=0.4). However, no index of LA function identified CHF better than measurements of LA size. Total LA fractional emptying and expansion index showed modest negative correlations with bodyweight. Estimates of LA function worsen with worsening MMVD but fail to discriminate dogs with CHF from those with subclinical MMVD any better than simple estimates of LA size. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    NASA Astrophysics Data System (ADS)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.

  17. Three-Dimensional Application of DAMAS Methodology for Aeroacoustic Noise Source Definition

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2005-01-01

    At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough in acoustic microphone array technology was reported by the authors. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decouples the array design and processing influence from the noise being measured, using a simple and robust algorithm. For several prior airframe noise studies, it was shown to permit an unambiguous and accurate determination of acoustic source position and strength. As a follow-on effort, this paper examines the technique for three-dimensional (3D) applications. First, the beamforming ability for arrays, of different size and design, to focus longitudinally and laterally is examined for a range of source positions and frequency. Advantage is found for larger array designs with higher density microphone distributions towards the center. After defining a 3D grid generalized with respect to the array s beamforming characteristics, DAMAS is employed in simulated and experimental noise test cases. It is found that spatial resolution is much less sharp in the longitudinal direction in front of the array compared to side-to-side lateral resolution. 3D DAMAS becomes useful for sufficiently large arrays at sufficiently high frequency. But, such can be a challenge to computational capabilities, with regard to the required expanse and number of grid points. Also, larger arrays can strain basic physical modeling assumptions that DAMAS and all traditional array methodologies use. An important experimental result is that turbulent shear layers can negatively impact attainable beamforming resolution. Still, the usefulness of 3D DAMAS is demonstrated by the measurement of landing gear noise source distributions in a difficult hard-wall wind tunnel environment.

  18. Transient laminar opposing mixed convection in a symmetrically heated duct with a plane symmetric sudden contraction-expansion: Buoyancy an inclination effects

    NASA Astrophysics Data System (ADS)

    Martínez-Suástegui, Lorenzo; Barreto, Enrique; Treviño, César

    2015-11-01

    Transient laminar opposing mixed convection is studied experimentally in an open vertical rectangular channel with two discrete protruded heat sources subjected to uniform heat flux simulating electronic components. Experiments are performed for a Reynolds number of Re = 700, Prandtl number of Pr = 7, inclination angles with respect to the horizontal of γ =0o , 45o and 90o, and different values of buoyancy strength or modified Richardson number, Ri* =Gr* /Re2 . From the experimental measurements, the space averaged surface temperatures, overall Nusselt number of each simulated electronic chip, phase-space plots of the self-oscillatory system, characteristic times of temperature oscillations and spectral distribution of the fluctuating energy have been obtained. Results show that when a threshold in the buoyancy parameter is reached, strong three-dimensional secondary flow oscillations develop in the axial and spanwise directions. This research was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), Grant number 167474 and by the Secretaría de Investigación y Posgrado del IPN, Grant number SIP 20141309.

  19. Protein folding: complex potential for the driving force in a two-dimensional space of collective variables.

    PubMed

    Chekmarev, Sergei F

    2013-10-14

    Using the Helmholtz decomposition of the vector field of folding fluxes in a two-dimensional space of collective variables, a potential of the driving force for protein folding is introduced. The potential has two components. One component is responsible for the source and sink of the folding flows, which represent respectively, the unfolded states and the native state of the protein, and the other, which accounts for the flow vorticity inherently generated at the periphery of the flow field, is responsible for the canalization of the flow between the source and sink. The theoretical consideration is illustrated by calculations for a model β-hairpin protein.

  20. Elastic interactions between two-dimensional geometric defects

    NASA Astrophysics Data System (ADS)

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells.

  1. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the unsteadiness in the surface pressure was reduced compared to the flat-plate case.

  2. Optical stereo video signal processor

    NASA Technical Reports Server (NTRS)

    Craig, G. D. (Inventor)

    1985-01-01

    An otpical video signal processor is described which produces a two-dimensional cross-correlation in real time of images received by a stereo camera system. The optical image of each camera is projected on respective liquid crystal light valves. The images on the liquid crystal valves modulate light produced by an extended light source. This modulated light output becomes the two-dimensional cross-correlation when focused onto a video detector and is a function of the range of a target with respect to the stereo camera. Alternate embodiments utilize the two-dimensional cross-correlation to determine target movement and target identification.

  3. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  4. Carrier Injection and Scattering in Atomically Thin Chalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Song-Lin; Tsukagoshi, Kazuhito

    2015-12-01

    Atomically thin two-dimensional chalcogenides such as MoS2 monolayers are structurally ideal channel materials for the ultimate atomic electronics. However, a heavy thickness dependence of electrical performance is shown in these ultrathin materials, and the device performance normally degrades while exhibiting a low carrier mobility as compared with corresponding bulks, constituting a main hurdle for application in electronics. In this brief review, we summarize our recent work on electrode/channel contacts and carrier scattering mechanisms to address the origins of this adverse thickness dependence. Extrinsically, the Schottky barrier height increases at the electrode/channel contact area in thin channels owing to bandgap expansion caused by quantum confinement, which hinders carrier injection and degrades device performance. Intrinsically, thin channels tend to suffer from intensified Coulomb impurity scattering, resulting from the reduced interaction distance between interfacial impurities and channel carriers. Both factors are responsible for the adverse dependence of carrier mobility on channel thickness in two-dimensional semiconductors.

  5. ISCFD Nagoya 1989 - International Symposium on Computational Fluid Dynamics, 3rd, Nagoya, Japan, Aug. 28-31, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.

  6. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d-dimensional hypercubic lattices: A series expansion study.

    PubMed

    Singh, R R P; Young, A P

    2017-08-01

    We study the ±J transverse-field Ising spin-glass model at zero temperature on d-dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d=6, which is below the upper critical dimension of d=8. In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.

  7. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2018-07-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  8. Effects of different rapid maxillary expansion appliances on facial soft tissues using three-dimensional imaging.

    PubMed

    Altındiş, Sedat; Toy, Ebubekir; Başçiftçi, Faruk Ayhan

    2016-07-01

    To determine three-dimensional (3D) effects of three different rapid maxillary expansion (RME) appliances on facial soft tissues. Forty-two children (18 boys, 24 girls) who required RME treatment were included in this study. Patients were randomly divided into three equal groups: banded RME, acrylic splint RME, and modified acrylic splint RME. For each patient, 3D images were obtained before treatment (T1) and at the end of the 3-month retention (T2) with the 3dMD system. When three RME appliances were compared in terms of the effects on the facial soft tissues, there were no significant differences among them. The mouth and nasal width showed a significant increase in all groups. Although the effect of the acrylic splint RME appliances on total face height was less than that of the banded RME, there was no significant difference between the appliances. The effect of the modified acrylic splint appliance on the upper lip was significant according to the volumetric measurements (P < .01). There were no significant differences among three RME appliances on the facial soft tissues. The modified acrylic splint RME produced a more protrusive effect on the upper lip.

  9. Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma

    NASA Astrophysics Data System (ADS)

    Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang

    2017-11-01

    In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.

  10. Scramjet test flow reconstruction for a large-scale expansion tube, Part 2: axisymmetric CFD analysis

    NASA Astrophysics Data System (ADS)

    Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.

    2017-11-01

    This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.

  11. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d -dimensional hypercubic lattices: A series expansion study

    NASA Astrophysics Data System (ADS)

    Singh, R. R. P.; Young, A. P.

