Sample records for two-dimensional surface state

  1. Intrinsic two-dimensional states on the pristine surface of tellurium

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  2. Magnetic second-order topological insulators and semimetals

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-04-01

    We propose magnetic second-order topological insulators (SOTIs). First, we study a three-dimensional model. It is pointed out that the previously proposed topological hinge insulator has actually surface states along the [001] direction in addition to hinge states. We gap out these surface states by introducing magnetization, obtaining a SOTI only with hinge states. The bulk topological number is the Z2 index protected by the combined symmetry of the fourfold rotation and the inversion symmetry. We next study two-dimensional magnetic SOTIs, where the corner states are robust also in the presence of the magnetization. Finally, we construct a magnetic second-order topological semimetal by layering the two-dimensional magnetic SOTIs, where hinge-arc states are robust also in the presence of the magnetization.

  3. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes

    PubMed Central

    Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.

    2016-01-01

    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569

  4. Validity of the site-averaging approximation for modeling the dissociative chemisorption of H{sub 2} on Cu(111) surface: A quantum dynamics study on two potential energy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    A new finding of the site-averaging approximation was recently reported on the dissociative chemisorption of the HCl/DCl+Au(111) surface reaction [T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 139, 184705 (2013); T. Liu, B. Fu, and D. H. Zhang, J. Chem. Phys. 140, 144701 (2014)]. Here, in order to investigate the dependence of new site-averaging approximation on the initial vibrational state of H{sub 2} as well as the PES for the dissociative chemisorption of H{sub 2} on Cu(111) surface at normal incidence, we carried out six-dimensional quantum dynamics calculations using the initial state-selected time-dependent wave packet approach, withmore » H{sub 2} initially in its ground vibrational state and the first vibrational excited state. The corresponding four-dimensional site-specific dissociation probabilities are also calculated with H{sub 2} fixed at bridge, center, and top sites. These calculations are all performed based on two different potential energy surfaces (PESs). It is found that the site-averaging dissociation probability over 15 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability for H{sub 2} (v = 0) and (v = 1) on the two PESs.« less

  5. Edge-mode superconductivity in a two-dimensional topological insulator.

    PubMed

    Pribiag, Vlad S; Beukman, Arjan J A; Qu, Fanming; Cassidy, Maja C; Charpentier, Christophe; Wegscheider, Werner; Kouwenhoven, Leo P

    2015-07-01

    Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which have been predicted to occur in the surface states of three-dimensional systems, in the edge states of two-dimensional systems, and in one-dimensional wires. Localized Majorana zero-modes obey non-Abelian exchange statistics, making them interesting building blocks for topological quantum computing. Here, we report superconductivity induced in the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the two-dimensional topological phase. These experiments establish InAs/GaSb as a promising platform for the confinement of Majoranas into localized states, enabling future investigations of non-Abelian statistics.

  6. Two-Dimensional Wetting Transition Modeling with the Potts Model

    NASA Astrophysics Data System (ADS)

    Lopes, Daisiane M.; Mombach, José C. M.

    2017-12-01

    A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.

  7. Topologically nontrivial electronic states in CaSn3

    NASA Astrophysics Data System (ADS)

    Gupta, Sunny; Juneja, Rinkle; Shinde, Ravindra; Singh, Abhishek K.

    2017-06-01

    Based on the first-principles calculations, we theoretically propose topologically non-trivial states in a recently experimentally discovered superconducting material CaSn3. When the spin-orbit coupling (SOC) is ignored, the material is a host to three-dimensional topological nodal-line semimetal states. Drumhead like surface states protected by the coexistence of time-reversal and mirror symmetry emerge within the two-dimensional regions of the surface Brillouin zone connecting the nodal lines. When SOC is included, unexpectedly, each nodal line evolves into two Weyl nodes (W1 and W2) in this centrosymmetric material. Berry curvature calculations show that these nodes occur in a pair and act as either a source or a sink of Berry flux. This material also has unique surface states in the form of Fermi arcs, which unlike other known Weyl semimetals forms closed loops of surface states on the Fermi surface. Our theoretical realization of topologically non-trivial states in a superconducting material paves the way towards unraveling the interconnection between topological physics and superconductivity.

  8. Two-dimensional electronic transport and surface electron accumulation in MoS2.

    PubMed

    Siao, M D; Shen, W C; Chen, R S; Chang, Z W; Shih, M C; Chiu, Y P; Cheng, C-M

    2018-04-12

    Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS 2 ) is a major n-doping source. The surface electron concentration of MoS 2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS 2 nanoflakes was observed. The transfer length method suggested the current transport in MoS 2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.

  9. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  10. Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films

    PubMed Central

    2012-01-01

    We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement. PMID:23072433

  11. Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films.

    PubMed

    Fan, Zheyong; Zheng, Jiansen; Wang, Hui-Qiong; Zheng, Jin-Cheng

    2012-10-16

    We show that certain three-dimensional (3D) superlattice nanostructure based on Bi2Te3 topological insulator thin films has better thermoelectric performance than two-dimensional (2D) thin films. The 3D superlattice shows a predicted peak value of ZT of approximately 6 for gapped surface states at room temperature and retains a high figure of merit ZT of approximately 2.5 for gapless surface states. In contrast, 2D thin films with gapless surface states show no advantage over bulk Bi2Te3. The enhancement of the thermoelectric performance originates from a combination of the reduction of lattice thermal conductivity by phonon-interface scattering, the high mobility of the topologically protected surface states, the enhancement of Seebeck coefficient, and the reduction of electron thermal conductivity by energy filtering. Our study shows that the nanostructure design of topological insulators provides a possible new way of ZT enhancement.

  12. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    NASA Astrophysics Data System (ADS)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  13. Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems

    NASA Technical Reports Server (NTRS)

    Risch, Tim; Kostyk, Chris

    2016-01-01

    Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.

  14. Gigantic Surface Lifetime of an Intrinsic Topological Insulator

    DOE PAGES

    Neupane, Madhab; Xu, Su-Yang; Ishida, Yukiaki; ...

