Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity.
Sakaguchi, Hidetsugu; Malomed, Boris A
2006-02-01
We introduce a dynamical model of a Bose-Einstein condensate based on the two-dimensional Gross-Pitaevskii equation, in which the nonlinear coefficient is a function of radius. The model describes a situation with spatial modulation of the negative atomic scattering length, via the Feshbach resonance controlled by a properly shaped magnetic of optical field. We focus on the configuration with the nonlinear coefficient different from zero in a circle or annulus, including the case of a narrow ring. Two-dimensional axisymmetric solitons are found in a numerical form, and also by means of a variational approximation; for an infinitely narrow ring, the soliton is found in an exact form (in the latter case, exact solitons are also found in a two-component model). A stability region for the solitons is identified by means of numerical and analytical methods. In particular, if the nonlinearity is supported on the annulus, the upper stability border is determined by azimuthal perturbations; the stability region disappears if the ratio of the inner and outer radii of the annulus exceeds a critical value . The model gives rise to bistability, as the stationary solitons coexist with stable axisymmetric breathers, whose stability region extends to higher values of the norm than that of the static solitons. The collapse threshold strongly increases with the radius of the inner hole of the annulus. Vortex solitons are found too, but they are unstable.
Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.
2015-04-07
We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, with the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.
Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.
2015-04-07
We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, withmore » the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.« less
NASA Astrophysics Data System (ADS)
Nesterov, L. A.; Veretenov, N. A.; Rosanov, N. N.
2015-05-01
Quantum fluctuations of one-dimensional dark dissipative solitons sustained by an external radiation in an interferometer with a Kerr nonlinearity are analyzed theoretically. The stability region of classical solitons in this interferometer is studied. The boundaries of this region are determined, and types of excited solitons are classified. Quantum fluctuations of solitons are analyzed in an approximation linear in fluctuations. This problem was solved by linearizing the quantum Langevin equation in a neighborhood of a classical solution for the main type of a soliton from the obtained stability region. The main attention has been paid to studying quantum fluctuations of collective variables of dissipative solitons, namely, the coordinate of the center and momentum of the soliton. Based on the expansion of solutions of the linearized equation in eigenfunctions of the discrete spectrum of this equation, a solution describing quantum fluctuations of these variables is constructed. Using this expansion scheme made it possible to give a rigorous definition of the dissipative soliton position fluctuation operator. The study performed based on this scheme has made it also possible to construct a solution for a one-dimensional dark relaxing dissipative soliton. This soliton generalizes the stationary soliton with allowance for the shift of its center and deformation of its profile followed by the recovery of its initial shape. Average squares of quantum fluctuations of collective variables are calculated. A domain of parameters in which there exist quantum states of solitons with an initially high degree of squeezing with respect to the momentum is found. It is shown that such states are in correspondence with significantly higher velocities of soliton center drift. An experiment that could detect the relative squeezing with respect to the momentum due to the soliton center drift is discussed.
Bright solitons in a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Xu, Yong; Zhang, Yongping; Zhang, Chuanwei
2015-07-01
We study a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate with repulsive contact interactions by both the variational method and the imaginary-time evolution of the Gross-Pitaevskii equation. The dipoles are completely polarized along one direction in the two-dimensional plane to provide an effective attractive dipole-dipole interaction. We find two types of solitons as the ground states arising from such attractive dipole-dipole interactions: a plane-wave soliton with a spatially varying phase and a stripe soliton with a spatially oscillating density for each component. Both types of solitons possess smaller size and higher anisotropy than the soliton without spin-orbit coupling. Finally, we discuss the properties of moving solitons, which are nontrivial because of the violation of Galilean invariance.
Dragging two-dimensional discrete solitons by moving linear defects
Brazhnyi, Valeriy A.; Malomed, Boris A.
2011-07-15
We study the mobility of small-amplitude solitons attached to moving defects which drag the solitons across a two-dimensional (2D) discrete nonlinear Schroedinger lattice. Findings are compared to the situation when a free small-amplitude 2D discrete soliton is kicked in a uniform lattice. In agreement with previously known results, after a period of transient motion the free soliton transforms into a localized mode pinned by the Peierls-Nabarro potential, irrespective of the initial velocity. However, the soliton attached to the moving defect can be dragged over an indefinitely long distance (including routes with abrupt turns and circular trajectories) virtually without losses, provided that the dragging velocity is smaller than a certain critical value. Collisions between solitons dragged by two defects in opposite directions are studied too. If the velocity is small enough, the collision leads to a spontaneous symmetry breaking, featuring fusion of two solitons into a single one, which remains attached to either of the two defects.
Two-dimensional solitons in media with stripe-shaped nonlinearity modulation
Hung, Nguyen Viet; Zin, Pawel; Trippenbach, Marek; Malomed, Boris A.
2010-10-15
We introduce a model of media with the cubic attractive nonlinearity concentrated along a single or double stripe in the two-dimensional (2D) plane. The model can be realized in terms of nonlinear optics (in the spatial and temporal domains alike) and BEC. It is known from recent works that search for stable 2D solitons in models with a spatially localized self-attractive nonlinearity is a challenging problem. We make use of the variational approximation (VA) and numerical methods to investigate conditions for the existence and stability of solitons in the present setting. The result crucially depends on the transverse shape of the stripe: while the rectangular profile supports stable 2D solitons, its smooth Gaussian-shaped counterpart makes all the solitons unstable. This difference is explained, in particular, by the VA. The double stripe with the rectangular profile admits stable solitons of three distinct types: symmetric and asymmetric ones with a single-peak, and double-peak symmetric solitons. The shape and stability of the single-peak solitons of either type are accurately predicted by the VA. Collisions between identical stable solitons are briefly considered too, by means of direct simulations. Depending on the collision velocity, we observe excitation of intrinsic oscillations of the solitons, or their decay, or the collapse (catastrophic self-focusing).
Two-dimensional solitons in dipolar Bose-Einstein condensates with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Jiang, Xunda; Fan, Zhiwei; Chen, Zhaopin; Pang, Wei; Li, Yongyao; Malomed, Boris A.
2016-02-01
We report families of two-dimensional (2D) composite solitons in spinor dipolar Bose-Einstein condensates, with two localized components linearly mixed by the spin-orbit coupling (SOC), and the intrinsic nonlinearity represented by the dipole-dipole interaction (DDI) between atomic magnetic moments polarized in plane by an external magnetic field. Recently, stable solitons were predicted in the form of semivortices (composites built of coupled fundamental and vortical components) in the 2D system combining the SOC and contact attractive interactions. Replacing the latter by the anisotropic long-range DDI, we demonstrate that, for a fixed norm of the soliton, the system supports a continuous family of stable spatially asymmetric vortex solitons (AVSs), parameterized by an offset of the pivot of the vortical component relative to its fundamental counterpart. The offset is limited by a certain maximum value, while the energy of the AVS practically does not depend on the offset. At small values of the norm, the vortex solitons are subject to a weak oscillatory instability. In the present system, with the Galilean invariance broken by the SOC, the composite solitons are set in motion by a kick the strength of which exceeds a certain depinning value. The kicked solitons feature a negative effective mass, drifting along a spiral trajectory opposite to the direction of the kick. A critical angular velocity, up to which the semivortices may follow rotation of the polarizing magnetic field, is found too.
Two-dimensional discrete solitons in rotating lattices
Cuevas, Jesus; Kevrekidis, P. G.
2007-10-15
We introduce a two-dimensional discrete nonlinear Schroedinger (DNLS) equation with self-attractive cubic nonlinearity in a rotating reference frame. The model applies to a Bose-Einstein condensate stirred by a rotating strong optical lattice, or light propagation in a twisted bundle of nonlinear fibers. Two types of localized states are constructed: off-axis fundamental solitons (FSs), placed at distance R from the rotation pivot, and on-axis (R=0) vortex solitons (VSs), with vorticities S=1 and 2. At a fixed value of rotation frequency {omega}, a stability interval for the FSs is found in terms of the lattice coupling constant C, 0
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
NASA Astrophysics Data System (ADS)
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro
2010-10-15
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Xie, Ping; Zhang, Zhao-Qing
2004-03-01
We study in detail the excitation of gap solitons in finite-sized two-dimensional photonic crystals under various kinds of source configuration, including two external beams along different incident directions and a point source at different locations inside the sample. We find different types of gap solitons, such as soliton trains along different symmetry axes of the photonic crystal and soliton sets with a higher rotational symmetry. In the case of a single external beam, we find the existence of an optimal beamwidth d(opt) for the excitation of gap solitons, and the value of d(opt) is close to the diameter of single localized envelopes of the excitation. In the case of a point source, it is found that the excitation threshold depends only on the distance between the source and the nearest cylinder, and its value increases nearly exponentially with distance.
NASA Astrophysics Data System (ADS)
Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan
2016-10-01
We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case.
Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan
2016-01-01
We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case. PMID:27703235
Quasi two-dimensional astigmatic solitons in soft chiral metastructures.
Laudyn, Urszula A; Jung, Paweł S; Karpierz, Mirosław A; Assanto, Gaetano
2016-01-01
We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response. PMID:26975651
Xie, Ping; Zhang, Zhao-Qing; Zhang, Xiangdong
2003-02-01
We demonstrate the existence of the gap solitons and soliton trains in finite-sized two-dimensional periodic nonlinear photonic crystals by using the mutiple-scattering approach with an iterative scheme. In 12-fold symmetric nonlinear quasicrystals, we also demonstrated the existence of symmetric, regular gap solitons, asymmetric single-soliton states, and two-solitons states. We revealed that the existence of symmetric, regular gap solitons in a 12-fold quasicrystal is limited by the geometrical size of the hexagon that forms the core of the dodecahedral cell, which is the building block of the quasicrystal.
Quadratic spatial soliton interactions
NASA Astrophysics Data System (ADS)
Jankovic, Ladislav
Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30
NASA Astrophysics Data System (ADS)
I. Olive, David; V. Saveliev, Mikhail; W. R. Underwood, Jonathan
1993-07-01
Following a prescription of Olive, Turok and Underwood for a solitonic specialisation of the general solutions to the (abelian) periodic Toda field theories, we discuss a construction of the soliton solutions for a wide class of two-dimensional completely integrable systems arising in the framework of the group-algebraic approach, including the “non-abelian” version of the affine Toda theory.
Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics
NASA Astrophysics Data System (ADS)
Ackerman, Paul J.; Trivedi, Rahul P.; Senyuk, Bohdan; van de Lagemaat, Jao; Smalyukh, Ivan I.
2014-07-01
We explore spatially localized solitonic configurations of a director field, generated using optical realignment and laser-induced heating, in frustrated chiral nematic liquid crystals confined between substrates with perpendicular surface anchoring. We demonstrate that, in addition to recently studied torons and Hopf-fibration solitonic structures (hopfions), one can generate a host of other axially symmetric stable and metastable director field configurations where local twist is matched to the surface boundary conditions through introduction of point defects and loops of singular and nonsingular disclinations. The experimentally demonstrated structures include the so-called "baby-skyrmions" in the form of double twist cylinders oriented perpendicular to the confining substrates where their double twist field configuration is matched to the perpendicular boundary conditions by loops of twist disclinations. We also generate complex textures with arbitrarily large skyrmion numbers. A simple back-of-the-envelope theoretical analysis based on free energy considerations and the nonpolar nature of chiral nematics provides insights into the long-term stability and diversity of these inter-related solitonic field configurations, including different types of torons, cholestric-finger loops, two-dimensional skyrmions, and more complex structures comprised of torons, hopfions, and various disclination loops that are experimentally observed in a confinement-frustrated chiral nematic system.
Two-dimensional skyrmions and other solitonic structures in confinement-frustrated chiral nematics.
Ackerman, Paul J; Trivedi, Rahul P; Senyuk, Bohdan; van de Lagemaat, Jao; Smalyukh, Ivan I
2014-07-01
We explore spatially localized solitonic configurations of a director field, generated using optical realignment and laser-induced heating, in frustrated chiral nematic liquid crystals confined between substrates with perpendicular surface anchoring. We demonstrate that, in addition to recently studied torons and Hopf-fibration solitonic structures (hopfions), one can generate a host of other axially symmetric stable and metastable director field configurations where local twist is matched to the surface boundary conditions through introduction of point defects and loops of singular and nonsingular disclinations. The experimentally demonstrated structures include the so-called "baby-skyrmions" in the form of double twist cylinders oriented perpendicular to the confining substrates where their double twist field configuration is matched to the perpendicular boundary conditions by loops of twist disclinations. We also generate complex textures with arbitrarily large skyrmion numbers. A simple back-of-the-envelope theoretical analysis based on free energy considerations and the nonpolar nature of chiral nematics provides insights into the long-term stability and diversity of these inter-related solitonic field configurations, including different types of torons, cholestric-finger loops, two-dimensional skyrmions, and more complex structures comprised of torons, hopfions, and various disclination loops that are experimentally observed in a confinement-frustrated chiral nematic system.
Two-dimensional solitons on the surface of magnetic fluids.
Richter, Reinhard; Barashenkov, I V
2005-05-13
We report an observation of a stable solitonlike structure on the surface of a ferrofluid, generated by a local perturbation in the hysteretic regime of the Rosensweig instability. Unlike other pattern-forming systems with localized 2D structures, magnetic fluids are characterized by energy conservation; hence their mechanism of soliton stabilization is different from the previously discussed gain-loss balance mechanism. The radioscopic measurements of the soliton's surface profile suggest that locking on the wavelength defined by the nonmonotonic dispersion curve is instrumental in its stabilization. PMID:15904374
NASA Astrophysics Data System (ADS)
Adhikari, S. K.
2016-08-01
We study the statics and dynamics of anisotropic, stable, bright and dark-in-bright dipolar quasi-two-dimensional Bose-Einstein condensate (BEC) solitons on a one-dimensional (1D) optical-lattice (OL) potential. These solitons mobile in a plane perpendicular to a 1D OL trap can have both repulsive and attractive contact interactions. Dark-in-bright solitons are the excited states of bright solitons. The solitons, when subjected to a small perturbation, exhibit sustained breathing oscillation. Dark-in-bright solitons can be created by phase imprinting a bright soliton. At medium velocities the collision between two solitons is found to be quasi-elastic. Results are demonstrated by a numerical simulation of the three-dimensional mean-field Gross-Pitaevskii equation in three spatial dimensions employing realistic interaction parameters for a dipolar 164Dy BEC.
NASA Astrophysics Data System (ADS)
Adhikari, S. K.
2016-08-01
We study the statics and dynamics of anisotropic, stable, bright and dark-in-bright dipolar quasi-two-dimensional Bose–Einstein condensate (BEC) solitons on a one-dimensional (1D) optical-lattice (OL) potential. These solitons mobile in a plane perpendicular to a 1D OL trap can have both repulsive and attractive contact interactions. Dark-in-bright solitons are the excited states of bright solitons. The solitons, when subjected to a small perturbation, exhibit sustained breathing oscillation. Dark-in-bright solitons can be created by phase imprinting a bright soliton. At medium velocities the collision between two solitons is found to be quasi-elastic. Results are demonstrated by a numerical simulation of the three-dimensional mean-field Gross–Pitaevskii equation in three spatial dimensions employing realistic interaction parameters for a dipolar 164Dy BEC.
Complexes of in-phase two-dimensional laser solitons
Rosanov, N N; Fedorov, S V; Shatsev, A N
2008-01-31
The structure and motion of complexes of in-phase weakly coupled fundamental solitons in a wide-aperture class A laser with saturable absorption are analysed. The symmetry of the field distribution and its relation to the motion of the complex are studied. Due to the absence of wavefront dislocations in such complexes, the transverse radiation intensity and phase distributions are the symmetry objects, which simplifies analysis compared to the case when wavefront dislocations are present. Four types of the motion of soliton complexes are demonstrated: a motionless complex in the presence of two mirror symmetry axes; linear motion of the complex when only one mirror symmetry axis exists; rotation around a motionless centre of inertia in the absence of the mirror symmetry axis and in the presence of symmetry with respect to rotation through the angle 2{pi}/M (M is an integer); and curvilinear (circular) motion of the centre of inertia and simultaneous rotation of the complex around the instantaneous position of the centre of inertia in the absence of symmetry elements. (nonlinear optical phenomena)
Spatiotemporal solitons in the Ginzburg-Landau model with a two-dimensional transverse grating
Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. A.
2010-02-15
We explore families of spatiotemporal dissipative solitons in a model of three-dimensional (3D) laser cavities including a combination of gain, saturable absorption, and transverse grating. The model is based on the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity and a two-dimensional (2D) periodic potential representing the grating. Fundamental and vortical solitons are found in a numerical form as attractors in this model and their stability against strong random perturbations is tested by direct simulations. The fundamental solitons are completely stable while the vortices, built as rhombus-shaped complexes of four fundamental solitons, may be split by perturbations into their constituents separating in the temporal direction. Nevertheless, a sufficiently strong grating makes the vortices practically stable objects.
Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.
Mayteevarunyoo, Thawatchai; Malomed, Boris A; Roeksabutr, Athikom
2011-08-29
Solitons in the model of nonlinear photonic crystals with the transverse structure based on two-dimensional (2D) quadratic- or rhombic-shaped Kronig-Penney (KP) lattices are studied by means of numerical methods. The model can also applies to a Bose-Einstein condensate (BEC) trapped in a superposition of linear and nonlinear 2D periodic potentials. The analysis is chiefly presented for the self-repulsive nonlinearity, which gives rise to several species of stable fundamental gap solitons, dipoles, four-peak complexes, and vortices in two finite bandgaps of the underlying spectrum. Stable solitons with complex shapes are found, in particular, in the second bandgap of the KP lattice with the rhombic structure. The stability of the localized modes is analyzed in terms of eigenvalues of small perturbations, and tested in direct simulations. Depending on the value of the KP's duty cycle (DC, i.e., the ratio of the void's width to the lattice period), an internal stability boundary for the solitons and vortices may exist inside of the first bandgap. Otherwise, the families of the localized modes are entirely stable or unstable in the bandgaps. With the self-attractive nonlinearity, only unstable solitons and vortices are found in the semi-infinite gap.
Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices
NASA Astrophysics Data System (ADS)
Chen, Huaiyu; Liu, Yan; Zhang, Qiang; Shi, Yuhan; Pang, Wei; Li, Yongyao
2016-05-01
We numerically demonstrate two-dimensional (2D) matter-wave solitons in the disk-shaped dipolar Bose-Einstein condensates (BECs) trapped in strongly anisotropic optical lattices (OLs) in a disk's plane. The considered OLs are square lattices which can be formed by interfering two pairs of plane waves with different intensities. The hopping rates of the condensates between two adjacent lattices in the orthogonal directions are different, which gives rise to a linearly anisotropic system. We find that when the polarized orientation of the dipoles is parallel to disk's plane with the same direction, the combined effects of the linearly anisotropy and the nonlocal nonlinear anisotropy strongly influence the formations, as well as the dynamics of the lattice solitons. Particularly, the isotropy-pattern solitons (IPSs) are found when these combined effects reach a balance. Motion, collision, and rotation of the IPSs are also studied in detail by means of systematic simulations. We further find that these IPSs can move freely in the 2D anisotropic discrete system, hence giving rise to an anisotropic effective mass. Four types of collisions between the IPSs are identified. By rotating an external magnetic field up to a critical angular velocity, the IPSs can still remain localized and play as a breather. Finally, the influences from the combined effects between the linear and the nonlocal nonlinear anisotropy with consideration of the contact and/or local nonlinearity are discussed too.
Multi-Dark Soliton Solutions of the Two-Dimensional Multi-Component Yajima-Oikawa Systems
NASA Astrophysics Data System (ADS)
Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi
2015-03-01
We present a general form of multi-dark soliton solutions of two-dimensional (2D) multi-component soliton systems. Multi-dark soliton solutions of the 2D and 1D multi-component Yajima-Oikawa (YO) systems, which are often called the 2D and 1D multi-component long wave-short wave resonance interaction systems, are studied in detail. Taking the 2D coupled YO system with two short wave and one long wave components as an example, we derive the general N-dark-dark soliton solution in both the Gram type and Wronski type determinant forms for the 2D coupled YO system via the KP hierarchy reduction method. By imposing certain constraint conditions, the general N-dark-dark soliton solution of the 1D coupled YO system is further obtained. The dynamics of one dark-dark and two dark-dark solitons are analyzed in detail. In contrast with bright-bright soliton collisions, it is shown that dark-dark soliton collisions are elastic and there is no energy exchange among solitons in different components. Moreover, the dark-dark soliton bound states including the stationary and moving ones are discussed. For the stationary case, the bound states exist up to arbitrary order, whereas, for the moving case, only the two-soliton bound state is possible under the condition that the coefficients of nonlinear terms have opposite signs.
Two dimensional gap solitons in self-defocusing media with PT-symmetric superlattice
NASA Astrophysics Data System (ADS)
Wang, Hongcheng; Christodoulides, D. N.
2016-09-01
A theory is presented to study the existence and stability properties of fundamental solitons, multi-peaked gap solitons and vortex solitons in self-defocusing media with PT-symmetric superlattice. In the first gap of the superlattice potential, fundamental, dipole, and in-phase quadruple solitons can exist stably within a wide parameter region, while in-phase two-peaked solitons, out-of-phase quadruple solitons and vortex solitons are always unstable. Compared with simple-lattice solitons in similar potentials, the gap solitons in superlattice have a wider stable range than those in simple-lattice.
Measuring Spatial Coherence With a Two-Dimensional Aperture Array
NASA Astrophysics Data System (ADS)
González, Aura I.; Mejía, Yobani
2008-04-01
The complex degree of spatial coherence of the optical fields, in general, is a shift variant quantity. Therefore to characterize it, in addition to knowing how it changes in function of the separation of the two points under analysis, we require knowing how it changes in function of the location of these points. In order to measure the complex degree of spatial coherence of any quasi-monochromatic optical field, we propose a method that uses a mask with a two-dimensional array of apertures (small circular holes) to sample the optical field. The distribution of the apertures in the mask is made so that we get a non redundant array, it means that the classes of aperture pairs of the mask are composed just by one pair. From the Fourier spectrum of the interference pattern in far field generated by the mask we can determine the magnitude and the phase of the complex degree of spatial coherence. The efficiency of the array is verified with experimental results using a partially coherent beam generated following the rotating glass method. Finally, the results obtained in the experiment are compared with those obtained by means of numerical simulations.
Feijoo, David; Zezyulin, Dmitry A; Konotop, Vladimir V
2015-12-01
We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT-symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT-symmetric cases. Interactions and collisions between the conservative and PT-symmetric solitons are briefly investigated, as well. PMID:26764776
Spatially clustered zealots in a two-dimensional voter model
NASA Astrophysics Data System (ADS)
Stone, Thomas; Ludden, Matthew; McKay, Susan
The voter model, solvable in all dimensions in its standard form, has been extensively used to study behavior dynamics by using the tools of statistical mechanics. Recently, much work has been focused on determining the effects of zealots in the voter model, where a zealot is an agent that maintains its opinion (akin to an Ising spin variable) no matter the local environment. Here we investigate the effects of spatially clustered zealots in the standard voter model on a two-dimensional square lattice. The clustering of zealots is quantified by the conditional probability that a zealot of the +1 state appears on an adjacent site to a randomly chosen zealot. (All zealots are of the +1 state.) We determine the functional forms of the system consensus time with respect to system size, clustering, and zealot density, and compare these findings to previous results that do not include clustering. We also discuss an interesting random walk problem that arises when one attempts to calculate how clustering affects the consensus time for fixed zealot density and system size.
Two-dimensional χ^{2} solitons generated by the downconversion of Airy waves.
Mayteevarunyoo, Thawatchai; Malomed, Boris A
2016-07-01
Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric χ^{2} solitons is considered in a 2D system with quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is also considered. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input. PMID:27367065
Ghosh, Samiran
2014-09-01
The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment. PMID:25314548
NASA Technical Reports Server (NTRS)
Joseph, Rose M.; Goorjian, Peter M.; Taflove, Allen
1993-01-01
We present what are to our knowledge first-time calculations from vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional dielectric waveguides. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and the nonlinear convolution accounts for two quantum effects, the Kerr and Raman interactions. By retaining the optical carrier, the new method solves for fundamental quantities - optical electric and magnetic fields in space and time - rather than a nonphysical envelope function. It has the potential to provide an unprecedented two- and three-dimensional modeling capability for millimeter-scale integrated-optical circuits with submicrometer engineered inhomogeneities.
Soliton Theory of Two-Dimensional Lattices: The Discrete Nonlinear Schroedinger Equation
Arevalo, Edward
2009-06-05
We theoretically investigate the motion of collective excitations in the two-dimensional nonlinear Schroedinger equation with cubic nonlinearity. The form of these excitations for a broad range of parameters is derived. Their evolution and interaction is numerically studied and the modulation instability is discussed. The case of saturable nonlinearity is revisited.
Sánchez-Arriaga, G; Lefebvre, E
2011-09-01
The dynamics of two-dimensional s-polarized solitary waves is investigated with the aid of particle-in-cell (PIC) simulations. Instead of the usual excitation of the waves with a laser pulse, the PIC code was directly initialized with the numerical solutions from the fluid plasma model. This technique allows the analysis of different scenarios including the theoretical problems of the solitary wave stability and their collision as well as features already measured during laser-plasma experiments such as the emission of electromagnetic bursts when the waves reach the plasma-vacuum interface, or their expansion on the ion time scale, usually named post-soliton evolution. Waves with a single density depression are stable whereas multihump solutions decay to several waves. Contrary to solitons, two waves always interact through a force that depends on their relative phases, their amplitudes, and the distance between them. On the other hand, the radiation pattern at the plasma-vacuum interface was characterized, and the evolution of the diameter of different waves was computed and compared with the "snow plow" model.
Sanchez-Arriaga, G.; Lefebvre, E.
2011-09-15
The dynamics of two-dimensional s-polarized solitary waves is investigated with the aid of particle-in-cell (PIC) simulations. Instead of the usual excitation of the waves with a laser pulse, the PIC code was directly initialized with the numerical solutions from the fluid plasma model. This technique allows the analysis of different scenarios including the theoretical problems of the solitary wave stability and their collision as well as features already measured during laser-plasma experiments such as the emission of electromagnetic bursts when the waves reach the plasma-vacuum interface, or their expansion on the ion time scale, usually named post-soliton evolution. Waves with a single density depression are stable whereas multihump solutions decay to several waves. Contrary to solitons, two waves always interact through a force that depends on their relative phases, their amplitudes, and the distance between them. On the other hand, the radiation pattern at the plasma-vacuum interface was characterized, and the evolution of the diameter of different waves was computed and compared with the ''snow plow'' model.
NASA Astrophysics Data System (ADS)
Chetverikov, A. P.; Ebeling, W.; Velarde, M. G.
2016-09-01
We present computational evidence of the possibility of fast, supersonic or subsonic, nearly loss-free ballistic-like transport of electrons bound to lattice solitons (a form of electron surfing on acoustic waves) along crystallographic axes in two-dimensional anharmonic crystal lattices. First we study the structural changes a soliton creates in the lattice and the time lapse of recovery of the lattice. Then we study the behavior of one electron in the polarization field of one and two solitons with crossing pathways with suitably monitored delay. We show how an electron surfing on a lattice soliton may switch to surf on the second soliton and hence changing accordingly the direction of its path. Finally we discuss the possibility to control the way an excess electron proceeds from a source at a border of the lattice to a selected drain at another border by following appropriate straight pathways on crystallographic axes.
Resonant indirect exchange via spatially separated two-dimensional channel
Rozhansky, I. V.; Krainov, I. V.; Averkiev, N. S.; Aronzon, B. A.; Davydov, A. B.; Kugel, K. I.; Tripathi, V.; Lähderanta, E.
2015-06-22
We apply the resonant indirect exchange interaction theory to explain the ferromagnetic properties of the hybrid heterostructure consisting of a InGaAs-based quantum well (QW) sandwiched between GaAs barriers with spatially separated Mn δ-layer. The experimentally obtained dependence of the Curie temperature on the QW depth exhibits a peak related to the region of resonant indirect exchange. We suggest the theoretical explanation and a fit to this dependence as a result of the two contributions to ferromagnetism—the intralayer contribution and the resonant exchange contribution provided by the QW.
Van Gorder, Robert A
2016-05-01
Very recent experimental work has demonstrated the existence of Kelvin waves along quantized vortex filaments in superfluid helium. The possible configurations and motions of such filaments is of great physical interest, and Svistunov previously obtained a Hamiltonian formulation for the dynamics of quantum vortex filaments in the low-temperature limit under the assumption that the vortex filament is essentially aligned along one axis, resulting in a two-dimensional (2D) problem. It is standard to approximate the dynamics of thin filaments by employing the local induction approximation (LIA), and we show that by putting the two-dimensional LIA into correspondence with the first equation in the integrable Wadati-Konno-Ichikawa-Schimizu (WKIS) hierarchy, we immediately obtain solutions to the two-dimensional LIA, such as helix, planar, and self-similar solutions. These solutions are obtained in a rather direct manner from the WKIS equation and then mapped into the 2D-LIA framework. Furthermore, the approach can be coupled to existing inverse scattering transform results from the literature in order to obtain solitary wave solutions including the analog of the Hasimoto one-soliton for the 2D-LIA. One large benefit of the approach is that the correspondence between the 2D-LIA and the WKIS allows us to systematically obtain vortex filament solutions directly in the Cartesian coordinate frame without the need to solve back from curvature and torsion. Implications of the results for the physics of experimentally studied solitary waves, Kelvin waves, and postvortex reconnection events are mentioned.
NASA Astrophysics Data System (ADS)
Van Gorder, Robert A.
2016-05-01
Very recent experimental work has demonstrated the existence of Kelvin waves along quantized vortex filaments in superfluid helium. The possible configurations and motions of such filaments is of great physical interest, and Svistunov previously obtained a Hamiltonian formulation for the dynamics of quantum vortex filaments in the low-temperature limit under the assumption that the vortex filament is essentially aligned along one axis, resulting in a two-dimensional (2D) problem. It is standard to approximate the dynamics of thin filaments by employing the local induction approximation (LIA), and we show that by putting the two-dimensional LIA into correspondence with the first equation in the integrable Wadati-Konno-Ichikawa-Schimizu (WKIS) hierarchy, we immediately obtain solutions to the two-dimensional LIA, such as helix, planar, and self-similar solutions. These solutions are obtained in a rather direct manner from the WKIS equation and then mapped into the 2D-LIA framework. Furthermore, the approach can be coupled to existing inverse scattering transform results from the literature in order to obtain solitary wave solutions including the analog of the Hasimoto one-soliton for the 2D-LIA. One large benefit of the approach is that the correspondence between the 2D-LIA and the WKIS allows us to systematically obtain vortex filament solutions directly in the Cartesian coordinate frame without the need to solve back from curvature and torsion. Implications of the results for the physics of experimentally studied solitary waves, Kelvin waves, and postvortex reconnection events are mentioned.
NASA Astrophysics Data System (ADS)
Cartes, C.; Descalzi, O.; Brand, H. R.
2014-10-01
We review the work on exploding dissipative solitons in one and two spatial dimensions. Features covered include: the transition from modulated to exploding dissipative solitons, the analogue of the Ruelle-Takens scenario for dissipative solitons, inducing exploding dissipative solitons by noise, two classes of exploding dissipative solitons in two spatial dimensions, diffusing asymmetric exploding dissipative solitons as a model for a two-dimensional extended chaotic system. As a perspective we outline the interaction of exploding dissipative solitons with quasi one-dimensional dissipative solitons, breathing quasi one-dimensional solutions and their possible connection with experimental results on convection, and the occurence of exploding dissipative solitons in reaction-diffusion systems. It is a great pleasure to dedicate this work to our long-time friend Hans (Prof. Dr. Hans Jürgen Herrmann) on the occasion of his 60th birthday.
Rodrigues, A S; Kevrekidis, P G; Carretero-González, R; Cuevas-Maraver, J; Frantzeskakis, D J; Palmero, F
2014-04-16
We consider the existence, stability and dynamics of the nodeless state and fundamental nonlinear excitations, such as vortices, for a quasi-two-dimensional polariton condensate in the presence of pumping and nonlinear damping. We find a series of interesting features that can be directly contrasted to the case of the typically energy-conserving ultracold alkali-atom Bose-Einstein condensates (BECs). For sizeable parameter ranges, in line with earlier findings, the nodeless state becomes unstable towards the formation of stable nonlinear single or multi-vortex excitations. The potential instability of the single vortex is also examined and is found to possess similar characteristics to those of the nodeless cloud. We also report that, contrary to what is known, e.g., for the atomic BEC case, stable stationary gray ring solitons (that can be thought of as radial forms of Nozaki-Bekki holes) can be found for polariton condensates in suitable parametric regimes. In other regimes, however, these may also suffer symmetry-breaking instabilities. The dynamical, pattern-forming implications of the above instabilities are explored through direct numerical simulations and, in turn, give rise to waveforms with triangular or quadrupolar symmetry.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Sherman, E. Ya.; Malomed, Boris A.
2016-09-01
We present an analysis of two-dimensional (2D) matter-wave solitons, governed by the pseudospinor system of Gross-Pitaevskii equations with self- and cross attraction, which includes the spin-orbit coupling (SOC) in the general Rashba-Dresselhaus form, and, separately, the Rashba coupling and the Zeeman splitting. Families of semivortex (SV) and mixed-mode (MM) solitons are constructed, which exist and are stable in free space, as the SOC terms prevent the onset of the critical collapse and create the otherwise missing ground states in the form of the solitons. The Dresselhaus SOC produces a destructive effect on the vortex solitons, while the Zeeman term tends to convert the MM states into the SV ones, which eventually suffer delocalization. Existence domains and stability boundaries are identified for the soliton families. For physically relevant parameters of the SOC system, the number of atoms in the 2D solitons is limited by ˜1.5 ×104 . The results are obtained by means of combined analytical and numerical methods.
Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra
NASA Astrophysics Data System (ADS)
McLeod, M. G.
1983-02-01
Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.
NASA Astrophysics Data System (ADS)
Sheka, Denis D.
2007-03-01
Very recently, Fonseca and Pires [Phys. Rev. B 73, 012403 (2006)] have studied the soliton-magnon scattering for the isotropic antiferromagnet and calculated “exact” phase shifts, which were compared with the ones obtained by the Born approximation. In this Comment we correct both the soliton and magnon solutions and point out the way how to study correctly the scattering problem.
Sakaguchi, Hidetsugu; Li, Ben; Malomed, Boris A
2014-03-01
It is commonly known that two-dimensional mean-field models of optical and matter waves with cubic self-attraction cannot produce stable solitons in free space because of the occurrence of collapse in the same setting. By means of numerical analysis and variational approximation, we demonstrate that the two-component model of the Bose-Einstein condensate with the spin-orbit Rashba coupling and cubic attractive interactions gives rise to solitary-vortex complexes of two types: semivortices (SVs, with a vortex in one component and a fundamental soliton in the other), and mixed modes (MMs, with topological charges 0 and ±1 mixed in both components). These two-dimensional composite modes can be created using the trapping harmonic-oscillator (HO) potential, but remain stable in free space, if the trap is gradually removed. The SVs and MMs realize the ground state of the system, provided that the self-attraction in the two components is, respectively, stronger or weaker than the cross attraction between them. The SVs and MMs which are not the ground states are subject to a drift instability. In free space (in the absence of the HO trap), modes of both types degenerate into unstable Townes solitons when their norms attain the respective critical values, while there is no lower existence threshold for the stable modes. Moving free-space stable solitons are also found in the present non-Galilean-invariant system, up to a critical velocity. Collisions between two moving solitons lead to their merger into a single one.
Two-dimensional single-pixel imaging by cascaded orthogonal line spatial modulation.
Winters, David G; Bartels, Randy A
2015-06-15
Two-dimensional (2D) images are taken using a single-pixel detector by temporally multiplexing spatial frequency projections from orthogonal, time varying spatial line modulation gratings. Unique temporal frequencies are applied to each point in 2D space, applying a continuous spread of frequencies to one dimension, and an offset frequency applied to each line in the orthogonal dimension. The object contrast information can then be recovered from the electronic spectrum of the single pixel, and through simple processing be reformed into a spatial image. PMID:26076259
Spatial solitons in two-photon photorefractive media
Hou Chunfeng; Pei Yanbo; Zhou Zhongxiang; Sun Xiudong
2005-05-15
We provide a theory for spatial solitons due to the two-photon photorefractive effect based on the Castro-Camus model [Opt. Lett. 28, 1129 (2003)]. We present the evolution equation of one-dimensional spatial solitons in two-photon photorefractive media. In steady state and under appropriate external bias conditions, we obtain the dark and bright soliton solutions of the optical wave evolution equation, and also discuss the self-deflection of the bright solitons theoretically by taking into account the diffusion effect.
Spatial solitons in two-photon photorefractive media
NASA Astrophysics Data System (ADS)
Hou, Chunfeng; Pei, Yanbo; Zhou, Zhongxiang; Sun, Xiudong
2005-05-01
We provide a theory for spatial solitons due to the two-photon photorefractive effect based on the Castro-Camus model [Opt. Lett. 28, 1129 (2003)]. We present the evolution equation of one-dimensional spatial solitons in two-photon photorefractive media. In steady state and under appropriate external bias conditions, we obtain the dark and bright soliton solutions of the optical wave evolution equation, and also discuss the self-deflection of the bright solitons theoretically by taking into account the diffusion effect.
NASA Astrophysics Data System (ADS)
Gdeisat, Munther; Burton, David; Lilley, Francis; Lalor, Michael; Moore, Chris
2010-04-01
This paper proposes the use of the two-dimensional continuous Paul wavelet transform to extract the phase of spatial carrier fringe patterns. The proposed algorithm has been tested using computer-generated and real fringe patterns, and these tests have demonstrated the suitability of the proposed technique for the phase demodulation of fringe patterns. Additionally, this algorithm is compared to three two-dimensional continuous wavelet algorithms that have figured prominently in the literature, specifically the Morlet, advanced Morlet and fan mother wavelets. This comparison has revealed that the proposed algorithm outperforms the other three mother wavelets in terms of its suitability for extracting the phase of fringe patterns that exhibit large phase variations.
Dark spatial solitons splitting in logarithmically saturable nonlinear media
NASA Astrophysics Data System (ADS)
Zhang, Yuhong; Liu, Baoyuan; Lu, Keqing; Liu, Wangyun; Han, Jun
2014-12-01
We numerically simulate the evolution of the dark-notch-bearing optical beam in the logarithmically saturable nonlinear media based on beam propagation method (BPM). The simulation results indicate that the multiple dark spatial solitons are deep, possible in this type of nonlinear media. The number of multiple dark spatial solitons depends on the width of the dark notch, the initial conditions and the peak intensity of the initial input beam. Under the odd and even initial conditions, the odd and even number sequence of multiple dark spatial solitons can be obtained, respectively. For an input beam with fixed optical intensity, the number of dark solitons increases with the width of the initial input dark notch. The behavior of the multiple dark solitons in this type of media is similar to that in a photorefractive nonlinear crystal.
Spatially resolved measurements of two-dimensional turbulent structures in DIII-D plasmas
NASA Astrophysics Data System (ADS)
Zemedkun, S. E.; Che, S.; Chen, Y.; Domier, C. W.; Luhmann, N. C.; Munsat, T.; Parker, S. E.; Tobias, B.; Wan, W.; Yu, L.
2015-12-01
Two-dimensional observations of spatially coherent electron temperature fluctuations at drift-wave scales (k ˜ 1 cm-1) have been made using the electron cyclotron emission imaging diagnostic on the DIII-D tokamak. These measurements enable the extraction of spectral properties, including poloidal dispersion relations. Temperature fluctuation levels are found to be Te ˜/⟨Te⟩=1.2 % , and the phase velocity of the fluctuations is found to be constant across frequencies, consistent with modes having real frequencies low compared to the rotation-induced Doppler shifts. Comparisons with radially global linear gyrokinetic simulations suggest that the observed modes may be trapped electron modes.
Hiruta, Yoshiki; Toh, Sadayoshi
2015-12-01
Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.
NASA Astrophysics Data System (ADS)
Sakuma, Daisuke; Shinozaki, Tomoya; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Takayanagi, Hideaki
2016-05-01
We developed a two-dimensional array of superconducting quantum interference devices (SQUIDs) for investigation of fine spatial distribution of magnetization in superconducting Sr2RuO4. Micrometer-sized SQUIDs based on homogeneously formed Al/AlOx/Al tunnel-type Josephson junctions were fabricated using shadow evaporation technique. Unnecessary electrodes formed by the shadow evaporation were removed by inductively coupled plasma reactive ion etching, in order to realize a dense array of SQUIDs. We measured the magnetic modulation of the maximum Josephson current of each SQUID in the array and evaluated the interaction among the SQUIDs.
Kumar, Manish Joseph, Joby
2014-08-04
We propose a simple and straightforward method to generate spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90° bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable, and could be extended to other kind of lattices as well.
Kim, Young-Cheol; Jang, Sung-Ho; Oh, Se-Jin; Lee, Hyo-Chang; Chung, Chin-Wook
2013-05-15
A real-time measurement method for two-dimensional (2D) spatial distribution of the electron temperature and plasma density was developed. The method is based on the floating harmonic method and the real time measurement is achieved with little plasma perturbation. 2D arrays of the sensors on a 300 mm diameter wafer-shaped printed circuit board with a high speed multiplexer circuit were used. Experiments were performed in an inductive discharge under various external conditions, such as powers, gas pressures, and different gas mixing ratios. The results are consistent with theoretical prediction. Our method can measure the 2D spatial distribution of plasma parameters on a wafer-level in real-time. This method can be applied to plasma diagnostics to improve the plasma uniformity of plasma reactors for plasma processing.
Implementation of a spatial two-dimensional quantum random walk with tunable decoherence
NASA Astrophysics Data System (ADS)
Svozilík, J.; León-Montiel, R. de J.; Torres, J. P.
2012-11-01
We put forward a versatile and highly scalable experimental setup for the realization of discrete two-dimensional quantum random walks with a single-qubit coin and tunable degree of decoherence. The proposed scheme makes use of a small number of simple optical components arranged in a multipath Mach-Zehnder-like configuration, where a weak coherent state is injected. Environmental effects (decoherence) are generated by a spatial light modulator, which introduces pure dephasing in the transverse spatial plane perpendicular to the direction of propagation of the light beam. By controlling the characteristics of this dephasing, one can explore a great variety of scenarios of quantum random walks: pure quantum evolution (ballistic spread), fast fluctuating environment leading to a diffusive classical random walk, and static disorder resulting in the observation of Anderson localization.
Waveguides formed by quasi-steady-state photorefractive spatial solitons.
Morin, M; Duree, G; Salamo, G; Segev, M
1995-10-15
We show that a quasi-steady-state photorefractive spatial soliton forms a waveguide structure in the bulk of a photorefractive material. Although the optically induced waveguide is formed by a very low-power (microwatts) soliton beam, it can guide a powerful (watt) beam of a longer wavelength at which the medium is nonphotosensitive. Furthermore, the waveguide survives, either in the dark or when guiding the longerwavelength beam, for a long time after the soliton beam is turned off. We take advantage of the solitons' property of evolution from a relatively broad input beam into a narrow channel and show that the soliton induces a tapered waveguide (an optical funnel) that improves the coupling efficiency of light into the waveguiding structure.
Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality.
Aghajan, Zahra M; Acharya, Lavanya; Moore, Jason J; Cushman, Jesse D; Vuong, Cliff; Mehta, Mayank R
2015-01-01
During real-world (RW) exploration, rodent hippocampal activity shows robust spatial selectivity, which is hypothesized to be governed largely by distal visual cues, although other sensory-motor cues also contribute. Indeed, hippocampal spatial selectivity is weak in primate and human studies that use only visual cues. To determine the contribution of distal visual cues only, we measured hippocampal activity from body-fixed rodents exploring a two-dimensional virtual reality (VR). Compared to that in RW, spatial selectivity was markedly reduced during random foraging and goal-directed tasks in VR. Instead we found small but significant selectivity to distance traveled. Despite impaired spatial selectivity in VR, most spikes occurred within ∼2-s-long hippocampal motifs in both RW and VR that had similar structure, including phase precession within motif fields. Selectivity to space and distance traveled were greatly enhanced in VR tasks with stereotypical trajectories. Thus, distal visual cues alone are insufficient to generate a robust hippocampal rate code for space but are sufficient for a temporal code.
Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof
NASA Technical Reports Server (NTRS)
Ai, Jun (Inventor); Dimov, Fedor (Inventor)
2015-01-01
A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.
NASA Astrophysics Data System (ADS)
David, Christin; Christensen, Johan; Mortensen, N. Asger
2016-10-01
We develop a methodology to incorporate nonlocal optical response of the free electron gas due to quantum-interaction effects in metal components of periodic two-dimensional plasmonic crystals and study the impact of spatial dispersion on promising building blocks for photonic circuits. Within the framework of the hydrodynamic model, we observe significant changes with respect to the commonly employed local-response approximation, but also in comparison with homogeneous metal films where nonlocal effects have previously been considered. Notable are the emergence of a contribution from nonlocality at normal incidence and the surprisingly large structural parameters at which finite blueshifts are observable, which we attribute to diffraction that offers nonvanishing in-plane wave vector components and increases the penetration depth of longitudinal (nonlocal) modes.
NASA Astrophysics Data System (ADS)
Dai, Fengzhao; Li, Jie; Wang, Xiangzhao; Bu, Yang
2016-05-01
A novel zonal method is proposed for exact discrete reconstruction of a two-dimensional wavefront with high spatial resolution for lateral shearing interferometry. Four difference wavefronts measured in the x and y shear directions are required. Each of the two shear directions is measured twice with different shear amounts. The shear amounts of the second measurements of the x and y directions are Sx+1 pixels and Sy+1 pixels, where Sx pixels and Sy pixels are the shear amounts of the first measurements in the x and y directions, respectively. The shear amount in each direction can be chosen freely, provided that it is below a maximum value determined by the pupil shape and the number of samples N in that direction; thus, the choices are not limited by the more stringent condition required by previous methods, namely, that the shear amounts must be divisors of N. This method can exactly reconstruct any wavefront at evaluation points up to an arbitrary constant if the data is noiseless, and high spatial resolution can be achieved even with large shear amounts. The method is applicable not only to square pupils, but also to general pupil shapes if a sufficient number of Gerchberg iterations are employed. In this study, the validity and capability of the method were confirmed by numerical experiments. In addition, the experiments demonstrated that the method is stable with respect to noise in the difference wavefronts.
Numerical simulation of two-dimensional spatially-developing mixing layers
NASA Technical Reports Server (NTRS)
Wilson, R. V.; Demuren, A. O.
1994-01-01
Two-dimensional, incompressible, spatially developing mixing layer simulations are performed at Re = 10(exp 2) and 10(exp 4) with two classes of perturbations applied at the inlet boundary; combinations of discrete modes from linear stability theory, and a broad spectrum of modes derived from experimentally measured velocity spectra. The effect of the type and strength of inlet perturbations on vortex dynamics and time-averaged properties are explored. Two-point spatial velocity and autocorrelations are used to estimate the size and lifetime of the resulting coherent structures and to explore possible feedback effects. The computed time-averaged properties such as mean velocity profiles, turbulent statistics, and spread rates show good agreement with experimentally measured values. It is shown that by forcing with a broad spectrum of modes derived from an experimental energy spectrum many experimentally observed phenomena can be reproduced by a 2-D simulation. The strength of the forcing merely affected the length required for the dominant coherent structures to become fully-developed. Thus intensities comparable to those of the background turbulence in many wind tunnel experiments produced the same results, given sufficient simulation length.
Spatial and vacancy effects on the stabilising mechanisms of two-dimensional free growth.
el-Messiery, M A
1990-01-01
A Monte-Carlo simulation technique is introduced to study the spatial considerations of cellular distribution that affect the overall asynchronous process of population growth. The stochastic nature of cellular characteristics such as mitotic time, loss rate and direction of growth is considered. The fluctuation of these values from one generation to the next and from one cell to the other, is illustrated. Cells are assumed to grow in a two-dimensional honeycomb-like network such that a central cell is always surrounded with six equally distant sites. The modes of cellular growth are controlled mainly and simply by the existence of a definite number of neighbouring vacancies. An IBM-compatible PC-AT computer was used and a program written in Pascal is employed to simulate and follow up the growth of a single stem cell in a 40,000-sites network. The results of the proposed stochastic model illustrate the importance of the spatial interaction among growing cellular modes such that vacancies act as local sensors for a negative feedback mechanism regulating the overall growth pattern. The role of the resting mode (G0) in stabilising the overall growth pattern is discussed.
ERIC Educational Resources Information Center
Price, Aaron; Lee, Hee-Sun
2010-01-01
We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in…
NASA Technical Reports Server (NTRS)
Evans, K. F.
1993-01-01
A new two-dimensional monochromatic method that computes the transfer of solar or thermal radiation through atmospheres with arbitrary optical properties is described. The model discretizes the radiative transfer equation by expanding the angular part of the radiance field in a spherical harmonic series and representing the spatial part with a discrete grid. The resulting sparse coupled system of equations is solved iteratively with the conjugate gradient method. A Monte Carlo model is used for extensive verification of outgoing flux and radiance values from both smooth and highly variable (multifractal) media. The spherical harmonic expansion naturally allows for different levels of approximation, but tests show that the 2D equivalent of the two-stream approximation is poor at approximating variations in the outgoing flux. The model developed here is shown to be highly efficient so that media with tens of thousands of grid points can be computed in minutes. The large improvement in efficiency will permit quick, accurate radiative transfer calculations of realistic cloud fields and improve our understanding of the effect of inhomogeneity on radiative transfer in cloudy atmospheres.
Xuemin Ye; Chunxi Li; Weiping Yan
2002-07-01
The linear spatial evolution formulation of the two-dimensional waves of the evaporating or isothermal or condensing liquid films falling down an inclined wall is established for the film thickness with the collocation method based on the boundary layer theory and complete boundary conditions. The evolution equation indicates that there are two different modes of waves in spatial evolution. And the flow stability is highly dependent on the evaporation or condensation, thermo-capillarity, surface tension, inclination angle and Reynolds number. (authors)
NASA Astrophysics Data System (ADS)
Amir, W.; Planchon, T. A.; Durfee, C. G.; Squier, J. A.; Gabolde, P.; Trebino, R.; Müller, M.
2006-10-01
We demonstrate the use of a simple tool to simultaneously visualize and characterize chromatic and spherical aberrations that are present in multiphoton microscopy. Using two-dimensional Fourier transform spectral interferometry, we measured these aberrations, deducing in a single shot spatiotemporal effects in high-numerical-aperture objectives.
Rychel, Amanda L.; Garrick, Jacqueline M.; Kawaguchi, Masayoshi; Peterson, Kylee M.; Torii, Keiko U.
2015-01-01
Stomata, valves on the plant epidermis, are critical for plant growth and survival, and the presence of stomata impacts the global water and carbon cycle. Although transcription factors and cell-cell signaling components regulating stomatal development have been identified, it remains unclear as to how their regulatory interactions are translated into two-dimensional patterns of stomatal initial cells. Using molecular genetics, imaging, and mathematical simulation, we report a regulatory circuit that initiates the stomatal cell-lineage. The circuit includes a positive feedback loop constituting self-activation of SCREAMs that requires SPEECHLESS. This transcription factor module directly binds to the promoters and activates a secreted signal, EPIDERMAL PATTERNING FACTOR2, and the receptor modifier TOO MANY MOUTHS, while the receptor ERECTA lies outside of this module. This in turn inhibits SPCH, and hence SCRMs, thus constituting a negative feedback loop. Our mathematical model accurately predicts all known stomatal phenotypes with the inclusion of two additional components to the circuit: an EPF2-independent negative-feedback loop and a signal that lies outside of the SPCH•SCRM module. Our work reveals the intricate molecular framework governing self-organizing two-dimensional patterning in the plant epidermis. PMID:26203655
Horst, Robin J; Fujita, Hironori; Lee, Jin Suk; Rychel, Amanda L; Garrick, Jacqueline M; Kawaguchi, Masayoshi; Peterson, Kylee M; Torii, Keiko U
2015-07-01
Stomata, valves on the plant epidermis, are critical for plant growth and survival, and the presence of stomata impacts the global water and carbon cycle. Although transcription factors and cell-cell signaling components regulating stomatal development have been identified, it remains unclear as to how their regulatory interactions are translated into two-dimensional patterns of stomatal initial cells. Using molecular genetics, imaging, and mathematical simulation, we report a regulatory circuit that initiates the stomatal cell-lineage. The circuit includes a positive feedback loop constituting self-activation of SCREAMs that requires SPEECHLESS. This transcription factor module directly binds to the promoters and activates a secreted signal, EPIDERMAL PATTERNING FACTOR2, and the receptor modifier TOO MANY MOUTHS, while the receptor ERECTA lies outside of this module. This in turn inhibits SPCH, and hence SCRMs, thus constituting a negative feedback loop. Our mathematical model accurately predicts all known stomatal phenotypes with the inclusion of two additional components to the circuit: an EPF2-independent negative-feedback loop and a signal that lies outside of the SPCH•SCRM module. Our work reveals the intricate molecular framework governing self-organizing two-dimensional patterning in the plant epidermis. PMID:26203655
Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.
2015-12-15
A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.
Critical behavior of two-dimensional models with spatially modulated phases: Analytic results
NASA Astrophysics Data System (ADS)
Ruján, P.
1981-12-01
The two-dimensional Elliott [or axial next-nearest-neighbor Ising (ANNNI)] model is mapped into an eight-vertex model with direct and staggered fields. With the use of the transfer-matrix approach it is shown that the dual of the ANNNI model belongs to the universality class of the one-dimensional quantum XY model in a staggered field at T=0. The phase structure is investigated by high- and low-temperature expansions of the correlation length and by spin-wave-like approximations valid in first order at low and high temperatures, respectively. The fact that the phase diagram obtained at low temperatures agrees qualitatively with recent results by Villain and Bak and by Coppersmith et al. shows that the paramagnetic phase extends until T=0. The role of the umklapp scattering in determining the critical wave vector in the modulated phase and in stabilizing the <2> antiphase is pointed out. In the eight-vertex representation the critical indices are identified in the floating, massless phase. The dislocations destabilizing this incommensurate phase correspond to the energy operator of the eight-vertex model. Finally, it is argued that the apparent contradiction between the low-temperature results on one hand, and the Monte Carlo simulations and high-temperature-expansion results on the other hand, is probably due to the strong oscillatory behavior of spin-spin correlation functions in the massive paramagnetic region.
Saddle solitons: a balance between bi-diffraction and hybrid nonlinearity.
Hu, Yi; Lou, Cibo; Zhang, Peng; Xu, Jingjun; Yang, Jianke; Chen, Zhigang
2009-11-01
We demonstrate self-trapping of light by simultaneously compensating normal and anomalous (saddle-shaped) diffractions with self-focusing and self-defocusing hybrid nonlinearity in optically induced ionic-type photonic lattices. Innovative two-dimensional gap solitons, named "saddle solitons," are established, whose phase and spectrum characteristics are different from all previously observed spatial solitons. PMID:19881560
Solitons in parity-time symmetric potentials with spatially modulated nonlocal nonlinearity.
Yin, Chengping; He, Yingji; Li, Huagang; Xie, Jianing
2012-08-13
We study the solitons in parity-time symmetric potential in the medium with spatially modulated nonlocal nonlinearity. It is found that the coefficient of the spatially modulated nonlinearity and the degree of the uniform nonlocality can profoundly affect the stability of solitons. There exist stable solitons in low-power region, and unstable solitons in high-power region. In the unstable cases, the solitons exhibit jump from the original site to the next one, and they can continue the motion into the other lattices. The region of the stable soliton can be expanded by increasing the coefficient of the modulated nonlocality. Finally, critical amplitude of the imaginary part of the linear PT lattices is obtained, above which solitons are unstable and decay immediately. PMID:23038578
NASA Astrophysics Data System (ADS)
Jameson, A. R.; Larsen, M. L.
2016-06-01
Microphysical understanding of the variability in rain requires a statistical characterization of different drop sizes both in time and in all dimensions of space. Temporally, there have been several statistical characterizations of raindrop counts. However, temporal and spatial structures are neither equivalent nor readily translatable. While there are recent reports of the one-dimensional spatial correlation functions in rain, they can only be assumed to represent the two-dimensional (2D) correlation function under the assumption of spatial isotropy. To date, however, there are no actual observations of the (2D) spatial correlation function in rain over areas. Two reasons for this deficiency are the fiscal and the physical impossibilities of assembling a dense network of instruments over even hundreds of meters much less over kilometers. Consequently, all measurements over areas will necessarily be sparsely sampled. A dense network of data must then be estimated using interpolations from the available observations. In this work, a network of 19 optical disdrometers over a 100 m by 71 m area yield observations of drop spectra every minute. These are then interpolated to a 1 m resolution grid. Fourier techniques then yield estimates of the 2D spatial correlation functions. Preliminary examples using this technique found that steadier, light rain decorrelates spatially faster than does the convective rain, but in both cases the 2D spatial correlation functions are anisotropic, reflecting an asymmetry in the physical processes influencing the rain reaching the ground not accounted for in numerical microphysical models.
An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint
NASA Technical Reports Server (NTRS)
Garcia, Christopher; Rabadi, Ghaith
2010-01-01
Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.
Radiative transfer in spatially heterogeneous, two-dimensional anisotropically scattering media
NASA Astrophysics Data System (ADS)
Stephens, G. L.
1986-07-01
A method is presented for solving the radiative transfer equation for a general anisotropically scattering and emitting medium exposed to arbitrary boundary radiation conditions. The method allows, in principle, for quite arbitrary spatial variability in the scattering and extinction and general solution procedures, based on the principles of invariant imbedding, which are applied in the form of doubling algorithms to obtain solutions for optically thick media. Some selected results are shown to demonstrate the versatility of the approach.
Anomalous spatial modifications of beams diffracted by two-dimensional periodic media
NASA Astrophysics Data System (ADS)
Falco, Frank; Tamir, Theodor; Leung, K. Ming
2007-06-01
By using a rigorous plane-wave representation, we examine the diffracted fields generated by a Gaussian beam incident onto the planar upper boundary of a 2D periodic structure. We first determine a geometric profile for every diffracted beam by neglecting the amplitude variation of its plane-wave spectrum. We then account for the spectral variation and show that, with respect to that geometric profile, every actual diffracted beam exhibits spatial modifications in the form of 2D lateral displacements, focal shifts, angular deviations, and beam-width alterations. These effects are relatively large if the incidence conditions tend to generate grating resonances. The magnitudes of the beam modifications are illustrated by using a canonic grating model that consists of a planar surface whose impedance varies sinusoidally along its two orthogonal directions. We also develop accurate analytical expressions for the spatial modifications by expressing the spectral amplitude functions in terms of Padé approximants. We thus find that the 2D spatial effects exhibit greater complexity and include features that are absent in previously reported cases involving 1D periodic surfaces.
Anomalous spatial modifications of beams diffracted by two-dimensional periodic media.
Falco, Frank; Tamir, Theodor; Leung, K Ming
2007-06-01
By using a rigorous plane-wave representation, we examine the diffracted fields generated by a Gaussian beam incident onto the planar upper boundary of a 2D periodic structure. We first determine a geometric profile for every diffracted beam by neglecting the amplitude variation of its plane-wave spectrum. We then account for the spectral variation and show that, with respect to that geometric profile, every actual diffracted beam exhibits spatial modifications in the form of 2D lateral displacements, focal shifts, angular deviations, and beam-width alterations. These effects are relatively large if the incidence conditions tend to generate grating resonances. The magnitudes of the beam modifications are illustrated by using a canonic grating model that consists of a planar surface whose impedance varies sinusoidally along its two orthogonal directions. We also develop accurate analytical expressions for the spatial modifications by expressing the spectral amplitude functions in terms of Padé approximants. We thus find that the 2D spatial effects exhibit greater complexity and include features that are absent in previously reported cases involving 1D periodic surfaces.
NASA Astrophysics Data System (ADS)
Yokoyama, Kiyoyuki; Yamanaka, Takayuki; Seki, Shunji; Lui, Wayne
1993-06-01
The static wavelength shift for multielectrode DFB LDs with a lambda /4-phase-shift is studied using a two-dimensional numerical simulation program. This program gives a self-consistent carrier distribution and the corresponding refractive index distribution under nonuniform carrier injection. Accordingly, it helps us better understand the wavelength shift related to spatial hole burning. The wavelength shift and spatial hole burning effects for a multielectrode DFB LD are studied under various operating conditions and electrode lengths. It is demonstrated that the earlier proposed wavelength and shift model for a single-electrode DFB LD is a universal model for a multielectrode DFB LD. The validity of the model is also confirmed by reported experimental results.
Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma
Singh, Pramod K.; Hopwood, Jeffrey; Sonkusale, Sameer
2014-01-01
Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials. PMID:25098976
Metamaterials for remote generation of spatially controllable two dimensional array of microplasma.
Singh, Pramod K; Hopwood, Jeffrey; Sonkusale, Sameer
2014-08-07
Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials.
Metamaterials for remote generation of spatially controllable two dimensional array of microplasma.
Singh, Pramod K; Hopwood, Jeffrey; Sonkusale, Sameer
2014-01-01
Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials. PMID:25098976
Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems
Gao, Lu; Wyatt Shields, C.; Johnson, Leah M.; Graves, Steven W.; Yellen, Benjamin B.; López, Gabriel P.
2015-01-01
We report a modeling and experimental study of techniques to acoustically focus particles flowing through a microfluidic channel. Our theoretical model differs from prior works in that we solve an approximate 2-D wave transmission model that accounts for wave propagation in both the solid and fluid phases. Our simulations indicate that particles can be effectively focused at driving frequencies as high as 10% off of the resonant condition. This conclusion is supported by experiments on the acoustic focusing of particles in nearly square microchannels, which are studied for different flow rates, driving frequencies and placements of the lead zirconate titanate transducer, either underneath the microchannel or underneath a parallel trough. The relative acoustic potential energy and the resultant velocity fields for particles with positive acoustic contrast coefficients are estimated in the 2-D limit. Confocal microscopy was used to observe the spatial distribution of the flowing microparticles in three dimensions. Through these studies, we show that a single driving frequency from a single piezoelectric actuator can induce the 2-D concentration of particles in a microchannel with a nearly square cross section, and we correlate these behaviors with theoretical predictions. We also show that it is possible to control the extent of focusing of the microparticles, and that it is possible to decouple the focusing of microparticles in the vertical direction from the lateral direction in rectangular channels with anisotropic cross sections. This study provides guidelines to design and operate microchip-based acoustofluidic devices for precise control over the spatial arrangement of microparticles for applications such as flow cytometry and cellular sorting. PMID:25713687
NASA Astrophysics Data System (ADS)
Xue, Fei; Wu, Feng Cheng; MacDonald, Allan
BEC of excitons and polaritons have drawn attention in recent years because of the demonstration of their ability to host macroscopic quantum phenomena and because of their promise for applications. We study the case of a system containing two TMD monolayers that are separated and surrounded by h-BN. Under appropriate conditions this system is expected to support a spatially indirect thermal equilibrium exciton condensate. We combine a microscopic mean-field calculation and a weakly interacting boson model to explore the bilayer exciton condensates phase diagram. By varying the layer separation and exciton density, we find a phase transition occurs between states containing one and two condensate flavors. We also use a microscopic time-dependent mean-field theory to address condensate collective mode spectra and quantum fluctuations. Next we study the case of exciton-polariton formed by strong coupling between quantum well excitons and confined photon modes when the system is placed in a vertical microcavity. We build a microscopic mean-field theory starting from electrons and holes, and account for their coupling to coherent light field. We compare our model with the normal weakly interacting boson model that starts from weakly interacting excitons that are coupled to photons. This work was supported by the SRC and NIST under the Nanoelectronic Research Initiative (NRI) and SWAN, by the Welch Foundation under Grant No. F1473, and by the ARO Grant No. 26-3508-81.
Li, H Harold; Driewer, Joseph P; Han, Zhaohui; Low, Daniel A; Yang, Deshan; Xiao, Zhiyan
2014-04-21
Recent research has shown that KCl:Eu²⁺ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors' attempts to fabricate 2D KCl:Eu²⁺ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X-ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had been completely incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl(-)) centers were the electron storage centers post x-ray irradiation and that Eu²⁺ cations acted as luminescence centers in the photostimulation process. The 150 µm thick casted KCl:Eu²⁺ SPF showed sub-millimeter spatial-resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu²⁺ and 80% low Z polymer binder exhibited almost no energy-dependence in a 6 MV beam. KCl:Eu²⁺ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a result of KCl's intrinsic high radiation hardness. Taken together, this work provides strong evidence that KCl:Eu²⁺-based SPF with associated readout apparatus could result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector.
Li, H. Harold; Driewer, Joseph P.; Han, Zhaohui; Low, Daniel A.; Yang, Deshan; Xiao, Zhiyan
2014-01-01
Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors’ attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl-) centers were the electron storage centers post×ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150-µm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a result of KCl’s intrinsic high radiation hardness. Taken together, this work provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector. PMID:24651448
NASA Astrophysics Data System (ADS)
Li, H. Harold; Driewer, Joseph P.; Han, Zhaohui; Low, Daniel A.; Yang, Deshan; Xiao, Zhiyan
2014-04-01
Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors’ attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X-ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had been completely incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl-) centers were the electron storage centers post x-ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150 µm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial-resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy-dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a result of KCl's intrinsic high radiation hardness. Taken together, this work provides strong evidence that KCl:Eu2+-based SPF with associated readout apparatus could result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector.
NASA Astrophysics Data System (ADS)
Jiang, Quan; Zhou, Xiao Yang; Chin, Jessie Yao; Cui, Tie Jun
2011-07-01
The two-dimensional (2D) spatial electric-field mapping apparatus [Opt. Express 14, 8694 (2006)] plays an important role in experiments involving metamaterials, such as the verification of free-space and ground-plane invisibility cloaks. However, such an apparatus is valid only for the transverse-electric (TE) mode and is invalid for the transverse-magnetic (TM) mode, as it requires perfectly magnetic conducting (PMC) planes, which do not exist in nature. In this paper, we propose a 2D spatial magnetic-field mapping apparatus based on artificial magnetic conductor (AMC) plates. The AMC structure is designed using periodically perfectly electrical conducting patches with a sub-wavelength size on a dielectric substrate backed with the ground plane, which can simulate a PMC plane. Using two parallel PMC plates to form a TM-wave planar waveguide, we realize the 2D spatial magnetic-field mapping apparatus in order to measure the external and internal magnetic fields of metamaterials. Two types of excitations, a plane-wave source and a magnetic dipole, are used to feed the system. In order to validate the performance of the magnetic-field mapper, two gradient-index metamaterial lenses are measured, and the experimental results are in good agreement with the full-wave simulations.
Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials
Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu
2010-02-15
We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.
NASA Astrophysics Data System (ADS)
Wu, Yan; Xie, Qiongtao; Zhong, Honghua; Wen, Linghua; Hai, Wenhua
2013-05-01
We investigate algebraic bright and vortex solitons in self-defocusing (SDF) media with a type of spatially inhomogeneous nonlinearity. For a specific choice of the nonlinearity parameters, certain exact analytical solutions for algebraic bright and vortex solitons have been constructed. By applying the linear stability analysis, the stability regions of these algebraic solitons are obtained numerically. In addition, we show analytically that a homogeneous SDF nonlinearity superposed by a localized self-focusing nonlinearity can support exact algebraic bright solitons under certain conditions.