    2017-08-01

    We study the ±J transverse-field Ising spin-glass model at zero temperature on d -dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d =6 , which is below the upper critical dimension of d =8 . In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.

  12. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings

    NASA Astrophysics Data System (ADS)

    Ma, Peifeng; Lin, Hui; Lan, Hengxing; Chen, Fulong

    2015-08-01

    Deformation often occurs in buildings at early ages, and the constant inspection of deformation is of significant importance to discover possible cracking and avoid wall failure. This paper exploits the multi-dimensional SAR tomography technique to monitor the deformation performances of two newly built buildings (B1 and B2) with a special focus on the effects of concrete creep and shrinkage. To separate the nonlinear thermal expansion from total deformations, the extended 4-D SAR technique is exploited. The thermal map estimated from 44 TerraSAR-X images demonstrates that the derived thermal amplitude is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that B1 is subject to settlement during the construction period, in addition, the creep and shrinkage of B1 lead to wall shortening that is a height-dependent movement in the downward direction, and the asymmetrical creep of B2 triggers wall deflection that is a height-dependent movement in the deflection direction. It is also validated that the extended 4-D SAR can rectify the bias of estimated wall shortening and wall deflection by 4-D SAR.

  13. Scattering of antiplane shear waves by a circular cylinder in a traction-free plate

    PubMed

    Wang; Ying; Li

    2000-09-01

    Following a well-established formula used by many researchers, the scattering of an anti-plane shear wave by an infinite elastic cylinder of arbitrary relative radius centered in a traction-free two-dimensional isotropic plate has been examined. The plate is divided into three regions by introducing two imaginary planes located symmetrically away from the surface of the cylinder and perpendicular to surfaces of the plate. The wave field is expanded into cylinder wave modes in the central bounded region containing the cylinder, while the fields in the other two outer regions are expanded into plate wave modes. A system of equations determining the expansion coefficients is obtained according to the traction-free boundary conditions on the plate walls and the stress and displacement continuity conditions across the imaginary planes. By taking an appropriate finite number of terms of the infinite expansion series and a few selected points on the two properly chosen virtual planes and the surfaces of the plate through convergence and precision tests, a matrix equation to numerically evaluate the expansion coefficients is found. The method of how to choose the locations of the imaginary planes and the terms of the expansion series as well as the points on each respective boundary is given in Sec. III in detail. Curves of the reflection and transmission coefficients against the relative radius of the cylinder in welded and slip or cracked interfacial conditions are shown. Analysis on the contrast variations of the reflection and transmission coefficients for a cylinder in bonded and debonded interfacial situations is made. The relative errors estimated by the deviation of the numerical results from the principle of the conservation of energy are found to be less than 2%.

  14. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  15. Glassy phase in quenched disordered crystalline membranes

    NASA Astrophysics Data System (ADS)

    Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.

    2018-03-01

    We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.

  16. Probing the exchange statistics of one-dimensional anyon models

    NASA Astrophysics Data System (ADS)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  17. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  18. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  19. Two-and three-dimensional unsteady lift problems in high-speed flight

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B; Sluder, Loma

    1952-01-01

    The problem of transient lift on two- and three-dimensional wings flying at high speeds is discussed as a boundary-value problem for the classical wave equation. Kirchoff's formula is applied so that the analysis is reduced, just as in the steady state, to an investigation of sources and doublets. The applications include the evaluation of indicial lift and pitching-moment curves for two-dimensional sinking and pitching wings flying at Mach numbers equal to 0, 0.8, 1.0, 1.2 and 2.0. Results for the sinking case are also given for a Mach number of 0.5. In addition, the indicial functions for supersonic-edged triangular wings in both forward and reverse flow are presented and compared with the two-dimensional values.

  20. A Compact, High-Flux Cold Atom Beam Source

    NASA Technical Reports Server (NTRS)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  1. Electromagnetic field analysis and modeling of a relative position detection sensor for high speed maglev trains.

    PubMed

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.

  2. Electromagnetic Field Analysis and Modeling of a Relative Position Detection Sensor for High Speed Maglev Trains

    PubMed Central

    Xue, Song; He, Ning; Long, Zhiqiang

    2012-01-01

    The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652

  3. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    NASA Astrophysics Data System (ADS)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  4. (2, 2) superconformal bootstrap in two dimensions

    DOE PAGES

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; ...

    2017-05-19

    We find a simple relation between two-dimensional BPS N = 2 superconformal blocks and bosonic Virasoro conformal blocks, which allows us to analyze the crossing equations for BPS 4-point functions in unitary (2, 2) superconformal theories numerically with semidefinite programming. Here, we constrain gaps in the non-BPS spectrum through the operator product expansion of BPS operators, in ways that depend on the moduli of exactly marginal deformations through chiral ring coefficients. In some cases, our bounds on the spectral gaps are observed to be saturated by free theories, by N = 2 Liouville theory, and by certain Landau-Ginzburg models.

  5. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  6. Hydraulic/Shock Jumps in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Durisen, R. H.

    2006-04-01

    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the postshock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

  7. Virial series expansion and Monte Carlo studies of equation of state for hard spheres in narrow cylindrical pores

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2018-05-01

    In this paper, the virial series expansion and constant pressure Monte Carlo method are used to study the longitudinal pressure equation of state for hard spheres in narrow cylindrical pores. We invoke dimensional reduction and map the model into an effective one-dimensional fluid model with interacting internal degrees of freedom. The one-dimensional model is extensive. The Euler relation holds, and longitudinal pressure can be probed with the standard virial series expansion method. Virial coefficients B2 and B3 were obtained analytically, and numerical quadrature was used for B4. A range of narrow pore widths (2 Rp) , Rp<(√{3 }+2 ) /4 =0.9330 ... (in units of the hard sphere diameter) was used, corresponding to fluids in the important single-file formations. We have also computed the virial pressure series coefficients B2', B3', and B4' to compare a truncated virial pressure series equation of state with accurate constant pressure Monte Carlo data. We find very good agreement for a wide range of pressures for narrow pores. These results contribute toward increasing the rather limited understanding of virial coefficients and the equation of state of hard sphere fluids in narrow cylindrical pores.

  8. Mesoscopic structure formation in condensed matter due to vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Gupta, Kumar S.; Coey, J. M. D.

    2015-10-01

    An observable influence of zero-point fluctuations of the vacuum electromagnetic field on bound electrons is well known in the hydrogen atom, where it produces the Lamb shift. Here, we adapt an approach used to explain the Lamb shift in terms of a slight expansion of the orbits due to interaction with the zero-point field and apply it to assemblies of N electrons that are modeled as independent atomically bound two-level systems. The effect is to stabilize a collective ground-state energy, which leads to a prediction of novel effects at room temperature for quasi-two-dimensional systems over a range of parameters in the model, namely, N , the two-level excitation energy ℏ ω and the ionization energy ℏ ω +ɛ . Some mesoscopic systems where these effects may be observable include water sheaths on protein or DNA, surfaces of gaseous nanobubbles, and the magnetic response of inhomogeneous, electronically dilute oxides. No such effects are envisaged for uniform three-dimensional systems.

  9. Orientation-dependent integral equation theory for a two-dimensional model of water

    NASA Astrophysics Data System (ADS)

    Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.

    2003-03-01

    We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.

  10. An ultrasonic sensor system based on a two-dimensional state method for highway vehicle violation detection applications.

    PubMed

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-04-16

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.