    2015-09-09

    We report that the interaction between light and novel two-dimensional electronic states holds promise to realize new fundamental physics and optical devices. Here, we use pump-probe photoemission spectroscopy to study the optically excited Dirac surface states in the bulk-insulating topological insulator Bi 2Te 2Se and reveal optical properties that are in sharp contrast to those of bulk-metallic topological insulators. We observe a gigantic optical lifetime exceeding 4 μs (1 μs=10 more » $${-}$$6 s) for the surface states in Bi 2Te 2Se, whereas the lifetime in most topological insulators, such as Bi2Se3, has been limited to a few picoseconds (1 ps=10 $${-}$$12 s). Moreover, we discover a surface photovoltage, a shift of the chemical potential of the Dirac surface states, as large as 100 mV. Lastly, our results demonstrate a rare platform to study charge excitation and relaxation in energy and momentum space in a two-dimensional system.« less

  15. Ullmann-like reactions for the synthesis of complex two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.

    2016-11-01

    Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.

  16. Finite state modeling of aeroelastic systems

    NASA Technical Reports Server (NTRS)

    Vepa, R.

    1977-01-01

    A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.

  17. A Two-Dimensional Manganese Gallium Nitride Surface Structure Showing Ferromagnetism at Room Temperature.

    PubMed

    Ma, Yingqiao; Chinchore, Abhijit V; Smith, Arthur R; Barral, María Andrea; Ferrari, Valeria

    2018-01-10

    Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

  18. Two-dimensional description of surface-bounded exospheres with application to the migration of water molecules on the Moon

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert

    2015-05-01

    On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.

  19. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.

    PubMed

    Roth, A E; Chen, B G; Durian, D J

    2013-12-01

    We utilize total-internal reflection to isolate the two-dimensional surface foam formed at the planar boundary of a three-dimensional sample. The resulting images of surface Plateau borders are consistent with Plateau's laws for a truly two-dimensional foam. Samples are allowed to coarsen into a self-similar scaling state where statistical distributions appear independent of time, except for an overall scale factor. There we find that statistical measures of side number distributions, size-topology correlations, and bubble shapes are all very similar to those for two-dimensional foams. However, the size number distribution is slightly broader, and the shapes are slightly more elongated. A more obvious difference is that T2 processes now include the creation of surface bubbles, due to rearrangement in the bulk, and von Neumann's law is dramatically violated for individual bubbles. But nevertheless, our most striking finding is that von Neumann's law appears to holds on average, namely, the average rate of area change for surface bubbles appears to be proportional to the number of sides minus six, but with individual bubbles showing a wide distribution of deviations from this average behavior.

  20. Two-dimensional Fermi surfaces in Kondo insulating SmB6

    NASA Astrophysics Data System (ADS)

    Li, Gang

    There has been renewed interest in Samarium Hexaboride, which is a strongly correlated heavy Fermion material. Hybridization between itinerant electrons and localized orbitals lead to an opening of charge gap at low temperature. However, the resistivity of SmB6 does not diverge at low temperature. Former studies suggested that this residual conductance is contributed by various origins. Recent theoretical developments suggest that the particular symmetry of energy bands of SmB6 may host a topologically non-trivial surface state, i.e., a topological Kondo insulator. To probe the Fermiology of the possible metallic surface state, we use sensitive torque magnetometry to detect the de Haas van Alphen (dHvA) effect due to Landau level quantization on flux-grown crystals, down to He-3 temperature and up to 45 Tesla. Our angular and temperature dependent data suggest two-dimensional Fermi Surfaces lie in both crystalline (001) and (101) surface planes of SmB6.

  1. Critical examination of quantum oscillations in SmB6

    NASA Astrophysics Data System (ADS)

    Riseborough, Peter S.; Fisk, Z.

    2017-11-01

    We critically review the results of magnetic torque measurements on SmB6 that show quantum oscillations. Similar studies have been given two different interpretations. One interpretation is based on the existence of metallic surface states, while the second interpretation is in terms of a three-dimensional Fermi surface involving neutral fermionic excitations. We suggest that the low-field oscillations that are seen by both groups for B fields as small as 6 T might be due to metallic surface states. The high-field three-dimensional oscillations are only seen by one group for fields B >18 T. The phenomenon of magnetic breakthrough occurs at high fields and involves the formation of Landau orbits that produces a directional-dependent suppression of Bragg scattering. We argue that the measurements performed under higher-field conditions are fully consistent with expectations based on a three-dimensional semiconducting state with magnetic breakthrough.

  2. Electronic structure and relaxation dynamics in a superconducting topological material

    DOE PAGES

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; ...

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less

  3. Topological crystalline materials: General formulation, module structure, and wallpaper groups

    NASA Astrophysics Data System (ADS)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2017-06-01

    We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.

  4. Optical transitions in two-dimensional topological insulators with point defects

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  5. Direct comparison of current-induced spin polarization in topological insulator Bi2Se3 and InAs Rashba states

    DOE PAGES

    Li, C. H.; van ‘t Erve, O. M. J.; Rajput, S.; ...

    2016-11-17

    Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states with spin–momentum locking. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion. A bias current is expected to generate spin polarization in both systems, although with different magnitude and sign. Here we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) where Dirac surface states coexist with trivial 2DEG states, and in InAs(001) where only trivial 2DEG states are present. We observe spin polarization arising from spin–momentum locking in both cases, with oppositemore » signs of the measured spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the sign expected for the Dirac surface states, and show that the dominant contribution to the current-generated spin polarization in the TI is from the Dirac surface states.« less

  6. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au-induced nanowire and subsurface Ge-related states, an anomalous suppression of the density of states at the Fermi level is observed in both the STS and ARPES data, and this phenomenon is discussed in the light of the effects of disorder.