Vetushka, A.; Karkari, S.K.; Bradley, J.W.
2004-11-01
Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V{sub p}, electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V{sub p} has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V{sub p} is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V{sub p} has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given.
Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity
Zhong, Wei-Ping; Belić, Milivoj
2014-12-15
We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.
Webb, S; Poludniowski, G
2010-04-21
IMRT can be delivered by jaws only (JO) provided some compromises are accepted. In this letter it is shown how the use of a rotate-translate methodology (ROTJO), also employing only jaws, can lead to the delivery of a two-dimensional intensity-modulated beam wherein the modulation is spatially slowly varying.
(2+1) -dimensional stable spatial Raman solitons
NASA Astrophysics Data System (ADS)
Shverdin, M. Y.; Yavuz, D. D.; Walker, D. R.
2004-03-01
We analyze the formation, propagation, and interaction of stable two-frequency (2+1) -dimensional solitons, formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the two transverse dimensions.
(1 + 2)-Dimensional sub-strongly nonlocal spatial optical solitons: Perturbation method
NASA Astrophysics Data System (ADS)
Ren, Hongyan; Ouyang, Shigen; Guo, Qi; Wu, Lijun
2007-07-01
By extending the (1 + 1)-dimensional [(1 + 1)-D] perturbation method suggested by Ouyang et al. [S. Ouyang, Q. Guo, W. Hu, Phys. Rev. E. 74 (2006) 036622] to the (1 + 2)-D case, we obtain a fundamental soliton solution to the (1 + 2)-D nonlocal nonlinear Schrödinger equation (NNLSE) with a Gaussian-type response function for the sub-strongly nonlocal case. Numerical simulations show that the soliton solution obtained in this paper can describe the soliton states in both the sub-strongly nonlocal case and the strongly nonlocal case. It is found that the phase constant and the power of the (1 + 2)-D strongly nonlocal spatial optical soliton with a Gaussian-type response function are both in inverse proportion to the 4th power of its beam width.
NASA Astrophysics Data System (ADS)
Kim, Jin-Yong; Oh, Se-Jin; Kim, Young-Cheol; Choi, Ik-Jin; Chung, Chin-Wook
2013-09-01
A wireless wafer-type probe system was developed to measure two-dimensional plasma parameters and uniformity. The apparatus uses double probe theory with a harmonic detection method. The plasma parameters, such as the electron temperature, ion density and ion flux, are derived by using the amplitudes of the first and third harmonic currents. The experiment was conducted in an inductively coupled plasma. The measurements of the wireless wafer-type probe were compared with a floating-type Langmuir probe and a similar trend was observed. As the inner and outer antenna current ratio changes, the wireless wafer-type probe was able to measure the evolution of the two-dimensional ion density profiles. Since the wireless wafer-type probe system was electrically isolated and designed to operate stand-alone in the chamber, it can be installed in plasma chambers without any external controllers. This plasma diagnostic system shows promise for processing plasmas.
All-optical steering of the interactions between multiple spatial solitons in isotropic polymers
NASA Astrophysics Data System (ADS)
Yan, Li-fen; Zhang, Dong; Jin, Qing-li; Wang, Hong-cheng; Zhang, Yao-ju
2010-11-01
All-optical steering of the nonlinear interactions between multiple spatial solitons can be performed in an isotropic photoisomerization polymer, by propagating an external control beam in perpendicular direction. Fusing, giving birth to another new soliton, and transferring energy can take place in the interactions of signal beams, which can be achieved by changing the incident position of the control beam, the initial relative phase and the power ratio between the signal beams and the control beam. These phenomena are physically explained, and they have significantly potential applications in optical signal readdressing, logic gating, and all-optical switching, etc.
NASA Astrophysics Data System (ADS)
Alberucci, Alessandro; Assanto, Gaetano
We discuss nonlinear propagation of light beams in anisotropic media, addressing the role of nonlocality and nonlinearity in power-dependent beam self-steering. With specific reference to spatial solitons in positive uniaxial nematic liquid crystals (i.e. nematicons), we describe soliton self-acceleration through reorientational response and nonlinear walk-off.
Robinson, Brian E
2016-06-01
Areas of high biodiversity often coincide with communities living in extreme poverty. As a livelihood support, these communities often harvest wild products from the environment. But harvest activities can have negative impacts on fragile and globally important ecosystems. This paper examines trade-offs in ecological protection and community welfare from the harvest of wild products. With a novel model and empirical evidence, I show that management of harvest activity does not always resolve these trade-offs. In a model of continuous harvests in a two-dimensional landscape, managed harvest activity improves welfare, but is uniformly bad for other ecosystem services that are sensitive to the presence (as opposed to the intensity) of human activity. Empirical results from a unique dataset of mushroom harvesters in Yunnan, China suggest more experienced, poorer, and more vulnerable individuals tend to rely on more distant harvests. Thus, policies that limit the extent of forest travel, such as protected areas, may protect fragile ecosystems but can have a disproportionately negative effect on those most vulnerable. PMID:27509756
Robinson, Brian E
2016-06-01
Areas of high biodiversity often coincide with communities living in extreme poverty. As a livelihood support, these communities often harvest wild products from the environment. But harvest activities can have negative impacts on fragile and globally important ecosystems. This paper examines trade-offs in ecological protection and community welfare from the harvest of wild products. With a novel model and empirical evidence, I show that management of harvest activity does not always resolve these trade-offs. In a model of continuous harvests in a two-dimensional landscape, managed harvest activity improves welfare, but is uniformly bad for other ecosystem services that are sensitive to the presence (as opposed to the intensity) of human activity. Empirical results from a unique dataset of mushroom harvesters in Yunnan, China suggest more experienced, poorer, and more vulnerable individuals tend to rely on more distant harvests. Thus, policies that limit the extent of forest travel, such as protected areas, may protect fragile ecosystems but can have a disproportionately negative effect on those most vulnerable.
Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A
2014-08-01
We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.
Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.
2002-01-01
We used an analysis based on a geographic information system (GIS) to determine the amount of rearing habitat and stranding area for subyearling fall chinook salmon Oncorhynchus tshawytscha in the Hanford Reach of the Columbia River at steady-state flows ranging from 1,416 to 11,328 m3/s. High-resolution river channel bathymetry was used in conjunction with a two-dimensional hydrodynamic model to estimate water velocities, depths, and lateral slopes throughout our 33-km study area. To relate the probability of fish presence in nearshore habitats to measures of physical habitat, we developed a logistic regression model from point electrofishing data. We only considered variables that were compatible with a GIS and therefore excluded other variables known to be important to juvenile salmonids. Water velocity and lateral slope were the only two variables included in our final model. The amount of available rearing habitat generally decreased as flow increased, with the greatest decreases occurring between 1,416 and 4,814 m3/s. When river discharges were between 3,682 and 7,080 m3/s, flow fluctuations of 566 m3/s produced the smallest change in available rearing area (from -6.3% to +6.8% of the total). Stranding pool area was greatly reduced at steady-state flows exceeding 4,531 m3/s, but the highest net gain in stranding area was produced by 850 m3/s decreases in flow when river discharges were between 5,381 and 5,664 m3/s. Current measures to protect rearing fall chinook salmon include limiting flow fluctuations at Priest Rapids Dam to 850 m3/s when the dam is spilling water and when the weekly flows average less than 4,814 m3/s. We believe that limiting flow fluctuations at all discharges would further protect subyearling fall chinook salmon.
Minor, B.M.
1993-09-01
The exponential characteristic spatial quadrature for discrete ordinates neutral particle transport with rectangular cells is developed. Numerical problems arising in the derivation required the development of exponential moment functions. These functions are used to remove indeterminant forms which can cause catastrophic cancellations. The EC method is positive and nonlinear. It conserves particles and satisfies first moment balance. Comparisons of the EC method's performance to other methods in optically thin and thick spatial cells were performed. For optically thin cells, the EC method was shown to converge to the correct answer, with third order truncation error in the thin cell limit. In deep penetration problems, the EC method attained its highest computational efficiencies compared to the other methods. For all the deep penetration problems examined, the number of spatial cells required by the EC method to attain a desired accuracy was less than the other methods.... Mathematics functions, Nuclear radiation, Nuclear engineering, Radiation attenuation, Radiation shielding, Transport theory, Radiation transport.
Judi, David R; Mcpherson, Timothy N; Burian, Steven J
2009-01-01
A grid resolution sensitivity analysis using a two-dimensional flood inundation model has been presented in this paper. Simulations for 6 dam breaches located randomly in the United States were run at 10,30,60,90, and 120 meter resolutions. The dams represent a range of topographic conditions, ranging from 0% slope to 1.5% downstream of the dam. Using 10 meter digital elevation model (DEM) simulation results as the baseline, the coarser simulation results were compared in terms of flood inundation area, peak depths, flood wave travel time, daytime and nighttime population in flooded area, and economic impacts. The results of the study were consistent with previous grid resolution studies in terms of inundated area, depths, and velocity impacts. The results showed that as grid resolution is decreased, the relative fit of inundated area between the baseline and coarser resolution decreased slightly. This is further characterized by increasing over prediction as well as increasing under prediction with decreasing resolution. Comparison of average peak depths showed that depths generally decreased as resolution decreased, as well as the velocity. It is, however, noted that the trends in depth and velocity showed less consistency than the inundation area metrics. This may indicate that for studies in which velocity and depths must be resolved more accurately (urban environments when flow around buildings is important in the calculation of drag effects), higher resolution DEM data should be used. Perhaps the most significant finding from this study is the perceived insensitivity of socio-economic impacts to grid resolution. The difference in population at risk (PAR) and economic cost generally remained within 10% of the estimated impacts using the high resolution DEM. This insensitivity has been attributed to over estimated flood area and associated socio-economic impacts compensating for under estimated flooded area and associated socio-economic impacts. The United
Metz, Philipp; Adam, Jost; Gerken, Martina; Jalali, Bahram
2014-01-20
Minimally invasive surgery procedures benefit from a reduced size of endoscopic devices. A prospective path to implement miniaturized endoscopy is single optical-fiber-based spectrally encoded imaging. While simultaneous spectrally encoded inertial-scan-free imaging and laser microsurgery have been successfully demonstrated in a large table setup, a highly miniaturized optical design would promote the development of multipurpose endoscope heads. This paper presents a highly scalable, entirely transmissive axial design for a spectral 2D spatial disperser. The proposed design employs a grating prism and a virtual imaged phased array (VIPA). Based on semi-analytical device modeling, we performed a systematic parameter analysis to assess the spectral disperser's manufacturability and to obtain an optimum application-specific design. We found that, in particular, a low grating period combined with a high optical input bandwidth and low VIPA tilt showed favorable results in terms of a high spatial resolution, a small device diameter, and a large field of view. Our calculations reveal that a reasonable imaging performance can be achieved with system diameters of below 5 mm, which renders the proposed 2D spatial disperser design highly suitable for use in future endoscope heads that combine mechanical-scan-free imaging and laser microsurgery. PMID:24514122
Adams, Bernhard W.; Mane, Anil; Elam, Jeffrey; Obaid, Razib; Wetstein, Matthew J.
2015-09-01
X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greater than 10(7) events per cm(2). Time-gating can be used for improved dynamic range.
Steel, A B; Nagel, S R; Dunn, J; Baldis, H A
2012-10-01
A Kentech x-ray streak camera was run at the LLNL compact multipulse terawatt (COMET) laser to record simultaneous space- and time-resolved measurements of picosecond laser-produced plasmas. Four different x-ray energy channels were monitored using broadband filters to record the time history of Cu targets heated at irradiances of 10(16)-10(19) W∕cm(2). Through the Cu filter channel, a time-resolution below 3 ps was obtained. Additionally, an array of 10 μm diameter pinholes was placed in front of the camera to produce multiple time-resolved x-ray images on the photocathode and time-integrated images on the phosphor with 10 and 15 times magnification, respectively, with spatial resolution of < 13 μm.
NASA Astrophysics Data System (ADS)
Kreis, Roland; Boesch, Chris
1996-11-01
The localized1H MR spectrum of human muscle has recently been reported to feature unassigned, orientation-dependent resonance lines. For their characterizationin vivo,various NMR techniques were combined with 3D spatial localization: 2D-J spectroscopy, zero-quantum- and Zeeman-order-filtering, double-quantum-filtering, 2D-constant-time COSY, dipolar-order filtering, and 2D-longitudinal-order separated spectroscopy. The successful implementation of these methods on a whole-body MR system and their application to study human subjects is described.1H MR spectra of human muscle were found to feature residual dipolar couplings and anisotropic susceptibilities which render resonance frequencies, phases, and-with some sequences-signal intensities orientation dependent. Two of the unidentified resonances unequivocally form a dipolar doublet of two equivalent protons, centered at 3.93 ppm. All unknown as well as previously assigned peaks in the range between 2.7 and 3.6 ppm are either subject to dipolar coupling themselves or overlap with spectral contributions of metabolites involved in dipolar coupling. The methyl protons of creatine are likely to be subject to residual dipolar coupling and do therefore form a dipolar triplet and not a singlet as previously assumed. Finally, X3, a further unidentified peak at 3.5 ppm, appears to be part of a multiplet with its center at 3.3 ppm and overlapping the trimethylammonium resonance.
Li, H; Yang, D; Xiao, Z; Driewer, J; Han, Z; Low, D
2014-06-15
Purpose: Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports our attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. Methods: A thin layer of KCl:Eu2+ was deposited on a substrate of borosilicate glass (e.g., laboratory slides) with a PVD system. For tape casting, a homogenous suspension containing storage phosphor particles, liquid vehicle and polymer binder was formed and subsequently cast by doctor-blade onto a polyethylene terephthalate substrate to form a 150 μm thick SPF. Results: X ray diffraction analysis showed that a 10 μm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl−) centers were the electron storage centers post x ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150 μm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a Result of its intrinsic high radiation hardness. Conclusions: This discovery research provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could Result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of
Xu, Si-Liu; Cheng, Jia-Xi; Belić, Milivoj R; Hu, Zheng-Long; Zhao, Yuan
2016-05-01
We derive analytical solutions to the cubic-quintic nonlinear Schrödinger equation with potentials and nonlinearities depending on both propagation distance and transverse space. Among other, circle solitons and multi-peaked vortex solitons are found. These solitary waves propagate self-similarly and are characterized by three parameters, the modal numbers m and n, and the modulation depth of intensity. We find that the stable fundamental solitons with m = 0 and the low-order solitons with m = 1, n ≤ 2 can be supported with the energy eigenvalues E = 0 and E ≠ 0. However, higher-order solitons display unstable propagation over prolonged distances. The stability of solutions is examined by numerical simulations. PMID:27137617
Xu, Si-Liu; Cheng, Jia-Xi; Belić, Milivoj R; Hu, Zheng-Long; Zhao, Yuan
2016-05-01
We derive analytical solutions to the cubic-quintic nonlinear Schrödinger equation with potentials and nonlinearities depending on both propagation distance and transverse space. Among other, circle solitons and multi-peaked vortex solitons are found. These solitary waves propagate self-similarly and are characterized by three parameters, the modal numbers m and n, and the modulation depth of intensity. We find that the stable fundamental solitons with m = 0 and the low-order solitons with m = 1, n ≤ 2 can be supported with the energy eigenvalues E = 0 and E ≠ 0. However, higher-order solitons display unstable propagation over prolonged distances. The stability of solutions is examined by numerical simulations.
Wu Lei; Zhang Jiefang; Li Lu; Mihalache, Dumitru; Malomed, Boris A.; Liu, W. M.
2010-06-15
We construct exact solutions of the Gross-Pitaevskii equation for solitary vortices, and approximate ones for fundamental solitons, in two-dimensional models of Bose-Einstein condensates with a spatially modulated nonlinearity of either sign and a harmonic trapping potential. The number of vortex-soliton (VS) modes is determined by the discrete energy spectrum of a related linear Schroedinger equation. The VS families in the system with the attractive and repulsive nonlinearity are mutually complementary. Stable VSs with vorticity S{>=}2 and those corresponding to higher-order radial states are reported, in the case of the attraction and repulsion, respectively.
Korovin, L.I.; Lang, I.G.; Pavlov, S.T.
1995-09-01
The spatial correlation of an electron and a hole generated by light in a quasi-two-dimensional electron gas is investigated in the linear approximation with respect to the intensity of the exciting light. The correlation is determined by the interaction of electrons and holes with LO phonons. The theory makes it possible to calculate the distribution function F{sub N}(r) (r is the two-dimensional vector of the relative motion of an electron and a hole, and N is the number of LO phonons emitted), as well as the function F {sub N}(r,K) (K is the wave vector of the motion of the center of mass of the respective electron-hole pair), which is related to the fourth-rank scattering tensor in multiphonon resonant Raman scattering. A calculation of F{sub N}(r) is performed for a quantum well of rectangular shape with infinitely high potential barriers in the approximation of a model interaction, which presumes the absence of a dependence of the interaction between the electron and an LO phonon on the wave vector of the phonon. Exact expressions are obtained for F {sub N}(r) within this approximation and in the heavy-hole approximation over a broad range of variation of the frequency of the exciting light, which includes both the resonant case, in which the electron drops to the minimum of the size-quantization band after the emission of an LO phonon, and the nonresonant case. 16 refs., 6 figs.
Topological Solitons in Physics.
ERIC Educational Resources Information Center
Parsa, Zohreh
1979-01-01
A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)
Thakral, Naveen K; Mohapatra, Sarat; Stephenson, Gregory A; Suryanarayanan, Raj
2015-01-01
Tablets of amorphous indomethacin were compressed at 10, 25, 50, or 100 MPa using either an unlubricated or a lubricated die and stored individually at 35 °C in sealed Mylar pouches. At selected time points, tablets were analyzed by two-dimensional X-ray diffractometry (2D-XRD), which enabled us to profile the extent of drug crystallization in tablets, in both the radial and axial directions. To evaluate the role of lubricant, magnesium stearate was used as "internal" and/or "external" lubricant. Indomethacin crystallization propensity increased as a function of compression pressure, with 100 MPa pressure causing crystallization immediately after compression (detected using synchrotron radiation). However, the drug crystallization was not uniform throughout the tablets. In unlubricated systems, pronounced crystallization at the radial surface could be attributed to die wall friction. The tablet core remained substantially amorphous, irrespective of the compression pressure. Lubrication of the die wall with magnesium stearate, as external lubricant, dramatically decreased drug crystallization at the radial surface. The spatial heterogeneity in drug crystallization, as a function of formulation composition and compression pressure, was systematically investigated. When formulating amorphous systems as tablets, the potential for compression induced crystallization warrants careful consideration. Very low levels of crystallization on the tablet surface, while profoundly affecting product performance (decrease in dissolution rate), may not be readily detected by conventional analytical techniques. Early detection of crystallization could be pivotal in the successful design of a dosage form where, in order to obtain the desired bioavailability, the drug may be in a high energy state. Specialized X-ray diffractometric techniques (2D; use of high intensity synchrotron radiation) enabled detection of very low levels of drug crystallization and revealed the heterogeneity in
NASA Astrophysics Data System (ADS)
Nemšák, S.; Conti, G.; Gray, A. X.; Palsson, G. K.; Conlon, C.; Eiteneer, D.; Keqi, A.; Rattanachata, A.; Saw, A. Y.; Bostwick, A.; Moreschini, L.; Rotenberg, E.; Strocov, V. N.; Kobayashi, M.; Schmitt, T.; Stolte, W.; Ueda, S.; Kobayashi, K.; Gloskovskii, A.; Drube, W.; Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Borek, S.; Minar, J.; Braun, J.; Ebert, H.; Plucinski, L.; Kortright, J. B.; Schneider, C. M.; Balents, L.; de Groot, F. M. F.; Stemmer, S.; Fadley, C. S.
2016-06-01
The interfaces between two condensed phases often exhibit emergent physical properties that can lead to new physics and novel device applications and are the subject of intense study in many disciplines. We here apply experimental and theoretical techniques to the characterization of one such interesting interface system: the two-dimensional electron gas (2DEG) formed in multilayers consisting of SrTi O3 (STO) and GdTi O3 (GTO). This system has been the subject of multiple studies recently and shown to exhibit very high carrier charge densities and ferromagnetic effects, among other intriguing properties. We have studied a 2DEG-forming multilayer of the form [6unit cells (u .c .) STO /3 u .c .of GTO ] 20 using a unique array of photoemission techniques including soft and hard x-ray excitation, soft x-ray angle-resolved photoemission, core-level spectroscopy, resonant excitation, and standing-wave effects, as well as theoretical calculations of the electronic structure at several levels and of the actual photoemission process. Standing-wave measurements below and above a strong resonance have been exploited as a powerful method for studying the 2DEG depth distribution. We have thus characterized the spatial and momentum properties of this 2DEG in detail, determining via depth-distribution measurements that it is spread throughout the 6 u.c. layer of STO and measuring the momentum dispersion of its states. The experimental results are supported in several ways by theory, leading to a much more complete picture of the nature of this 2DEG and suggesting that oxygen vacancies are not the origin of it. Similar multitechnique photoemission studies of such states at buried interfaces, combined with comparable theory, will be a very fruitful future approach for exploring and modifying the fascinating world of buried-interface physics and chemistry.
Tan, Chunhua; Cai, Shuhui; Huang, Yuqing
2015-01-01
Background and Purpose Magnetic resonance spectroscopy (MRS) constitutes a mainstream technique for characterizing biological samples. Benefiting from the separation of chemical shifts and J couplings, spatially localized two-dimensional (2D) J-resolved spectroscopy (JPRESS) shows better identification of complex metabolite resonances than one-dimensional MRS does and facilitates the extraction of J coupling information. However, due to variations of macroscopic magnetic susceptibility in biological samples, conventional JPRESS spectra generally suffer from the influence of field inhomogeneity. In this paper, we investigated the implementation of the localized 2D J-resolved spectroscopy based on intermolecular double-quantum coherences (iDQCs) on a 7 T MRI scanner. Materials and Methods A γ-aminobutyric acid (GABA) aqueous solution, an intact pig brain tissue, and a whole fish (Harpadon nehereus) were explored by using the localized iDQC J-resolved spectroscopy (iDQCJRES) method, and the results were compared to those obtained by using the conventional 2D JPRESS method. Results Inhomogeneous line broadening, caused by the variations of macroscopic magnetic susceptibility in the detected biological samples (the intact pig brain tissue and the whole fish), degrades the quality of 2D JPRESS spectra, particularly when a large voxel is selected and some strongly structured components are included (such as the fish spinal cord). By contrast, high-resolution 2D J-resolved information satisfactory for metabolite analyses can be obtained from localized 2D iDQCJRES spectra without voxel size limitation and field shimming. From the contrastive experiments, it is obvious that the spectral information observed in the localized iDQCJRES spectra acquired from large voxels without field shimming procedure (i.e. in inhomogeneous fields) is similar to that provided by the JPRESS spectra acquired from small voxels after field shimming procedure (i.e. in relatively homogeneous fields
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Anderson Localization of Solitons
Sacha, Krzysztof; Zakrzewski, Jakub; Mueller, Cord A.; Delande, Dominique
2009-11-20
At low temperature, a quasi-one-dimensional ensemble of atoms with an attractive interaction forms a bright soliton. When exposed to a weak and smooth external potential, the shape of the soliton is hardly modified, but its center-of-mass motion is affected. We show that in a spatially correlated disordered potential, the quantum motion of a bright soliton displays Anderson localization. The localization length can be much larger than the soliton size and could be observed experimentally.
Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing
NASA Astrophysics Data System (ADS)
Ding, Chunling; Yu, Rong; Li, Jiahua; Hao, Xiangying; Wu, Ying
2014-10-01
We investigate a type of matched infrared soliton pairs based on four-wave mixng (FWM) in Landau-quantized graphene by using density-matrix method and perturbation theory. The linear and nonlinear dynamical properties of the graphene system are first discussed, and, in particular, we focus on the signatures of nonlinear optical response. Then we present analytical solutions for the fundamental bright and dark solitons, as well as bright two-soliton, which are in good agreement with the results of numerical simulations. Moreover, due to the unusual dispersion relation and chiral character of electron states, we find that the matched spatial soliton pairs can propagate through a two-dimensional crystal of graphene and their carrier frequencies are adjustable within the infrared frequency regimes. Our proposed scheme may provide a route to explore the applications of matched infrared soliton pairs in telecommunication and optical information processing.
Cisternas, Jaime; Descalzi, Orazio; Albers, Tony; Radons, Günter
2016-05-20
We demonstrate the occurrence of anomalous diffusion of dissipative solitons in a "simple" and deterministic prototype model: the cubic-quintic complex Ginzburg-Landau equation in two spatial dimensions. The main features of their dynamics, induced by symmetric-asymmetric explosions, can be modeled by a subdiffusive continuous-time random walk, while in the case dominated by only asymmetric explosions, it becomes characterized by normal diffusion. PMID:27258868
Multifrequency gap solitons in nonlinear photonic crystals.
Xie, Ping; Zhang, Zhao-Qing
2003-11-21
We predict the existence of multifrequency gap solitons (MFGSs) in both one- and two-dimensional nonlinear photonic crystals. A MFGS is a single intrinsic mode possessing multiple frequencies inside the gap. Its existence is a result of synergic nonlinear coupling among solitons or soliton trains at different frequencies. Its formation can either lower the threshold fields of the respective frequency components or stabilize their excitations. These MFGSs form a new class of stable gap solitons.
Solitons on Tori and Soliton Crystals
NASA Astrophysics Data System (ADS)
Speight, J. M.
2014-11-01
Necessary conditions for a soliton on a torus to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be L 2 orthogonal to , the space of parallel symmetric bilinear forms on TM, and, further, a certain symmetric bilinear form on , called the hessian, must be positive. It is shown that, for baby Skyrme models, the first condition actually implies the second. It is also shown that, for any choice of period lattice Λ, there is a baby Skyrme model which supports a soliton crystal of periodicity Λ. For the three-dimensional Skyrme model, it is shown that any soliton solution on a cubic lattice which satisfies a virial constraint and is equivariant with respect to (a subgroup of) the lattice symmetries automatically satisfies both tests. This verifies, in particular, that the celebrated Skyrme crystal of Castillejo et al., and Kugler and Shtrikman, passes both tests.
Zellner, Alexander; Suntz, Rainer; Deutschmann, Olaf
2015-02-23
Planar laser-induced fluorescence (PLIF) enables noninvasive in situ investigations of catalytic flow reactors. The method is based on the selective detection of two-dimensional absolute concentration maps of conversion-relevant species in the surrounding gas phase inside a catalytic channel. Exemplarily, the catalytic reduction of NO with hydrogen (2 NO+5 H2 →2 H2 O+2 NH3 ) is investigated over a Pt/Al2 O3 coated diesel oxidation catalyst by NO PLIF inside an optically accessible channel reactor. Quenching-corrected 2D concentration maps of the NO fluorescence above the catalytic surface are obtained under both, nonreactive and reactive conditions. The impact of varying feed concentration, temperature, and flow velocities on NO concentration profiles are investigated in steady state. The technique presented has a high potential for a better understanding of interactions of mass transfer and surface kinetics in heterogeneously catalyzed gas-phase reactions.
Levashov, V A; Stepanov, M G
2016-01-01
Considerations of local atomic-level stresses associated with each atom represent a particular approach to address structures of disordered materials at the atomic level. We studied structural correlations in a two-dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested approach can be used to characterize structural correlations in disordered materials. In particular, we found that changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of atoms with separation distance that corresponds to the first minimum in the pair density function. We also show that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E 91, 032301 (2015)10.1103/PhysRevE.91.032301] do not represent the anisotropic Eshelby's stress fields, as it is suggested, but originate in the rotational properties of the stress tensors.
Mathematical frontiers in optical solitons
Bronski, Jared C.; Segev, Mordechai; Weinstein, Michael I.
2001-01-01
Solitons are localized concentrations of field energy, resulting from a balance of dispersive and nonlinear effects. They are ubiquitous in the natural sciences. In recent years optical solitons have arisen in new and exciting contexts that differ in many ways from the original context of coherent propagation in a uniform medium. We review recent developments in incoherent spatial solitons and in gap solitons in periodic structures. PMID:11687646
1997-11-18
QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.
Bright vector solitons in cross-defocusing nonlinear media
Yakimenko, A. I.; Prikhodko, O. O.; Vilchynskyi, S. I.
2010-07-15
We study two-dimensional soliton-soliton vector pairs in media with self-focusing nonlinearities and defocusing cross interactions. The general properties of the stationary states and their stability are investigated. The different scenarios of instability are observed using numerical simulations. The quasistable propagation regime of the high-power vector solitons is revealed.
NASA Astrophysics Data System (ADS)
Abu-Aly, T. R.; Pasternack, G. B.; Wyrick, J. R.; Barker, R.; Massa, D.; Johnson, T.
2014-02-01
The spatially distributed effects of riparian vegetation on fluvial hydrodynamics during low flows to large floods are poorly documented. Drawing on a LiDAR-derived, meter-scale resolution raster of vegetation canopy height as well as an existing algorithm to spatially distribute stage-dependent channel roughness, this study developed a meter-scale two-dimensional hydrodynamic model of ~ 28.3 km of a gravel/cobble-bed river corridor for flows ranging from 0.2 to 20 times bankfull discharge, with and without spatially distributed vegetation roughness. Results were analyzed to gain insight into stage-dependent and scale-dependent effects of vegetation on velocities, depths, and flow patterns. At the floodplain filling flow of 597.49 m3/s, adding spatially distributed vegetation roughness parameters caused 8.0 and 7.4% increases in wetted area and mean depth, respectively, while mean velocity decreased 17.5%. Vegetation has a strong channelization effect on the flow, increasing the difference between mid-channel and bank velocities. It also diverted flow away from densely vegetated areas. On the floodplain, vegetation stands caused high velocity preferential flow paths that were otherwise unaccounted for in the unvegetated model runs. For the river as a whole, as discharge increases, overall roughness increases as well, contrary to popular conception.
Cloaking two-dimensional fermions
Lin, De-Hone
2011-09-15
A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.
Topology of energy fluxes in vortex dissipative soliton structures
NASA Astrophysics Data System (ADS)
Rosanov, N. N.; Fedorov, S. V.
2016-07-01
We consider and compare two-dimensional dissipative vortex solitons and their complexes in wide-aperture lasers and in exciton–polariton lasers; there is an incoherent pump and saturable absorption in both schemes presented. Our emphasis is on the study of the soliton’s internal structure. It can be revealed by the topology of energy fluxes and related energetic characteristics, because they are of primary importance for dissipative solitons representing the balance of energy input and output within the domains of field localization. For electromagnetic radiation in a nonlinear medium, it is difficult to separate energy between the field and the medium. The situation is simpler for paraxial beams and media with fast response (negligible dispersion), where we present the characterization of weak and strong soliton coupling based on the topology of spatial distributions of the Poynting vector and its divergence. Finally, we analyze the effect of nonresonant defocusing Kerr-like nonlinearity on vortex soliton existence and present different scenarios of soliton structural decay for sufficiently strong Kerr nonlinearity.
Frequency-controlled deflection of spatial solitons in nematic liquid crystals
NASA Astrophysics Data System (ADS)
Piccardi, Armando; Alberucci, Alessandro; Buchnev, Oleksandr; Kaczmarek, Malgosia; Choon Khoo, Iam; Assanto, Gaetano
2012-08-01
We demonstrate frequency-controlled angular steering of light-induced solitary waveguides using dual frequency nematic liquid crystals. Specially designed comb-shaped electrodes allow the maximization of the in-plane electro-optic angular deviation of the soliton Poynting vector, modulating the resulting walk-off up to an overall deflection of 13° when the frequency of the applied voltage goes from 1 to 100 kHz.
Two-dimensional optimal sensor placement
Zhang, H.
1995-05-01
A method for determining the optimal two-dimensional spatial placement of multiple sensors participating in a robot perception task is introduced in this paper. This work is motivated by the fact that sensor data fusion is an effective means of reducing uncertainties in sensor observations, and that the combined uncertainty varies with the relative placement of the sensors with respect to each other. The problem of optimal sensor placement is formulated and a solution is presented in the two dimensional space. The algebraic structure of the combined sensor uncertainty with respect to the placement of sensor is studied. A necessary condition for optimal placement is derived and this necessary condition is used to obtain an efficient closed-form solution for the global optimal placement. Numerical examples are provided to illustrate the effectiveness and efficiency of the solution. 11 refs.
Two-dimensional thermofield bosonization
Amaral, R.L.P.G.
2005-12-15
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.
Two dimensional unstable scar statistics.
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Two-Dimensional Optical Storage
NASA Astrophysics Data System (ADS)
van der Lee, Alexander; Bruls, Dominique; Busch, Christopher; Immink, Andre; Coene, Wim; Hekstra, Andries
2004-07-01
Two-dimensional optical storage aims at increasing the data capacity and data rate for a given physical read-out system. It uses parallel read-out in combination with advanced signal-processing. Experimental results results on read only memory (ROM) discs are presented that proof the concept. Laser beam recorded discs proof the concept, and electron beam recorded disc show the feasibility at real physical parameters for a density at 35 GB with ample tilt margins.
Discrete surface solitons in two dimensions
Susanto, H.; Kevrekidis, P. G.; Malomed, B. A.; Carretero-Gonzalez, R.; Frantzeskakis, D. J.
2007-05-15
We investigate fundamental localized modes in two-dimensional lattices with an edge (surface). The interaction with the edge expands the stability area for fundamental solitons, and induces a difference between dipoles oriented perpendicular and parallel to the surface. On the contrary, lattice vortex solitons cannot exist too close to the border. We also show, analytically and numerically, that the edge supports a species of localized patterns, which exists too but is unstable in the uniform lattice, namely, a horseshoe-shaped soliton, whose ''skeleton'' consists of three lattice sites. Unstable horseshoes transform themselves into a pair of ordinary solitons.