  11. An Ultrasonic Sensor System Based on a Two-Dimensional State Method for Highway Vehicle Violation Detection Applications

    PubMed Central

    Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing

    2015-01-01

    With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%. PMID:25894940

  12. Investigation of biogeophysical feedback on the African climate using a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; Liou, Kuo-Nan; Kasahara, Akira

    1990-01-01

    A numerical scheme is specifically designed to develop a time-dependent climate model to ensure the conservation of mass, momentum, energy, and water vapor, in order to study the biogeophysical feedback for the climate of Africa. A vegetation layer is incorporated in the present two-dimensional climate model. Using the coupled climate-vegetation model, two tests were performed involving the removal and expansion of the Sahara Desert. Results show that variations in the surface conditions produce a significant feedback to the climate system. It is noted that the simulation responses to the temperature and zonal wind in the case of an expanded desert agree with the climatological data for African dry years. Perturbed simulations have also been performed by changing the albedo only, without allowing the variation in the vegetation layer. It is shown that the variation in latent heat release is significant and is related to changes in the vegetation cover. As a result, precipitation and cloud cover are reduced.

  13. Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal.

    PubMed

    Pichard, Hélène; Richoux, Olivier; Groby, Jean-Philippe

    2012-10-01

    The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.

  14. Casimir interaction of rodlike particles in a two-dimensional critical system.

    PubMed

    Eisenriegler, E; Burkhardt, T W

    2016-09-01

    We consider the fluctuation-induced interaction of two thin, rodlike particles, or "needles," immersed in a two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of elementary functions, and we also obtain analytical results for the force and torque between needles of finite length with separation much greater than their length. Evaluating formulas in our approach numerically for several needle geometries and surface universality classes, we study the full crossover from small to large values of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long needles and with predictions of the small-particle operator expansion, respectively.

  15. Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan Federick; Chelliah, Harsha Kumar

    2017-01-01

    For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.

  16. Intra-oral soft tissue expansion and volume stability of onlay bone grafts.

    PubMed

    Abrahamsson, Peter

    2011-01-01

    Insufficient regeneration of missing bone and soft-tissue may present aesthetic or functional problems in patients indicated for dental implant surgery. Several techniques such as bone grafts, bone substitutes and guided tissue regeneration (GTR) have been described to rebuild a compromised alveolar ridge. Adequate soft-tissue coverage of grafted bone and titanium-mesh is important to avoid exposure which may result in loss of the bone graft. The general aim of this thesis was to evaluate use of an osmotic tissue expander for expanding intra-oral soft tissue--creating a surplus of soft tissue-- in preparation for onlay bone grafting. An experimental rabbit model was used in studies (I), (II) and (III). In (I) an osmotic soft-tissue expander was placed bilaterally on the lateral wall of the mandible via an extra-oral approach. After two weeks of expansion the rabbits were killed and specimens were collected for histology. No inflammatory reaction and no resorbtion of the cortical bone occured. The periosteum was expanded and new bone formation was seen in the edges of the expander. In (II) and (III) the expander was placed under the periosteum in the same way as in (I): bilaterally in 13 rabbits in (II) and unilaterally in 11 rabbits in (III). After two weeks of expansion the expander was identified and removed. In (II) particulated bone was placed at the recipient site protected by a titanium mesh in one site and a bio-resorbable mesh on the other site. In (III), DBBM particles and bone particles collected from the lateral border of the mandible separated by a collagen membrane was placed at the recipient site. The graft was protected by a pre-bent titanium mesh covered by a collagen membrane. After a healing period of 3 months specimens were collected for histological and SEM examination. New bone was growing in direct contact with the titanium mesh and bio resorbable mesh. The newly formed bone had the same calcium content as the mature bone in the base of the mandible. In the clinical study (IV) 20 patients were consecutively recruited and randomised into two groups. The experimental group (ten patients) had an osmotic soft tissue expander implanted. After two weeks of expansion the expander was removed and a particulated bone graft protected by a titanium mesh and a collagen membrane was fixed to the recipient site. Titanium implants were installed after a healing period of 6 months. The patients in the reference group had a bone block grafted from the anterior ramus fixated to the recipient site with one or two titanium mini screws. Implants were installed after a healing period of 6 months. A three dimensional optical measuring device was used to measure alterations in the soft tissue profile before each surgical procedure. The three-dimensional changes were then analysed on a PC. The results from the clinical study in patients confirmed the results from the experimental rabbit studies. The osmotic tissue expander expanded the soft tissue. Expander perforations of the soft tissue occurred in two patients. The optical measurements demonstrated a positive volume gain after soft tissue expansion and bone grafting. The expanded tissue could be used to cover a bone graft. There still was a risk of mesh exposure, even after soft tissue expansion, which occurred in two patients. In both groups, implants could be installed in the grafted bone in positions that would allow the crowns to fit aesthetically into the dental arch.

  17. A numerical study of candidate transverse fuel injector configurations in the Langley scramjet engine

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.

    1980-01-01

    A computer program has been developed that numerically solves the two-dimensional Navier-Stokes and species equations near one or more transverse hydrogen fuel injectors in a scramjet engine. The program currently computes the turbulent mixing and reaction of hydrogen fuel and air, and allows the study of separated regions of the flow immediately preceding and following the injectors. The complex shock-expansion structure produced by the injectors in this region of the engine can also be represented. Results are presented that describe the flow field near two opposing transverse fuel injectors and two opposing staged (multiple) injectors, and comparisons between the two configurations are made to assess their mixing and flameholding qualities.

  18. Forces in inhomogeneous open active-particle systems.

    PubMed

    Razin, Nitzan; Voituriez, Raphael; Elgeti, Jens; Gov, Nir S

    2017-11-01

    We study the force that noninteracting pointlike active particles apply to a symmetric inert object in the presence of a gradient of activity and particle sources and sinks. We consider two simple patterns of sources and sinks that are common in biological systems. We analytically solve a one-dimensional model designed to emulate higher-dimensional systems, and study a two-dimensional model by numerical simulations. We specify when the particle flux due to the creation and annihilation of particles can act to smooth the density profile that is induced by a gradient in the velocity of the active particles, and find the net resultant force due to both the gradient in activity and the particle flux. These results are compared qualitatively to observations of nuclear motion inside the oocyte, that is driven by a gradient in activity of actin-coated vesicles.

  19. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    PubMed

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Terahertz signal detection in a short gate length field-effect transistor with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vostokov, N. V., E-mail: vostokov@ipm.sci-nnov.ru; Shashkin, V. I.

    2015-11-28

    We consider the problem of non-resonant detection of terahertz signals in a short gate length field-effect transistor having a two-dimensional electron channel with zero external bias between the source and the drain. The channel resistance, gate-channel capacitance, and quadratic nonlinearity parameter of the transistor during detection as a function of the gate bias voltage are studied. Characteristics of detection of the transistor connected in an antenna with real impedance are analyzed. The consideration is based on both a simple one-dimensional model of the transistor and allowance for the two-dimensional distribution of the electric field in the transistor structure. The resultsmore » given by the different models are discussed.« less

  1. Renewable energy in electric utility capacity planning: a decomposition approach with application to a Mexican utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staschus, K.

    1985-01-01

    In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms aremore » reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.« less

  2. Second-order singular pertubative theory for gravitational lenses

    NASA Astrophysics Data System (ADS)

    Alard, C.