  7. Rigorous Free-Fermion Entanglement Renormalization from Wavelet Theory

    NASA Astrophysics Data System (ADS)

    Haegeman, Jutho; Swingle, Brian; Walter, Michael; Cotler, Jordan; Evenbly, Glen; Scholz, Volkher B.

    2018-01-01

    We construct entanglement renormalization schemes that provably approximate the ground states of noninteracting-fermion nearest-neighbor hopping Hamiltonians on the one-dimensional discrete line and the two-dimensional square lattice. These schemes give hierarchical quantum circuits that build up the states from unentangled degrees of freedom. The circuits are based on pairs of discrete wavelet transforms, which are approximately related by a "half-shift": translation by half a unit cell. The presence of the Fermi surface in the two-dimensional model requires a special kind of circuit architecture to properly capture the entanglement in the ground state. We show how the error in the approximation can be controlled without ever performing a variational optimization.

  8. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    NASA Astrophysics Data System (ADS)

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  9. Imaging quasiperiodic electronic states in a synthetic Penrose tiling.

    PubMed

    Collins, Laura C; Witte, Thomas G; Silverman, Rochelle; Green, David B; Gomes, Kenjiro K

    2017-06-22

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  10. Higher-order topological insulators and superconductors protected by inversion symmetry

    NASA Astrophysics Data System (ADS)

    Khalaf, Eslam

    2018-05-01

    We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.

  11. Angular studies of the magnetoresistance in the density wave state of the quasi-two-dimensional purple bronze KMo6O17

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Dumas, J.; Kartsovnik, M. V.; Marcus, J.; Schlenker, C.; Sheikin, I.; Vignolles, D.

    2007-07-01

    The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.

  12. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  13. Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration.

    PubMed

    Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C

    2017-10-31

    Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.

  14. Spin-split silicon states at step edges of Si(553)-Au

    NASA Astrophysics Data System (ADS)

    Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.

    2012-06-01

    The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.

  15. Quantum anomalies in nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  16. Shearlet-based measures of entropy and complexity for two-dimensional patterns

    NASA Astrophysics Data System (ADS)

    Brazhe, Alexey

    2018-06-01

    New spatial entropy and complexity measures for two-dimensional patterns are proposed. The approach is based on the notion of disequilibrium and is built on statistics of directional multiscale coefficients of the fast finite shearlet transform. Shannon entropy and Jensen-Shannon divergence measures are employed. Both local and global spatial complexity and entropy estimates can be obtained, thus allowing for spatial mapping of complexity in inhomogeneous patterns. The algorithm is validated in numerical experiments with a gradually decaying periodic pattern and Ising surfaces near critical state. It is concluded that the proposed algorithm can be instrumental in describing a wide range of two-dimensional imaging data, textures, or surfaces, where an understanding of the level of order or randomness is desired.

  17. Self-assembled ultrathin nanotubes on diamond (100) surface

    NASA Astrophysics Data System (ADS)

    Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-Sheng; Ma, Yanming

    2014-04-01

    Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.

  18. Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.

    1987-11-23

    Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.

  19. Equations of state and diagrams of two-dimensional liquid dusty plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Li, Wei; Wang, Qiaoling

    2016-09-01

    Recently, the pressure of two-dimensional (2D) Yukawa liquids has been calculated from the simulations of isochores [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016)], which is applicable to 2D dusty plasmas. Thus, the equation of state for 2D strongly coupled liquid dusty plasmas is obtained. Isobars and isotherms of 2D liquid dusty plasmas are derived from this equation of state. For 2D liquid dusty plasmas, the surface corresponding to this equation of state has also been obtained in the 3D space of the pressure, the temperature, and the screening parameter which is related to the volume in the equilibrium state.

  20. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  1. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    NASA Astrophysics Data System (ADS)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  2. Manipulation of photons at the surface of three-dimensional photonic crystals.

    PubMed

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  3. Two-dimensional Fano lineshapes: Excited-state absorption contributions

    NASA Astrophysics Data System (ADS)

    Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten

    2018-05-01

    Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.

  4. Two-dimensional Fano lineshapes: Excited-state absorption contributions.

    PubMed

    Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten

    2018-05-14

    Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.

  5. Superconducting states of topological surface states in β-PdBi2 investigated by STM/STS

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Okawa, Kenjiro; Hanaguri, Tetsuo; Kohsaka, Yuhki; Machida, Tadashi; Sasagawa, Takao

    We investigate superconducting (SC) states of topological surface states in β-PdBi2 using very low temperature STM. Characteristic quasiparticle interference patterns strongly support the existence of the spin-polarized surface states at the Fermi level in the normal state. A fully-opened SC gap well described by the conventional BCS model is observed, indicating the SC gap opening at the spin-polarized Fermi surfaces. Considering a possible mixing of odd- and even parity orbital functions in C4v group symmetry lowered from D4h near the surface, we suggest that the SC gap consists of the mixture of s- and p-wave SC gap functions in the two-dimensional state.

  6. On the sensitivity of mesoscale models to surface-layer parameterization constants

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.

    1989-09-01

    The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

  7. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  8. Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO 2 thin films

    DOE PAGES

    Wang, Zhiming; Zhong, Z.; Walker, S. McKeown; ...

    2017-03-10

    Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO 2 films terminated by a (1 x 4) in-plane surface reconstruction. Employing photo-stimulated chemical surface doping we induce 2DELs with tunable carrier densities thatmore » are confined within a few TiO 2 layers below the surface. Subsequent in situ angle resolved photoemission experiments demonstrate that the (1 x 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. Furthermore, this causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential.« less

  9. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    NASA Astrophysics Data System (ADS)

    Choi, Hyunwoo; Kim, Tae Geun; Shin, Changhwan

    2017-06-01

    A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., CT-1 = CQ-1 + CSiO2-1). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI.

  10. Metallic surface states in elemental electrides

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan I.; Hemley, Russell J.