Two-dimensional colloidal alloys.
Law, Adam D; Buzza, D Martin A; Horozov, Tommy S
2011-03-25
We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357
Two-Dimensional Colloidal Alloys
NASA Astrophysics Data System (ADS)
Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.
2011-03-01
We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.
Defect-mediated discrete solitons in optically induced photorefractive lattices
Li Yongyao; Pang Wei; Chen Yongzhu; Yu Zhiqiang; Zhou Jianying; Zhang Huarong
2009-10-15
Theoretical analysis to the defect mediated discrete solitons in one- and two-dimensional periodical waveguide lattices is presented. The waveguide arrays with these functional defects are assumed to respond to the light field as an optically induced photorefraction and they are patterned by a holographic technique. It is found that the spatial energy distributions of the solitary waves can be controlled by the defects in the waveguide arrays, and this gives rise to an additional freedom to externally shaping the light field distribution to a special shape.
NASA Astrophysics Data System (ADS)
Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki
2016-07-01
An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10–14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.
Shenderovich, M.D.; Sekatsis, I.P.; Liepin'sh, E.E.; Nikiforovich, G.V.; Papsuevich, O.S.
1986-07-01
An assignment of the /sup 1/H NMR signals of des-Gly/sup 9/-(Arg/sup 8/)vasopressin in dimethyl sulfoxide has been made by 2D spectroscopy. The SSCCs and temperature coefficients ..delta..delta/..delta.. T have been obtained for the amide protons and the system of NOE cross-peaks in the two-dimensional NOESY spectrum has been analyzed. The most important information on the spatial structure of des-Gly/sup 9/-(Arg/sup 8/)vasopressin is given by the low value of the temperature coefficient ..delta..delta/..delta.. T of the Asn/sup 5/ amide proton and the NOE between the ..cap alpha..-protons of Cys/sup 1/ and Cys/sup 6/. It is assumed that the screening of the NH proton of the Asn/sup 5/ residue from the solvent is connected with a ..beta..-bend of the backbone in the 2-5 sequence, and the distance between the C/sup ..cap alpha../H atoms of the Cys/sup 1/ and Cys/sup 6/ residues does not exceed 4 A. Bearing these limitations in mind, a theoretical conformational analysis of the molecule has been made. The group of low-energy conformations of the backbone obtained has been compared with the complete set of NMR characteristics.
NASA Astrophysics Data System (ADS)
Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki
2016-07-01
An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.
Class of compound dissipative solitons as a result of collisions in one and two spatial dimensions.
Descalzi, Orazio; Brand, Helmut R
2014-08-01
We study the interaction of quasi-one-dimensional (quasi-1D) dissipative solitons (DSs). Starting with quasi-1D solutions of the cubic-quintic complex Ginzburg-Landau (CGL) equation in their temporally asymptotic state as the initial condition, we find, as a function of the approach velocity and the real part of the cubic interaction of the two counterpropagating envelopes: interpenetration, one compound state made of both envelopes or two compound states. For the latter class both envelopes show DSs superposed at two different locations. The stability of this class of compound states is traced back to the quasilinear growth rate associated with the coupled system. We show that this mechanism also works for 1D coupled cubic-quintic CGL equations. For quasi-1D states that are not in their asymptotic state before the collision, a breakup along the crest can be observed, leading to nonunique results after the collision of quasi-1D states.
Two-Dimensional Synthetic-Aperture Radiometer
NASA Technical Reports Server (NTRS)
LeVine, David M.
2010-01-01
A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate
Bending of solitons in weak and slowly varying inhomogeneous plasma
Mukherjee, Abhik Janaki, M. S. Kundu, Anjan
2015-12-15
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Dubrovsky, V. G.; Topovsky, A. V.; Basalaev, M. Yu.
2010-09-15
The classes of exactly solvable multiline soliton potentials and corresponding wave functions of two-dimensional stationary Schroedinger equation via {partial_derivative}-dressing method are constructed and their physical interpretation is discussed.
Dynamics of Dissipative Temporal Solitons
NASA Astrophysics Data System (ADS)
Peschel, U.; Michaelis, D.; Bakonyi, Z.; Onishchukov, G.; Lederer, F.
The properties and the dynamics of localized structures, frequently termed solitary waves or solitons, define, to a large extent, the behavior of the relevant nonlinear system [1]. Thus, it is a crucial and fundamental issue of nonlinear dynamics to fully characterize these objects in various conservative and dissipative nonlinear environments. Apart from this fundamental point of view, solitons (henceforth we adopt this term, even for localized solutions of non-integrable systems) exhibit a remarkable potential for applications, particularly if optical systems are considered. Regarding the type of localization, one can distinguish between temporal and spatial solitons. Spatial solitons are self-confined beams, which are shape-invariant upon propagation. (For an overview, see [2, 3]). It can be anticipated that they could play a vital role in all-optical processing and logic, since we can use their complex collision behavior [4]. Temporal solitons, on the other hand, represent shapeinvariant (or breathing) pulses. It is now common belief that robust temporal solitons will play a major role as elementary units (bits) of information in future all-optical networks [5, 6]. Until now, the main emphasis has been on temporal and spatial soliton families in conservative systems, where energy is conserved. Recently, another class of solitons, which are characterized by a permanent energy exchange with their environment, has attracted much attention. These solitons are termed dissipative solitons or auto-solitons. They emerge as a result of a balance between linear (delocalization and losses) and nonlinear (self-phase modulation and gain/loss saturation) effects. Except for very few cases [7], they form zero-parameter families and their features are entirely fixed by the underlying optical system. Cavity solitons form a prominent type. They appear as spatially-localized transverse peaks in transmission or reflection, e.g. from a Fabry-Perot cavity. They rely strongly on the
Kummer solitons in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ping; Belić, Milivoj
2009-01-01
We solve the three-dimensional (3D) time-dependent strongly nonlocal nonlinear Schrödinger equation (NNSE) in spherical coordinates, with the help of Kummer's functions. We obtain analytical solitary solutions, which we term the Kummer solitons. We compare analytical solutions with the numerical solutions of NNSE. We discuss higher-order Kummer spatial solitons, which can exist in various forms, such as the 3D vortex solitons and the multipole solitons.
NASA Astrophysics Data System (ADS)
Rajeev, Sarada Gangadharan
In this dissertation we study the soliton models of baryons originally proposed by Skyrme. Baryons are interpreted in the naive quark model as bound states of three quarks. Here, we interpret them as solitonic bound states of mesons. This is natural in Quantum Chromodynamics, the theory of strong interactions. The low energy properties of chromodynamics are well accounted for by the chiral model. The Wess-Zumino anomaly plays a crucial role in this model. A derivation within the canonical formulation of the Wess-Zumino is given. It is shown that the anomaly leads to a modification of the current algebra. An operator that creates solitonic states out of the vacuum is constructed. It is shown that this operator is fermionic if the number of colors is odd. The Wess -Zumino anomaly is shown to be responsible for this fact. The anomaly is studied in detail in the simpler context of a two dimensional theory. The operator creating solitons is constructed and its equations of motion are found. This model has an infinite number of conserved charges satisfying a Kac-Moody algebra. A derivation of the Wess-Zumino anomaly starting from Quantum Chromodynamics is given. Further the Skyrme constant is calculated, within certain approximations. This enables us to calculate the mass of the soliton and it agrees with the baryon mass to 20%. The constants D and F that couple the baryons to mesons are also computed. They also agree to about 20%. Thus the identification of baryons as solitons of the chiral model is established.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
NASA Astrophysics Data System (ADS)
Ghosh, Samiran; Chakrabarti, Nikhil
2016-08-01
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev-Petviashvili solitons.
Predicting two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Cerbus, R. T.; Goldburg, W. I.
2015-04-01
Prediction is a fundamental objective of science. It is more difficult for chaotic and complex systems like turbulence. Here we use information theory to quantify spatial prediction using experimental data from a turbulent soap film. At high Reynolds number, Re, where a cascade exists, turbulence becomes easier to predict as the inertial range broadens. The development of a cascade at low Re is also detected.
Nonlinear compressional waves in a two-dimensional Yukawa lattice.
Avinash, K; Zhu, P; Nosenko, V; Goree, J
2003-10-01
A modified Korteweg-de Vries (KdV) equation is obtained for studying the propagation of nonlinear compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-dimensional (2D) lattice. Assuming a Yukawa potential, we use this method to model compressional wave propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and preventing the emergence of a soliton. PMID:14683049
Solitons of axion-dilaton gravity
Bakas, I. |
1996-11-01
We use soliton techniques of the two-dimensional reduced {beta}-function equations to obtain nontrivial string backgrounds from flat space. These solutions are characterized by two integers ({ital n},{ital m}) referring to the soliton numbers of the metric and axion-dilaton sectors, respectively. We show that the Nappi-Witten universe associated with the SL(2){times}SU(2)/SO(1,1){times}U(1) CFT coset arises as a (1,1) soliton in this fashion for certain values of the moduli parameters, while for other values of the soliton moduli we arrive at the SL(2)/SO(1,1){times}SO(1,1){sup 2} background. Ordinary four-dimensional black holes arise as two-dimensional (2,0) solitons, while the Euclidean wormhole background is described as a (0,2) soliton on flat space. The soliton transformations correspond to specific elements of the string Geroch group. These could be used as a starting point for exploring the role of {ital U} dualities in string compactifications to two dimensions. {copyright} {ital 1996 The American Physical Society.}
Zhang Yanpeng; Wang Zhiguo; Zheng Huaibin; Yuan Chenzhi; Li Changbiao; Lu Keqing; Xiao Min
2010-11-15
We report an experimental demonstration of generating gap soliton trains in a four-wave-mixing (FWM) signal. Such spatial FWM surfacelike gap soliton trains are induced in a periodically modulated self-defocusing atomic medium by the cross-phase modulation, which can be reshaped under different experimental conditions, such as different atomic densities, nonlinear dispersions, and dressing fields. Controlling spatial gap solitons can have important applications in image memory, processing, and communication.
Equilibrium state of a trapped two-dimensional Bose gas
Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner
2010-07-15
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.
Measuring Monotony in Two-Dimensional Samples
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2010-01-01
This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's correlation coefficient for…
Strong nonlocal interaction stabilizes cavity solitons with a varying size plateau
NASA Astrophysics Data System (ADS)
Fernandez-Oto, Cristian; Tlidi, Mustapha; Escaff, Daniel; Clerc, Marcel; Kockaert, Pascal
2014-05-01
Cavity solitons are localized light peaks in the transverse section of nonlinear resonators. These structures are usually formed under a coexistence condition between a homogeneous background of radiation and a self- organized patterns resulting from a Turing type of instabilities. In this issue, most of studies have been realized ignoring the nonlocal effects. Non-local effects can play an important role in the formation of cavity solitons in optics, population dynamics and plant ecology. Depending on the choice of the nonlocal interaction function, the nonlocal coupling can be strong or weak. When the nonlocal coupling is strong, the interaction between fronts is controlled by the whole non-local interaction function. Recently it has shown that this type of nonlocal coupling strongly affects the dynamics of fronts connecting two homogeneous steady states and leads to the stabilization of cavity solitons with a varying size plateau. Here, we consider a ring passive cavity filled with a Kerr medium like a liquid crystal or left-handed materials and driven by a coherent injected beam. We show that cavity solitons resulting for strong front interaction are stable in one and two-dimensional setting out of any type of Turing instability. Their spatial profile is characterized by a varying size plateau. Our results can apply to large class of spatially extended systems with strong nonlocal coupling.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
NASA Astrophysics Data System (ADS)
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-01-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations. PMID:27452107
Transition from discrete to continuous Townes solitons in periodic media
Eilenberger, Falk; Pertsch, Thomas; Szameit, Alexander
2010-10-15
We present a comprehensive analysis of how the properties of two-dimensional lattice (''discrete'') solitons in a Kerr medium are influenced by their peak intensity and width. We are able to quantitatively relate the Townes solution for solitons in a two-dimensional, homogeneous media to two distinct regimes of the lattice solitons: to narrow, high-intensity, highly nonlinear solitons and to broad, low-intensity, weakly nonlinear solitons, which experience the periodic potential as an effective homogeneous medium. Both regimes, although they support a different power flow and are affected by completely different diffraction dynamics, are thus traced back to the same physical phenomenon. They are separated by a range of unstable and stable solutions, directly caused by the periodicity of the lattice.
Electrical contacts to two-dimensional semiconductors
NASA Astrophysics Data System (ADS)
Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras
2015-12-01
The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides.
Electrical contacts to two-dimensional semiconductors.
Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras
2015-12-01
The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides.
Two Dimensional Mechanism for Insect Hovering
Jane Wang, Z.
2000-09-04
Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.
Soliton scattering in the Darboux transformation formalism
Matveev, V.B.; Sall', M.A.
1987-05-20
The Darboux transformation technique is applied to derive soliton scattering formulas for the Kadomtsev-Petviashvili equation, the KdV equation, the nonlocal KdV equation, the two-dimensionalized Toda chain and its periodic reductions, in particular the sine-Gordon equation.
Chen, Yi-Xiang; Xu, Fang-Qian
2014-01-01
Two families of Gaussian-type soliton solutions of the (n+1)-dimensional Schrödinger equation with cubic and power-law nonlinearities in -symmetric potentials are analytically derived. As an example, we discuss some dynamical behaviors of two dimensional soliton solutions. Their phase switches, powers and transverse power-flow densities are discussed. Results imply that the powers flow and exchange from the gain toward the loss regions in the cell. Moreover, the linear stability analysis and the direct numerical simulation are carried out, which indicates that spatial Gaussian-type soliton solutions are stable below some thresholds for the imaginary part of -symmetric potentials in the defocusing cubic and focusing power-law nonlinear medium, while they are always unstable for all parameters in other media. PMID:25542020
Theory of two-dimensional microcavity lasers
Harayama, Takahisa; Sunada, Satoshi; Ikeda, Kensuke S.
2005-07-15
We present theoretical models of two-dimensional (2D) microcavity lasers. The relation between stationary lasing modes and resonances or metastable states is elucidated for arbitrary shapes of 2D resonant microcavities.
Two-Dimensional Planetary Surface Lander
NASA Astrophysics Data System (ADS)
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
CALL FOR PAPERS: Optical solitons
NASA Astrophysics Data System (ADS)
Drummond, P. D.; Haelterman, Marc; Vilaseca, R.
2003-06-01
A topical issue of Journal of Optics B: Quantum and Semiclassical Optics will be devoted to recent advances in optical solitons. The topics to be covered will include, but are not limited to: bulletProperties, control and dynamics of temporal solitons bulletProperties, control and dynamics of spatial solitons bulletCavity solitons in passive and active resonators bulletThree-dimensional spatial solitons bulletDark, bright, grey solitons; interface dynamics bulletCompound or vector solitons; incoherent solitons bulletLight and matter solitons in BEC bulletNonlinear localized structures in microstructured and nanostructured materials (photonic crystals, etc) bulletAngular momentum effects associated with localized light structures; vortex solitons bulletQuantum effects associated with localized light structures bulletInteraction of solitons with atoms and other media bulletApplications of optical solitons The DEADLINE for submission of contributions is 31 July 2003 to allow the topical issue to appear in about February 2004. All papers will be peer-reviewed in accordance with the normal refereeing procedures and standards of Journal of Optics B: Quantum and Semiclassical Optics. Advice on publishing your work in the journal may be found at www.iop.org/journals/authors/jopb. Submissions should ideally be in either standard LaTeX form or Microsoft Word. There are no page charges for publication. In addition to the usual 50 free reprints, the corresponding author of each paper published will receive a complimentary copy of the topical issue. Contributions to the topical issue should if possible be submitted electronically at www.iop.org/journals/jopb. or by e-mail to jopb@iop.org. Authors unable to submit online or by e-mail may send hard copy contributions (enclosing the electronic code) to: Dr Claire Bedrock (Publisher), Journal of Optics B: Quantum and Semiclassical Optics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. All
Two-dimensional order and disorder thermofields
Belvedere, L. V.
2006-11-15
The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.
Efficient Two-Dimensional-FFT Program
NASA Technical Reports Server (NTRS)
Miko, J.
1992-01-01
Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.
Berman, Oleg L; Kezerashvili, Roman Ya; Kolmakov, German V; Pomirchi, Leonid M
2015-06-01
The Bose-stimulated self-organization of a quasi-two-dimensional nonequilibrium Bose-Einstein condensate in an in-plane potential is proposed. We obtained the solution of the nonlinear, driven-dissipative Gross-Pitaevskii equation for a Bose-Einstein condensate trapped in an external asymmetric parabolic potential within the method of the spectral expansion. We found that, in sharp contrast to previous observations, the condensate can spontaneously acquire a solitonlike shape for spatially homogeneous pumping. This condensate soliton performs oscillatory motion in a parabolic trap and, also, can spontaneously rotate. Stability of the condensate soliton in the spatially asymmetric trap is analyzed. In addition to the nonlinear dynamics of nonequilibrium Bose-Einstein condensates of ultracold atoms, our findings can be applied to the condensates of quantum well excitons and cavity polaritons in semiconductor heterostructure, and to the condensates of photons.
Two-dimensional Topology of Cosmological Reionization
NASA Astrophysics Data System (ADS)
Wang, Yougang; Park, Changbom; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-11-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan E-mail: cbp@kias.re.kr
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Traveling dark solitons in superfluid Fermi gases
Liao Renyuan; Brand, Joachim
2011-04-15
Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.
Local properties of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Drewes, Jan; Miller, Luke; Cocchi, Eugenio; Chan, Chun Fai; Pertot, Daniel; Brennecke, Ferdinand; Köhl, Michael
2016-05-01
Quantum gases of interacting fermionic atoms in optical lattices promise to shed new light on the low-temperature phases of the Hubbard model such as spin-ordered phases, or in particular, on possible d-wave superconductivity. In this context it remains challenging to further reduce the temperature of the trapped gas. We experimentally realize the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40K atoms into a three-dimensional optical lattice geometry. By tuning the interaction between the two lowest hyperfine states to strong repulsion the two-dimensional Mott-insulator is created. High resolution absorption imaging in combination with radio-frequency spectroscopy is applied to spatially resolve the atomic distribution in a single layer in the vertical direction. This measurement scheme gives direct access to the local properties of the trapped gas and we present most recent data on the distribution of entropy and density-density fluctuations.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space. PMID:26430982
Modeling and Experimentation on a Two-dimensional Synthetic jet
NASA Astrophysics Data System (ADS)
Wang, Yunfei; Mohseni, Kamran
2007-11-01
Hotwire anemometry is employed in order to investigate the spatial development of a two-dimensional synthetic jet. Flow velocity at various locations downstream from a slit is measured. A self similar behavior in the measured velocity is observed. An analytical model for a steady synthetic jet is developed that accurately matches the experimental data. As observed by other groups, the two-dimensional synthetic jet spreads at a rate higher than a continuous jet. This rate is accurately predicted by our model. It is identified that the main difference between a continuous jet and a synthetic jet is the higher value of the virtual viscosity (eddy viscosity) in a synthetic jet. This is attributed to the pulsate nature of a synthetic jet that makes it more susceptible to turbulence.
Two-dimensional attosecond electron wave-packet interferometry.
Xie, Xinhua
2015-05-01
We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Two-Dimensional Attosecond Electron Wave-Packet Interferometry
NASA Astrophysics Data System (ADS)
Xie, Xinhua
2015-05-01
We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.
Two-Dimensional Turbulence in Magnetized Plasmas
ERIC Educational Resources Information Center
Kendl, A.
2008-01-01
In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…
Two-Dimensional Motions of Rockets
ERIC Educational Resources Information Center
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
High-resolution two dimensional advective transport
Smith, P.E.; Larock, B.E.
1989-01-01
The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less
Program Generates Two-Dimensional Computational Grids
NASA Technical Reports Server (NTRS)
Vu, Bruce T.
1994-01-01
TDIGG is fast and versatile computer program for generating two-dimensional computational grids for use in programs solving equations of flow by finite-difference methods. Both algebraic and elliptic grid-generation systems included. Enables user to view results of each iteration. Written in FORTRAN 77.
Coherent matter waves of a dipolar condensate in two-dimensional optical lattices
Zhang Aixia; Xue Jukui
2010-07-15
The coherent matter waves of a dipolar condensate in deep two-dimensional (2D) tilted and nontilted optical lattices are studied both analytically and numerically. It is shown that, in tilted lattices, by properly designing the sign and the magnitude of the contact interaction and the dipolar interaction, it is possible to control the decoherence of Bloch oscillations. Contrary to the usual short-range interacting Bose system, long-lived Bloch oscillations of the dipolar condensate are achieved when the dipolar interaction, the contact interaction, and the lattice dimension satisfy an analytical condition. Furthermore, we predict that, in untilted lattices, stable coherent 2D moving soliton and breather states of the dipolar condensate exist. This fact is very different from the purely short-range interacting Bose system (where the moving soliton cannot be stabilized in high-dimensional lattices). The dipolar interaction can lead to some novel phenomena that can not appear in short-range interacting BEC system.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-01-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776
Two-dimensional ranking of Wikipedia articles
NASA Astrophysics Data System (ADS)
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Plasmonics with two-dimensional conductors
Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee
2014-01-01
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472
Plasmonics with two-dimensional conductors.
Yoon, Hosang; Yeung, Kitty Y M; Kim, Philip; Ham, Donhee
2014-03-28
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics.
Two dimensional wedge/translating shroud nozzle
NASA Technical Reports Server (NTRS)
Maiden, D. L. (Inventor)
1978-01-01
A jet propulsion exhaust nozzle is reported for multi-engine installations which produces high internal/external, thrust-minus-drag, performance for transonic cruise or transonic acceleration as well as improved performance at subsonic and supersonic speeds. A two dimensional wedge/translating shroud provides the variable nozzle exit geometry needed to achieve high engine performance over a wide range of throttle power settings.
Deeply subrecoil two-dimensional Raman cooling
Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.
2004-10-01
We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.
Two-Dimensional Acousto-Optical Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Lesh, James R.; Metscher, Brian
1991-01-01
State-of-the-art two-dimensional acousto-optical spectrum analyzer processes input radio-frequency signal in real time into components in any number of spectral channels up to about 10(Sup5). Input radio-frequency signal to be analyzed launched via transducer into acousto-optical device along x axis. Acousto-optical device becomes Bragg cell. Pulsed plane waves of light from laser aimed at Bragg cell, which spatially modulates phases of plane waves and diffracts waves according to pattern of acoustic signal.
Asymmetric soliton mobility in competing linear-nonlinear parity-time-symmetric lattices.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2016-09-15
We address the transverse mobility of spatial solitons in competing parity-time-symmetric linear and nonlinear lattices. The competition between out-of-phase linear and nonlinear lattices results in a drastic mobility enhancement within a range of soliton energies. We show that within such a range, the addition of even a small imaginary part in the linear potential makes soliton mobility strongly asymmetric. For a given initial phase tilt, the velocity of soliton motion grows with an increase of the balanced gain/losses. In this regime of enhanced mobility, tilted solitons can efficiently drag other solitons that were initially at rest to form moving soliton pairs. PMID:27628394
Onset of transverse instabilities of confined dark solitons
NASA Astrophysics Data System (ADS)
Hoefer, M. A.; Ilan, B.
2016-07-01
We investigate propagating dark soliton solutions of the two-dimensional defocusing nonlinear Schrödinger or Gross-Pitaevskii (NLS-GP) equation that are transversely confined to propagate in an infinitely long channel. Families of single, vortex, and multilobed solitons are computed using a spectrally accurate numerical scheme. The multilobed solitons are unstable to small transverse perturbations. However, the single-lobed solitons are stable if they are sufficiently confined along the transverse direction, which explains their effective one-dimensional dynamics. The emergence of a transverse modulational instability is characterized in terms of a spectral bifurcation. The critical confinement width for this bifurcation is found to coincide with the existence of a propagating vortex solution and the onset of a "snaking" instability in the dark soliton dynamics that, in turn, give rise to vortex or multivortex excitations. These results shed light on the superfluidic hydrodynamics of dispersive shock waves in Bose-Einstein condensates and nonlinear optics.
Nonlocal soliton scattering in random potentials
NASA Astrophysics Data System (ADS)
Piccardi, Armando; Residori, Stefania; Assanto, Gaetano
2016-07-01
We experimentally investigate the transport behaviour of nonlocal spatial optical solitons when launched in and interacting with propagation-invariant random potentials. The solitons are generated in nematic liquid crystals; the randomness is created by suitably engineered illumination of planar voltage-biased cells equipped with a photosensitive wall. We find that the fluctuations follow a super-diffusive trend, with the mean square displacement lowering for decreasing spatial correlation of the noise.
Resource Letter Sol-1: Solitons
NASA Astrophysics Data System (ADS)
Degasperis, Antonio
1998-06-01
This Resource Letter provides a guide to the literature on the theory of solitons and its relevance in physics. Journal articles and books are cited for the following topics: the history of solitons, construction of soliton equations and of soliton solutions, solitons and mathematics, quantum solitons, solitons in physics and near-integrable equations.
Gauge equivalence in two-dimensional gravity
Fujiwara, T. ); Igarashi, Y. ); Kubo, J. ); Tabei, T. )
1993-08-15
Two-dimensional quantum gravity is identified as a second-class system which we convert into a first-class system via the Batalin-Fradkin (BF) procedure. Using the extended phase space method, we then formulate the theory in the most general class of gauges. The conformal gauge action suggested by David, Distler, and Kawai is derived from first principles. We find a local, light-cone gauge action whose Becchi-Rouet-Stora-Tyutin invariance implies Polyakov's curvature equation [partial derivative][sub [minus
Quasicondensation in Two-Dimensional Fermi Gases.
Wu, Chien-Te; Anderson, Brandon M; Boyack, Rufus; Levin, K
2015-12-11
In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS. PMID:26705613
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-01
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants. PMID:22720790
Pressure of two-dimensional Yukawa liquids
NASA Astrophysics Data System (ADS)
Feng, Yan; Goree, J.; Liu, Bin; Wang, Lei; Tian, Wen-de
2016-06-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner-Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas.
Program For Two-Dimensional Thermoplastic Deformation
NASA Technical Reports Server (NTRS)
Orient, George E.
1993-01-01
SOLAS contains number of utility programs for use with finite-element simulations. Designed to handle two-dimensional problems of quasi-static thermoplastic deformation. Includes optional postprocessing software, independent of solution codes, generating unified element-by-element list of quantitative results of computation, plus file containing signed equivalent stresses, equivalent strains, and multiaxiality factor parameter. Signs of equivalent quantities expressed either with respect to maximum principal quantities or with respect to directions defined by user. Written in UNIX shell script and FORTRAN 77.
Numerical simulations of two-dimensional QED
Carson, S.R.; Kenway, R.D.
1986-02-01
We describe the computer simulation of two-dimensional QED on a 64 x 64 Euclidean space-time lattice using the Susskind lattice fermion action. Theorder parameter for chiral symmetry breaking and the low-lying meson masses are calculated for both the model with two continuum flavours, which arises naturally in this formulation, and the model with one continuum falvour obtained by including a nonsymmetric mass term and setting one fermion mass equal to the cut-off. Results are compared with those obtined using the quenched approximation, and with analytic predictions.
Can Two-Dimensional Boron Superconduct?
Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I
2016-04-13
Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K.
FRACFLO. Two-Dimensional Ground Water Transport
Gureghian, A.B.
1990-07-01
FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturated with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.
Solitonic axion condensates modeling dark matter halos
Castañeda Valle, David Mielke, Eckehard W.
2013-09-15
Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-01-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441
Two-dimensional shape memory graphene oxide
NASA Astrophysics Data System (ADS)
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Two-dimensional shape memory graphene oxide.
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe
2016-01-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Lateral and Vertical Two-Dimensional Layered Topological Insulator Heterostructures.
Li, Yanbin; Zhang, Jinsong; Zheng, Guangyuan; Sun, Yongming; Hong, Seung Sae; Xiong, Feng; Wang, Shuang; Lee, Hye Ryoung; Cui, Yi
2015-11-24
The heterostructured configuration between two-dimensional (2D) semiconductor materials has enabled the engineering of the band gap and the design of novel devices. So far, the synthesis of single-component topological insulator (TI) 2D materials such as Bi2Se3, Bi2Te3, and Sb2Te3 has been achieved through vapor phase growth and molecular beam epitaxy; however, the spatial controlled fabrication of 2D lateral heterostructures in these systems has not been demonstrated yet. Here, we report an in situ two-step synthesis process to form TI lateral heterostructures. Scanning transmission electron microscopy and energy-dispersive X-ray mapping results show the successful spatial control of chemical composition in these as-prepared heterostructures. The edge-induced growth mechanism is revealed by the ex situ atomic force microscope measurements. Electrical transport studies demonstrate the existence of p-n junctions in Bi2Te3/Sb2Te3 heterostructures.
Nonlinear two-dimensional model for thermoacoustic engines.
Hamilton, Mark F; Ilinskii, Yurii A; Zabolotskaya, Evgenia A
2002-05-01
A two-dimensional model and efficient solution algorithm are developed for studying nonlinear effects in thermoacoustic engines. There is no restriction on the length or location of the stack, and the cross-sectional area of the resonator may vary with position along its axis. Reduced model equations are obtained by ordering spatial derivatives in terms of rapid variations across the pores in the stack, versus slow variations along the resonator axis. High efficiency is achieved with the solution algorithm because the stability condition for numerical integration of the model equations is connected with resonator length rather than pore diameter. Computation time is reduced accordingly, by several orders of magnitude, without sacrificing spatial resolution. The solution algorithm is described in detail, and the results are verified by comparison with established linear theory. Two examples of nonlinear effects are investigated briefly, the onset of instability through to saturation and steady state, and nonlinear waveform distortion as a function of resonator shape.
Kinetic theory of a two-dimensional magnetized plasma.
NASA Technical Reports Server (NTRS)
Vahala, G.; Montgomery, D.
1971-01-01
Several features of the equilibrium and nonequilibrium statistical mechanics of a two-dimensional plasma in a uniform dc magnetic field are investigated. The charges are assumed to interact only through electrostatic potentials. The problem is considered both with and without the guiding-center approximation. With the guiding-center approximation, an appropriate Liouville equation and BBGKY hierarchy predict no approach to thermal equilibrium for the spatially uniform case. For the spatially nonuniform situation, a guiding-center Vlasov equation is discussed and solved in special cases. For the nonequilibrium, nonguiding-center case, a Boltzmann equation, and a Fokker-Planck equation are derived in the appropriate limits. The latter is more tractable than the former, and can be shown to obey conservation laws and an H-theorem, but contains a divergent integral which must be cut off on physical grounds. Several unsolved problems are posed.
Two-dimensional optical processing using one-dimensional input devices
NASA Technical Reports Server (NTRS)
Psaltis, D.
1984-01-01
Two-dimensional optical processing architectures that are implemented with one-dimensional input spatial light modulators are reviewed. The advanced state of the art of available one-dimensional devices and the flexibility that exists in the design of two-dimensional architectures with one-dimensional transducers leads to the implementation of the most powerful and versatile optical processors. Signal and image processing architectures of this type are discussed.
Optical-soliton and chaotic motions in a nonlocal nonlinear medium
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Liu, Lei
2016-05-01
The coupled equations for the incoherent optical spatial solitons in a nonlocal nonlinear medium is studied analytically. With the soliton solutions hereby obtained via the symbolic computation, the optical-soliton motion in the nonlocal nonlinear medium is studied: ? is inversely related to ?, ?, and ?, while ? is positively related to ? and ?, but ? is independent of ?, with ? as the slowly varying amplitude of the beam, ? as the refractive index change, ? as the beam intensity distribution, ? as the frequency of the propagating beam, and ? as the unperturbed refractive index. Head-on and overtaking interactions are observed, and head-on interaction is transformed into an overtaking one with ? increasing. Bound-state interaction is displayed, and with ? increasing, the period of ? decreases, while that of ? increases. Considering the external forces in the nonlocal nonlinear medium, we explore the chaotic motions in the nonlinear nonlocal medium, including effects of the external forces on such motions. It is seen that when ? and ?, the two-dimensional attractors with stretching-and-folding structures are exhibited, and the developed chaos occurs, where ? and ? are the amplitudes of external forces, c is the speed of light in vacuum. Such chaotic motions are weakened with ?, ?, ?, and ? increasing, or with ? decreasing, where ? and ? represent the frequencies of external forces.
Yan, Zhenya; Wen, Zichao; Hang, Chao
2015-08-01
We present a unified theoretical study of the bright solitons governed by self-focusing and defocusing nonlinear Schrödinger (NLS) equations with generalized parity-time- (PT) symmetric Scarff-II potentials. Particularly, a PT-symmetric k-wave-number Scarff-II potential and a multiwell Scarff-II potential are considered, respectively. For the k-wave-number Scarff-II potential, the parameter space can be divided into different regions, corresponding to unbroken and broken PT symmetry and the bright solitons for self-focusing and defocusing Kerr nonlinearities. For the multiwell Scarff-II potential the bright solitons can be obtained by using a periodically space-modulated Kerr nonlinearity. The linear stability of bright solitons with PT-symmetric k-wave-number and multiwell Scarff-II potentials is analyzed in detail using numerical simulations. Stable and unstable bright solitons are found in both regions of unbroken and broken PT symmetry due to the existence of the nonlinearity. Furthermore, the bright solitons in three-dimensional self-focusing and defocusing NLS equations with a generalized PT-symmetric Scarff-II potential are explored. This may have potential applications in the field of optical information transmission and processing based on optical solitons in nonlinear dissipative but PT-symmetric systems.