    2018-03-01

    The extension of the singular perturbative approach to the second order is presented in this paper. The general expansion to the second order is derived. The second-order expansion is considered as a small correction to the first-order expansion. Using this approach, it is demonstrated that in practice the second-order expansion is reducible to a first order expansion via a re-definition of the first-order pertubative fields. Even if in usual applications the second-order correction is small the reducibility of the second-order expansion to the first-order expansion indicates a potential degeneracy issue. In general, this degeneracy is hard to break. A useful and simple second-order approximation is the thin source approximation, which offers a direct estimation of the correction. The practical application of the corrections derived in this paper is illustrated by using an elliptical NFW lens model. The second-order pertubative expansion provides a noticeable improvement, even for the simplest case of thin source approximation. To conclude, it is clear that for accurate modelization of gravitational lenses using the perturbative method the second-order perturbative expansion should be considered. In particular, an evaluation of the degeneracy due to the second-order term should be performed, for which the thin source approximation is particularly useful.

  3. Techniques for increasing the efficiency of Earth gravity calculations for precision orbit determination

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Lyubomirsky, A. S.

    1981-01-01

    Two techniques were analyzed. The first is a representation using Chebyshev expansions in three-dimensional cells. The second technique employs a temporary file for storing the components of the nonspherical gravity force. Computer storage requirements and relative CPU time requirements are presented. The Chebyshev gravity representation can provide a significant reduction in CPU time in precision orbit calculations, but at the cost of a large amount of direct-access storage space, which is required for a global model.

  4. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1992-01-01

    The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.

  5. Increasing the Utility of the Copper Cylinder Expansion Test

    DTIC Science & Technology

    2012-04-01

    hydrocode [20–22]. The simulations were run in axially-symmetric, two-dimensional coordinates. The explosive was modeled with the JWL EoS and pro...1968, Livermore, Califor- nia, USA. [6] W. C. Davis, Calibration of a JWL Equation of State, Los Alamos National Laboratory Quarterly Report, M-9-QR-88...CP620, 954. [12] P. W. Merchant, S. J. White, A. M. Collyer, A WBL-Consis- tent JWL Equation of State for the HMX-Based Explosive EDC37 from Cylinder

  6. Panama Canal Expansion Illustrates Need for Multimodal Near-Source Air Quality Assessment

    EPA Science Inventory

    The compelling issue raised is potential major changes in goods movement due to the Panama Canal expansion and considerations for near-source air quality. Near-source air quality may be affected both at near-port areas as well as along the freight transportation corridor.

  7. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morvan, B.; Tinel, A.; Sainidou, R.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  8. Discrete ordinates-Monte Carlo coupling: A comparison of techniques in NERVA radiation analysis

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. G.; Normand, E.; Wilcox, A. D.

    1972-01-01

    In the radiation analysis of the NERVA nuclear rocket system, two-dimensional discrete ordinates calculations are sufficient to provide detail in the pressure vessel and reactor assembly. Other parts of the system, however, require three-dimensional Monte Carlo analyses. To use these two methods in a single analysis, a means of coupling was developed whereby the results of a discrete ordinates calculation can be used to produce source data for a Monte Carlo calculation. Several techniques for producing source detail were investigated. Results of calculations on the NERVA system are compared and limitations and advantages of the coupling techniques discussed.

  9. Research on the forward modeling of controlled-source audio-frequency magnetotellurics in three-dimensional axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong

    2017-11-01

    Controlled-source audio-frequency magnetotellurics (CSAMT) has developed rapidly in recent years and are widely used in the area of mineral and oil resource exploration as well as other fields. The current theory, numerical simulation, and inversion research are based on the assumption that the underground media have resistivity isotropy. However a large number of rock and mineral physical property tests show the resistivity of underground media is generally anisotropic. With the increasing application of CSAMT, the demand for probe accuracy of practical exploration to complex targets continues to increase. The question of how to evaluate the influence of anisotropic resistivity to CSAMT response is becoming important. To meet the demand for CSAMT response research of resistivity anisotropic media, this paper examines the CSAMT electric equations, derives and realizes a three-dimensional (3D) staggered-grid finite difference numerical simulation method of CSAMT resistivity axial anisotropy. Through building a two-dimensional (2D) resistivity anisotropy geoelectric model, we validate the 3D computation result by comparing it to the result of controlled-source electromagnetic method (CSEM) resistivity anisotropy 2D finite element program. Through simulating a 3D resistivity axial anisotropy geoelectric model, we compare and analyze the responses of equatorial configuration, axial configuration, two oblique sources and tensor source. The research shows that the tensor source is suitable for CSAMT to recognize the anisotropic effect of underground structure.

  10. Efficient processing of two-dimensional arrays with C or C++

    USGS Publications Warehouse

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  11. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    NASA Astrophysics Data System (ADS)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  12. Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    2015-12-01

    We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.

  13. Lobster eye X-ray optics: Data processing from two 1D modules

    NASA Astrophysics Data System (ADS)

    Nentvich, O.; Urban, M.; Stehlikova, V.; Sieger, L.; Hudec, R.

    2017-07-01

    The X-ray imaging is usually done by Wolter I telescopes. They are suitable for imaging of a small part of the sky, not for all-sky monitoring. This monitoring could be done by a Lobster eye optics which can theoretically have a field of view up to 360 deg. All sky monitoring system enables a quick identification of source and its direction. This paper describes the possibility of using two independent one-dimensional Lobster Eye modules for this purpose instead of Wolter I and their post-processing into an 2D image. This arrangement allows scanning with less energy loss compared to Wolter I or two-dimensional Lobster Eye optics. It is most suitable especially for very weak sources.

  14. Demonstration of a directional sonic prism in two dimensions using an air-acoustic leaky wave antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Calvo, David C.

    Analysis and experimental demonstration of a two-dimensional acoustic leaky wave antenna is presented for use in air. The antenna is comprised of a two-dimensional waveguide patterned with radiating acoustic shunts. When excited using a single acoustic source within the waveguide, the antenna acts as a sonic prism that exhibits frequency steering. This design allows for control of acoustic steering angle using only a single source transducer and a patterned aperture. Aperture design was determined using transmission line analysis and finite element methods. The designed antenna was fabricated and the steering angle measured. The performance of the measured aperture was withinmore » 9% of predicted angle magnitudes over all examined frequencies.« less

  15. Diagrammatic Monte Carlo approach for diagrammatic extensions of dynamical mean-field theory: Convergence analysis of the dual fermion technique

    NASA Astrophysics Data System (ADS)

    Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut

    2017-07-01

    The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.

  16. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zilong; Guillen, Donna Post; Harris, William

    2016-09-01

    A thermal neutron absorbing material, comprised of 28.4 vol% HfAl3 in an Al matrix, was developed to serve as a conductively cooled thermal neutron filter to enable fast flux materials and fuels testing in a pressurized water reactor. In order to observe the microstructural change of the HfAl3-Al composite due to neutron irradiation, an EBSD-FIB characterization approach is developed and presented in this paper. Using the focused ion beam (FIB), the sample was fabricated to 25µm × 25µm × 20 µm and mounted on the grid. A series of operations were carried out repetitively on the sample top surface tomore » prepare it for scanning electron microscopy (SEM). First, a ~100-nm layer was removed by high voltage FIB milling. Then, several cleaning passes were performed on the newly exposed surface using low voltage FIB milling to improve the SEM image quality. Last, the surface was scanned by Electron Backscattering Diffraction (EBSD) to obtain the two-dimensional image. After 50 to 100 two-dimensional images were collected, the images were stacked to reconstruct a three-dimensional model using DREAM.3D software. Two such reconstructed three-dimensional models were obtained from samples of the original and post-irradiation HfAl3-Al composite respectively, from which the most significant microstructural change caused by neutron irradiation apparently is the size reduction of both HfAl3 and Al grains. The possible reason is the thermal expansion and related thermal strain from the thermal neutron absorption. This technique can be applied to three-dimensional microstructure characterization of irradiated materials.« less

  17. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  18. Analytic reconstruction of magnetic resonance imaging signal obtained from a periodic encoding field.