    2017-07-01

    Recent high-pressure studies have uncovered an alternative class of materials, insulating electride phases created by compression of simple metals. These exotic insulating phases develop an unusual electronic structure: the valence electrons move away from the nuclei and condense at interstitial sites, thereby acquiring the role of atomic anions or even molecules. We show that they are also topological phases as they exhibit a wide diversity of metallic surface states (SSs) that are controlled by the bulk electronic structure. The electronic reconstruction occurs that involves charge transfer between the surfaces of opposite polarity making both of them metallic, resembling the appearance of the two-dimensional gas at the renowned SrTi O3 /LaAl O3 interface. Remarkably, these materials thus embody seemingly disparate physical concepts—chemical electron localization, topological control of bulk-surface conductivity, and the two-dimensional electron gas. Such metallic SSs could be probed by direct electrical resistance or by standard photoemission measurements on recovery to ambient conditions.

  11. Two-dimensional Si nanosheets with local hexagonal structure on a MoS(2) surface.

    PubMed

    Chiappe, Daniele; Scalise, Emilio; Cinquanta, Eugenio; Grazianetti, Carlo; van den Broek, Bas; Fanciulli, Marco; Houssa, Michel; Molle, Alessandro

    2014-04-02

    The structural and electronic properties of a Si nanosheet (NS) grown onto a MoS2 substrate by means of molecular beam epitaxy are assessed. Epitaxially grown Si is shown to adapt to the trigonal prismatic surface lattice of MoS2 by forming two-dimensional nanodomains. The Si layer structure is distinguished from the underlying MoS2 surface structure. The local electronic properties of the Si nanosheet are dictated by the atomistic arrangement of the layer and unlike the MoS2 hosting substrate they are qualified by a gap-less density of states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weijun; Wang, Aifeng; Graf, D.

    We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less

  13. Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling

    DOE PAGES

    Ren, Weijun; Wang, Aifeng; Graf, D.; ...

    2018-01-22

    We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less

  14. Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Bahramy, M. S.; Clark, O. J.; Yang, B.-J.; Feng, J.; Bawden, L.; Riley, J. M.; Marković, I.; Mazzola, F.; Sunko, V.; Biswas, D.; Cooil, S. P.; Jorge, M.; Wells, J. W.; Leandersson, M.; Balasubramanian, T.; Fujii, J.; Vobornik, I.; Rault, J. E.; Kim, T. K.; Hoesch, M.; Okawa, K.; Asakawa, M.; Sasagawa, T.; Eknapakul, T.; Meevasana, W.; King, P. D. C.

    2018-01-01

    Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.

  15. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  16. Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Autès, Gabriel; Yazyev, Oleg V.

    2018-04-01

    We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3 . Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2 π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.

  17. Characterization of Lifshitz transitions in topological nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Li, Linhu; Gong, Jiangbin; Chen, Shu

    2018-04-01

    We introduce a two-band model of three-dimensional nodal line semimetals (NLSMs), the Fermi surface of which at half-filling may form various one-dimensional configurations of different topology. We study the symmetries and "drumhead" surface states of the model, and find that the transitions between different configurations, namely, the Lifshitz transitions, can be identified solely by the number of gap-closing points on some high-symmetry planes in the Brillouin zone. A global phase diagram of this model is also obtained accordingly. We then investigate the effect of some extra terms analogous to a two-dimensional Rashba-type spin-orbit coupling. The introduced extra terms open a gap for the NLSMs and can be useful in engineering different topological insulating phases. We demonstrate that the behavior of surface Dirac cones in the resulting insulating system has a clear correspondence with the different configurations of the original nodal lines in the absence of the gap terms.

  18. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  19. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  20. Inversion layer on the Ge(001) surface from the four-probe conductance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtaszek, Mateusz; Lis, Jakub, E-mail: j.lis@uj.edu.pl; Zuzak, Rafal

    2014-07-28

    We report four-probe conductance measurements with sub-micron resolution on atomically clean Ge(001) surfaces. A qualitative difference between n-type and p-type crystals is observed. The scaling behavior of the resistance on n-type samples indicates two-dimensional current flow, while for the p-type crystal a three-dimensional description is appropriate. We interpret this in terms of the formation of an inversion layer at the surface. This result points to the surface states, i.e., dangling bonds, as the driving force behind band bending in germanium. It also explains the intrinsic character of band bending in germanium.

  1. Two-dimensional chiral topological superconductivity in Shiba lattices

    PubMed Central

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-01-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal. PMID:27465127

  2. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou

    2016-07-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the National Natural Science Foundation of China (Grant No. 11574367), the National Basic Research Program of China (Grant Nos. 2013CB921700, 2013CB921904, and 2015CB921300), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). The synchrotron radiation experiments have been done under the HiSOR Proposal numbers, 12-B-47 and 13-B-16.

  3. The application of Green's theorem to the solution of boundary-value problems in linearized supersonic wing theory

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1950-01-01

    Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topp, Andreas; Queiroz, Raquel; Grüneis, Andreas

    In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating bands, which are distinct from Shockley states, quantum well states or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between DFT calculations and ARPES measurements and presentmore » an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.« less

  5. Simulation of femtosecond two-dimensional electronic spectra of conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčmář, Jindřich; Gelin, Maxim F.; Domcke, Wolfgang

    2015-08-21

    We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.

  6. Global constraints on Z2 fluxes in two different anisotropic limits of a hypernonagon Kitaev model

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2018-05-01

    The Kitaev model is an exactly-soluble quantum spin model, whose ground state provides a canonical example of a quantum spin liquid. Spin excitations from the ground state are fractionalized into emergent matter fermions and Z2 fluxes. The Z2 flux excitation is pointlike in two dimensions, while it comprises a closed loop in three dimensions because of the local constraint for each closed volume. In addition, the fluxes obey global constraints involving (semi)macroscopic number of fluxes. We here investigate such global constraints in the Kitaev model on a three-dimensional lattice composed of nine-site elementary loops, dubbed the hypernonagon lattice, whose ground state is a chiral spin liquid. We consider two different anisotropic limits of the hypernonagon Kitaev model where the low-energy effective models are described solely by the Z2 fluxes. We show that there are two kinds of global constraints in the model defined on a three-dimensional torus, namely, surface and volume constraints: the surface constraint is imposed on the even-odd parity of the total number of fluxes threading a two-dimensional slice of the system, while the volume constraint is for the even-odd parity of the number of the fluxes through specific plaquettes whose total number is proportional to the system volume. In the two anisotropic limits, therefore, the elementary excitation of Z2 fluxes occurs in a pair of closed loops so as to satisfy both two global constraints as well as the local constraints.