Two-Dimensional Low-Turbulence Tunnel
NASA Technical Reports Server (NTRS)
1937-01-01
Construction of the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a
Two-Dimensional Low-Turbulence Tunnel
NASA Technical Reports Server (NTRS)
1938-01-01
Construction of the wood frame for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the
Two-Dimensional Low-Turbulence Tunnel
NASA Technical Reports Server (NTRS)
1938-01-01
Manometer for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a space
Spatial coherence of a polariton condensate.
Deng, Hui; Solomon, Glenn S; Hey, Rudolf; Ploog, Klaus H; Yamamoto, Yoshihisa
2007-09-21
We perform Young's double-slit experiment to study the spatial coherence properties of a two-dimensional dynamic condensate of semiconductor microcavity polaritons. The coherence length of the system is measured as a function of the pump rate, which confirms a spontaneous buildup of macroscopic coherence in the condensed phase. An independent measurement reveals that the position and momentum uncertainty product of the condensate is close to the Heisenberg limit. An experimental realization of such a minimum uncertainty wave packet of the polariton condensate opens a door to coherent matter-wave phenomena such as Josephson oscillation, superfluidity, and solitons in solid state condensate systems.
Multiscale modeling of two-dimensional contacts.
Luan, B Q; Hyun, S; Molinari, J F; Bernstein, N; Robbins, Mark O
2006-10-01
A hybrid simulation method is introduced and used to study two-dimensional single-asperity and multi-asperity contacts both quasistatically and dynamically. The method combines an atomistic treatment of the interfacial region with a finite-element method description of subsurface deformations. The dynamics in the two regions are coupled through displacement boundary conditions applied at the outer edges of an overlap region. The two solutions are followed concurrently but with different time resolution. The method is benchmarked against full atomistic simulations. Accurate results are obtained for contact areas, pressures, and static and dynamic friction forces. The time saving depends on the fraction of the system treated atomistically and is already more than a factor of 20 for the relatively small systems considered here.
Two-dimensional swimming behavior of bacteria
NASA Astrophysics Data System (ADS)
Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin
Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.
Two-Dimensional Speckle Strain Imaging
Pignatelli, Ricardo; Law, Mark A.; Martinez, Hugo; Altman, Carolyn; Ayres, Nancy; Jefferies, John L.; Ganame, Javier
2012-01-01
Two-dimensional speckle-tracking strain imaging (speckle strain imaging) is useful for evaluating left ventricular myocardial function in patients with ischemic heart disease and cardiomyopathy, including hypertrophic and dilated phenotypes. The usefulness of speckle strain imaging in patients with pheochromocytoma who are undergoing adrenal surgery has been described, but we found no reports of the use of this method to evaluate ventricular dysfunction longitudinally in children. Herein, we describe the case of a 10-year-old girl with a paraganglioma, acute junctional tachycardia, and myocardial dysfunction. After control of the tachycardia and partial resection of the tumor, speckle strain imaging enabled clinical management that led to substantial improvement in the patient's initially diffuse myocardial dysfunction. Because conventional echocardiographic methods alone may be inadequate to guide the management of pediatric patients with partially resected neuroendocrine tumors, we recommend speckle strain imaging as an additional noninvasive option for treatment guidance and monitoring of cardiac tissue response. PMID:22412245
Epitaxial growth of two-dimensional stanene
NASA Astrophysics Data System (ADS)
Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng
2015-10-01
Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.
Intrinsic two-dimensional features as textons
NASA Technical Reports Server (NTRS)
Barth, E.; Zetzsche, C.; Rentschler, I.
1998-01-01
We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.
Janus Spectra in Two-Dimensional Flows.
Liu, Chien-Chia; Cerbus, Rory T; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α, may theoretically take either of two distinct values, 3 or 5/3, but measurements downstream of obstacles have invariably revealed α=3. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5/3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows. PMID:27661693
Two-dimensional ultrasound and cardiac operations.
Spotnitz, H M
1982-01-01
Two-dimensional ultrasound was employed for qualitative and quantitative studies during cardiac operations in 74 patients. A gas-sterilized phased-array transducer applied directly to the anterior surface of the heart produced high-quality images without a water path or other special manipulations. The techniques employed were successful in demonstrating alterations in cardiac anatomy associated with valve disease and cardiac tumors. Continuous clouds of microbubbles ejected from the left ventricle immediately following cardiopulmonary bypass were detected in 42% of 45 patients studied. Measurement of short-axis area change during systole proved useful for evaluation of intraoperative changes in left ventricular function. In the perioperative period, with the chest closed, the method detected increasing left ventricular mass during transplant rejection and was useful for monitoring changes in left ventricular performance when image quality was sufficient. The capabilities and limitations of this technique for special studies during cardiac operations should be familiar to surgeons with access to the method.
Two-dimensional nuclear magnetic resonance petrophysics.
Sun, Boqin; Dunn, Keh-Jim
2005-02-01
Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623
Two-dimensional dipolar nematic colloidal crystals.
Skarabot, M; Ravnik, M; Zumer, S; Tkalec, U; Poberaj, I; Babic, D; Osterman, N; Musevic, I
2007-11-01
We study the interactions and directed assembly of dipolar nematic colloidal particles in planar nematic cells using laser tweezers. The binding energies for two stable configurations of a colloidal pair with homeotropic surface alignment are determined. It is shown that the orientation of the dipolar colloidal particle can efficiently be controlled and changed by locally quenching the nematic liquid crystal from the laser-induced isotropic phase. The interaction of a single colloidal particle with a single colloidal chain is determined and the interactions between pairs of colloidal chains are studied. We demonstrate that dipolar colloidal chains self-assemble into the two-dimensional (2D) dipolar nematic colloidal crystals. An odd-even effect is observed with increasing number of colloidal chains forming the 2D colloidal crystal. PMID:18233658
Two-dimensional Inductive Position Sensing System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)
2015-01-01
A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.
Janus Spectra in Two-Dimensional Flows
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-Dimensional Ground Water Transport
1992-03-05
FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less
Two-dimensional Gel Electrophoresis (2DE)
NASA Astrophysics Data System (ADS)
Kłodzińska, Ewa; Buszewski, Bogusław
The chemical compounds, which are present in the environment, increasingly cause bad effects on health. The most serious effects are tumors and various mutations at the cellular level. Such compounds, from the analytical point of view, can serve the function of biomarkers, constituting measurable changes in the organism's cells and biochemical processes occurring therein. The challenge of the twenty-first century is therefore searching for effective and reliable methods of identification of biomarkers as well as understanding bodily functions, which occur in living organisms at the molecular level. The irreplaceable tool for these examinations is proteomics, which includes both quality and quantity analysis of proteins composition, and also makes it possible to learn their functions and expressions. The success of proteomics examinations lies in the usage of innovative analytical techniques, such as electromigration technique, two-dimensional electrophoresis in polyacrylamide gel (2D PAGE), liquid chromatography, together with high resolution mass spectrometry and bio-informatical data analysis. Proteomics joins together a number of techniques used for analysis of hundreds or thousands of proteins. Its main task is not the examination of proteins inside the particular tissue but searching for the differences in the proteins' profile between bad and healthy tissues. These differences can tell us a lot regarding the cause of the sickness as well as its consequences. For instance, using the proteomics analysis it is possible to find relatively fast new biomarkers of tumor diseases, which in the future will be used for both screening and foreseeing the course of illness. In this chapter we focus on two-dimensional electrophoresis because as it seems, it may be of enormous importance when searching for biomarkers of cancer diseases.
Two-dimensional virtual impactors. Final report
Forney, L.J.; Ravenhall, D.G.
1980-12-01
Theoretical predictions using both potential flow analyses and solutions to Navier-Stokes equations are made for the operating characteristics of a two-dimensional virtual impactor. Experiments were performed with 2.5 ..mu..m, uranine tagged, di-octylphthalate (DOP) oil droplets for a wide range of prototype geometries to measure the magnitude of internal losses and to fully characterize the instrument response. The influence of geometry including the throat angle (38/sup 0/ less than or equal to ..beta../sub 0/ less than or equal to 58.2/sup 0/) and normalized void width (0.7 less than or equal to h/w less than or equal to 1.5) on the particle cutoff diameter, efficiency curve steepness and properties of the internal particle loss factor are presented for fixed instrument Reynolds numbers Re = 1540 and bleed flow f = 0.1. The theory, supported by trends in the empirical data, predicts that internal particle losses reduce to zero as the normalized void width increases to h/w = 1.4 +- .1 while the data show a minimum at h/w = 1.6 +- .1. Increasing the void width, however, is shown to substantially reduce the steepness of the particle efficiency curves. Visual observations of the onset of fluid separation for two-dimensional jets impinging upon a void were conducted with a scaled-up water model and correlated with theory. It was found that the limiting void width h/sub lim//w marking the onset of fluid instabilities peaked for an intermediate value of the fluid deflecting plate angle ..beta.. approx. = 80/sup 0/ with larger values of h/sub lim//w corresponding to smaller throat angles ..beta../sub 0/. The limiting void width h/sub lim//w also increased with larger bleed flows into the void. These instabilities may make it difficult to correlate experimental virtual impactor data with theory.
A phase demodulation method for two-dimensional grating-based X-ray interferometry.
Nagai, Kentaro
2014-03-01
This paper presents a novel approach to achieving high spatial resolution in the demodulation of images produced by a two-dimensional X-ray Talbot interferometry (XTI) system. Currently, demodulation of XTI images is mainly performed by either phase-stepping (PS) or Fourier transform (FT) methods. However, the PS method for two-dimensional XTI demodulation requires a larger number of exposures and a more complex grating control process than that of one-dimensional XTI. On the other hand, although the FT method uses only a single-fringe image, it gives lower spatial resolution than the PS method. For practical application of two-dimensional XTI, a simpler exposure process with high spatial resolution is required. In this paper, we introduce a hybrid method combining the PS and FT methods. This method simplifies the exposure process in comparison with the PS method required in two-dimensional XTI while achieving higher spatial resolution than the FT method in the demodulation of images. The method works by using additional exposures to eliminate unnecessary spectral components that appear in the FT method. Furthermore, the proposed method is demonstrated by using actual two-dimensional XTI data and shown to achieve high spatial resolution in the demodulation of images for both the x- and y-differential phase components. PMID:24470416
GAUGE3. Two-Dimensional Neutron Diffusion-Depletion for Hexagonal Lattice
Koch, P.; Shirley, G.
1993-09-01
GAUGE3 is a two-dimensional few-group neutron diffusion-depletion program with a uniform triangular spatial mesh for calculations involving reactors with hexagonal core configurations. GAUGE3 calculates the effective multiplication factor and the spatial distribution of the neutron flux and power.
Coherent atomic soliton molecules for matter-wave switching
Yin, Chenyun; Berloff, Natalia G.; Perez-Garcia, Victor M.; Novoa, David; Carpentier, Alicia V.; Michinel, Humberto
2011-05-15
We discuss the dynamics of interacting dark-bright two-dimensional vector solitons in multicomponent immiscible bulk Bose-Einstein condensates. We describe matter-wave molecules without a scalar counterpart that can be seen as bound states of vector objects. We also analyze the possibility of using these structures as building blocks for the design of matter-wave switchers.
Scattering of solitons in the formalism of the Darboux transform
Matveev, V.B.; Sall', M.A.
1986-09-10
By means of the technique of Darboux transformations formulas are obtained which describe the scattering of solitons in the Kadomtsev-Petviashvili equations; the KdV equation, the nonlocal KdV equation, the two-dimensionalized Toda lattice and its periodic reductions, and, in particular, the sine-Gordon equation.
Scattering of solitons in the formalism of the Darboux transform
Matveev, V.B.; Sall, M.A.
1986-09-01
By means of the technique of Darboux transformations formules are obtained which describe the scattering of solitons in the Kadomtsev-Petviashvili equations; the KdV equation, the nonlocal KdV equation, the two-dimensionalized Toda lattice and its periodic reductions, and, in particular, the Sine-Gordon equation.
Pressure profiles of nonuniform two-dimensional atomic Fermi gases
NASA Astrophysics Data System (ADS)
Martiyanov, Kirill; Barmashova, Tatiana; Makhalov, Vasiliy; Turlapov, Andrey
2016-06-01
Spatial profiles of the pressure have been measured in atomic Fermi gases with primarily two-dimensional (2D) kinematics. The in-plane motion of the particles is confined by a Gaussian-shape potential. The two-component deeply degenerate Fermi gases are prepared at different values of the s -wave attraction. The pressure profile is found using the force-balance equation, from the measured density profile and the trapping potential. The pressure is compared to zero-temperature models within the local density approximation. In the weakly interacting regime, the pressure lies above a Landau Fermi-liquid theory and below the ideal-Fermi-gas model, whose prediction coincides with that of the Cooper-pair mean-field theory. The values closest to the data are provided by the approach where the mean field of Cooper pairs is supplemented with fluctuations. In the regime of strong interactions, in response to the increasing attraction, the pressure shifts below this model reaching lower values calculated within Monte Carlo methods. Comparison to models shows that interaction-induced departure from 2D kinematics is either small or absent. In particular, comparison with a lattice Monte Carlo suggests that kinematics is two dimensional in the strongly interacting regime.
Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions.
Duan, Xidong; Wang, Chen; Shaw, Jonathan C; Cheng, Rui; Chen, Yu; Li, Honglai; Wu, Xueping; Tang, Ying; Zhang, Qinling; Pan, Anlian; Jiang, Jianhui; Yu, Ruqing; Huang, Yu; Duan, Xiangfeng
2014-12-01
Two-dimensional layered semiconductors such as MoS₂ and WSe₂ have attracted considerable interest in recent times. Exploring the full potential of these layered materials requires precise spatial modulation of their chemical composition and electronic properties to create well-defined heterostructures. Here, we report the growth of compositionally modulated MoS₂-MoSe₂ and WS₂-WSe₂ lateral heterostructures by in situ modulation of the vapour-phase reactants during growth of these two-dimensional crystals. Raman and photoluminescence mapping studies demonstrate that the resulting heterostructure nanosheets exhibit clear structural and optical modulation. Transmission electron microscopy and elemental mapping studies reveal a single crystalline structure with opposite modulation of sulphur and selenium distributions across the heterostructure interface. Electrical transport studies demonstrate that the WSe₂-WS₂ heterojunctions form lateral p-n diodes and photodiodes, and can be used to create complementary inverters with high voltage gain. Our study is an important advance in the development of layered semiconductor heterostructures, an essential step towards achieving functional electronics and optoelectronics.
Microwave solitons in magnetic films (invited) (abstract)
NASA Astrophysics Data System (ADS)
Boardman, A. D.; Xie, K.; Mehta, H.; Nikitov, S. A.
1996-04-01
Nonlinear waves in the form of solitons in magnetic films are attracting attention because of the interesting possibility of making novel spatial, and temporal, soliton devices that will operate in the technologically important microwave (GHz) frequency window. Some fascinating pioneering experimental work has been performed in this area and there is now every possibility that manipulation of solitonlike microwave pulses will be the basis of an entirely new range of devices. Both theory and experiment show that solitons are extremely robust and behave rather like particles. Magnetic films look set to become as successful as optical fibers in supporting bright envelope solitons; yet soliton behavior can often seem hard to comprehend. While they are subtle in their behavior they can be understood from many points of view that are physically, or mathematically, based. This presentation will explain what bright microwave envelope solitons are, drawing upon as much physical insight and analogy as possible. The necessary and sufficient conditions for soliton existence will be carefully set out, especially with respect to their relationship to the input conditions of a device. A substantial number of numerical examples will be used and the prospects for major expansion in the experimental area will be assessed. In the latter part of the presentation some important applications for solitons will be addressed. These will include the analysis of a switching device but logic devices, and various forms of pump-probe arrangements, will also be retrieved. Finally, the optimistic view that solitons in magnetic materials are now realistic tools will be expressed and the opportunities provided by dark and higher-dimensional solitons will be discussed.
Perturbation-induced dynamics of dark solitons
NASA Astrophysics Data System (ADS)
Kivshar, Yuri S.; Yang, Xiaoping
1994-02-01
We study analytically and numerically the effect of perturbations on (spatial and temporal) dark optical solitons. Our purpose is to elaborate a general analytical approach to describe the dynamics of dark solitons in the presence of physically important effects which break integrability of the primary nonlinear Schrödinger equation. We show that the corresponding perturbation theory differs for the cases of constant and varying backgrounds which support the dark solitons. We present a general formalism describing the perturbation-induced dynamics for both cases and also analyze the influence of several physically important effects, such as linear and two-photon absorption, Raman self-induced scattering, gain with saturation, on the propagation of the dark soliton. As we show, the perturbation-induced dynamics of a dark soliton may be treated as a result of the combined effect of the background evolution and internal soliton dynamics, the latter being characterized by the soliton phase angle. A similar approach is applied to the problem of the dark-soliton propagation on a finite-width background. We analyze adiabatic modification of a dark pulse propagating on a dispersively spreading finite-width background, and we prove analytically that a frequency chirp of the background does not affect the soliton motion. As a matter of fact, the results obtained describe the perturbation-induced dynamics of dark solitons in the so-called adiabatic approximation and, as we show for all the cases analyzed, they are in excellent agreement with direct numerical simulations of the corresponding perturbed nonlinear Schrödinger equation, provided the effects produced by the emitted radiation are small.
Ion acoustic solitons in Earth's upward current region
Main, D. S.; Scholz, C.; Newman, D. L.; Ergun, R. E.
2012-07-15
The formation and evolution of ion acoustic solitons in Earth's auroral upward current region are studied using one- and two-dimensional (2D) electrostatic particle-in-cell simulations. The one-dimensional simulations are confined to processes that occur in the auroral cavity and include four plasma populations: hot electrons, H{sup +} and O{sup +} anti-earthward ion beams, and a hot H{sup +} background population. Ion acoustic solitons are found to form for auroral-cavity ion beams consistent with acceleration through double-layer (DL) potentials measured by FAST. A simplified one-dimensional model simulation is then presented in order to isolate the mechanisms that lead to the formation of the ion acoustic soliton. Results of a two-dimensional simulation, which include both the ionosphere and the auroral cavity, separated by a low-altitude DL, are then presented in order to confirm that the soliton forms in a more realistic 2D geometry. The 2D simulation is initialized with a U-shaped potential structure that mimics the inferred shape of the low altitude transition region based on observations. In this simulation, a soliton localized perpendicular to the geomagnetic field is observed to form and reside next to the DL. Finally, the 2D simulation results are compared with FAST data and it is found that certain aspects of the data can be explained by assuming the presence of an ion acoustic soliton.
Fujimoto, Kazuya; Tsubota, Makoto
2010-10-15
The hydrodynamics of quantized vortices and solitons in an atomic Bose-Einstein condensate excited by an oscillating potential are studied by numerically solving the two-dimensional Gross-Pitaevskii equation. The oscillating potential keeps nucleating vortex dipoles, whose impulses alternately change their direction synchronously with the oscillation of the potential. This leads to synergy dynamics of vortices and solitons in quantum fluids.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder. PMID:27580163
Seismic isolation of two dimensional periodic foundations
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-07-28
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207
Two-dimensional Dirac signature of germanene
Zhang, L.; Bampoulis, P.; Houselt, A. van; Zandvliet, H. J. W.
2015-09-14
The structural and electronic properties of germanene coated Ge{sub 2}Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 Å and a buckling of 0.2 Å. The zigzag edges of germanene are reconstructed and display a 4× periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge{sub 2}Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Epitaxial Growth of Two-Dimensional Stanene
NASA Astrophysics Data System (ADS)
Jia, Jinfeng
Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth. Ge-based germanene was realized by mechanical exfoliation. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations, or can support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall (QAH) effect. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene. In cooperation with Fengfeng Zhu, Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Canhua Liu, Dong Qian, Shou-Cheng Zhang.
Photodetectors based on two dimensional materials
NASA Astrophysics Data System (ADS)
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Braid Entropy of Two-Dimensional Turbulence.
Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael
2015-12-22
The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length NE of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy SBraid. The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of NE is positively skewed and shows strong exponential tails. Our results suggest that SBraid may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.
Two-dimensional cyanates: stabilization through hydrogenation.
Tsetseris, Leonidas
2016-06-01
According to first-principles calculations, it should be possible to grow two-dimensional (2D) forms of copper thio-cyanate (CuSCN) and copper seleno-cyanate (CuSeCN) since their energies are only marginally higher than those of their most stable three-dimensional (3D) wurtzite structures. Here we show using the same theoretical approach that chemisorption reactions of hydrogen molecules with the above-mentioned 2D CuSCN and CuSeCN systems enhance their stability as they decrease the energy difference with respect to the corresponding hydrogenated forms of the wurtzite crystals. Hydrogenation causes a sizeable decrease in the energy band gap by 0.56 eV and 0.65 eV for hydrogenated 2D-CuSCN (CuSCNH2) and 2D-CuSeCN (CuSeCNH2), respectively. Finally, we describe the stability of hydrogen vacancies in CuSCNH2 and CuSeCNH2 and show that the presence of isolated single H vacancies or di-vacancies does not affect significantly the electronic properties of the host systems close to the valence and conduction band edges. PMID:27183226
Two-dimensional atomic crystals beyond graphene
NASA Astrophysics Data System (ADS)
Kaul, Anupama B.
2014-06-01
Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Dynamics of two-dimensional dipole systems
Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan
2010-09-15
Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.
An atlas of two-dimensional materials.
Miró, Pere; Audiffred, Martha; Heine, Thomas
2014-09-21
The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls. PMID:24825454
Braid Entropy of Two-Dimensional Turbulence
Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael
2015-01-01
The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261
Order Parameters for Two-Dimensional Networks
NASA Astrophysics Data System (ADS)
Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi
2007-10-01
We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.
An atlas of two-dimensional materials.
Miró, Pere; Audiffred, Martha; Heine, Thomas
2014-09-21
The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls.
Compact Two-Dimensional Spectrometer Optics
NASA Technical Reports Server (NTRS)
Hong, John
2008-01-01
The figure is a simplified depiction of a proposed spectrometer optical unit that would be suitable for incorporation into a remote-sensing instrumentation system. Relative to prior spectrometer optical assemblies, this unit would be compact and simple, largely by virtue of its predominantly two-dimensional character. The proposed unit would be a combination of two optical components. One component would be an arrayed-waveguide grating (AWG) an integrated-optics device, developed for use in wavelength multiplexing in telecommunications. The other component would be a diffraction grating superimposed on part of the AWG. The function of an AWG is conceptually simple. Input light propagates along a single-mode optical waveguide to a point where it is split to propagate along some number (N) of side-by-side waveguides. The lengths of the optical paths along these waveguides differ such that, considering the paths in a sequence proceeding across the array of waveguides, the path length increases linearly. These waveguides launch quasi-free-space waves into a planar waveguide-coupling region. The waves propagate through this region to interfere onto an array of output waveguides. Through proper choice of key design parameters (waveguide lengths, size and shape of the waveguide coupling region, and lateral distances between waveguides), one can cause the input light to be channeled into wavelength bins nominally corresponding to the output waveguides.
Two-dimensional laser interferometry analysis
NASA Astrophysics Data System (ADS)
Mehr, Leo; Concepcion, Ricky; Duggan, Robert; Moore, Hannah; Novick, Asher; Ransohoff, Lauren; Gourdain, Pierre-Alexandre; Hammer, David; Kusse, Bruce
2013-10-01
The objective of our research was to create a two-dimensional interferometer which we will use to measure plasma densities at the Cornell Research Beam Accelerator (COBRA). We built two shearing interferometers and mounted them on an optics table. They intercept the probe laser beam which travels directly through the plasma and is captured by a 16-bit CCD camera. In comparing the interferometer images before the shot and during the plasma shot, we observed both lateral and vertical shifts in the interference pattern caused by the change of the refractive index due to the plasma electrons. We developed a computer program using Matlab to map a vector field depicting the shift between the two images. This shift is proportional to the line integral of electron density through the plasma chamber. We show this method provides a reliable way to determine the plasma electron density profile. Additionally, we hope this method can improve upon the diagnostic capabilities and efficiency of data collection used with standard one-dimensional interferometry. Undergraduate.
Calculation of two-dimensional lambda modes
Belchior, A. Jr. ); Moreira, J.M.L. )
1991-01-01
A system for on-line monitoring of power distribution in small reactors (known as MAP) is under development at COPESP-IPEN. Signals of self-powered neutron detectors are input to a program that estimates the power distribution as an expansion of lambda modes. The modal coefficients are obtained from a least-mean-squares technique adequate for real-time analysis. Three-dimensional lambda modes are synthesized out of one- and two-dimensional lambda modes. As a part of this project, a modification of a computer code was carried out in order to obtain the lambda modes. The results of this effort are summarized. The lambda modes are the solutions of the time-independent multigroup neutron diffusion equation, an eigenvalue equation. Normally, the computer codes produce the fundamental mode corresponding to the largest eigenvalue; their respective interpretations are neutron flux distribution and effective multiplication factor. For calculating higher order lambda modes it is usually necessary to eliminate the contribution of the lower modes from the fission source.
SCAPS, a two-dimensional ion detector for mass spectrometer
NASA Astrophysics Data System (ADS)
Yurimoto, Hisayoshi
2014-05-01
Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40
Two-dimensional angular transmission characterization of CPV modules.
Herrero, R; Domínguez, C; Askins, S; Antón, I; Sala, G
2010-11-01
This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement. PMID:21165081
Exchange interactions of magnetic surfaces below two-dimensional materials
NASA Astrophysics Data System (ADS)
Friedrich, Rico; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan
2016-06-01
In this theoretical investigation we demonstrate that the adsorption of spatially extended two-dimensional (2D) π systems such as graphene and hexagonal boron nitride on the ferromagnetic fcc Co(111) surface leads to a specific behavior of the in-plane and interlayer Co-Co magnetic exchange interactions. More specifically, for both systems the magnetic exchange coupling within the first Co layer is enhanced, while the one between the first and the second Co layer is not modified, in contrast to the magnetic interlayer softening induced by organic molecules. Importantly, the in-plane magnetic hardening effect is mainly due to the hybridization between the pz states of the 2D π system and the d states of the Co surface.
Microwave near-field imaging of two-dimensional semiconductors.
Berweger, Samuel; Weber, Joel C; John, Jimmy; Velazquez, Jesus M; Pieterick, Adam; Sanford, Norman A; Davydov, Albert V; Brunschwig, Bruce; Lewis, Nathan S; Wallis, Thomas M; Kabos, Pavel
2015-02-11
Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS2 and n- and p-doped WSe2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects.
Approaches to verification of two-dimensional water quality models
Butkus, S.R. . Water Quality Dept.)
1990-11-01
The verification of a water quality model is the one procedure most needed by decision making evaluating a model predictions, but is often not adequate or done at all. The results of a properly conducted verification provide the decision makers with an estimate of the uncertainty associated with model predictions. Several statistical tests are available for quantifying of the performance of a model. Six methods of verification were evaluated using an application of the BETTER two-dimensional water quality model for Chickamauga reservoir. Model predictions for ten state variables were compared to observed conditions from 1989. Spatial distributions of the verification measures showed the model predictions were generally adequate, except at a few specific locations in the reservoir. The most useful statistics were the mean standard error of the residuals. Quantifiable measures of model performance should be calculated during calibration and verification of future applications of the BETTER model. 25 refs., 5 figs., 7 tabs.
Modeling complexly magnetized two-dimensional bodies of arbitrary shape
Mariano, J.; Hinze, W.J. . Dept. of Earth and Atmospheric Sciences)
1993-05-01
A method has been devised for the forward computation of magnetic anomalies due to two-dimensional (2-D) polygonal bodies with heterogeneously directed magnetization. The calculations are based on the equivalent line source approach wherein the source is subdivided into discrete elements that vary spatially in their magnetic properties. This equivalent dipole line method provides a fast and convenient means of representing and computing magnetic anomalies for bodies possessing complexly varying magnitude and direction of magnetization. The algorithm has been tested and applied to several generalized cases to verify the accuracy of the computation. The technique has also been used to model observed aeromagnetic anomalies associated with the structurally deformed, remanently magnetized Keweenawan volcanic rocks in eastern Lake Superior. This method is also easily adapted to the calculation of anomalies due to two and one-half-dimensional (2.5-D) and three-dimensional (3-D) heterogeneously magnetized sources.
Coherent transfer by adiabatic passage in two-dimensional lattices
Longhi, Stefano
2014-09-15
Coherent tunneling by adiabatic passage (CTAP) is a well-established technique for robust spatial transport of quantum particles in linear chains. Here we introduce two exactly-solvable models where the CTAP protocol can be extended to two-dimensional lattice geometries. Such bi-dimensional lattice models are synthesized from time-dependent second-quantization Hamiltonians, in which the bosonic field operators evolve adiabatically like in an ordinary three-level CTAP scheme thus ensuring adiabatic passage in Fock space. - Highlights: • New ways of coherent transport by adiabatic passage (CTAP) in 2D lattices. • Synthesis of exactly-solvable 2D lattices from a simple three-well model. • CTAP in 2D lattices can be exploited for quantum state transfer.
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate.
Anderson, B P; Haljan, P C; Regal, C A; Feder, D L; Collins, L A; Clark, C W; Cornell, E A
2001-04-01
We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.
Stabilization of ring dark solitons in Bose-Einstein condensates
Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun
2015-09-14
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, wheremore » appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.« less
Stabilization of ring dark solitons in Bose-Einstein condensates
Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun
2015-09-14
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, where appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.
Dynamics of two-dimensional bubbles.
Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón
2015-06-01
The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798
Two-dimensional dynamic fluid bowtie attenuators.
Hermus, James R; Szczykutowicz, Timothy P
2016-01-01
Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499
Dynamics of two-dimensional bubbles
NASA Astrophysics Data System (ADS)
Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón
2015-06-01
The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.
Dynamics of two-dimensional bubbles.
Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón
2015-06-01
The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.
NASA Astrophysics Data System (ADS)
Wilms, Dorothea; Virnau, Peter; Snook, Ian K.; Binder, Kurt
2012-11-01
The dynamical behavior of single-component two-dimensional colloidal crystals confined in a slit geometry is studied by Langevin dynamics simulation of a simple model. The colloids are modeled as pointlike particles, interacting with the repulsive part of the Lennard-Jones potential, and the fluid molecules in the colloidal suspension are not explicitly considered. Considering a crystalline strip of triangular lattice structure with n=30 rows, the (one-dimensional) walls confining the strip are chosen as two rigidly fixed crystalline rows at each side, commensurate with the lattice structure and, thus, stabilizing long-range order. The case when the spacing between the walls is incommensurate with the ideal triangular lattice is also studied, where (due to a transition in the number of rows, n→n-1) the confined crystal is incommensurate with the confining boundaries, and a soliton staircase forms along the walls. It is shown that mean-square displacements (MSDs) of particles as a function of time show an overshoot and then saturate at a horizontal plateau in the commensurate case, the value of the plateau being largest in the center of the strip. Conversely, when solitons are present, MSDs are largest in the rows containing the solitons, and all MSDs do not settle down at well-defined plateaus in the direction parallel to the boundaries, due to the lack of positional long-range order in ideal two-dimensional crystals. The MSDs of the solitons (which can be treated like quasiparticles at very low temperature) have also been studied and their dynamics are found to be about an order of magnitude slower than that of the colloidal particles themselves. Finally, transport of individual colloidal particles by diffusion processes is studied: both standard vacancy-interstitial pair formation and cooperative ring rotation processes are identified. These processes require thermal activation, with activation energies of the order of 10Tm (Tm being the melting temperature of
NASA Technical Reports Server (NTRS)
Chiu, Hong-Yee
1990-01-01
The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.
Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ping; Belić, Milivoj
2009-02-01
We demonstrate the existence of localized optical vortex and necklace solitons in three-dimensional (3D) highly nonlocal nonlinear media, both analytically and numerically. The 3D solitons are constructed with the help of Kummer’s functions in spherical coordinates and their unique properties are discussed. The procedure we follow offers ways for generation, control, and manipulation of spatial solitons.
Thermopower in Two-Dimensional Electron Systems
NASA Astrophysics Data System (ADS)
Chickering, William Elbridge
The subject of this thesis is the measurement and interpretation of thermopower in high-mobility two-dimensional electron systems (2DESs). These 2DESs are realized within state-of-the-art GaAs/AlGaAs heterostructures that are cooled to temperatures as low as T = 20 mK. Much of this work takes place within strong magnetic fields where the single-particle density of states quantizes into discrete Landau levels (LLs), a regime best known for the quantum Hall effect (QHE). In addition, we review a novel hot-electron technique for measuring thermopower of 2DESs that dramatically reduces the influence of phonon drag. Early chapters concentrate on experimental materials and methods. A brief overview of GaAs/AlGaAs heterostructures and device fabrication is followed by details of our cryogenic setup. Next, we provide a primer on thermopower that focuses on 2DESs at low temperatures. We then review our experimental devices, temperature calibration methods, as well as measurement circuits and protocols. Latter chapters focus on the physics and thermopower results in the QHE regime. After reviewing the basic phenomena associated with the QHE, we discuss thermopower in this regime. Emphasis is given to the relationship between diffusion thermopower and entropy. Experimental results demonstrate this relationship persists well into the fractional quantum Hall (FQH) regime. Several experimental results are reviewed. Unprecedented observations of the diffusion thermopower of a high-mobility 2DES at temperatures as high as T = 2 K are achieved using our hot-electron technique. The composite fermion (CF) effective mass is extracted from measurements of thermopower at LL filling factor nu = 3/2. The thermopower versus magnetic field in the FQH regime is shown to be qualitatively consistent with a simple entropic model of CFs. The thermopower at nu = 5/2 is shown to be quantitatively consistent with the presence of non-Abelian anyons. An abrupt collapse of thermopower is observed at
Vortices of Two Dimensional Guiding Center Plasmas.