    PubMed

    Rybicki, F J; Hrovat, M I; Patz, S

    2000-09-01

    We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.

  19. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Yurkov, Mikhail V.; Schneidmiller, Evgeny A.; Samoylova, Liubov; Buzmakov, Alexey; Jurek, Zoltan; Ziaja, Beata; Santra, Robin; Loh, N. Duane; Tschentscher, Thomas; Mancuso, Adrian P.

    2016-04-01

    The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.

  20. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    NASA Astrophysics Data System (ADS)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high performance to cost ratio of this machine lends significant credence to the economic viability of small-scale, low-temperature ORCs. The experimental campaign covered two heat source temperatures, the full range of pump and expander speeds, a full range of heat source and heat sink fluid flow rates, and various charge levels for the three working fluids. This resulted in 366 steady-state measurements. The steady state measurements are used to develop a detailed ORC model. The model is based on multi-fluid performance maps for the pump and expander and a robust moving-boundary heat exchanger model. It is validated against the measured data and predicts the net power output of the tested ORC with a mean absolute percent error of 7.16%. Comparisons made with the detailed model confirm the predictions of the design-stage model. Using a conservative estimate of the condenser fan power, 19.1% improvement of the ZRC over the baseline ORC is indicated for a source temperature of 80 °C. For a 100 °C source temperature, 13.8% improvement is indicated. A key feature of the detailed ORC model is that it calculates the charge inventory of the working fluid in each heat exchanger and line set. Total system charge can also be specified as a model input. The model can represent the total charge well for R134a at low measured charge levels. As the measured charge level increases, the model becomes less accurate. Reasons for the deviation of the model at higher charge are investigated. It is expected that a charge tuning scheme could be employed to improve the accuracy of model-predicted charge.

  1. Two-dimensional quasi-double-layers in two-electron-temperature, current-free plasmas

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Ahedo, Eduardo

    2013-02-01

    The expansion of a plasma with two disparate electron populations into vacuum and channeled by a divergent magnetic nozzle is analyzed with an axisymmetric model. The purpose is to study the formation and two-dimensional shape of a current-free double-layer in the case when the electric potential steepening can still be treated within the quasineutral approximation. The properties of this quasi-double-layer are investigated in terms of the relative fraction of the high-energy electron population, its radial distribution when injected into the nozzle, and the geometry and intensity of the applied magnetic field. The two-dimensional double layer presents a curved shape, which is dependent on the natural curvature of the equipotential lines in a magnetically expanded plasma and the particular radial distribution of high-energy electrons at injection. The double layer curvature increases the higher the nozzle divergence is, the lower the magnetic strength is, and the more peripherally hot electrons are injected. A central application of the study is the operation of a helicon plasma thruster in space. To this respect, it is shown that the curvature of the double layer does not increment the thrust, it does not modify appreciably the downstream divergence of the plasma beam, but it increases the magnetic-to-pressure thrust ratio. The present study does not attempt to cover current-free double layers involving plasmas with multiple populations of positive ions.

  2. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice.

    PubMed

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-10-10

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic-to-paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models.

  3. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    PubMed Central

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  4. Efficient energy absorption of intense ps-laser pulse into nanowire target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habara, H.; Honda, S.; Katayama, M.

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. Thesemore » features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.« less

  5. An interpretation of flare-induced and decayless coronal-loop oscillations as interference patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2014-04-01

    We present an alternative model of coronal-loop oscillations, which considers that the waves are trapped in a two-dimensional waveguide formed by the entire arcade of field lines. This differs from the standard one-dimensional model which treats the waves as the resonant oscillations of just the visible bundle of field lines. Within the framework of our two-dimensional model, the two types of oscillations that have been observationally identified, flare-induced waves and 'decayless' oscillations, can both be attributed to MHD fast waves. The two components of the signal differ only because of the duration and spatial extent of the source that createsmore » them. The flare-induced waves are generated by strong localized sources of short duration, while the decayless background can be excited by a continuous, stochastic source. Further, the oscillatory signal arising from a localized, short-duration source can be interpreted as a pattern of interference fringes produced by waves that have traveled diverse routes of various pathlengths through the waveguide. The resulting amplitude of the fringes slowly decays in time with an inverse square root dependence. The details of the interference pattern depend on the shape of the arcade and the spatial variation of the Alfvén speed. The rapid decay of this wave component, which has previously been attributed to physical damping mechanisms that remove energy from resonant oscillations, occurs as a natural consequence of the interference process without the need for local dissipation.« less

  6. Statistical physics of topological emulsions and expanding populations

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill Sergeevich

    This thesis studies how microscopic interactions lead to large scale phenomena in two very different systems: two-dimensional liquid crystals and expanding populations. First, we explore the interactions among circular droplets embedded in a two-dimensional liquid crystal. The interactions arise due to anchoring boundary conditions on the surface of the inclusions and the elastic deformations of the orientational order parameter in the continuous phase. We analytically compute the texture around a single droplet and the far-field droplet-droplet pair potential. The near-field pair potential is computed numerically. We find that droplets attract at long separations and repel at short separations, which results in a well-defined preferred distance between the droplets and stabilization of the emulsion. Self-organization, barriers to coalescence, and the effects of thermal fluctuations are also discussed. Second, we study the role of randomness in the number of offspring on the evolutionary dynamics of expanding populations. Several equally fit genetic variants (alleles) are considered. We find that spatial expansion combined with demographic fluctuations leads to a substantial loss of genetic diversity and spatial segregation of the alleles. The effects of these processes on recurring mutations and selective sweeps are studied as well. Third, the competition between two alleles of different fitness is investigated. We find that the essential features of this competition can be captured by a non-linear reaction-diffusion equation. During a range expansion the fitter allele forms growing sectors that eventually engulf the less fit allele. The applications to measuring relative fitness in microbiological experiments are discussed. Finally, we analyze how a combination of strong stochasticity and weak competition affects the spreading of beneficial mutations in stationary, non-expanding, populations.

  7. Interplay between Mach cone and radial expansion in jet events

    NASA Astrophysics Data System (ADS)

    Tachibana, Y.; Hirano, T.

    2016-12-01

    We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.

  8. Micro-gun based on laser pulse propulsion.

    PubMed

    Yu, Haichao; Li, Hanyang; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2017-11-24

    This paper proposes a novel "micro-gun" structure for laser pulse propulsion. The "micro-bullets" (glass microspheres) are irradiated by a laser pulse with a 10 ns duration in a dynamic process. Experimental parameters such as the microsphere diameter and the laser pulse energy are varied to investigate their influence on laser pulse propulsion. The energy field and spatial intensity distribution in the capillary tube were simulated using a three-dimensional finite-difference time-domain method. The experimental results demonstrate that the propulsion efficiency is dependent on the laser pulse energy and the microsphere size. The propulsion modes and sources of the propelling force were confirmed through direct observation and theoretical calculation. Waves also generated by light-pressure and thermal expansions assisted the propulsion.

  9. Cryogenic expansion joint for large superconducting magnet structures

    DOEpatents

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  10. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  11. Modeling the Hydraulics of Root Growth in Three Dimensions with Phloem Water Sources1[C][OA

    PubMed Central

    Wiegers, Brandy S.; Cheer, Angela Y.; Silk, Wendy K.