  7. Comparison of two- and three-dimensional Navier-Stokes solutions with NASA experimental data for CAST-10 airfoil

    NASA Technical Reports Server (NTRS)

    Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward

    1989-01-01

    The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.

  8. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  9. Two-dimensional (2D) infrared correlation study of the structural characterization of a surface immobilized polypeptide film stimulated by pH

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo

    2016-11-01

    The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.

  10. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).

  11. Simulation of Water-Surface Elevations and Velocity Distributions at the U.S. Highway 13 Bridge over the Tar River at Greenville, North Carolina, Using One- and Two-Dimensional Steady-State Hydraulic Models

    USGS Publications Warehouse

    Wagner, Chad R.

    2007-01-01

    The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.

  12. Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties

    NASA Astrophysics Data System (ADS)

    Nagpal, Prashant; Singh, Vivek; Ding, Yuchen

    2014-03-01

    Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.

  13. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yichao; Yuan, Jun; Yin, Ge

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  14. Current-induced switching of magnetic molecules on topological insulator surfaces

    NASA Astrophysics Data System (ADS)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  15. Prominent metallic surface conduction and the singular magnetic response of topological Dirac fermion in three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3.

    PubMed

    Dutta, Prithwish; Pariari, Arnab; Mandal, Prabhat

    2017-07-07

    We report semiconductor to metal-like crossover in the temperature dependence of resistivity (ρ) due to the switching of charge transport from bulk to surface channel in three-dimensional topological insulator Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . Unlike earlier studies, a much sharper drop in ρ(T) is observed below the crossover temperature due to the dominant surface conduction. Remarkably, the resistivity of the conducting surface channel follows a rarely observable T 2 dependence at low temperature, as predicted theoretically for a two-dimensional Fermi liquid system. The field dependence of magnetization shows a cusp-like paramagnetic peak in the susceptibility (χ) at zero field over the diamagnetic background. The peak is found to be robust against temperature and χ decays linearly with the field from its zero-field value. This unique behavior of the χ is associated with the spin-momentum locked topological surface state in Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . The reconstruction of the surface state with time is clearly reflected through the reduction of the peak height with the age of the sample.

  16. Universal properties of materials with the Dirac dispersion relation of low-energy excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protogenov, A. P., E-mail: alprot@appl.sci-nnov.ru; Chulkov, E. V.

    2015-12-15

    The N-terminal scheme is considered for studying the contribution of edge states to the response of a two-dimensional topological insulator. A universal distribution of the nonlocal resistance between terminals is determined in the ballistic transport approach. The calculated responses are identical to experimentally observed values. The spectral properties of surface electronic states in Weyl semimetals are also studied. The density of surface states is accurately determined. The universal behavior of these characteristics is a distinctive feature of the considered Dirac materials which can be used in practical applications.

  17. Quasiparticle interference of Fermi arc states in the type-II Weyl semimetal candidate WT e2

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Yang, Xing; Peng, Lang; Wang, Zhi-Jun; Li, Jian; Yi, Chang-Jiang; Xian, Jing-Jing; Shi, You-Guo; Fu, Ying-Shuang

    2018-04-01

    Weyl semimetals possess linear dispersions through pairs of Weyl nodes in three-dimensional momentum spaces, whose hallmark arclike surface states are connected to Weyl nodes with different chirality. WT e2 was recently predicted to be a new type of Weyl semimetal. Here, we study the quasiparticle interference (QPI) of its Fermi arc surface states by combined spectroscopic-imaging scanning tunneling spectroscopy and density functional theory calculations. We observed the electron scattering on two types of WT e2 surfaces unambiguously. Its scattering signal can be ascribed mainly to trivial surface states. We also address the QPI feature of nontrivial surface states from theoretical calculations. The experimental QPI patterns show some features that are likely related to the nontrivial Fermi arc states, whose existence is, however, not conclusive. Our study provides an indispensable clue for studying the Weyl semimetal phase in WT e2 .

  18. Geometry induced phase transitions in magnetic spherical shell

    NASA Astrophysics Data System (ADS)

    Sloika, Mykola I.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Gaididei, Yuri

    2017-12-01

    Equilibrium magnetization states in spherical shells of a magnetically soft ferromagnet form two out-of-surface vortices with codirectionally magnetized vortex cores at the sphere poles: (i) a whirligig state with the in-surface magnetization oriented along parallels is typical for thick shells; (ii) a three dimensional onion state with the in-surface meridional direction of the magnetization is realized in thin shells. The geometry of spherical shell prohibits an existence of spatially homogeneous magnetization distribution, even in the case of small sample radii. By varying geometrical parameters a continuous phase transition between the whirligig and onion states takes place. The detailed analytical description of the phase diagram is well confirmed by micromagnetic simulations.

  19. Scanning Tunneling Microscopy | Materials Science | NREL

    Science.gov Websites

    of Scanning Tunneling Microscopy Capabilities Two-dimensional STM image 2D STM image of Si(111) 7×7 clusters along a fault boundary Occupied-state STM image taken on a Si(111)7×7 surface, showing two 7×7 tip at each point, an image of the sample surface is generated (topographic image). For very flat

  20. Interfacial Coupling and Electronic Structure of Two-Dimensional Silicon Grown on the Ag(111) Surface at High Temperature.