NASA Astrophysics Data System (ADS)
Ting, Antonio Chofai
A system of two dimensional guiding center plasma in a square conducting boundary is used as a model to study the anomalous transport is magnetically confined plasma. An external gravitational force is introduced to simulate the curvature and gradient of the magnetic field. For finite boundaries, it is a Hamiltonian system with finite phase space and negative temperature states are allowed. The statistical equilibrium states of this system are described by the solutions of a Poisson's equation with self-consistently determined charge density. In the limit of zero gravity, it can be reduced to the sinh-Poisson equation (DEL)('2)u + (lamda)('2)sinh u = 0. Previous numerical efforts have found solutions with vortex structures. A novel method of generating general exact solutions to this nonlinear boundary value problem is presented. These solutions are given by. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). where E(,i)'s are constants and the dependence of (gamma)(,j)'s on x and y are given by a set of coupled first order nonlinear ordinary differential equations. These equations can be linearized to give u(x,y) in terms of Riemann theta functions u(x,y) = 2ln (THETA)(l + 1/2)(THETA)(l) . The phases l evolve linearly in x and y while nonlinear superposition is displayed in the solution u(x,y). The self-consistent Poisson's equation with gravity is studied numerically. Different branches of solutions are obtained and their relations to the zero gravity solutions are discussed. The thermodynamically most favored structure of the system carries the feature of a heavy ion vortex on top of the light electron vortex. Branches of solutions are found to merge into each other as parameters in the equations were smoothly varied. A critical value of gravitational force exists such that below which there is a possibility of hysteresis between different equilibrium states. With the help of the nonzero gravity solutions, we also have a clearer picture of the transition from
Two-dimensional vibrational-electronic spectroscopy
NASA Astrophysics Data System (ADS)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional material confined water.
Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong
2015-01-20
CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
Two-dimensional material confined water.
Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong
2015-01-20
CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and
Supersolitons: Solitonic Excitations in Atomic Soliton Chains
Novoa, David; Michinel, Humberto; Perez-Garcia, Victor M.
2008-10-03
We show that, by tuning interactions in nonintegrable vector nonlinear Schroedinger equations modeling Bose-Einstein condensates and other relevant physical systems, it is possible to achieve a regime of elastic particlelike collisions between solitons. This would allow one to construct a Newton's cradle with solitons and supersolitons: localized collective excitations in solitary-wave chains.
Two-Color Vector Solitons In Nonlocal Media
NASA Astrophysics Data System (ADS)
Alberucci, Alessandro; Peccianti, Marco; Assanto, Gaetano; Dyadyusha, Andriy; Kaczmarek, Malgosia
2006-10-01
We investigate the interaction between two beams differing in wavelength and the properties of dual-frequency spatial solitons in nonlocal birefringent reorientational media. We report the first experimental observations of anisotropic nonlocal vector solitons in unbiased nematic liquid crystals. Model and simulations, based on the paraxiality along the Poynting vectors, include joint walk-off and breathing.
The Thirring interaction in the two-dimensional axial-current-pseudoscalar derivative coupling model
Belvedere, L.V. . E-mail: armflavio@if.uff.br
2006-12-15
We reexamine the two-dimensional model of massive fermions interacting with a massless pseudoscalar field via axial-current derivative coupling. The hidden Thirring interaction in the axial-derivative coupling model is exhibited compactly by performing a canonical field transformation on the Bose field algebra and the model is mapped into the Thirring model with an additional vector-current-scalar derivative interaction (Schroer-Thirring model). The Fermi field operator is rewritten in terms of the Mandelstam soliton operator coupled to a free massless scalar field. The charge sectors of the axial-derivative model are mapped into the charge sectors of the massive Thirring model. The complete bosonized version of the model is presented. The bosonized composite operators of the quantum Hamiltonian are obtained as the leading operators in the Wilson short distance expansions.
Davydovskaya, V V; Shepelevich, V V; Matusevich, V; Kisling, A; Kovarshik, R
2010-12-09
Propagation and interaction of orthogonally polarised two-dimensional super-Gaussian light beams is studied theoretically in a 4mm-symmetry photorefractive crystal in the drift regime when the external electric field is applied to the crystal in the direction of the optical axis. The output beams displaced with respect to each other in directions parallel and perpendicular to the direction of the external electric field strength vector are considered. It is shown that an auxiliary light beam polarised orthogonally to the fundamental light beam makes it possible to carry out efficiently address localisation of the fundamental beam propagating in a quasi-soliton regime. The crystal thicknesses are found, which are optimal from the viewpoint of maximisation of the fundamental light beam deviation. It is shown that 'square' super-Gaussian beams in the near-field diffraction region are focused at smaller values of the external electric field than those of the Gaussian beams. (nonlinear optical phenomena)
Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets
NASA Astrophysics Data System (ADS)
Varma, C. M.
2015-10-01
Quasi-two-dimensional itinerant fermions in the antiferromagnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with temperature and a contribution to specific heat or thermopower proportional to T ln T . It is shown, here, that a generic model of itinerant anti-ferromagnet can be canonically transformed so that its critical fluctuations around the AFM-vector Q can be obtained from the fluctuations in the long wavelength limit of a dissipative quantum X Y model. The fluctuations of the dissipative quantum X Y model in 2D have been evaluated recently, and in a large regime of parameters, they are determined, not by renormalized spin fluctuations, but by topological excitations. In this regime, the fluctuations are separable in their spatial and temporal dependence and have a spatial correlation length which is proportional to the logarithm of the temporal correlation length, i.e., for some purposes, the effective dynamic exponent z =∞ . The time dependence gives ω /T scaling at criticality. The observed resistivity and entropy then follow. Several predictions to test the theory are also given.
Demonstration of two-dimensional time-encoded imaging of fast neutrons
Brennan, J.; Brubaker, E.; Gerling, M.; Marleau, P.; McMillan, K.; Nowack, A.; Galloudec, N. Renard-Le; Sweany, M.
2015-09-09
Here, we present a neutron detector system based on time-encoded imaging, and demonstrate its applicability toward the spatial mapping of special nuclear material. We also demonstrate that two-dimensional fast-neutron imaging with 2° resolution at 2 m stand-off is feasible with only two instrumented detectors.
Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity.
Ding, Edwin; Tang, A Y S; Chow, K W; Malomed, Boris A
2014-10-28
We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.
Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials
Mihalache, D.; Mazilu, D.; Skarka, V.; Leblond, H.; Malomed, B. A.; Aleksic, N. B.; Lederer, F.
2010-08-15
Complex Ginzburg-Landau (CGL) models of laser media (with cubic-quintic nonlinearity) do not contain an effective diffusion term, which makes all vortex solitons unstable in these models. Recently, it has been demonstrated that the addition of a two-dimensional periodic potential, which may be induced by a transverse grating in the laser cavity, to the CGL equation stabilizes compound (four-peak) vortices, but the most fundamental 'crater-shaped' vortices (CSVs), alias vortex rings, which are essentially squeezed into a single cell of the potential, have not been found before in a stable form. In this work we report on families of stable compact CSVs with vorticity S=1 in the CGL model with the external potential of two different types: an axisymmetric parabolic trap and the periodic potential. In both cases, we identify a stability region for the CSVs and for the fundamental solitons (S=0). Those CSVs which are unstable in the axisymmetric potential break up into robust dipoles. All the vortices with S=2 are unstable, splitting into tripoles. Stability regions for the dipoles and tripoles are identified, too. The periodic potential cannot stabilize CSVs with S{>=}2 either; instead, families of stable compact square-shaped quadrupoles are found.
Cardy, John; Herzog, Christopher P
2014-05-01
We consider single interval Rényi and entanglement entropies for a two dimensional conformal field theory on a circle at nonzero temperature. Assuming that the finite size of the system introduces a unique ground state with a nonzero mass gap, we calculate the leading corrections to the Rényi and entanglement entropy in a low temperature expansion. These corrections have a universal form for any two dimensional conformal field theory that depends only on the size of the mass gap and its degeneracy. We analyze the limits where the size of the interval becomes small and where it becomes close to the size of the spatial circle. PMID:24836236
Nonlinear evolution of interacting oblique waves on two-dimensional shear layers
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Choi, S.-W.
1989-01-01
The effects of critical layer nonlinearity are considered on spatially growing oblique instability waves on nominally two-dimensional shear layers between parallel streams. The analysis shows that three-dimensional effects cause nonlinearity to occur at much smaller amplitudes than it does in two-dimensional flows. The nonlinear instability wave amplitude is determined by an integro-differential equation with cubic type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. The numerical solutions always end in a singularity at a finite downstream distance.
Twisted chimera states and multicore spiral chimera states on a two-dimensional torus
NASA Astrophysics Data System (ADS)
Xie, Jianbo; Knobloch, Edgar; Kao, Hsien-Ching
2015-10-01
Chimera states consisting of domains of coherently and incoherently oscillating oscillators in a two-dimensional periodic array of nonlocally coupled phase oscillators are studied. In addition to the one-dimensional chimera states familiar from one spatial dimension, two-dimensional structures termed twisted chimera states and spiral wave chimera states are identified in simulations. The properties of many of these states, including stability, are determined using an evolution equation for a complex order parameter and are found to be in agreement with the simulations.
Twisted chimera states and multicore spiral chimera states on a two-dimensional torus.
Xie, Jianbo; Knobloch, Edgar; Kao, Hsien-Ching
2015-10-01
Chimera states consisting of domains of coherently and incoherently oscillating oscillators in a two-dimensional periodic array of nonlocally coupled phase oscillators are studied. In addition to the one-dimensional chimera states familiar from one spatial dimension, two-dimensional structures termed twisted chimera states and spiral wave chimera states are identified in simulations. The properties of many of these states, including stability, are determined using an evolution equation for a complex order parameter and are found to be in agreement with the simulations.
Direct generation of ion beam images with a two-dimensional charge injection device.
Cable, P R; Parker, M; Marcus, R K; Pochkowski, J M
1995-02-01
The use of a two-dimensional charge injection device (CID) to directly image the spatial profile of impingent positively charged ions is described. By this approach, no prior conversion from an ion beam to a photon image is required. Because of the positive response of the device to plasma photons, ions that emanated from the radiofrequency glow discharge source were diverted around a photon stop and focused onto the CID. The resultant ion images were digitized via an external image processor and corrected for dark current contributions. Two-dimensional ion images and single pixel line profiles are presented.
Asymmetric soliton mobility in competing linear–nonlinear parity-time-symmetric lattices
NASA Astrophysics Data System (ADS)
Kartashov, Yaroslav V.; Vysloukh, Victor A.; Torner, Lluis
2016-09-01
We address the transverse mobility of spatial solitons in competing parity-time-symmetric linear and nonlinear lattices. The competition between out-of-phase linear and nonlinear lattices results in a drastic mobility enhancement within a range of soliton energies. We show that within such range, the addition of even a small imaginary part in the linear potential makes soliton mobility strongly asymmetric. The minimal phase tilt required for setting solitons into radiationless motion across the lattice in the direction opposite to that of the internal current drops to nearly zero, while the minimal phase tilt required for motion in the opposite direction notably increases. For a given initial phase tilt, the velocity of soliton motion grows with an increase of the balanced gain/losses. In this regime of enhanced mobility, tilted solitons can efficiently drag other solitons that were initially at rest, to form moving soliton pairs.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2014-10-07
The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of the 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2014-10-07
The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less
Beginning Introductory Physics with Two-Dimensional Motion
ERIC Educational Resources Information Center
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Reeves, M. T.; Anderson, B. P.; Bradley, A. S.
2012-11-01
We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov k-5/3 power law over almost a decade of length or wave-number (k) scales. The kinetic energy spectrum of regime (C) exhibits a clear k-3/2 power law associated with an inertial range for weak-wave turbulence and a k-7/2 power law for high wave numbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.
Soliton surfaces in the generalized symmetry approach
NASA Astrophysics Data System (ADS)
Grundland, A. M.
2016-09-01
We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas-Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas-Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the C P N-1 sigma-model equation.
Lagrangian statistics in weakly forced two-dimensional turbulence.
Rivera, Michael K; Ecke, Robert E
2016-01-01
Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.
Bimodal detection of underground contamination in two-dimensional systems
NASA Astrophysics Data System (ADS)
Serrano-Guzmán, Maria F.; Padilla, Ingrid; Rodriguez, Rafael
2007-04-01
Widespread contamination of underground environments with dense non-aqueous phase liquids (DNAPLs) is of great concern to the public, military, and industrial sectors. Proper management of contaminated sites requires detection and monitoring of the contaminants, and accurate knowledge of their transport behavior in underground environments. Over the last years we have done great efforts to develop and integrate technologies that serve to locate contamination and monitor transport mechanism underground. In this paper, we describe a two-dimensional multiphase flow experiment to develop and evaluate two modes of concurrent detection and monitoring technologies: Cross Well Radar (CWR) and Image Analysis (IA). Loop antennas preset at specific locations in the tank are used to evaluate wave scattering properties of the soil under different conditions, while color images are acquired. The electromagnetic response in the CWR antennas and IA are used to establish the relation between electrical soil properties variations and changes spatial and temporal mass of water and contaminants. The technologies used in this research are both in development, but they can be successful tools for the detection, monitoring and imagining of underground contaminants and process. Once develop, the technology may be applied for detecting and monitoring other buried objects.
Freely decaying turbulence in two-dimensional electrostatic gyrokinetics
Tatsuno, T.; Plunk, G. G.; Barnes, M.; Dorland, W.; Howes, G. G.; Numata, R.
2012-12-15
In magnetized plasmas, a turbulent cascade occurs in phase space at scales smaller than the thermal Larmor radius ('sub-Larmor scales') [Tatsuno et al., Phys. Rev. Lett. 103, 015003 (2009)]. When the turbulence is restricted to two spatial dimensions perpendicular to the background magnetic field, two independent cascades may take place simultaneously because of the presence of two collisionless invariants. In the present work, freely decaying turbulence of two-dimensional electrostatic gyrokinetics is investigated by means of phenomenological theory and direct numerical simulations. A dual cascade (forward and inverse cascades) is observed in velocity space as well as in position space, which we diagnose by means of nonlinear transfer functions for the collisionless invariants. We find that the turbulence tends to a time-asymptotic state, dominated by a single scale that grows in time. A theory of this asymptotic state is derived in the form of decay laws. Each case that we study falls into one of three regimes (weakly collisional, marginal, and strongly collisional), determined by a dimensionless number D{sub *}, a quantity analogous to the Reynolds number. The marginal state is marked by a critical number D{sub *}=D{sub 0} that is preserved in time. Turbulence initialized above this value become increasingly inertial in time, evolving toward larger and larger D{sub *}; turbulence initialized below D{sub 0} become more and more collisional, decaying to progressively smaller D{sub *}.
Anisotropic stress correlations in two-dimensional liquids.
Wu, Bin; Iwashita, Takuya; Egami, Takeshi
2015-03-01
In this paper we demonstrate the presence of anisotropic stress correlations in the simulated two-dimensional liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic-level stresses in liquids without external shear has not been explored. We observed the apparent anisotropicity with well-defined symmetry which can be explained in terms of the elastic continuum theory by Eshelby. In addition, we found that the shear stress correlation is screened compared to the prediction by the elastic continuum theory, and the screening length depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The success of the Eshelby theory to explain the anisotropy of the stress correlations justifies the idea that the mismatch between the atom and its nearest neighbor cage produces the atomic-level stress as well as the long-range stress fields. PMID:25871104
Anisotropic stress correlations in two-dimensional liquids
NASA Astrophysics Data System (ADS)
Wu, Bin; Iwashita, Takuya; Egami, Takeshi
2015-03-01
In this paper we demonstrate the presence of anisotropic stress correlations in the simulated two-dimensional liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic-level stresses in liquids without external shear has not been explored. We observed the apparent anisotropicity with well-defined symmetry which can be explained in terms of the elastic continuum theory by Eshelby. In addition, we found that the shear stress correlation is screened compared to the prediction by the elastic continuum theory, and the screening length depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The success of the Eshelby theory to explain the anisotropy of the stress correlations justifies the idea that the mismatch between the atom and its nearest neighbor cage produces the atomic-level stress as well as the long-range stress fields.
The Talbot Effect for two-dimensional massless Dirac fermions
NASA Astrophysics Data System (ADS)
Walls, Jamie D.; Hadad, Daniel
2016-05-01
A monochromatic beam of wavelength λ transmitted through a periodic one-dimensional diffraction grating with lattice constant d will be spatially refocused at distances from the grating that are integer multiples of . This self-refocusing phenomena, commonly referred to as the Talbot effect, has been experimentally demonstrated in a variety of systems ranging from optical to matter waves. Theoretical predictions suggest that the Talbot effect should exist in the case of relativistic Dirac fermions with nonzero mass. However, the Talbot effect for massless Dirac fermions (mDfs), such as those found in monolayer graphene or in topological insulator surfaces, has not been previously investigated. In this work, the theory of the Talbot effect for two-dimensional mDfs is presented. It is shown that the Talbot effect for mDfs exists and that the probability density of the transmitted mDfs waves through a periodic one-dimensional array of localized scatterers is also refocused at integer multiples of zT. However, due to the spinor nature of the mDfs, there are additional phase-shifts and amplitude modulations in the probability density that are most pronounced for waves at non-normal incidence to the scattering array.
The Talbot Effect for two-dimensional massless Dirac fermions
Walls, Jamie D.; Hadad, Daniel
2016-01-01
A monochromatic beam of wavelength λ transmitted through a periodic one-dimensional diffraction grating with lattice constant d will be spatially refocused at distances from the grating that are integer multiples of . This self-refocusing phenomena, commonly referred to as the Talbot effect, has been experimentally demonstrated in a variety of systems ranging from optical to matter waves. Theoretical predictions suggest that the Talbot effect should exist in the case of relativistic Dirac fermions with nonzero mass. However, the Talbot effect for massless Dirac fermions (mDfs), such as those found in monolayer graphene or in topological insulator surfaces, has not been previously investigated. In this work, the theory of the Talbot effect for two-dimensional mDfs is presented. It is shown that the Talbot effect for mDfs exists and that the probability density of the transmitted mDfs waves through a periodic one-dimensional array of localized scatterers is also refocused at integer multiples of zT. However, due to the spinor nature of the mDfs, there are additional phase-shifts and amplitude modulations in the probability density that are most pronounced for waves at non-normal incidence to the scattering array. PMID:27221604
Magnetic coupling of vortices in a two dimensional lattice.
Nissen, D; Mitin, D; Klein, O; Arekapudi, S S P K; Thomas, S; Im, M-Y; Fischer, P; Albrecht, M
2015-11-20
We investigated the magnetization reversal of magnetic vortex structures in a two-dimensional lattice. The structures were formed by permalloy (Py) film deposition onto large arrays of self assembled spherical SiO(2)-particles with a diameter of 330 nm. We present the dependence of the nucleation and annihilation field of the vortex structures as a function of the Py layer thickness(aspect ratio) and temperature. By increasing the Py thickness up to 90 nm or alternatively by lowering the temperature the vortex structure becomes more stable as expected. However, the increase of the Py thickness results in the onset of strong exchange coupling between neighboring Py caps due to the emergence of Py bridges connecting them. In particular, we studied the influence of magnetic coupling locally by in-field scanning magne to-resistive microscopy and full-field magnetic soft x-ray microscopy, revealing a domain-like nucleation process of vortex states, which arises via domain wall propagation due to exchange coupling of the closely packed structures. By analyzing the rotation sense of the reversed areas, large connected domains are present with the same circulation sense. Furthermore, the lateral core displacements when an in-plane field is applied were investigated, revealing spatially enlarged vortex cores and a broader distribution with increasing Py layer thickness. In addition, the presence of some mixed states, vortices and c-states, is indicated for the array with the thickest Py layer. PMID:26511585
A Two-Dimensional Linear Bicharacteristic FDTD Method
NASA Technical Reports Server (NTRS)
Beggs, John H.
2002-01-01
The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.
Soap film flows: Statistics of two-dimensional turbulence
Vorobieff, P.; Rivera, M.; Ecke, R.E.
1999-08-01
Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}
Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
Blanco-Redondo, Andrea; de Sterke, C Martijn; Martijn, de Sterke C; Sipe, J E; Krauss, Thomas F; Eggleton, Benjamin J; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
Lu, F; Lin, Q; Knox, W H; Agrawal, Govind P
2004-10-29
We investigate the vectorial nature of soliton fission in an isotropic nonlinear medium both theoretically and experimentally. As a specific example, we show that supercontinuum generation in a tapered fiber is extremely sensitive to the input state of polarization. Multiple vector solitons generated through soliton fission exhibit different states of elliptical polarization while emitting nonsolitonic radiation with complicated polarization features. Experiments performed with a tapered fiber agree with our theoretical description.
Internetwork magnetic field as revealed by two-dimensional inversions
NASA Astrophysics Data System (ADS)
Danilovic, S.; van Noort, M.; Rempel, M.
2016-09-01
Context. Properties of magnetic field in the internetwork regions are still fairly unknown because of rather weak spectropolarimetric signals. Aims: We address the matter by using the two-dimensional (2D) inversion code, which is able to retrieve the information on smallest spatial scales up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Methods: Performance of the code and the impact of various effects on the retrieved field distribution is tested first on the realistic magneto-hydrodynamic (MHD) simulations. The best inversion scenario is then applied to the real data obtained by Spectropolarimeter (SP) on board Hinode. Results: Tests on simulations show that: (1) the best choice of node position ensures a decent retrieval of all parameters; (2) the code performs well for different configurations of magnetic field; (3) slightly different noise levels or slightly different defocus included in the spatial point spread function (PSF) produces no significant effect on the results; and (4) temporal integration shifts the field distribution to a stronger, more horizontally inclined field. Conclusions: Although the contribution of the weak field is slightly overestimated owing to noise, 2D inversions are able to recover well the overall distribution of the magnetic field strength. Application of the 2D inversion code on the Hinode SP internetwork observations reveals a monotonic field strength distribution. The mean field strength at optical depth unity is ~ 130 G. At higher layers, field strength drops as the field becomes more horizontal. Regarding the distribution of the field inclination, tests show that we cannot directly retrieve it with the observations and tools at hand, however, the obtained distributions are consistent with those expected from simulations with a quasi-isotropic field inclination after accounting for observational effects.
Quantum holographic encoding in a two-dimensional electron gas
Moon, Christopher
2010-05-26
The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.
Vector cavity solitons in broad area Vertical-Cavity Surface-Emitting Lasers
Averlant, Etienne; Tlidi, Mustapha; Thienpont, Hugo; Ackemann, Thorsten; Panajotov, Krassimir
2016-01-01
We report the experimental observation of two-dimensional vector cavity solitons in a Vertical-Cavity Surface-Emitting Laser (VCSEL) under linearly polarized optical injection when varying optical injection linear polarization direction. The polarization of the cavity soliton is not the one of the optical injection as it acquires a distinct ellipticity. These experimental results are qualitatively reproduced by the spin-flip VCSEL model. Our findings open the road to polarization multiplexing when using cavity solitons in broad-area lasers as pixels in information technology. PMID:26847004
Multi-Soliton Solutions of the Generalized Sawada-Kotera Equation
NASA Astrophysics Data System (ADS)
Zuo, Da-Wei; Mo, Hui-Xia; Zhou, Hui-Ping
2016-04-01
Korteweg-de Vries (KdV)-type equations can describe the nonlinear phenomena in shallow water waves, stratified internal waves, and ion-acoustic waves in plasmas. In this article, the two-dimensional generalization of the Sawada-Kotera equation, one of the KdV-type equations, is discussed by virtue of the Bell polynomials and Hirota method. The results show that there exist multi-soliton solutions for such an equation. Relations between the direction of the soliton propagation and coordinate axes are shown. Elastic interaction with the multi-soliton solutions are analysed.
NASA Technical Reports Server (NTRS)
Chiu, Hong-Yee
1990-01-01
The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.
Chiu, Hongyee )
1990-05-01
The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers. 27 refs.
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Zheltikov, A. M.
2014-10-01
Optical breathing solitons are known to display well-resolved cycles where the phase of pulse compression is followed by pulse stretching. Here we show that, in the extreme regimes where the soliton pulse width approaches the field cycle, the field waveform dynamics can drastically differ from this textbook scenario. We demonstrate that such extremely short soliton transients can develop optical shock waves, which seed parametric amplification, facilitating, along with ionization nonlinearity, soliton compression to subcycle pulse widths. This pulse compression scenario is shown to enable the generation of sub-quarter-cycle multigigawatt optical field waveforms in the mid infrared.
The Development of Two-Dimensional Structure in Cavitons.
NASA Astrophysics Data System (ADS)
Eggleston, Dennis Lee
Experimental observations of the space and time evolution of resonantly enhanced electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal localization with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical and analytical models for a driven, two-dimensional, inhomogeneous plasma are presented. It is shown that the experimental results can be explained in a semi-quanitative manner by a model which combines the results of one-dimensional caviton theory with those of two-dimensional Langmuir collapse.
Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Adam, J.-C.; Heron, A.
2006-08-15
Two-dimensional particle-in-cell simulations of laser-plasma interaction using a plane-wave geometry show strong bursty stimulated Brillouin backscattering, rapid filamentation, and subsequent plasma cavitation. It is shown that the cavitation is not induced by self-focusing. The electromagnetic fields below the plasma frequency that are excited are related to transient soliton-like structures. At the origin of these solitons is a three-wave decay process exciting new modes in the plasma. The cavitation is responsible for a strong local reduction of the reflectivity and goes along with an efficient but transient heating of the electrons. Once heating ceases, transmission starts to increase. Local as well as global average reflectivities attain a very low value due to strong plasma density variations brought about by the cavitation process. On the one hand, the simulations confirm the existence of a new mechanism of cavity and soliton formation in nonrelativistic laser-plasma interaction in two dimensions, which was shown to exist in one-dimensional simulations [S. Weber, C. Riconda, and V. T. Tikhonchuk, Phys. Rev. Lett. 94, 055005 (2005)]. On the other hand, new aspects are introduced inherently related to the additional degree of freedom.
String & Sticky Tape Experiments: Two-Dimensional Collisions Using Pendulums.
ERIC Educational Resources Information Center
Edge, R. D.
1989-01-01
Introduces a method for two-dimensional kinematics measurements by hanging marbles with long strings. Describes experimental procedures for conservation of momentum and obtaining the coefficient of restitution. Provides diagrams and mathematical expressions for the activities. (YP)
Two-dimensional signal processing with application to image restoration
NASA Technical Reports Server (NTRS)
Assefi, T.
1974-01-01
A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.
Power distribution in two-dimensional optical network channels
NASA Astrophysics Data System (ADS)
Wang, Dong-Xue; Karim, Mohammad A.
1996-04-01
The power distribution in two-dimensional optical network channels is analyzed. The maximum number of allowable channels as determined by the characteristics of optical detector is identified, in particular, for neural-network and wavelet-transform applications.
Model of a Negatively Curved Two-Dimensional Space.
ERIC Educational Resources Information Center
Eckroth, Charles A.
1995-01-01
Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)
Difficulties that Students Face with Two-Dimensional Motion
ERIC Educational Resources Information Center
Mihas, P.; Gemousakakis, T.
2007-01-01
Some difficulties that students face with two-dimensional motion are addressed. The difficulties addressed are the vectorial representation of velocity, acceleration and force, the force-energy theorem and the understanding of the radius of curvature.
Two-Dimensional Systolic Array For Kalman-Filter Computing
NASA Technical Reports Server (NTRS)
Chang, Jaw John; Yeh, Hen-Geul
1988-01-01
Two-dimensional, systolic-array, parallel data processor performs Kalman filtering in real time. Algorithm rearranged to be Faddeev algorithm for generalized signal processing. Algorithm mapped onto very-large-scale integrated-circuit (VLSI) chip in two-dimensional, regular, simple, expandable array of concurrent processing cells. Processor does matrix/vector-based algebraic computations. Applications include adaptive control of robots, remote manipulators and flexible structures and processing radar signals to track targets.
Estimating analytical variability in two-dimensional data.
Budyak, Ivan L; Griffiths, Kristi L; Weiss, William F
2016-11-15
Throughout the course of drug development there are many instances in which a variability assessment within a set of analytical data is required, which may be challenging for techniques that produce two-dimensional data. This note describes an interval-based approach to variability assessment and demonstrates its applicability for analysis of near-UV circular dichroism (CD) spectra. The approach is generalizable and could be applied to two-dimensional data from other analytical techniques as well. PMID:27567991
Canine left ventricular mass estimation by two-dimensional echocardiography.
Schiller, N B; Skiôldebrand, C G; Schiller, E J; Mavroudis, C C; Silverman, N H; Rahimtoola, S H; Lipton, M J
1983-07-01
This study was designed to develop a two-dimensional echocardiographic method of measuring the mass of the left ventricle. The general formula for an ellipse was used to derive an algorithm that described the shell volume of concentric truncated ellipsoids. In 10 canine left ventricular two-dimensional echocardiograms, this algorithm accurately predicted postmortem left ventricular mass (r = .98, SEE +/- 6 g) and was independent of cardiac cycle phase (systole vs diastole, r = .92). PMID:6851047
Beginning Introductory Physics with Two-Dimensional Motion
NASA Astrophysics Data System (ADS)
Huggins, Elisha
2009-04-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable amount of physics even before discussing the constant acceleration formulas or Newton's laws.
Light evolution in arbitrary two-dimensional waveguide arrays
Szameit, Alexander; Pertsch, Thomas; Dreisow, Felix; Nolte, Stefan; Tuennermann, Andreas; Peschel, Ulf; Lederer, Falk
2007-05-15
We introduce an analytical formula for the dynamics of light propagation in a two-dimensional waveguide lattice including diagonal coupling. A superposition of infinite arrays created by imaginary sources is used to derive an expression for boundary reflections. It is shown analytically that for large propagation distances the propagating field reaches uniformity. Furthermore, periodic field recovery is studied and discrete anomalous refraction and diffraction are investigated in arbitrary two-dimensional lattices.
QUENCH2D. Two-Dimensional IHCP Code
Osman, A.; Beck, J.V.
1995-01-01
QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.
Aging solitons in photorefractive dipolar glasses.
Parravicini, J; Pierangeli, D; Di Mei, F; Conti, C; Agranat, A J; DelRe, E
2013-12-16
We study experimentally the aging of optical spatial solitons in a dipolar glass hosted by a nanodisordered sample of photorefractive potassium-sodium-tantalate-niobate (KNTN). As the system ages, the waves erratically explore varying strengths of the nonlinear response, causing them to break up and scatter. We show that this process can still lead to solitons, but in a generalized form for which the changing response is compensated by changing the normalized wave size and intensity so as to maintain fixed the optical waveform.
Muscle protein analysis by two-dimensional gel electrophoresis
Giometti, C.S.
1982-01-01
Two-dimensional electrophoresis of muscle proteins has provided valuable new information concerning the heterogeneity of some of the major contractile proteins, alterations in the protein population of developing muscle fibers during various stages of myogenesis, and protein aberrations that correlate with muscle diseases. As with all electrophoretic techniques, careful attention must be paid to the preparation of samples and the selection of reagents to be used for the protein separations. Two-dimensional electrophoresis is the obvious method of choice when analysis of protein mixtures is required. The routine clinical application of two-dimensional electrophoresis to analysis of muscle tissue remains to be demonstrated. However, methods of sample preparation for two-dimensional electrophoresis compatible with existing clinical procedures have been described, and the equipment for multiple analyses is available. As protein abnormalities related to human myopathy are detected through the use of two-dimensional electrophoresis as a research tool, useful clinical markers of specific myopathic processes will be found. The preliminary work on muscle protein analysis by two-dimensional electrophoresis described in this review has begun a new approach to the enigma of human muscle disease.
Peschel, U; Egorov, O; Lederer, F
2004-08-15
We derive evolution equations describing light propagation in an array of coupled-waveguide resonators and predict the existence of discrete cavity solitons. We identify stable, unstable, and oscillating solitons by varying the coupling strength between the anticontinuous and the continuous limit. PMID:15357356
NASA Astrophysics Data System (ADS)
Komineas, Stavros; Shipman, Stephen P.; Venakides, Stephanos
2016-02-01
Photons and excitons in a semiconductor microcavity interact to form exciton-polariton condensates. These are governed by a nonlinear quantum-mechanical system involving exciton and photon wavefunctions. We calculate all non-traveling harmonic soliton solutions for the one-dimensional lossless system. There are two frequency bands of bright solitons when the inter-exciton interactions produce an attractive nonlinearity and two frequency bands of dark solitons when the nonlinearity is repulsive. In addition, there are two frequency bands for which the exciton wavefunction is discontinuous at its symmetry point, where it undergoes a phase jump of π. A band of continuous dark solitons merges with a band of discontinuous dark solitons, forming a larger band over which the soliton far-field amplitude varies from 0 to ∞; the discontinuity is initiated when the operating frequency exceeds the free exciton frequency. The far fields of the solitons in the lowest and highest frequency bands (one discontinuous and one continuous dark) are linearly unstable, whereas the other four bands have linearly stable far fields, including the merged band of dark solitons.
Semirelativity and Kink Solitons
ERIC Educational Resources Information Center
Nowak, Mariusz Karol
2014-01-01
It is hard to observe relativistic effects in everyday life. However, table experiments using a mechanical transmission line for solitons may be an efficient and simple way to show effects such as Lorentz contraction in a classroom. A kink soliton is a deformation of a lattice of several dozen or more pendulums placed on a wire and connected by a…
Serkin, Vladimir N; Belyaeva, T L
2001-11-30
It is shown that optical solitons in nonlinear fibre-optic communication systems and soliton lasers can be represented as nonlinear Bloch waves in periodic structures. The Bloch theorem is proved for solitons of the nonlinear Schrodinger equation in systems with the dispersion, the nonlinearity, and the gain (absorption coefficient) periodically changing over the length. The dynamics of formation and interaction, as well as stability of the coupled states of nonlinear Bloch waves are investigated. It is shown that soliton Bloch waves exist only under certain self-matching conditions for the basic parameters of the system and reveal a structural instability with respect to the mismatch between the periods of spatial modulation of the dispersion, nonlinearity or gain. (solitons)
Two-dimensional aperture coding for magnetic sector mass spectrometry.