    2009-01-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone. PMID:19542299

  12. Modeling the hydraulics of root growth in three dimensions with phloem water sources.

    PubMed

    Wiegers, Brandy S; Cheer, Angela Y; Silk, Wendy K

    2009-08-01

    Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone.

  13. Assessment of WENO-extended two-fluid modelling in compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Kitamura, Keiichi; Nonomura, Taku

    2017-03-01

    The two-fluid modelling based on an advection-upwind-splitting-method (AUSM)-family numerical flux function, AUSM+-up, following the work by Chang and Liou [Journal of Computational Physics 2007;225: 840-873], has been successfully extended to the fifth order by weighted-essentially-non-oscillatory (WENO) schemes. Then its performance is surveyed in several numerical tests. The results showed a desired performance in one-dimensional benchmark test problems: Without relying upon an anti-diffusion device, the higher-order two-fluid method captures the phase interface within a fewer grid points than the conventional second-order method, as well as a rarefaction wave and a very weak shock. At a high pressure ratio (e.g. 1,000), the interpolated variables appeared to affect the performance: the conservative-variable-based characteristic-wise WENO interpolation showed less sharper but more robust representations of the shocks and expansions than the primitive-variable-based counterpart did. In two-dimensional shock/droplet test case, however, only the primitive-variable-based WENO with a huge void fraction realised a stable computation.

  14. Modeling the Oxygen Cycle in the Equatorial Pacific: Regulation of Physical and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Wang, X.; Murtugudde, R. G.; Zhang, D.

    2016-12-01

    Photosynthesis and respiration are important processes in all ecosystems on the Earth, in which carbon and oxygen are the two main elements. However, the oxygen cycle has received much less attention (relative to the carbon cycle) despite its big role in the earth system. Oxygen is a sensitive indicator of physical and biogeochemical processes in the ocean thus a key parameter for understanding the ocean's ecosystem and biogeochemistry. The Oxygen-Minimum-Zone (OMZ), often seen below 200 m, is a profound feature in the world oceans. There has been evidence of OMZ expansion over the past few decades in the tropical oceans. Climate models project that there would be a continued decline in dissolved oxygen (DO) and an expansion of the tropical OMZs under future warming conditions, which is of great concern because of the implications for marine organisms. We employ a validated three-dimensional model that simulates physical transport (circulation and vertical mixing), biological processes (O2 production and consumption) and ocean-atmosphere O2 exchange to quantify various sources and sinks of DO over 1980-2015. We show how we use observational data to improve our model simulation. Then we assess the spatial and temporal variability in simulated DO in the tropical Pacific Ocean, and explore the impacts of physical and biogeochemical processes on the DO dynamics, with a focus on the MOZ. Our analyses indicate that DO in the OMZ has a positive relationship with the 13ºC isotherm depth and a negative relationship with the concentration of dissolved organic material.

  15. System for thermal energy storage, space heating and cooling and power conversion

    DOEpatents

    Gruen, Dieter M.; Fields, Paul R.

    1981-04-21

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  16. Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics.

    PubMed

    Koshel, R J; Walmsley, I A

    1993-03-20

    We investigate the absorption distribution in a cylindrical gain medium that is pumped by a source of distributed laser diodes by means of a pump cavity developed from the edge-ray principle of nonimaging optics. The performance of this pumping arrangement is studied by using a nonsequential, numerical, three-dimensional ray-tracing scheme. A figure of merit is defined for the pump cavities that takes into account the coupling efficiency and uniformity of the absorption distribution. It is found that the nonimaging pump cavity maintains a high coupling efficiency with extended two-dimensional diode arrays and obtains a fairly uniform absorption distribution. The nonimaging cavity is compared with two other designs: a close-coupled side-pumped cavity and an imaging design in the form of a elliptical cavity. The nonimaging cavity has a better figure of merit per diode than these two designs. It also permits the use of an extended, sparse, two-dimensional diode array, which reduces thermal loading of the source and eliminates all cavity optics other than the main reflector.

  17. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system II. Vacuum energy

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Nonperturbative vacuum polarization effects are explored for a supercritical Dirac-Coulomb system with Z > Zcr,1 in 2+1D, based on the original combination of analytical methods, computer algebra and numerical calculations, proposed recently in Refs. 1-3. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. Due to a lot of details of calculation the whole work is divided into two parts I and II. Taking account of results, obtained in the part I4 for ρV P, in the present part II, the evaluation of the vacuum energy ℰV P is investigated with emphasis on the renormalization and convergence of the partial expansion for ℰV P. It is shown that the renormalization via fermionic loop turns out to be the universal tool, which removes the divergence of the theory both in the purely perturbative and essentially nonperturbative regimes of the vacuum polarization. The main result of calculation is that for a wide range of the system parameters in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. To the end the similarity in calculations of ℰV P in 2+1 and 3+1D is discussed, and qualitative arguments are presented in favor of the possibility for complete screening of the classical electrostatic energy of the Coulomb source by the vacuum polarization effects for Z ≫ Zcr,1 in 3+1D.

  18. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  19. Structure of the first order reduced density matrix in three electron systems: A generalized Pauli constraints assisted study.

    PubMed

    Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole

    2018-03-21

    We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."

  20. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  1. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    NASA Technical Reports Server (NTRS)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  2. Expansion and melting of Xe nanocrystals in Si

    NASA Astrophysics Data System (ADS)

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico; Li, Boquan; Petrov, Ivan

    2006-12-01

    Xe agglomerates confined in a Si matrix by ion implantation were synthesized with different size depending on the implantation process and/or the thermal treatment. At low temperature Xe nanocrystals are formed, whose expansion and melting were studied in the range 15- 300K . Previous high resolution x-ray diffraction spectra were corroborated with complementary techniques such as two-dimensional imaging plate patterns and transmission electron microscopy. We detected fcc Xe nanocrystals whose properties were size dependent. The experiments showed that in annealed samples epitaxial condensation of small Xe clusters, on the cavities of the Si matrix, gave in fact expanded and oriented Xe, suggesting a possible preferential growth of Xe(311) planes oriented orthogonally to the Si[02-2] direction. On the contrary, small Xe clusters in an amorphous Si matrix have a fcc lattice contracted as a consequence of surface tension. Furthermore, a solid-to-liquid phase transition size dependent was found. Expansion of fcc Xe lattice was accurately determined as a function of the temperature. Overpressurized nanocrystals and/or binary size distributions were disproved.

  3. Shock tunnel studies of scramjet phenomena, supplement 5

    NASA Technical Reports Server (NTRS)

    Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.

    1990-01-01

    A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.

  4. An Air-Liquid Interface Culture System for 3D Organoid Culture of Diverse Primary Gastrointestinal Tissues.

    PubMed

    Li, Xingnan; Ootani, Akifumi; Kuo, Calvin

    2016-01-01

    Conventional in vitro analysis of gastrointestinal epithelium usually relies on two-dimensional (2D) culture of epithelial cell lines as monolayer on impermeable surfaces. However, the lack of context of differentiation and tissue architecture in 2D culture can hinder the faithful recapitulation of the phenotypic and morphological characteristics of native epithelium. Here, we describe a robust long-term three-dimensional (3D) culture methodology for gastrointestinal culture, which incorporates both epithelial and mesenchymal/stromal components into a collagen-based air-liquid interface 3D culture system. This system allows vigorously expansion of primary gastrointestinal epithelium for over 60 days as organoids with both proliferation and multilineage differentiation, indicating successful long-term intestinal culture within a microenvironment accurately recapitulating the stem cell niche.