    PubMed

    Feng, Jiagui; Wagner, Sean R; Zhang, Pengpeng

    2015-06-18

    Freestanding silicene, a monolayer of Si arranged in a honeycomb structure, has been predicted to give rise to massless Dirac fermions, akin to graphene. However, Si structures grown on a supporting substrate can show properties that strongly deviate from the freestanding case. Here, combining scanning tunneling microscopy/spectroscopy and differential conductance mapping, we show that the electrical properties of the (√3 x √3) phase of few-layer Si grown on Ag(111) strongly depend on film thickness, where the electron phase coherence length decreases and the free-electron-like surface state gradually diminishes when approaching the interface. These features are presumably attributable to the inelastic inter-band electron-electron scattering originating from the overlap between the surface state, interface state and the bulk state of the substrate. We further demonstrate that the intrinsic electronic structure of the as grown (√3 x √3) phase is identical to that of the (√3 x √3)R30° reconstructed Ag on Si(111), both of which exhibit the parabolic energy-momentum dispersion relation with comparable electron effective masses. These findings highlight the essential role of interfacial coupling on the properties of two-dimensional Si structures grown on supporting substrates, which should be thoroughly scrutinized in pursuit of silicene.

  1. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185

  2. Application of laser ranging and VLBI data to a study of plate tectonic driving forces. [finite element method

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1980-01-01

    The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.

  3. Diffusion accessibility as a method for visualizing macromolecular surface geometry.

    PubMed

    Tsai, Yingssu; Holton, Thomas; Yeates, Todd O

    2015-10-01

    Important three-dimensional spatial features such as depth and surface concavity can be difficult to convey clearly in the context of two-dimensional images. In the area of macromolecular visualization, the computer graphics technique of ray-tracing can be helpful, but further techniques for emphasizing surface concavity can give clearer perceptions of depth. The notion of diffusion accessibility is well-suited for emphasizing such features of macromolecular surfaces, but a method for calculating diffusion accessibility has not been made widely available. Here we make available a web-based platform that performs the necessary calculation by solving the Laplace equation for steady state diffusion, and produces scripts for visualization that emphasize surface depth by coloring according to diffusion accessibility. The URL is http://services.mbi.ucla.edu/DiffAcc/. © 2015 The Protein Society.

  4. Localized versus itinerant states created by multiple oxygen vacancies in SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Shen, Juan; Valentí, Roser

    2015-02-01

    Oxygen vacancies in strontium titanate surfaces (SrTiO3) have been linked to the presence of a two-dimensional electron gas with unique behavior. We perform a detailed density functional theory study of the lattice and electronic structure of SrTiO3 slabs with multiple oxygen vacancies, with a main focus on two vacancies near a titanium dioxide terminated SrTiO3 surface. We conclude based on total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically, while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spacing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface TiO2 layer lead to population of Ti {{t}2g} states and thus itinerancy of the electrons donated by the oxygen vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti eg states and remain localized on the two Ti ions neighboring the vacancy. We find that both the formation of a bound oxygen-vacancy state composed of hybridized Ti 3eg and 4p states neighboring the oxygen vacancy as well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap state.

  5. Simulation of the June 11, 2010, flood along the Little Missouri River near Langley, Arkansas, using a hydrologic model coupled to a hydraulic model

    USGS Publications Warehouse

    Westerman, Drew A.; Clark, Brian R.

    2013-01-01

    The results from the precipitation-runoff hydrologic model, the one-dimensional unsteady-state hydraulic model, and a separate two-dimensional model developed as part of a coincident study, each complement the other in terms of streamflow timing, water-surface elevations, and velocities propagated by the June 11, 2010, flood event. The simulated grids for water depth and stream velocity from each model were directly compared by subtracting the one-dimensional hydraulic model grid from the two-dimensional model grid. The absolute mean difference for the simulated water depth was 0.9 foot. Additionally, the absolute mean difference for the simulated stream velocity was 1.9 feet per second.

  6. Communication: Prediction of the rate constant of bimolecular hydrogen exchange in the water dimer using an ab initio potential energy surface.

    PubMed

    Wang, Yimin; Bowman, Joel M; Huang, Xinchuan

    2010-09-21

    We report the properties of two novel transition states of the bimolecular hydrogen exchange reaction in the water dimer, based on an ab initio water dimer potential [A. Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The realism of the two transition states is assessed by comparing structures, energies, and harmonic frequencies obtained from the potential energy surface and new high-level ab initio calculations. The rate constant for the exchange is obtained using conventional transition state theory with a tunneling correction. We employ a one-dimensional approach for the tunneling calculations using a relaxed potential from the full-dimensional potential in the imaginary-frequency normal mode of the saddle point, Q(im). The accuracy of this one-dimensional approach has been shown for the ground-state tunneling splittings for H and D-transfer in malonaldehyde and for the D+H(2) reaction [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. This approach is applied to calculate the rate constant for the H(2)O+H(2)O exchange and also for H(2)O+D(2)O→2HOD. The local zero-point energy is also obtained using diffusion Monte Carlo calculations in the space of real-frequency-saddle-point normal modes, as a function of Q(im).

  7. Control of concerted two bond versus single bond dissociation in CH(3)Co(CO)(4) via an intermediate state using pump-dump laser pulses.

    PubMed

    Ambrosek, David; González, Leticia

    2007-10-07

    Wavepacket propagations on ab initio multiconfigurational two-dimensional potential energy surfaces for CH(3)Co(CO)(4) indicate that after irradiation to the lowest first and second electronic excited states, concerted dissociation of CH(3) and the axial CO ligand takes place. We employ a pump-dump sequence of pulses with appropriate frequencies and time delays to achieve the selective breakage of a single bond by controlling the dissociation angle. The pump and dump pulse sequence exploits the unbound surface where dissociation occurs in a counterintuitive fashion; stretching of one bond in an intermediate state enhances the single dissociation of the other bond.