Russell, Zachary E; Chen, Evan X; Amsden, Jason J; Wolter, Scott D; Danell, Ryan M; Parker, Charles B; Stoner, Brian R; Gehm, Michael E; Brady, David J; Glass, Jeffrey T
2015-02-01
In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code. PMID:25510933
Two dimensional NMR of liquids and oriented molecules
Gochin, M.
1987-02-01
Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.
Solitons in optomechanical arrays.
Gan, Jing-Hui; Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Wu, Ying
2016-06-15
We show that optical solitons can be obtained with a one-dimensional optomechanical array that consists of a chain of periodically spaced identical optomechanical systems. Unlike conventional optical solitons, which originate from nonlinear polarization, the optical soliton here stems from a new mechanism, namely, phonon-photon interaction. Under proper conditions, the phonon-photon induced nonlinearity that refers to the optomechanical nonlinearity will exactly compensate the dispersion caused by photon hopping of adjacent optomechanical systems. Moreover, the solitons are capable of exhibiting very low group velocity, depending on the photon hopping rate, which may lead to many important applications, including all-optical switches and on-chip optical architecture. This work may extend the range of optomechanics and nonlinear optics and provide a new field to study soliton theory and develop corresponding applications. PMID:27304261
Luo, Rui; Liang, Hanxiao; Lin, Qiang
2016-07-25
We show a new class of complex solitary wave that exists in a nonlinear optical cavity with appropriate dispersion characteristics. The cavity soliton consists of multiple soliton-like spectro-temporal components that exhibit distinctive colors but coincide in time and share a common phase, formed together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor cavity soliton shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which would be very useful for versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy. PMID:27464131
Two-dimensional imaging with a single-sided NMR probe.
Casanova, F; Blümich, B
2003-07-01
A new low field unilateral NMR sensor equipped with a two-dimensional gradient coil system was built. A new NMR-MOUSE concept using a simple bar magnet instead of the classical U-shaped geometry was used to produce magnetic field profiles comparatively homogeneous in extended lateral planes defining a suitable field of view for 2D spatial localization. Slice selection along the depth direction is obtained by means of the highly constant static magnetic field gradient produced by this magnet geometry. Implementing a two-dimensional phase-encoding imaging method 2D cross sections of objects were obtained with high spatial resolution. By retuning the probe it was possible to change the depth of the selected slice obtaining a 3D imaging method. The details of the construction of the new device are presented together with imaging tests to show the quality of space encoding. PMID:12852905
Two-Dimensional Grammars And Their Applications To Artificial Intelligence
NASA Astrophysics Data System (ADS)
Lee, Edward T.
1987-05-01
During the past several years, the concepts and techniques of two-dimensional grammars1,2 have attracted growing attention as promising avenues of approach to problems in picture generation as well as in picture description3 representation, recognition, transformation and manipulation. Two-dimensional grammar techniques serve the purpose of exploiting the structure or underlying relationships in a picture. This approach attempts to describe a complex picture in terms of their components and their relative positions. This resembles the way a sentence is described in terms of its words and phrases, and the terms structural picture recognition, linguistic picture recognition, or syntactic picture recognition are often used. By using this approach, the problem of picture recognition becomes similar to that of phrase recognition in a language. However, describing pictures using a string grammar (one-dimensional grammar), the only relation between sub-pictures and/or primitives is the concatenation; that is each picture or primitive can be connected only at the left or right. This one-dimensional relation has not been very effective in describing two-dimensional pictures. A natural generaliza-tion is to use two-dimensional grammars. In this paper, two-dimensional grammars and their applications to artificial intelligence are presented. Picture grammars and two-dimensional grammars are introduced and illustrated by examples. In particular, two-dimensional grammars for generating all possible squares and all possible rhombuses are presented. The applications of two-dimensional grammars to solving region filling problems are discussed. An algorithm for region filling using two-dimensional grammars is presented together with illustrative examples. The advantages of using this algorithm in terms of computation time are also stated. A high-level description of a two-level picture generation system is proposed. The first level is the picture primitive generation using two-dimensional
A spin dynamics approach to solitonics
Koumpouras, Konstantinos; Bergman, Anders; Eriksson, Olle; Yudin, Dmitry
2016-01-01
In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of “-onics technology”, and is investigated in detail here using numerical and analytical tools. PMID:27156906
Oblique half-solitons and their generation in exciton-polariton condensates
Flayac, H.; Solnyshkov, D. D.; Malpuech, G.
2011-05-15
We describe oblique half-solitons, a new type of topological defects in a two-dimensional spinor Bose-Einstein condensate. A realistic protocol based on the optical spin Hall effect is proposed toward their generation within an exciton-polariton system.
Hénon-Heiles potential as a bridge between nontopological solitons of different types
NASA Astrophysics Data System (ADS)
Nugaev, E. Ya.
2015-02-01
We apply the Hubbard-Stratonovich transformation to the Lagrangian for nontopological solitons of the Coleman type in a two-dimensional theory. The resulted theory with an extra real scalar field can be supplemented with a cubic term to obtain a model with exact analytical solution.
Multiplicative noise can lead to the collapse of dissipative solitons.
Descalzi, Orazio; Cartes, Carlos; Brand, Helmut R
2016-07-01
We investigate the influence of spatially homogeneous multiplicative noise on the formation of localized patterns in the framework of the cubic-quintic complex Ginzburg-Landau equation. We find that for sufficiently large multiplicative noise the formation of stationary and temporally periodic dissipative solitons is suppressed. This result is characterized by a linear relation between the bifurcation parameter and the noise amplitude required for suppression. For the regime associated with exploding dissipative solitons we find a reduction in the number of explosions for larger noise strength as well as a conversion to other types of dissipative solitons or to filling-in and eventually a collapse to the zero solution. PMID:27575135
Complexity and efficient approximability of two dimensional periodically specified problems
Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.
1996-09-01
The authors consider the two dimensional periodic specifications: a method to specify succinctly objects with highly regular repetitive structure. These specifications arise naturally when processing engineering designs including VLSI designs. These specifications can specify objects whose sizes are exponentially larger than the sizes of the specification themselves. Consequently solving a periodically specified problem by explicitly expanding the instance is prohibitively expensive in terms of computational resources. This leads one to investigate the complexity and efficient approximability of solving graph theoretic and combinatorial problems when instances are specified using two dimensional periodic specifications. They prove the following results: (1) several classical NP-hard optimization problems become NEXPTIME-hard, when instances are specified using two dimensional periodic specifications; (2) in contrast, several of these NEXPTIME-hard problems have polynomial time approximation algorithms with guaranteed worst case performance.
Dynamical class of a two-dimensional plasmonic Dirac system
NASA Astrophysics Data System (ADS)
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy
NASA Astrophysics Data System (ADS)
Altman, Ehud; Sieberer, Lukas M.; Chen, Leiming; Diehl, Sebastian; Toner, John
2015-01-01
Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.
Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.
Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2013-07-25
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.
Two dimensional convolute integers for machine vision and image recognition
NASA Technical Reports Server (NTRS)
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Coherent soliton communication lines
Yushko, O. V. Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K.
2014-11-15
The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.
Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin.
Di Franco, C; Mc Gettrick, M; Busch, Th
2011-02-25
The nonlocalized case of the spatial density probability of the two-dimensional Grover walk can be obtained using only a two-dimensional coin space and a quantum walk in alternate directions. This significantly reduces the resources necessary for its feasible experimental realization. We present a formal proof of this correspondence and analyze the behavior of the coin-position entanglement as well as the x-y spatial entanglement in our scheme with respect to the Grover one. Our scheme allows us to entangle the two orthogonal directions of the walk more efficiently.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-04-15
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
Two-dimensional SCFTs from D3-branes
NASA Astrophysics Data System (ADS)
Benini, Francesco; Bobev, Nikolay; Crichigno, P. Marcos
2016-07-01
We find a large class of two-dimensional N = (0, 2) SCFTs obtained by compactifying four-dimensional N = 1 quiver gauge theories on a Riemann surface. We study these theories using anomalies and c-extremization. The gravitational duals to these fixed points are new AdS3 solutions of IIB supergravity which we exhibit explicitly. Along the way we uncover a universal relation between the conformal anomaly coefficients of fourdimensional and two-dimensional SCFTs connected by an RG flow across dimensions. We also observe an interesting novel phenomenon in which the superconformal R-symmetry mixes with baryonic symmetries along the RG flow.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Microstructured light guides overcoming the two-dimensional concentration limit.
Leutz, Ralf; Ries, Harald
2005-11-10
Light guides are employed to homogenize an illumination distribution, to translate cross-sectional beam shapes, and to provide concentration. Microstructures enhance the performance of light guides based on the selective mixing of direction vector components in the two-dimensional phase space (etendue) that is perpendicular to the system's optical axis. For linear concentrators we find that the microstructured light guide beats the two-dimensional concentration limit and roughly allows for a three-dimensional concentration ratio. This result is verified in simulation and experiment.
Conduction-electron spin resonance in two-dimensional structures
NASA Astrophysics Data System (ADS)
Edelstein, Victor M.
2016-09-01
The influence of the conduction-electron spin magnetization density, induced in a two-dimensional electron layer by a microwave electromagnetic field, on the reflection and transmission of the field is considered. Because of the induced magnetization and electric current, both the electric and magnetic components of the field should have jumps on the layer. A way to match the waves on two sides of the layer, valid when the quasi-two-dimensional electron gas is in the one-mode state, is proposed. By following this way, the amplitudes of transmitted and reflected waves as well as the absorption coefficient are evaluated.
Quantum Walks on Two Kinds of Two-Dimensional Models
NASA Astrophysics Data System (ADS)
Li, Dan; Mc Gettrick, Michael; Zhang, Wei-Wei; Zhang, Ke-Jia
2015-08-01
In this paper, we numerically study quantum walks on two kinds of two-dimensional graphs: cylindrical strip and Mobius strip. The two kinds of graphs are typical two-dimensional topological graph. We study the crossing property of quantum walks on these two models. Also, we study its dependence on the initial state, size of the model. At the same time, we compare the quantum walk and classical walk on these two models to discuss the difference of quantum walk and classical walk.
Brewster Angle Microscope Investigations of Two Dimensional Phase Transitions
NASA Astrophysics Data System (ADS)
Schuman, Adam William
The liquid-liquid interface is investigated by microscopic and thermodynamic means to image and measure interfacial properties when the system undergoes a two-dimensional (2D) phase transition of a Gibbs monolayer by varying the sample temperature. An in-house Brewster angle microscope (BAM) is constructed to visualize the interface during this transition while a quasi-elastic light scattering technique is used to determine the interfacial tension. These results complement x-ray investigations of the same systems. Evidence of interfacial micro-separated structure, microphases, comes from observations across a hexane-water interface with the inclusion of a long-chain fluorinated alcohol surfactant into the bulk hexane. Microphases take the form of spatially modulated structure to the density of the surfactant as it spans laterally across the interface. The surfactant monolayer exhibits microphase morphology over a range of a couple degrees as the temperature of the system is scanned through the 2D gas-solid phase transition. Microphase structure was observed for heating and cooling the hexane-water system and structural comparisons are given when the temperature step and quench depth of the cooling process is varied. A complete sequence of morphological structure was observed from 2D gas to cluster to labyrinthine stripe to a 2D solid mosaic pattern. Two characteristic length scales emerge giving rise to speculation of an elastic contribution to the standard repulsive and attractive competitive forces stabilizing the microphase. The benefit of BAM to laterally image very thin films across the surface of an interface on the micrometer length scale nicely complements x-ray reflectivity methods that average structural data transverse to the liquid interface on a molecular scale. To properly analyze x-ray reflectivity data, the interface is required to be laterally homogeneous. BAM can sufficiently characterize the interface for this purpose as is done for a Langmuir
Comparing two-dimensional electrophoretic gel images across the Internet.
Lemkin, P F
1997-01-01
Scientists around the world often work on similar data so the need to share results and compare data arises periodically. We describe a method of comparing two two-dimensional (2-D) protein gels of similar samples created in different laboratories to help identify or suggest protein spot identification. Now that 2-D gels and associated databases frequently appear on the Internet, this opens up the possibility of visually comparing one's own experimental 2-D gel image data with data from another gel in a remote Internet database. In general, there are a few ways to compare images: (i) slide one gel (autoradiograph or stained gel) over the other while back-illuminated, or (ii) build a 2-D gel computer database from both gels after scanning and analyzing these gels. These are impractical since in the first case the gel from the Internet database is not locally available. In the second, the costs of building a multi-gel database solely to answer the question of whether a spot is the same spot may be excessive if only a single visual comparison is needed. We describe a distributed gel comparison program (URL: http://www-lmmb.ncifcrf.gov/flicker) which runs on any World Wide Web (WWW) connected computer and is invoked from a Java-capable web browser. One gel image is read from any Internet 2-D gel database (e.g. SWISS-2DPAGE) and the other may reside on the investigator's computer. Images may be more easily compared by first applying spatial warping or other transforms interactively on the user's computer. First, regions of interest are "landmarked" with several corresponding points in each gel image, then one gel image is warped to the geometry of the other. As the two gels are rapidly alternated, or flickered, in the same window, the user can slide one gel past the other to visually align corresponding spots by matching local morphology. This flicker-comparison technique may be applied to analyzing other types of one-dimensional and 2-D biomedical images.
Temporal dark polariton solitons.
Kartashov, Yaroslav V; Skryabin, Dmitry V
2016-04-15
We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid-dark and antidark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group-velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while antidark solitons are always unstable. Both families exist outside the forbidden frequency gap of the linear system. PMID:27082338
Scattering from cylinders using the two-dimensional vector plane wave spectrum.
Pawliuk, Peter; Yedlin, Matthew
2011-06-01
The two-dimensional vector plane wave spectrum (VPWS) is scattered from parallel circular cylinders using a boundary value solution with the T-matrix formalism. The VPWS allows us to define the incident, two-dimensional electromagnetic field with an arbitrary distribution and polarization, including both radiative and evanescent components. Using the fast Fourier transform, we can quickly compute the multiple scattering of fields that have any particular functional or numerical form. We perform numerical simulations to investigate a grating of cylinders that is capable of converting an evanescent field into a set of propagating beams. The direction of propagation of each beam is directly related to a spatial frequency component of the incident evanescent field.
Two-dimensional finite element multigroup diffusion theory for neutral atom transport in plasmas
Hasan, M.Z.; Conn, R.W.
1986-02-01
Solution of the energy dependent diffusion equation in two dimensions is formulated by multigroup approximation of the energy variable and general triangular mesh, finite element discretization of the spatial domain. Finite element formulation is done by Galerkin's method. Based on this formulation, a two-dimensional multigroup finite element diffusion theory code, FENAT, has been developed for the transport of neutral atoms in fusion plasmas. FENAT solves the multigroup diffusion equation in X-Y cartesian and R-Z cylindrical/toroidal geometries. Use of the finite element method allows solution of problems in which the plasma cross-section has an arbitrary shape. The accuracy of FENAT has been verified by comparing results to those obtained using the two-dimensional discrete ordinate transport theory code, DOT-4.3. Results of application of FENAT to the transport of limiter-originated neutral atoms in a tokamak fusion machine are presented.
Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin.
Chen, Hui; Tsia, Kevin K; Poon, Andrew W
2006-08-01
We report numerical simulations of surface modes in two-dimensional high-index-contrast photonic crystal slabs with a flat dielectric margin of width on the order of the photonic crystal periodicity. Our calculations using plane wave expansion method reveal multiple surface guided modes within the photonic band gap, with some high-order modes exhibit relatively flat dispersion curves. We calculate the finite-length surface waveguide modes transmission and field patterns using two dimensional finite-difference time-domain method. We verify the surface mode dispersion curves by using spatial Fourier transform of the mode field patterns. Our study on surface modes under small ambient refractive index changes (5 x 10(-3)) shows that lower order modes exhibit larger wavelength shifts on the order of 1 nm. We also design a 4-port 3-channel bidirectional coupler using a conventional dielectric waveguide side coupled to the multimode surface waveguide.
Coherent imaging with two-dimensional focal-plane arrays: design and applications.
Simpson, M L; Bennett, C A; Emery, M S; Hutchinson, D P; Miller, G H; Richards, R K; Sitter, D N
1997-09-20
Scanned, single-channel optical heterodyne detection has been used in a variety of lidar applications from ranging and velocity measurements to differential absorption spectroscopy. We describe the design of a coherent camera system that is based on a two-dimensional staring array of heterodyne receivers for coherent imaging applications. Experimental results with a single HgCdTe detector translated in the image plane to form a synthetic two-dimensional array demonstrate the ability to obtain passive heterodyne images of chemical vapor plumes that are invisible to normal video infrared cameras. We describe active heterodyne imaging experiments with use of focal-plane arrays that yield hard-body Doppler lidar images and also demonstrate spatial averaging to reduce speckle effects in static coherent images. PMID:18259563
NASA Astrophysics Data System (ADS)
Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei
2013-09-01
The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.
Thickness identification of two-dimensional materials by optical imaging.
Wang, Ying Ying; Gao, Ren Xi; Ni, Zhen Hua; He, Hui; Guo, Shu Peng; Yang, Huan Ping; Cong, Chun Xiao; Yu, Ting
2012-12-14
Two-dimensional materials, e.g. graphene and molybdenum disulfide (MoS(2)), have attracted great interest in recent years. Identification of the thickness of two-dimensional materials will improve our understanding of their thickness-dependent properties, and also help with scientific research and applications. In this paper, we propose to use optical imaging as a simple, quantitative and universal way to identify the thickness of two-dimensional materials, i.e. mechanically exfoliated graphene, nitrogen-doped chemical vapor deposition grown graphene, graphene oxide and mechanically exfoliated MoS(2). The contrast value can easily be obtained by reading the red (R), green (G) and blue (B) values at each pixel of the optical images of the sample and substrate, and this value increases linearly with sample thickness, in agreement with our calculation based on the Fresnel equation. This method is fast, easily performed and no expensive equipment is needed, which will be an important factor for large-scale sample production. The identification of the thickness of two-dimensional materials will greatly help in fundamental research and future applications.
Sound waves in two-dimensional ducts with sinusoidal walls
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Two-dimensional vortex motion and 'negative temperatures.'
NASA Technical Reports Server (NTRS)
Montgomery, D.
1972-01-01
Explanation of the novel phenomenon, tentatively identified as the 'ergodic boundary' in a space of initial conditions for turbulent flow, suggested by the recent numerical integration of the two-dimensional Navier-Stokes equations at high Reynolds numbers reported by Deem and Zabusky (1971). The proposed explanation is presented in terms of negative temperatures for a point vortex model.
Equilibrium structural properties of two-dimensional nonideal systems
NASA Astrophysics Data System (ADS)
Vaulina, O. S.; Vasilieva, E. V.; Petrov, O. F.; Fortov, V. E.
2011-12-01
The pair correlation functions and the mean squared displacements of charged dust particles were studied experimentally for quasi-two-dimensional (2D) nonideal systems. The experiments were carried out in a plasma of a capacitive radio-frequency (RF-) discharge in argon for monolayers of monodispersed (melamine formaldehyde) spheres. A comparison with the existing theoretical and numerical data is presented.
Two-dimensional probe absorption in coupled quantum dots
NASA Astrophysics Data System (ADS)
Liu, Ningwu; Zhang, Yan; Kang, Chengxian; Wang, Zhiping; Yu, Benli
2016-07-01
We investigate the two-dimensional (2D) probe absorption in coupled quantum dots. It is found that, due to the position-dependent quantum interference effect, the 2D optical absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state quantum communication.
Grid generation for two-dimensional finite element flowfield computation
NASA Technical Reports Server (NTRS)
Tatum, K. E.
1980-01-01
The finite element method for fluid dynamics was used to develop a two dimensional mesh generation scheme. The method consists of shearing and conformal maps with upper and lower surfaces handled independently to allow sharp leading edges. The method also generates meshes of triangular or quadrilateral elements.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
Santa Maria, Odilyn L.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Least squares approximation of two-dimensional FIR digital filters
NASA Astrophysics Data System (ADS)
Alliney, S.; Sgallari, F.
1980-02-01
In this paper, a new method for the synthesis of two-dimensional FIR digital filters is presented. The method is based on a least-squares approximation of the ideal frequency response; an orthogonality property of certain functions, related to the frequency sampling design, improves the computational efficiency.
Two-dimensional Manifold with Point-like Defects
NASA Astrophysics Data System (ADS)
Gani, V. A.; Dmitriev, A. E.; Rubin, S. G.
We study a class of two-dimensional compact extra spaces isomorphic to the sphere S 2 in the framework of multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.
Two-dimensional optimization of free electron laser designs
Prosnitz, Donald; Haas, Roger A.
1985-01-01
Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Adapting Grids For Computing Two-Dimensional Flows
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1992-01-01
SAGE2D is two-dimensional implementation of Self Adaptive Grid Evolution computer program that intelligently redistributes initial grid points on basis of initial flow-field solution. Grids modified according to initial computed flows enabling recomputation at greater accuracy. Written in FORTRAN 77.
Two-Dimensional Grids About Airfoils and Other Shapes
NASA Technical Reports Server (NTRS)
Sorenson, R.
1982-01-01
GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.
Experimental study of nonlinear solitary waves in two-dimensional dusty plasma
Sheridan, T. E.; Nosenko, V.; Goree, J.
2008-07-15
The excitation and propagation of solitary waves is studied experimentally in a two-dimensional strongly coupled dusty (complex) plasma. A single layer with {approx_equal}5000 microspheres (8 {mu}m diam) was suspended in an argon plasma with a neutral gas pressure of 3.0 mTorr. The measured Debye shielding parameter was {kappa}{approx_equal}1.6, where {kappa}=a/{lambda} is the ratio of the lattice constant a to the Debye length {lambda}. Nonlinear, planar longitudinal waves were launched by pushing all the particles in a rectangular region at the center of the crystal in the same direction using an 18 W green laser. Compressive solitary waves with density perturbations {delta}n/n{sub 0} < or approx. 0.8 and widths < or approx. 5a were found to propagate in the forward direction at speeds exceeding the dust acoustic speed. For small amplitude solitary waves, the relations between amplitude, width, and velocity are consistent with those predicted for Korteweg-deVries solitons. Rarefactive perturbations were not observed to evolve into solitary waves. However, oscillatory shocks were seen to move in the backward direction after the laser force was removed.
Experimental study of nonlinear solitary waves in two-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Nosenko, V.; Goree, J.
2008-07-01
The excitation and propagation of solitary waves is studied experimentally in a two-dimensional strongly coupled dusty (complex) plasma. A single layer with ≈5000 microspheres (8μmdiam) was suspended in an argon plasma with a neutral gas pressure of 3.0mTorr. The measured Debye shielding parameter was κ ≈1.6, where κ =a/λ is the ratio of the lattice constant a to the Debye length λ. Nonlinear, planar longitudinal waves were launched by pushing all the particles in a rectangular region at the center of the crystal in the same direction using an 18W green laser. Compressive solitary waves with density perturbations δn /n0≲0.8 and widths ≲5a were found to propagate in the forward direction at speeds exceeding the dust acoustic speed. For small amplitude solitary waves, the relations between amplitude, width, and velocity are consistent with those predicted for Korteweg-deVries solitons. Rarefactive perturbations were not observed to evolve into solitary waves. However, oscillatory shocks were seen to move in the backward direction after the laser force was removed.
Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma
NASA Astrophysics Data System (ADS)
Masood, W.; Karim, S.; Shah, H. A.; Siddiq, M.
2009-04-01
Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation of shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v∗/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v∗/u>0) increases, whereas the slow drift shock (i.e., v∗/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.
Toward the Accurate Simulation of Two-Dimensional Electronic Spectra
NASA Astrophysics Data System (ADS)
Giussani, Angelo; Nenov, Artur; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco
2015-06-01
Two-dimensional pump-probe electronic spectroscopy is a powerful technique able to provide both high spectral and temporal resolution, allowing the analysis of ultrafast complex reactions occurring via complementary pathways by the identification of decay-specific fingerprints. [1-2] The understanding of the origin of the experimentally recorded signals in a two-dimensional electronic spectrum requires the characterization of the electronic states involved in the electronic transitions photoinduced by the pump/probe pulses in the experiment. Such a goal constitutes a considerable computational challenge, since up to 100 states need to be described, for which state-of-the-art methods as RASSCF and RASPT2 have to be wisely employed. [3] With the present contribution, the main features and potentialities of two-dimensional electronic spectroscopy are presented, together with the machinery in continuous development in our groups in order to compute two-dimensional electronic spectra. The results obtained using different level of theory and simulations are shown, bringing as examples the computed two-dimensional electronic spectra for some specific cases studied. [2-4] [1] Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M, Int. J. Quantum Chem., 2014, 114, 85 [2] Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal V K, Altavilla S, Mukamel S, Garavelli M, Faraday Discuss. 2015, DOI: 10.1039/C4FD00175C [3] Nenov A, Giussani A, Segarra-Martí J, Jaiswal V K, Rivalta I, Cerullo G, Mukamel S, Garavelli M, J. Chem. Phys. submitted [4] Nenov A, Giussani A, Fingerhut B P, Rivalta I, Dumont E, Mukamel S, Garavelli M, Phys. Chem. Chem. Phys. Submitted [5] Krebs N, Pugliesi I, Hauer J, Riedle E, New J. Phys., 2013,15, 08501
Optical solitons in graded-index multimode fibres
NASA Astrophysics Data System (ADS)
Renninger, W. H.; Wise, F. W.
2013-04-01
Solitons are non-dispersing localized waves that occur in diverse physical settings, including liquids, optical fibres, plasmas and condensed matter. They attract interest owing to their particle-like nature and are useful for applications such as in telecommunications. A variety of optical solitons have been observed, but versions that involve both spatial and temporal degrees of freedom are rare. Optical fibres designed to support multiple transverse modes offer opportunities to study wave propagation in a setting that is intermediate between single-mode fibre and free-space propagation. Here we report the observation of optical solitons and soliton self-frequency shifting in graded-index multimode fibre. These wave packets can be modelled as multicomponent solitons, or as solitons of the Gross-Pitaevskii equation. Solitons in graded-index fibres should enable increased data rates in low-cost telecommunications systems, are pertinent to space-division multiplexing, and can offer a new route to mode-area scaling for high-power lasers and transmission.
Noncommuting Momenta of Topological Solitons
NASA Astrophysics Data System (ADS)
Watanabe, Haruki; Murayama, Hitoshi
2014-05-01
We show that momentum operators of a topological soliton may not commute among themselves when the soliton is associated with the second cohomology H2 of the target space. The commutation relation is proportional to the winding number, taking a constant value within each topological sector. The noncommutativity makes it impossible to specify the momentum of a topological soliton, and induces a Magnus force.
Coalescence cascade of dissipative solitons in parametrically driven systems.
Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R
2011-09-01
Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473
Bistable dark solitons of a cubic-quintic Helmholtz equation
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2010-05-15
We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.
Dissipative soliton protocols in semiconductor microcavities at finite temperatures
NASA Astrophysics Data System (ADS)
Karpov, D. V.; Savenko, I. G.; Flayac, H.; Rosanov, N. N.
2015-08-01
We consider exciton polaritons in a semiconductor microcavity with a saturable absorber in the growth direction of the heterostructure. This feature promotes additional nonlinear losses of the system with the emergence of bistability of the condensate particles number on the nonresonant (electrical or optical) excitation intensity. Furthermore, we demonstrate a new type of bright spatial dissipative exciton-polariton soliton which emerges in the equilibrium between the regions with different particle density. We develop protocols of soliton creation and destruction. The switch to a solitonlike behavior occurs if the cavity is exposed by a short strong laser pulse with certain energy and duration. We estimate the characteristic times of soliton switch on and off and the time of return to the initial cycle. In particular, we demonstrate surprising narrowing of the spatial profile of the soliton and its vanishing at certain temperature due to interaction of the system with the thermal bath of acoustic phonons. We also address the role of polariton-polariton interaction (Kerr-like nonlinearity) on formation of dissipative solitons and show that the soliton may exist both in its presence and its absence.
Transport behavior of water molecules through two-dimensional nanopores.
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Coarsening of Two Dimensional Foams on a Curved Surface
NASA Astrophysics Data System (ADS)
Roth, Adam; Jones, Chris; Durian, Doug
2012-02-01
We report on foam coarsening and statistics of bubble distributions in a closed, two dimensional, hemispheric cell of constant curvature. Using this cell it is possible to observe individual bubbles and measure their coarsening rates. Our results are consistent with the modification to von Neumann's law predicted by Avron and Levine. We observed the relative frequencies of bubbles with a given number of sides and found a shortage of bubbles with few sides as compared to a flat two dimensional cell. We also measured the value of m(n), the average number of sides of an n sided bubble, and found general agreement with the Aboav-Weaire law, although there was greater deviation than for a flat cell.
On two-dimensional flows of compressible fluids
NASA Technical Reports Server (NTRS)
Bergman, Stefan
1945-01-01
This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.
Two-dimensional time dependent Riemann solvers for neutron transport
Brunner, Thomas A. . E-mail: tabrunn@sandia.gov; Holloway, James Paul
2005-11-20
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P{sub 1} equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem.
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Unshielded fetal magnetocardiography system using two-dimensional gradiometers
NASA Astrophysics Data System (ADS)
Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio
2008-03-01
We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.
On two-dimensional water waves in a canal
NASA Astrophysics Data System (ADS)
Kozlov, Vladimir; Kuznetsov, Nikolay
2003-07-01
This Note deals with an eigenvalue problem that contains a spectral parameter in a boundary condition. The problem for the two-dimensional Laplace equation describes free, time-harmonic water waves in a canal having uniform cross-section and bounded from above by a horizontal free surface. It is shown that there exists a domain for which at least one of eigenfunctions has a nodal line with both ends on the free surface. Since Kuttler essentially used the non-existence of such nodal lines in his proof of simplicity of the fundamental sloshing eigenvalue in the two-dimensional case, we propose a new variational principle for demonstrating this latter fact. To cite this article: V. Kozlov, N. Kuznetsov, C. R. Mecanique 331 (2003).
Two dimensional disorder in black phosphorus and layered monochalcogenides
NASA Astrophysics Data System (ADS)
Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.
The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.
A two-dimensional dam-break flood plain model
Hromadka, T.V., II; Berenbrock, C.E.; Freckleton, J.R.; Guymon, G.L.
1985-01-01
A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a finite difference grid and an irregular triangle element integrated finite difference formulation are presented. The governing flow equations are approximately solved as a diffusion model coupled to the equation of continuity. Application of the model to a hypothetical dam-break study indicates that the approach can be used to predict a two-dimensional dam-break flood plain over a broad, flat plain more accurately than a one-dimensional model, especially when the flow can break-out of the main channel and then return to the channel at other downstream reaches. ?? 1985.
Electron fractionalization in two-dimensional graphenelike structures.
Hou, Chang-Yu; Chamon, Claudio; Mudry, Christopher
2007-05-01
Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics. PMID:17501599
Topological states in two-dimensional hexagon lattice bilayers
NASA Astrophysics Data System (ADS)
Zhang, Ming-Ming; Xu, Lei; Zhang, Jun
2016-10-01
We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.
Extension of modified power method to two-dimensional problems
NASA Astrophysics Data System (ADS)
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Experimental observation of coherent cavity soliton frequency combs in silica microspheres
NASA Astrophysics Data System (ADS)
Webb, Karen E.; Erkintalo, Miro; Coen, Stéphane; Murdoch, Stuart G.
2016-10-01
We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers. PMID:23842256
Itinerant ferromagnetism in a two-dimensional atomic gas
Conduit, G. J.
2010-10-15
Motivated by the first experimental evidence of ferromagnetic behavior in a three-dimensional ultracold atomic gas, we explore the possibility of itinerant ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we develop a formalism that demonstrates how quantum fluctuations drive the ferromagnetic reconstruction first order, and consider the consequences of an imposed population imbalance. Secondly, we adapt this formalism to elucidate the key experimental signatures of ferromagnetism in a realistic trapped geometry.
The scaling state in two-dimensional grain growth
Mulheran, P.A. . Dept. of Physics)
1994-11-01
A new model of normal grain growth in two-dimensional systems is derived from considerations of Potts model simulations. This Randomly Connected Bubble model is based on Hillert's theory and combines the essential topological features of the grain boundary network with the action of capillarity. It successfully predicts what the scaling state of the network should be and explains why the system evolves into this state. The implications for grain growth in real materials are also discussed.
In vivo two-dimensional NMR correlation spectroscopy
NASA Astrophysics Data System (ADS)
Kraft, Robert A.
1999-10-01
The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and γ- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Two-dimensional unsteady flow in Comprex rotor
NASA Astrophysics Data System (ADS)
Jiang, H.
1984-08-01
A two-dimensional model of the unsteady compressible inviscid adiabatic flow in the meridional plane of a Comprex rotor of the type used as a Diesel supercharger is developed. The Euler equations governing the flow are solved numerically by the difference-scheme approach of MacCormack (1969, 1975), and numerical results are compared with experimental data in graphs and tables: good agreement is found.
Viscoelastic effects in a two-dimensional classical electron liquid
NASA Astrophysics Data System (ADS)
Mehrotra, Ravi
1987-08-01
The shear viscosity of a classical two-dimensional (2D) electron liquid is estimated by adapting the theory of Kirkwood, Buff, and Green for three dimensions to two dimensions. It is found to be large enough so that shear modes, if not overdamped by other scattering mechanisms, should be able to propagate through the electron liquid above a minimum temperature-dependent frequency, which is a small fraction of the highest frequency in the corresponding 2D electron solid.
Electromagnetic scattering in two-dimensional dissipative systems without localization
NASA Astrophysics Data System (ADS)
Spieker, H.; Nimtz, G.