  5. A weighted ℓ{sub 1}-minimization approach for sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ji; Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2014-06-15

    This work proposes a method for sparse polynomial chaos (PC) approximation of high-dimensional stochastic functions based on non-adapted random sampling. We modify the standard ℓ{sub 1}-minimization algorithm, originally proposed in the context of compressive sampling, using a priori information about the decay of the PC coefficients, when available, and refer to the resulting algorithm as weightedℓ{sub 1}-minimization. We provide conditions under which we may guarantee recovery using this weighted scheme. Numerical tests are used to compare the weighted and non-weighted methods for the recovery of solutions to two differential equations with high-dimensional random inputs: a boundary value problem with amore » random elliptic operator and a 2-D thermally driven cavity flow with random boundary condition.« less

  6. DAVIS: A direct algorithm for velocity-map imaging system

    NASA Astrophysics Data System (ADS)

    Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.

    2018-05-01

    In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.

  7. TU-A-12A-01: Consistency of Lung Expansion and Contraction During Respiration: Implications for Quantitative Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Four-dimensional computed tomography (4DCT) can be used to evaluate longitudinal changes in pulmonary function. The sensitivity of such measurements to identify function change may be improved with reproducible breathing patterns. The purpose of this study was to determine if inhale was more consistent than exhale, i.e., lung expansion during inhalation compared to lung contraction during exhalation. Methods: Repeat 4DCT image data acquired within a short time interval from 8 patients. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. Equivalent lungmore » volumes (ELV) were used for 5 subjects and equivalent title volumes (ETV) for the 3 subjects who experienced a baseline shift between scans. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2mm distance-to-agreement and 5% ventilation difference. The gamma pass rates were then compared using paired t-test to determine if there was a significant difference. Results: Inhalation was more reproducible than exhalation. In the 5 ELV subjects 78.5% of the lung voxels met the gamma criteria for expansion during inhalation when comparing the two scans, while significantly fewer (70.9% of the lung voxels) met the gamma criteria for contraction during exhalation (p = .027). In the 8 total subjects analyzed the average gamma pass rate for expansion during inhalation was 75.2% while for contraction during exhalation it was 70.3%; which trended towards significant (p = .064). Conclusion: This work implies inhalation is more reproducible than exhalation, when equivalent respiratory volumes are considered. The reason for this difference is unknown. Longitudinal investigation of pulmonary function change based on inhalation images appears appropriate for Jacobian-based measure of lung tissue expansion. NIH Grant: R01 CA166703.« less

  8. On butterfly effect in higher derivative gravities

    NASA Astrophysics Data System (ADS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-11-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  9. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    NASA Astrophysics Data System (ADS)

    Troisi, Antonio

    2017-03-01

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.

  10. Local polynomial chaos expansion for linear differential equations with high dimensional random inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Jakeman, John; Gittelson, Claude

    2015-01-08

    In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less

  11. A low dimensional dynamical system for the wall layer

    NASA Technical Reports Server (NTRS)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  12. Turbulence-driven Coronal Heating and Improvements to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  13. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  14. CS Emission Near MIR-bubbles

    NASA Astrophysics Data System (ADS)

    Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.

    2016-02-01

    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  15. Simulation of cesium injection and distribution in rf-driven ion sources for negative hydrogen ion generation.

    PubMed

    Gutser, R; Fantz, U; Wünderlich, D

    2010-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.

  16. The structure of a three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1993-01-01

    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.

  17. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    NASA Astrophysics Data System (ADS)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-03-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.

  18. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    NASA Astrophysics Data System (ADS)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  19. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.

  20. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  1. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  2. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  3. Radiograph and passive data analysis using mixed variable optimization

    DOEpatents

    Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.

    2015-06-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.

  4. Three-dimensional axisymmetric sources for Majumdar-Papapetrou type spacetimes

    NASA Astrophysics Data System (ADS)

    García-Reyes, Gonzalo; Hernández-Gómez, Kevin A.

    From Newtonian potential-density pairs, we construct three-dimensional axisymmetric relativistic sources for a Majumdar-Papapetrou type conformastatic spacetime. As simple examples, we build two families of relativistic thick disks from the first two Miyamoto-Nagai potential-density pairs used in Newtonian gravity to model flat galaxies, and a three-component relativistic model of galaxy (bulge, disk and dark matter halo). We study the equatorial circular motion of test particles around such structures. Also the stability of the orbits is analyzed for radial perturbation using an extension of the Rayleigh criterion. In all examples, the relativistic effects are analyzed and compared with the Newtonian approximation. The models are considered satisfying all the energy conditions.

  5. Multidimensional incremental parsing for universal source coding.

    PubMed

    Bae, Soo Hyun; Juang, Biing-Hwang

    2008-10-01

    A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.

  6. Correlation between Angular Widths of CMEs and Characteristics of Their Source Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X. H.; Feng, X. S.; Feng, H. Q.

    The angular width of a coronal mass ejection (CME) is an important factor in determining whether the corresponding interplanetary CME (ICME) and its preceding shock will reach Earth. However, there have been very few studies of the decisive factors of the CME’s angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell model based on observations of Solar Terrestrial Relations Observatory ( STEREO ) to study the relations between the CME’s 3D width and characteristics of the CME’s source region. We find that for the CMEs produced by active regionsmore » (ARs), the CME width has some correlations with the AR’s area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR’s total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region’s area and flux are strong. The magnetic flux within those CMEs seems to come from the whole flare region or even from a larger region than the flare. Our findings show that the CME’s 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory for the CME’s source region instead of the observations from coronagraphs on board the Solar and Heliospheric Observatory and STEREO if the two foot points of the CME stay in the same places with no expansion of the CME in the transverse direction until reaching Earth.« less

  7. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion.

    PubMed

    Futrega, Kathryn; Atkinson, Kerry; Lott, William B; Doran, Michael R

    2017-04-01

    While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25-400 MSCs and 10 umbilical cord blood (CB)-derived CD34 + progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34 + cell expansion outcomes. By contrast, a substantial increase in CD34 + CD38 - cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34 + CD38 - cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34 + CD38 - cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34 + cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications.

  8. Residual stresses and their effects on deformation

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1993-11-01

    Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.

  9. Three-dimensional photogrammetry for surgical planning of tissue expansion in hemifacial microsomia.

    PubMed

    Jayaratne, Yasas S N; Lo, John; Zwahlen, Roger A; Cheung, Lim K

    2010-12-01

    We aim to illustrate the applications of 3-dimensional (3-D) photogrammetry for surgical planning and longitudinal assessment of the volumetric changes in hemifacial microsomia. A 3-D photogrammetric system was employed for planning soft tissue expansion and transplantation of a vascularized scapular flap for a patient with hemifacial microsomia. The facial deficiency was calculated by superimposing a mirror of the normal side on the preoperative image. Postsurgical volumetric changes were monitored by serial superimposition of 3-D images. A total of 31 cm(3) of tissue expansion was achieved within a period of 4 weeks. A scapular free flap measuring 8 cm × 5 cm was transplanted to augment the facial deficiency. Postsurgical shrinkage of the flap was observed mainly in the first 3 months and it was minimal thereafter. 3-D photogrammetry can be used as a noninvasive objective tool for assessing facial deformity, planning, and postoperative follow-up of surgical correction of facial asymmetry.