  8. Selective phonon damping in topological semimetals

    NASA Astrophysics Data System (ADS)

    Gordon, Jacob S.; Kee, Hae-Young

    2018-05-01

    Topological semimetals are characterized by their intriguing Fermi surfaces (FSs) such as Weyl and Dirac points, or nodal FS, and their associated surface states. Among them, topological crystalline semimetals, in the presence of strong spin-orbit coupling, possess a nodal FS protected by nonsymmorphic lattice symmetries. In particular, it was theoretically proposed that SrIrO3 exhibits a bulk nodal ring due to glide symmetries, as well as flat two-dimensional surface states related to chiral and mirror symmetries. However, due to the semimetallic nature of the bulk, direct observation of these surface states is difficult. Here we study the effect of flat-surface states on phonon modes for SrIrO3 side surfaces. We show that mirror odd optical surface phonon modes are damped at the zone center, as a result of coupling to the surface states with different mirror parities, while even modes are unaffected. This observation could be used to infer their existence, and experimental techniques for such measurements are also discussed.

  9. Surface nematic order in iron pnictides

    NASA Astrophysics Data System (ADS)

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-01

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2 -xPx .

  10. Towards reconstruction of overlapping fingerprints using plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Ho; Choi, Soo-Jin; Yoh, Jack J.

    2017-08-01

    Chemical analysis is commonly used in the field of forensic science where the precise discrimination of primary evidence is of significant importance. Laser-Induced Breakdown Spectroscopy (LIBS) exceeds other spectroscopic methods in terms of the time required for pre- and post-sample preparation, the insensitivity to sample phase state be it solid, liquid, or gas, and the detection of two-dimensional spectral mapping from real time point measurements. In this research, fingerprint samples on various surface materials are considered in the chemical detection and reconstruction of fingerprints using the two-dimensional LIBS technique. Strong and distinct intensities of specific wavelengths represent visible ink, natural secretion of sweat, and contaminants from the environment, all of which can be present in latent fingerprints. The particular aim of the work presented here is to enhance the precision of the two-dimensional recreation of the fingerprints present on metal, plastic, and artificially prepared soil surface using LIBS with principal component analysis. By applying a distinct wavelength discrimination for two overlapping fingerprint samples, separation into two non-identical chemical fingerprints was successfully performed.

  11. Apparatus for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    2000-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  12. Method for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    1999-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  13. Spatially Resolved Nano-Scale Characterization of Electronic States in SrTiO3(001) Surfaces by STM/STS

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro

    2012-02-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on TiO2-terminated SrTiO3(001) thin film surfaces. The conductance map exhibited electronic modulations that were completely different from the surface structure. We also found that the electronic modulations were strongly dependent on temperature and the density of atomic defects associated with oxygen vacancies. These results suggest the existence of strongly correlated two-dimensional electronic states near the SrTiO3 surface, implying the importance of electron correlation at the interfaces of SrTiO3-related heterostructures.

  14. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE PAGES

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; ...

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore » interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less

  15. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.

    1989-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  16. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  17. Deriving Two-Dimensional Ocean Wave Spectra and Surface Height Maps from the Shuttle Imaging Radar (SIR-B)

    NASA Technical Reports Server (NTRS)

    Tilley, D. G.

    1986-01-01

    Directional ocean wave spectra were derived from Shuttle Imaging Radar (SIR-B) imagery in regions where nearly simultaneous aircraft-based measurements of the wave spectra were also available as part of the NASA Shuttle Mission 41G experiments. The SIR-B response to a coherently speckled scene is used to estimate the stationary system transfer function in the 15 even terms of an eighth-order two-dimensional polynomial. Surface elevation contours are assigned to SIR-B ocean scenes Fourier filtered using a empirical model of the modulation transfer function calibrated with independent measurements of wave height. The empirical measurements of the wave height distribution are illustrated for a variety of sea states.

  18. Bistatic radar sea state monitoring

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Barrick, D. E.; Kaliszewski, T.

    1972-01-01

    Bistatic radar techniques were examined for remote measurement of the two-dimensional surface wave height spectrum of the ocean. One technique operates at high frequencies (HF), 3-30 MHz, and the other at ultrahigh frequencies (UHF), approximately 1 GHz. Only a preliminary theoretical examination of the UHF technique was performed; however the principle underlying the HF technique was demonstrated experimentally with results indicating that an HF bistatic system using a surface transmitter and an orbital receiver would be capable of measuring the two-dimensional wave height spectrum in the vicinity of the transmitter. An HF bistatic system could also be used with an airborne receiver for ground truth ocean wave spectrum measurements. Preliminary system requirements and hardware configurations are discussed for both an orbital system and an aircraft verification experiment.

  19. Origami interleaved tube cellular materials

    NASA Astrophysics Data System (ADS)

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  20. (3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca

    2017-05-01

    We apply the recently suggested strategy to lift state spaces and operators for (2 + 1)-dimensional topological quantum field theories to state spaces and operators for a (3 + 1)-dimensional TQFT with defects. We start from the (2 + 1)-dimensional TuraevViro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects.

  1. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.

    PubMed

    Okuma, Nobuyuki

    2017-09-08

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  2. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Okuma, Nobuyuki

    2017-09-01

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kok Wee; Koshelev, Alexei E.

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less

  4. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3

    NASA Astrophysics Data System (ADS)

    Fuhrer, Michael

    2013-03-01

    The three dimensional strong topological insulator (STI) is a new phase of electronic matter which is distinct from ordinary insulators in that it supports on its surface a conducting two-dimensional surface state whose existence is guaranteed by topology. I will discuss experiments on the STI material Bi2Se3, which has a bulk bandgap of 300 meV, much greater than room temperature, and a single topological surface state with a massless Dirac dispersion. Field effect transistors consisting of thin (3-20 nm) Bi2Se3 are fabricated from mechanically exfoliated from single crystals, and electrochemical and/or chemical gating methods are used to move the Fermi energy into the bulk bandgap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be ~60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se3, which will have implications for topological electronic devices operating at room temperature. As samples are made thinner, coherent coupling of the top and bottom topological surfaces is observed through the magnitude of the weak anti-localization correction to the conductivity, and, in the thinnest Bi2Se3 samples (~ 3 nm), in thermally-activated conductivity reflecting the opening of a bandgap.