1996-10-01
Two-dimensional microwave propagation is experimentally studied in strongly scattering and absorbing random media. The results are compared with adapted theories of Genack, Ferrari, and Kaveh, as well as with classical diffusion theory. The diffusion constants and propagation velocities are determined. Most metallic or semiconductor system's localization effects, if they exist, are so weak that a classical description of the system is appropriate within measuring resolution.
Two-Dimensional Protein Patterns in Heterodera glycines
Ferris, V. R.; Ferris, J. M.; Murdock, L. L.
1985-01-01
Two-dimensional polyacrylamide gel electrophoretic protein patterns of H. glycines from southern Indiana (Posey County) and northern Indiana (Pulaski County) were largely similar, but many differences existed. The pattern of the Posey isolate was similar to patterns from isolates collected in other areas of the United States. Unique dense protein spots in the pattern of an isolate from Hokkaido, Japan, distinguished it from patterns of six U.S. isolates. PMID:19294120
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
A two-dimensional angular-resolved proton spectrometer
NASA Astrophysics Data System (ADS)
Yang, Su; Yuan, Xiaohui; Fang, Yuan; Ge, Xulei; Deng, Yanqing; Wei, Wenqing; Gao, Jian; Fu, Feichao; Jiang, Tao; Liao, Guoqian; Liu, Feng; Chen, Min; Li, Yutong; Zhao, Li; Ma, Yanyun; Sheng, Zhengming; Zhang, Jie
2016-10-01
We present a novel design of two-dimensional (2D) angular-resolved spectrometer for full beam characterization of ultrashort intense laser driven proton sources. A rotated 2D pinhole array was employed, as selective entrance before a pair of parallel permanent magnets, to sample the full proton beam into discrete beamlets. The proton beamlets are subsequently dispersed without overlapping onto a planar detector. Representative experimental result of protons generated from femtosecond intense laser interaction with thin foil target is presented.
Phase Diagram of Symmetric Two-Dimensional Traffic Model
NASA Astrophysics Data System (ADS)
Ishibashi, Yoshihiro; Fukui, Minoru
2016-10-01
On the basis of the critical car density line in the phase diagram of the Biham-Middleton-Levine model for symmetric two-dimensional traffic systems, the formula of the flow in the intermediate jam flow phase is hypothesized. The formula is utilized to obtain the phase boundary between the free flow and jam flow phases, where the flow becomes maximum. The validity of this phase boundary has been confirmed by simulations.
Two dimensional thermal and charge mapping of power thyristors
NASA Technical Reports Server (NTRS)
Hu, S. P.; Rabinovici, B. M.
1975-01-01
The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.
Spirals and Skyrmions in Two Dimensional Oxide Heterostructures
NASA Astrophysics Data System (ADS)
Li, Xiaopeng; Liu, W. Vincent; Balents, Leon
2014-02-01
We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.
Circular Couette cell for two-dimensional fluid dynamics experiments
NASA Astrophysics Data System (ADS)
Fontana, P. W.; Kearney-Fischer, M.; Rogers, S.; Ulmen, J. V.; Windell, S.
2007-03-01
A novel experiment to investigate fluid dynamics in quasi-two-dimensional flows has been built. A soap film is suspended horizontally in an annular channel with a rotating outer boundary, providing mean flow shear, and a vortex array is forced electromagnetically. The experiment will investigate sheared flow stability and the effect of mean flow shear on local vorticity and coherent structures. Particle image velocimetry measurements demonstrate the production of mean flow shear and induced vortices.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
CBEAM. 2-D: a two-dimensional beam field code
Dreyer, K.A.
1985-05-01
CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.
Two-dimensional hexagonal smectic structure formed by topological defects.
Dolganov, P V; Shuravin, N S; Fukuda, Atsuo
2016-03-01
A two-dimensional hexagonal smectic structure formed by point topological defects and intersecting defect walls was discovered. This unique structure was predicted theoretically about 30 years ago but not observed. For a long time the hexagonal structure was a challenge for experimentalists. A different type of self-organization in smectic films was found and used to form the hexagonal structure. Methods applied for building the hexagonal phase can be used for the formation of complicated liquid-crystal structures.
Dirac Points in Two-Dimensional Inverse Opals
NASA Astrophysics Data System (ADS)
Mahan, G. D.
2013-10-01
The electron energy states and energy bands are calculated for a two-dimensional inverse opal structure. Assume that the opal structure is closed-packed circles, the inverse opal has the honeycomb lattice. The honeycomb lattice in two dimensions has a Dirac point. Its properties can be manipulated by altering the structure of the inverse opal: the radius of the circle, and the small gap between circles.
Suspended two-dimensional electron and hole gases
Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.
2013-12-04
We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.
HEAT2. Two-Dimensional Heat Transfer Finite Element Code
Charman, C.
1993-08-01
HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.
The shape dependency of two-dimensional magnetic field dependence of a Josephson junction
NASA Astrophysics Data System (ADS)
Watanabe, Norimichi; Nakayama, Akiyoshi; Abe, Susumu; Kawai, Sho; Nishi, Yohei; Masuda, Koji
2008-04-01
Modulation characteristics of a Josephson current are usually measured by applying the external magnetic field parallel to the junction plane from one direction, and uniformity in tunnel barrier is discussed. So far, we have measured two-dimensional magnetic field dependence of a square Josephson junction by independently scanning the magnetic field (Hx,Hy) parallel to the junction plane from two directions. We can get a lot of information about spatial critical current distribution in a Josephson junction by observing the magnetic field dependence of a Josephson junction in two dimensions. This time, we have fabricated the different-shaped Josephson junctions and investigated the shape dependency of two-dimensional magnetic field dependence of a Josephson junction. We observed the Ic-(Hx,Hy) characteristics of triangular, hexagonal, and circular Josephson junctions quite different from the Ic-(Hx,Hy), characteristics of a square Josephson junction. Furthermore, we simulated two-dimensional magnetic field dependence of a Josephson junction by calculating the superconducting current density distribution in each magnetic field. The simulation results agreed well with experimental results.
NASA Astrophysics Data System (ADS)
Furuya, Shunsuke C.; Dupont, Maxime; Capponi, Sylvain; Laflorencie, Nicolas; Giamarchi, Thierry
2016-10-01
Spontaneous symmetry breaking is deeply related to the dimensionality of a system. The Néel order going with spontaneous breaking of U (1 ) symmetry is safely allowed at any temperature for three-dimensional systems but allowed only at zero temperature for purely two-dimensional systems. We closely investigate how smoothly the ordering process of the three-dimensional system is modulated into that of the two-dimensional one with reduction of dimensionality, considering spatially anisotropic quantum antiferromagnets. We first show that the Néel temperature is kept finite even in the two-dimensional limit although the Néel order is greatly suppressed for low dimensionality. This feature of the Néel temperature is highly nontrivial, which dictates how the order parameter is squashed under the reduction of dimensionality. Next, we investigate this dimensional modulation of the order parameter. We develop our argument taking as an example a coupled spin-ladder system relevant for experimental studies. The ordering process is investigated multidirectionally using theoretical techniques of a mean-field method combined with analytical (exact solutions of quantum field theories) or numerical (density-matrix renormalization-group) methods, a variational method, a renormalization-group study, linear spin-wave theory, and quantum Monte Carlo simulations. We show that these methods independent of each other lead to the same conclusion about the dimensional modulation.
Two-dimensional DNA fingerprinting of human individuals
Uitterlinden, A.G.; Slagboom, P.E.; Knook, D.L.; Vijg, J. )
1989-04-01
The limiting factor in the presently available techniques for the detection of DNA sequence variation in the human genome is the low resolution of Southern blot analysis. To increase the analytical power of this technique, the authors applied size fractionation of genomic DNA restriction fragments in conjunction with their sequence-dependent separation in denaturing gradient gels; the two-dimensional separation patterns obtained were subsequently transferred to nylon membranes. Hybridization analysis using minisatellite core sequences as probes resulted in two-dimensional genomic DNA fingerprints with a resolution of up to 625 separated spots per probe per human individual; by conventional Southern blot analysis, only 20-30 bands can be resolved. Using the two-dimensional DNA fingerprinting technique, they demonstrate in a small human pedigree the simultaneous transmission of 37 polymorphic fragments (out of 365 spots) for probe 33.15 and 105 polymorphic fragments (out of 625 spots) for probe 33.6. In addition, a mutation was detected in this pedigree by probe 33.6. They anticipate that this method will be of great use in studies aimed at (i) measuring human mutation frequencies, (ii) associating genetic variation with disease, (iii) analyzing genomic instability in relation to cancer and aging, and (iv) linkage analysis and mapping of disease genes.
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Experimental realization of two-dimensional boron sheets.
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future. PMID:27219700
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Two dimensional particle simulations of Raman backward amplifier
NASA Astrophysics Data System (ADS)
Hur, Min; Lindberg, Ryan; Wurtele, Jonathan
2005-10-01
We carried out two-dimensional particle simulations of the Raman backward amplifier. The particle code is based on the one-dimensional averaged-PIC (aPIC) code [1]. From the speculation that the longitudinal ponderomotive driving by the two counter-propagating lasers is quite dominant over the transverse one, the two-dimensional version of the aPIC can be easily built up by putting many one-dimensional aPIC solvers in parallel. The solvers are coupled by the diffraction terms of the lasers, which enables one to simulate the transverse effects in the Raman backward amplifier. One of the most important issues regarding the transverse effects is the focusability of the amplified pulse. Previous simulations [2-3], which are based on the fluid model, show that the focusing phase of the seed laser is preserved well during the amplification process. However, there has scarcely been kinetic studies on the same problem. Various simulations from the fully kinetic two-dimensional aPIC are presented. We discuss the kinetic effects (electron trapping) on the focusablity of the amplified seed. [1] M.S. Hur, G. Penn, J.S. Wurtele, and R. Lindberg, Phys. Plasmas vol. 11, p. 5204 (2004). [2] A.A. Solodov, V.M. Malkin, and N.J. Fisch, Phys. Plasmas vol. 10, p. 2540 (2003). [3] G.M. Fraiman, N.A. Yampolsky, V.M. Malkin, and N.J. Fisch, Phys. Plasmas vol. 9, p.3617 (2002).
Freezing of an unconventional two-dimensional plasma
NASA Astrophysics Data System (ADS)
Herland, Egil V.; Babaev, Egor; Bonderson, Parsa; Gurarie, Victor; Nayak, Chetan; Radzihovsky, Leo; Sudbø, Asle
2013-02-01
We study an unconventional two-dimensional, two-component classical plasma on a sphere, with emphasis on detecting signatures of melting transitions. This system is relevant to Ising-type quantum Hall states, and is unconventional in the sense that it features particles interacting via two different two-dimensional Coulomb interactions. One species of particle in the plasma carries charge of both types (Q1,Q2), while the other species carries only charge of the second type (0,-Q2). We find signatures of a freezing transition at Q12≃140. This means that the species with charge of both types will form a Wigner crystal, whereas the species with charge of the second type also shows signatures of being a Wigner crystal, due to the attractive intercomponent interaction of the second type. Moreover, there is also a Berezinskii-Kosterlitz-Thouless phase transition at Q22≃4, at which the two species of particles bind to form molecules that are neutral with respect to the second Coulomb interaction. These two transitions appear to be independent of each other, giving a rectangular phase diagram. As a special case, Q2=0 describes the (conventional) two-dimensional one-component plasma. Our study is consistent with previous studies of this plasma, and sheds new light on the freezing transition of this system.
Procedures for two-dimensional electrophoresis of proteins
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Experimental realization of two-dimensional boron sheets
NASA Astrophysics Data System (ADS)
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
A two-dimensional analytical model of petroleum vapor intrusion
NASA Astrophysics Data System (ADS)
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Semirelativity and kink solitons
NASA Astrophysics Data System (ADS)
Karol Nowak, Mariusz
2014-05-01
It is hard to observe relativistic effects in everyday life. However, table experiments using a mechanical transmission line for solitons may be an efficient and simple way to show effects such as Lorentz contraction in a classroom. A kink soliton is a deformation of a lattice of several dozen or more pendulums placed on a wire and connected by a spring, or, exactly, a group of pendulums having angles of rotation from 0 to 2π. Kink solitons are localized waves that propagate along one space direction with undeformed shape and some particle-like properties. In this paper I will focus on the semirelativistic properties of mechanical kink solitons. The critical velocity of these solitons is not the speed of light, but the speed of linear waves in that certain transmission line. This feature enables everybody to observe phenomena such as length contraction or the relativistic mass-energy relation in a table experiment. Simultaneously, phenomena such as particle-antiparticle interaction can be studied experimentally.
Two-dimensional Detector for High Resolution Soft X-ray Imaging
Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki
2010-06-23
A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.
Moore, Lee J; Dear, Richard D; Summers, Michael D; Dullens, Roel P A; Ritchie, Grant A D
2010-10-13
A spatially modulated laser is used to produce multiple localized thermal gradients in a colloidal sample placed above a gold surface. We use an optical microscope to observe real time dynamics of the resulting two-dimensional colloidal crystal grains and find that grain rotation-induced grain coalescence (GRIGC) occurs with the rotation of both grains before coalescence. Control over the grain size shows that the time scale for grain boundary annealing in our system is in good agreement with theoretical expressions formulated for nanocrystal growth.
Universal Distribution of Centers and Saddles in Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Wu, X. L.; Rivera, Michael; Yeung, Chuck
2000-11-01
Statistical distribution of topological structures of two-dimensional turbulence are investigated using freely suspended soap films. These local structures comprise of centers of rotation and saddle points in the flow and can be characterized by a Jacobian determinant Λ(x,y). Our central finding is that when Λ is properly normalized by its rms value, P(Λ) is a universal function, independent of turbulent intensity and the means that turbulence is created. Such a universality appears to result from the stream function being a Gaussian field with a finite spatial correlation.
Elliptic Genera of Two-Dimensional Gauge Theories with Rank-One Gauge Groups
NASA Astrophysics Data System (ADS)
Benini, Francesco; Eager, Richard; Hori, Kentaro; Tachikawa, Yuji
2014-04-01
We compute the elliptic genera of two-dimensional and -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi-Yau, SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric model.
NASA Astrophysics Data System (ADS)
Pan, Y.; Rossignol, C.; Audoin, B.
2005-06-01
The published model [Appl. Phys. Lett. 82, 4379-4381 (2003)] for the two-dimensional transient wave propagation in a cylinder is modified to avoid the inherited integration of the numerical inverse scheme. The Fourier series expansion is introduced for one spatial coordinate to resolve the transient response problem: theoretical radial displacements in either the ablation or the thermoelastic regime are obtained with little numerical noise and short computation time. The normal mode expansion method fails to deliver results with the same accuracy. Acoustic waves are fully identified by the ray trajectory analysis. These identified waves are further verified on the experimental results observed with the laser ultrasonic technique. .
Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System
NASA Astrophysics Data System (ADS)
Chechkin, Gregory A.; Ratiu, Tudor S.; Romanov, Maxim S.; Samokhin, Vyacheslav N.
2016-09-01
In this paper we study the two dimensional Ericksen-Leslie equations for the nematodynamics of liquid crystals if the moment of inertia of the molecules does not vanish. We prove short time existence and uniqueness of strong solutions for the initial value problem in two situations: the space-periodic problem and the case of a bounded domain with spatial Dirichlet boundary conditions on the Eulerian velocity and the cross product of the director field with its time derivative. We also show that the speed of propagation of the director field is finite and give an upper bound for it.
Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam.
Thielen, Peter A; Ho, James G; Burchman, David A; Goodno, Gregory D; Rothenberg, Joshua E; Wickham, Michael G; Flores, Angel; Lu, Chunte A; Pulford, Benjamin; Robin, Craig; Sanchez, Anthony D; Hult, D; Rowland, K B
2012-09-15
We demonstrate coherent beam combining using a two-dimensionally patterned diffractive optic combining element. Fifteen Yb-doped fiber amplifier beams arranged in a 3×5 array were combined into a single 600 W, M²=1.1 output beam with 68% combining efficiency. Combining losses under thermally stable conditions at 485 W were found to be dominated by spatial mode-mismatch between the free space input beams, in quantitative agreement with calculations using the measured amplitude and phase profiles of the input beams.
Two-dimensional colloid-based photonic crystals for distributed feedback polymer lasers
Mafouana, Rodrigue; Rehspringer, Jean-Luc; Hirlimann, Charles; Estournes, Claude; Dorkenoo, Kokou D.
2004-11-08
We report on a process to design highly ordered monolayers of two-dimensional photonic crystals, made of silica nanoparticules, that can be used for the development of organic optical devices. We have used a photopolymerization process to incorporate a dye gain medium into the nanoparticle layers in order to achieve a laser cavity. The high spatial coherence of the deposits allows for single-mode laser emission in the plane of the layer when the light excitation is perpendicular to the plane. Such periodic films should help in reducing the number of layers needed for future electrically pumped distributed feedback lasers.
Design and optimization of resistive anode for a two-dimensional imaging GEM detector
NASA Astrophysics Data System (ADS)
Ju, Xu-Dong; Dong, Ming-Yi; Zhao, Yi-Chen; Zhou, Chuan-Xing; Qun, Ou-Yang
2016-08-01
A resistive anode for two-dimensional imaging detectors, which consists of a series of high resistivity pads surrounded by low resistivity strips, can provide good spatial resolution while reducing the number of electronics channels required. The optimization of this kind of anode has been studied by both numerical simulations and experimental tests. It is found that to obtain good detector performance, the resistance ratio of the pads to the strips should be larger than 5, the nonuniformity of the pad surface resistivity should be less than 20%, a smaller pad width leads to a smaller spatial resolution, and when the pad width is 6 mm, the spatial resolution (σ) can reach about 105 μm. Based on the study results, a 2-D GEM detector prototype with optimized resistive anode is constructed and a good imaging performance is achieved. Supported by National Natural Science Foundation of China (11375219) and CAS Center for Excellence in Particle Physics (CCEPP)
Simulation of two-dimensional target motion based on a liquid crystal beam steering method
NASA Astrophysics Data System (ADS)
Lin, Yixiang; Ai, Yong; Shan, Xin; Liu, Min
2015-05-01
A simulation platform is established for target motion using a liquid crystal (LC) spatial light modulator as a nonmechanical beam steering control device. By controlling the period and orientation of the phase grating generated by the spatial light modulator, the platform realizes two-dimensional (2-D) beam steering using a single LC device. The zenith and azimuth angle range from 0 deg to 2.89 deg and from 0 deg to 360 deg, respectively, with control resolution of 0.0226 deg and 0.0300 deg, respectively. The response time of the beam steering is always less than 0.04 s, irrespective of steering angle. Three typical aircraft tracks are imitated to evaluate the performance of the simulation platform. The correlation coefficients between the theoretical and simulated motions are larger than 0.9822. Results show that it is highly feasible to realize 2-D target motion simulation using the LC spatial light modulator.
Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.
2016-01-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.
2016-08-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.
Spinning superconducting electrovacuum soliton
NASA Astrophysics Data System (ADS)
Dymnikova, Irina
2006-08-01
In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.
Bonilla, L L; Carretero, M; Terragni, F; Birnir, B
2016-01-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Borucki, W. J.; Watson, V. R.; Shimazaki, T.; Woodward, H. T.; Riegel, C. A.; Capone, L. A.; Becker, T.
1977-01-01
The two-dimensional model of stratospheric constituents is presented in detail. The derivation of pertinent transport parameters and the numerical solution of the species continuity equations, including a technique for treating the stiff differential equations that represent the chemical kinetic terms, and appropriate methods for simulating the diurnal variations of the solar zenith angle and species concentrations are discussed. Predicted distributions of tracer constituents (ozone, carbon 14, nitric acid) are compared with observed distributions.
Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.
2011-09-15
We report the observation of highly energetic self-interfering matter-wave (SIMW) patterns generated by a moving obstacle in a two-dimensional Bose-Einstein condensate (BEC) inside a power trap cut off by hard-wall box potential boundaries. The obstacle initially excites circular dispersive waves radiating away from the center of the trap which are reflected from hard-wall box boundaries at the edges of the trap. The resulting interference between outgoing waves from the center of the trap and reflected waves from the box boundaries institutes, to the best of our knowledge, unprecedented SIMW patterns. For this purpose we simulated the time-dependent Gross-Pitaevskii equation using the split-step Crank-Nicolson method and the obstacle was modelled by a moving impenetrable Gaussian potential barrier. Various trapping geometries are considered in which the dynamics of the spatial and momentum density, as well as the energy, are considered. The momentum dynamics reveal an oscillatory behavior for the condensate fraction, indicative of excitations out of and de-excitations back into the condensate state. An oscillatory pattern for the energy dynamics reveals the presence of solitons in the system. Some vortex features are also obtained.
Defect solitons in photonic lattices.
Yang, Jianke; Chen, Zhigang
2006-02-01
Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473
Biological and environmental interactions of emerging two-dimensional nanomaterials.
Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert
2016-03-21
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057
Surface solitary waves and solitons. [in solar atmosphere and solar wind magnetic structure
NASA Technical Reports Server (NTRS)
Hollweg, J. V.; Roberts, B.
1984-01-01
The solar atmosphere and solar wind are magnetically structured. The structuring can include tangential discontinuities, which can support surface waves. Such waves can be dispersive. This means that dispersion and nonlinearity can balance in such a way that solitary waves (or solitons) can result. This general point is illustrated by a two-dimensional nonlinear analysis which explicitly demonstrates the presence of long-wavelength solitary waves propagating on tangential discontinuities. If the waves are only weakly nonlinear, then they obey the Korteweg-de Vries equation and are true solitons.
P-wave contacts for two dimensional quatum gas
NASA Astrophysics Data System (ADS)
Zhang, Yicai; Yu, Zhenhua; Zhang, Shizhong
The s-wave contact has played an important role in our understanding of the strongly interacting Fermi gases. Recently, theoretical and experimental work has shown that two similar contacts exist for a p-wave interacting Fermi gas in three-dimensions. In this work, we extend the considerations to two dimensional spineless Fermi gas and derive exact results regarding the energy, momentum distributions and in particular, shifts of monopole frequency in a harmonic trap. Asymptotic formula for the frequency shift is given at high temperature via virial expansion and this can be checked by future experiments.
Memory device for two-dimensional radiant energy array computers
NASA Technical Reports Server (NTRS)
Schaefer, D. H.; Strong, J. P., III (Inventor)
1977-01-01
A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included
Quasi-two-dimensional Turing patterns in an imposed gradient
NASA Astrophysics Data System (ADS)
Lengyel, István; Kádár, Sándor; Epstein, Irving R.
1992-11-01
In experiments on quasi-two-dimensional Turing structures, patterns form perpendicular to a concentration gradient imposed by the boundary conditions. Using linear stability analysis, with the ClO2-I2-MA (malonic acid) reaction as an example, we obtain conditions on the position along the gradient direction and possible three dimensionality of the structures. Experiments on the effects of MA and starch concentrations on the position of the structures support the theory. Simulations taking into account the starch indicator yield Turing patterns even with equal diffusion coefficients for the activator and inhibitor species.
Elastic behavior of a two-dimensional crystal near melting.
von Grünberg, H H; Keim, P; Zahn, K; Maret, G
2004-12-17
Using positional data from video microscopy, we determine the elastic moduli of two-dimensional colloidal crystals as a function of temperature. The moduli are extracted from the wave-vector-dependent normal-mode spring constants in the limit q-->0 and are compared to the renormalized Young's modulus of the Kosterlitz-Thouless-Halperin-Nelson-Young theory. An essential element of this theory is the universal prediction that Young's modulus must approach 16 pi at the melting temperature. This is indeed observed in our experiment.
Correlation effects in two-dimensional topological insulators.
Hohenadler, M; Assaad, F F
2013-04-10
Topological insulators have become one of the most active research areas in condensed matter physics. This article reviews progress on the topic of electronic correlation effects in the two-dimensional case, with a focus on systems with intrinsic spin-orbit coupling and numerical results. Topics addressed include an introduction to the noninteracting case, an overview of theoretical models, correlated topological band insulators, interaction-driven phase transitions, topological Mott insulators and fractional topological states, correlation effects on helical edge states, and topological invariants of interacting systems.
SOLVING THE TWO-DIMENSIONAL DIFFUSION FLOW MODEL.
Hromadka, T.V.; Lai, Chintu
1985-01-01
A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion equation. To investigate its capability, the numerical model using the diffusion approach is applied to a hypothetical failure problem of a regional water reservoir. The model is based on an explicit, integrated finite-difference scheme, and the floodplain is simulated by a popular home computer which supports 64K FORTRAN. Though simple, the 2-D model can simulate some interesting flooding effects that a 1-D full dynamic model cannot.
Topological phases in two-dimensional materials: a review.
Ren, Yafei; Qiao, Zhenhua; Niu, Qian
2016-06-01
Topological phases with insulating bulk and gapless surface or edge modes have attracted intensive attention because of their fundamental physics implications and potential applications in dissipationless electronics and spintronics. In this review, we mainly focus on recent progress in the engineering of topologically nontrivial phases (such as [Formula: see text] topological insulators, quantum anomalous Hall effects, quantum valley Hall effects etc) in two-dimensional systems, including quantum wells, atomic crystal layers of elements from group III to group VII, and the transition metal compounds. PMID:27176924
Nanocavity absorption enhancement for two-dimensional material monolayer systems.
Song, Haomin; Jiang, Suhua; Ji, Dengxin; Zeng, Xie; Zhang, Nan; Liu, Kai; Wang, Chu; Xu, Yun; Gan, Qiaoqiang
2015-03-23
Here we propose a strategy to enhance the light-matter interaction of two-dimensional (2D) material monolayers based on strong interference effect in planar nanocavities, and overcome the limitation between optical absorption and the atomically-thin thickness of 2D materials. By exploring the role of spacer layers with different thicknesses and refractive indices, we demonstrate that a nanocavity with an air spacer layer placed between a graphene monolayer and an aluminum reflector layer will enhance the exclusive absorption in the graphene monolayer effectively, which is particularly useful for the development of atomically-thin energy harvesting/conversion devices.
Two-dimensional chiral topological superconductivity in Shiba lattices
NASA Astrophysics Data System (ADS)
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei
2016-07-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.
Aerodynamics of two-dimensional slotted bluff bodies
Takahashi, F.; Higuchi, H.
1988-04-30
Aerodynamic characteristics of two-dimensional, slotted bluff bodies were experimentally investigated. Flow visualizations, base pressure measurements, mean velocity vector measurements, and drag force measurements were conducted to analyze effects of spacing ratio (i.e., porosity), curvature, and vent. Low porosity model configurations produced stable near-wake patterns with enhanced vortex sheddings of overall wake formations. Model curvature reduced drag forces and weakened the vortex sheddings. Stabilizing effect of curvature on the near-wake patterns was also found. A vent combined with large model curvature was found to control drag force effectively, as well as suppressing vortex sheddings. 10 refs., 52 figs., 1 tab.
Two-dimensional crystals: managing light for optoelectronics.
Eda, Goki; Maier, Stefan A
2013-07-23
Semiconducting two-dimensional (2D) crystals such as MoS2 and WSe2 exhibit unusual optical properties that can be exploited for novel optoelectronics ranging from flexible photovoltaic cells to harmonic generation and electro-optical modulation devices. Rapid progress of the field, particularly in the growth area, is beginning to enable ways to implement 2D crystals into devices with tailored functionalities. For practical device performance, a key challenge is to maximize light-matter interactions in the material, which is inherently weak due to its atomically thin nature. Light management around the 2D layers with the use of plasmonic nanostructures can provide a compelling solution.
Ultra-subwavelength two-dimensional plasmonic circuits.
Andress, William F; Yoon, Hosang; Yeung, Kitty Y M; Qin, Ling; West, Ken; Pfeiffer, Loren; Ham, Donhee
2012-05-01
We report electronics regime (GHz) two-dimensional (2D) plasmonic circuits, which locally and nonresonantly interface with electronics, and thus offer to electronics the benefits of their ultrasubwavelength confinement, with up to 440,000-fold mode-area reduction. By shaping the geometry of 2D plasmonic media 80 nm beneath an unpatterned metallic gate, plasmons are routed freely into various types of reflections and interferences, leading to a range of plasmonic circuits, e.g., plasmonic crystals and plasmonic-electromagnetic interferometers, offering new avenues for electronics.
Two-dimensional molecular crystals of phosphonic acids on graphene.
Prado, Mariana C; Nascimento, Regiane; Moura, Luciano G; Matos, Matheus J S; Mazzoni, Mario S C; Cancado, Luiz G; Chacham, Helio; Neves, Bernardo R A
2011-01-25
The synthesis and characterization of two-dimensional (2D) molecular crystals composed of long and linear phosphonic acids atop graphene is reported. Using scanning probe microscopy in combination with first-principles calculations, we show that these true 2D crystals are oriented along the graphene armchair direction only, thereby enabling an easy determination of graphene flake orientation. We have also compared the doping level of graphene flakes via Raman spectroscopy. The presence of the molecular crystal atop graphene induces a well-defined shift in the Fermi level, corresponding to hole doping, which is in agreement with our ab initio calculations.
External Dissipation in Driven Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Rivera, Michael; Wu, X. L.
2000-07-01
Turbulence in a freely suspended soap film is created by electromagnetic forcing and measured by particle tracking. The velocity fluctuations are shown to be adequately described by the forced Navier-Stokes equation for an incompressible two-dimensional fluid with a linear drag term to model the frictional coupling to the surrounding air. Using this equation, the energy dissipation rates due to air friction and the film's internal viscosity are measured, as is the rate of energy injection from the electromagnetic forcing. Comparison of these rates demonstrates that the air friction is a significant energy dissipation mechanism in the system.
Two-dimensional chiral topological superconductivity in Shiba lattices.
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A H; Yazdani, A; Bernevig, B Andrei
2016-01-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal. PMID:27465127
Two-dimensional particle displacement tracking in particle imaging velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1991-01-01
A new particle imaging velocimetry data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system, has been constructed and tested. The new particle displacement tracking (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images is time-coded into a single image and then processed to track particle displacements and determine two-dimensional velocity vectors. Use of the PDT technique in a counterrotating vortex flow produced over 1100 velocity vectors in 110 s when processed on an 80386 PC.
Quantum Phases of a Two-Dimensional Dipolar Fermi Gas
Bruun, G. M.; Taylor, E.
2008-12-12
We examine the superfluid and collapse instabilities of a quasi-two-dimensional gas of dipolar fermions aligned by an orientable external field. It is shown that the interplay between the anisotropy of the dipole-dipole interaction, the geometry of the system, and the p-wave symmetry of the superfluid order parameter means that the effective interaction for pairing can be made very large without the system collapsing. This leads to a broad region in the phase diagram where the system forms a stable superfluid. Analyzing the superfluid transition at finite temperatures, we calculate the Berezinskii-Kosterlitz-Thouless temperature as a function of the dipole angle.
Hydrometeor classification from two-dimensional video disdrometer data
NASA Astrophysics Data System (ADS)
Grazioli, J.; Tuia, D.; Monhart, S.; Schneebeli, M.; Raupach, T.; Berne, A.
2014-09-01
The first hydrometeor classification technique based on two-dimensional video disdrometer (2DVD) data is presented. The method provides an estimate of the dominant hydrometeor type falling over time intervals of 60 s during precipitation, using the statistical behavior of a set of particle descriptors as input, calculated for each particle image. The employed supervised algorithm is a support vector machine (SVM), trained over 60 s precipitation time steps labeled by visual inspection. In this way, eight dominant hydrometeor classes can be discriminated. The algorithm achieved high classification performances, with median overall accuracies (Cohen's K) of 90% (0.88), and with accuracies higher than 84% for each hydrometeor class.
Carbon dioxide separation with a two-dimensional polymer membrane.
Schrier, Joshua
2012-07-25
Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications.
Two-Dimensional Optoelectronic Graphene Nanoprobes for Neural Nerwork
NASA Astrophysics Data System (ADS)
Hong, Tu; Kitko, Kristina; Wang, Rui; Zhang, Qi; Xu, Yaqiong
2014-03-01
Brain is the most complex network created by nature, with billions of neurons connected by trillions of synapses through sophisticated wiring patterns and countless modulatory mechanisms. Current methods to study the neuronal process, either by electrophysiology or optical imaging, have significant limitations on throughput and sensitivity. Here, we use graphene, a monolayer of carbon atoms, as a two-dimensional nanoprobe for neural network. Scanning photocurrent measurement is applied to detect the local integration of electrical and chemical signals in mammalian neurons. Such interface between nanoscale electronic device and biological system provides not only ultra-high sensitivity, but also sub-millisecond temporal resolution, owing to the high carrier mobility of graphene.
Superconductivity in the two-dimensional generalized Hubbard model
NASA Astrophysics Data System (ADS)
Lima, L. S.
2016-08-01
We have used the Green's functions method at finite temperature and the Kubo's formalism, to calculate the electron conductivity σ(ω) in the generalized two-dimensional Hubbard model. We have obtained a behavior superconductor for the system to T > T0. The AC conductivity falls to zero in ω =ω0 , where ω0 depends on Δ, which is the gap of the system. The behavior gotten is according of with the behavior of the superconductors of high Tc where there is a changes abruptly from a Mott's insulator state to superconductor.
Disordered two-dimensional electron systems with chiral symmetry
NASA Astrophysics Data System (ADS)
Markoš, P.; Schweitzer, L.
2012-10-01
We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.
Optofluidic two-dimensional grating volume refractive index sensor.
Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik
2016-09-10
We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10^{-3} refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes. PMID:27661360
Two-Dimensional Layered Materials-Based Spintronics
NASA Astrophysics Data System (ADS)
Su, Guohui; Wu, Xing; Tong, Wenqi; Duan, Chungang
2015-12-01
The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.
Two-dimensional unsteady lift problems in supersonic flight
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard
1949-01-01
The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.