  10. Alternative dimensional reduction via the density matrix

    NASA Astrophysics Data System (ADS)

    de Carvalho, C. A.; Cornwall, J. M.; da Silva, A. J.

    2001-07-01

    We give graphical rules, based on earlier work for the functional Schrödinger equation, for constructing the density matrix for scalar and gauge fields in equilibrium at finite temperature T. More useful is a dimensionally reduced effective action (DREA) constructed from the density matrix by further functional integration over the arguments of the density matrix coupled to a source. The DREA is an effective action in one less dimension which may be computed order by order in perturbation theory or by dressed-loop expansions; it encodes all thermal matrix elements. We term the DREA procedure alternative dimensional reduction, to distinguish it from the conventional dimensionally reduced field theory (DRFT) which applies at infinite T. The DREA is useful because it gives a dimensionally reduced theory usable at any T including infinity, where it yields the DRFT, and because it does not and cannot have certain spurious infinities which sometimes occur in the density matrix itself or the conventional DRFT; these come from ln T factors at infinite temperature. The DREA can be constructed to all orders (in principle) and the only regularizations needed are those which control the ultraviolet behavior of the zero-T theory. An example of spurious divergences in the DRFT occurs in d=2+1φ4 theory dimensionally reduced to d=2. We study this theory and show that the rules for the DREA replace these ``wrong'' divergences in physical parameters by calculable powers of ln T; we also compute the phase transition temperature of this φ4 theory in one-loop order. Our density-matrix construction is equivalent to a construction of the Landau-Ginzburg ``coarse-grained free energy'' from a microscopic Hamiltonian.

  11. Characterization of Lift and Drag on Two Dimensional Airfoils with and without Sinusoidal Leading Edges

    NASA Astrophysics Data System (ADS)

    Acosta, Gregorio I.

    An experimental investigation was taken on a 63-021 NACA airfoil, to characterize lift and drag and how the effects of sinusoidal leading edges affect the aerodynamic properties. A theoretical model is also purposed by implementing a perturbation on thin-airfoil theory. Two sets of airfoils were machined and tested inside a low-speed open circuit wind tunnel. Data from a pressure scanner and particle image velocity will give an insight of how the modified leading edges affect the aerodynamic properties. A Fourier series expansion was used to solve for the lifting-line model, by use of thin-airfoil theory and complex number theory.

  12. The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications.

    PubMed

    Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter

    2013-10-07

    We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.

  13. The MUSIC algorithm for impedance tomography of small inclusions from discrete data

    NASA Astrophysics Data System (ADS)

    Lechleiter, A.

    2015-09-01

    We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.

  14. Modeling of reverberant room responses for two-dimensional spatial sound field analysis and synthesis.

    PubMed

    Bai, Mingsian R; Li, Yi; Chiang, Yi-Hao

    2017-10-01

    A unified framework is proposed for analysis and synthesis of two-dimensional spatial sound field in reverberant environments. In the sound field analysis (SFA) phase, an unbaffled 24-element circular microphone array is utilized to encode the sound field based on the plane-wave decomposition. Depending on the sparsity of the sound sources, the SFA stage can be implemented in two manners. For sparse-source scenarios, a one-stage algorithm based on compressive sensing algorithm is utilized. Alternatively, a two-stage algorithm can be used, where the minimum power distortionless response beamformer is used to localize the sources and Tikhonov regularization algorithm is used to extract the source amplitudes. In the sound field synthesis (SFS), a 32-element rectangular loudspeaker array is employed to decode the target sound field using pressure matching technique. To establish the room response model, as required in the pressure matching step of the SFS phase, an SFA technique for nonsparse-source scenarios is utilized. Choice of regularization parameters is vital to the reproduced sound field. In the SFS phase, three SFS approaches are compared in terms of localization performance and voice reproduction quality. Experimental results obtained in a reverberant room are presented and reveal that an accurate room response model is vital to immersive rendering of the reproduced sound field.

  15. The Role of Retrotransposons in Gene Family Expansions in the Human and Mouse Genomes

    PubMed Central

    Janoušek, Václav; Laukaitis, Christina M.; Yanchukov, Alexey

    2016-01-01

    Abstract Retrotransposons comprise a large portion of mammalian genomes. They contribute to structural changes and more importantly to gene regulation. The expansion and diversification of gene families have been implicated as sources of evolutionary novelties. Given the roles retrotransposons play in genomes, their contribution to the evolution of gene families warrants further exploration. In this study, we found a significant association between two major retrotransposon classes, LINEs and LTRs, and lineage-specific gene family expansions in both the human and mouse genomes. The distribution and diversity differ between LINEs and LTRs, suggesting that each has a distinct involvement in gene family expansion. LTRs are associated with open chromatin sites surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs may play a structural role promoting gene duplication. Our findings also suggest that gene family expansions, especially in the mouse genome, undergo two phases. The first phase is characterized by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The second phase is characterized by rapid gene family expansion due to continuous accumulation of LINEs and it appears that, in some instances at least, this could become a runaway process. We provide an example in which this has happened and we present a simulation supporting the possibility of the runaway process. Altogether we provide evidence of the contribution of retrotransposons to the expansion and evolution of gene families. Our findings emphasize the putative importance of these elements in diversification and adaptation in the human and mouse lineages. PMID:27503295

  16. Computer aided photographic engineering

    NASA Technical Reports Server (NTRS)

    Hixson, Jeffrey A.; Rieckhoff, Tom

    1988-01-01

    High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.

  17. Electron transport in the two-dimensional channel material - zinc oxide nanoflake

    NASA Astrophysics Data System (ADS)

    Lai, Jian-Jhong; Jian, Dunliang; Lin, Yen-Fu; Ku, Ming-Ming; Jian, Wen-Bin

    2018-03-01

    ZnO nanoflakes of 3-5 μm in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.

  18. A source flow characteristic technique for the analysis of scramjet exhaust flow field

    NASA Technical Reports Server (NTRS)

    Delguidice, P.; Dash, S.; Kalben, P.

    1974-01-01

    The factors which influence the design and selection of a nozzle for a hypersonic scramjet are described. A two dimensional second-order characteristic procedure capable of analyzing the aerodynamic performance of typical nozzle configurations is presented. Equations of motion governing the two dimensional, axisymmetric, or axially expanding inviscid flow of a gas mixture, with frozen chemistry, are provided. Diagrams of the flow conditions for various configurations are included.

  19. Effects of dimensionality on kinetic simulations of laser-ion acceleration in the transparency regime

    NASA Astrophysics Data System (ADS)

    Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.

    2017-05-01

    A particle-in-cell study of laser-ion acceleration mechanisms in the transparency regime illustrates how two-dimensional (2D) S and P simulations (laser polarization in and out of the simulation plane, respectively) capture different physics characterizing these systems, visible in their entirety often in cost-prohibitive three-dimensional (3D) simulations. The electron momentum anisotropy induced in the target by a laser pulse is dramatically different in the two 2D cases, manifested in differences in target expansion timescales, electric field strengths, and density thresholds for the onset of relativistically induced transparency. In particular, 2D-P simulations exhibit dramatically greater electron heating in the simulation plane, whereas 2D-S ones show a much more isotropic energy distribution, similar to 3D. An ion trajectory analysis allows one to isolate the fields responsible for ion acceleration and to characterize the acceleration regimes in time and space. The artificial longitudinal electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration into its dominant acceleration mechanism throughout the laser-plasma interaction, whereas 2D-S and 3D both have sizable populations accelerated preferentially during transparency.

  20. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE PAGES

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...

    2016-04-27

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

Top