  5. Photodissociation of phenol via nonadiabatic tunneling: Comparison of two ab initio based potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Changjian; Guo, Hua

    2017-09-01

    The nonadiabatic tunneling-facilitated photodissociation of phenol is investigated using a reduced-dimensional quantum model on two ab initio-based coupled potential energy surfaces (PESs). Although dynamics occurs largely on the lower adiabat, the proximity to a conical intersection between the S1 and S2 states requires the inclusion of both the geometric phase (GP) and diagonal Born-Oppenheimer correction (DBOC). The lifetime of the lowest-lying vibronic state is computed using the diabatic and various adiabatic models. The GP and DBOC terms are found to be essential on one set of PESs, but have a small impact on the other.

  6. Hyperspherical nuclear motion of H3 + and D3 + in the electronic triplet state, a 3Sigmau +.

    PubMed

    Ferreira, Tiago Mendes; Alijah, Alexander; Varandas, António J C

    2008-02-07

    The potential energy surface of H(3) (+) in the lowest electronic triplet state, a (3)Sigma(u) (+), shows three equivalent minima at linear nuclear configurations. The vibrational levels of H(3) (+) and D(3) (+) on this surface can therefore be described as superimposed linear molecule states. Owing to such a superposition, each vibrational state characterized by quantum numbers of an isolated linear molecule obtains a one- and a two-dimensional component. The energy splittings between the two components have now been rationalized within a hyperspherical picture. It is shown that nuclear motion along the hyperangle phi mainly accounts for the splittings and provides upper bounds. This hyperspherical motion can be considered an extension of the antisymmetric stretching motion of the individual linear molecule.

  7. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  8. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  9. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.

    PubMed

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-07-05

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

  10. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry

    PubMed Central

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A.; Volkov, V. T.; Khodos, I. I.; Brisset, F.; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-01-01

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents. PMID:28677681

  11. Topological BF field theory description of topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Gil Young; Moore, Joel E., E-mail: jemoore@berkeley.edu; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    2011-06-15

    Research Highlights: > We show that a BF theory is the effective theory of 2D and 3D topological insulators. > The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. > The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. > Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version ofmore » abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a {pi} flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.« less

  12. Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111).

    PubMed

    Matetskiy, A V; Ichinokura, S; Bondarenko, L V; Tupchaya, A Y; Gruznev, D V; Zotov, A V; Saranin, A A; Hobara, R; Takayama, A; Hasegawa, S

    2015-10-02

    A one-atom-layer compound made of one monolayer of Tl and one-third monolayer of Pb on a Si(111) surface having √3×√3 periodicity was found to exhibit a giant Rashba-type spin splitting of metallic surface-state bands together with two-dimensional superconducting transport properties. Temperature-dependent angle-resolved photoelectron spectroscopy revealed an enhanced electron-phonon coupling for one of the spin-split bands. In situ micro-four-point-probe conductivity measurements with and without magnetic field demonstrated that the (Tl, Pb)/Si(111) system transformed into the superconducting state at 2.25 K, followed by the Berezinskii-Kosterlitz-Thouless mechanism. The 2D Tl-Pb compound on Si(111) is believed to be the prototypical object for prospective studies of intriguing properties of the superconducting 2D system with lifted spin degeneracy, bearing in mind that its composition, atomic and electron band structures, and spin texture are already well established.

  13. Topology of Flow Separation on Three-Dimensional Bodies

    NASA Technical Reports Server (NTRS)

    Chapman, Gary T.; Yates, Leslie A.

    1991-01-01

    In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.

  14. Interfacial Coupling and Electronic Structure of Two-Dimensional Silicon Grown on the Ag(111) Surface at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Jiagui; Wagner, Sean R.; Zhang, Pengpeng

    Freestanding silicene, a monolayer of Si arranged in a honeycomb structure, has been predicted to give rise to massless Dirac fermions, akin to graphene. However, Si structures grown on a supporting substrate can show properties that strongly deviate from the freestanding case. Here, combining scanning tunneling microscopy/spectroscopy and differential conductance mapping, we show that the electrical properties of the (√3 x √3) phase of few-layer Si grown on Ag(111) strongly depend on film thickness, where the electron phase coherence length decreases and the free-electron-like surface state gradually diminishes when approaching the interface. These features are presumably attributable to the inelasticmore » inter-band electron-electron scattering originating from the overlap between the surface state, interface state and the bulk state of the substrate. We further demonstrate that the intrinsic electronic structure of the as grown (√3 x √3) phase is identical to that of the (√3 x √3) R30° reconstructed Ag on Si(111), both of which exhibit the parabolic energy-momentum dispersion relation with comparable electron effective masses. Lastly, these findings highlight the essential role of interfacial coupling on the properties of two-dimensional Si structures grown on supporting substrates, which should be thoroughly scrutinized in pursuit of silicene.« less

  15. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  16. Interfacial states and far-from-equilibrium transitions in the epitaxial growth and erosion on (110) crystal surfaces

    NASA Astrophysics Data System (ADS)

    Levandovsky, Artem; Golubović, Leonardo; Moldovan, Dorel

    2006-12-01

    We discuss the far-from-equilibrium interfacial phenomena occurring in the multilayer homoepitaxial growth and erosion on (110) crystal surfaces. Experimentally, these rectangular symmetry surfaces exhibit a multitude of interesting nonequilibrium interfacial structures, such as the rippled one-dimensional periodic states that are not present in the homoepitaxial growth and erosion on the high symmetry (100) and (111) crystal surfaces. Within a unified phenomenological model, we reveal and elucidate this multitude of states on (110) surfaces as well as the transitions between them. By analytic arguments and numerical simulations, we address experimentally observed transitions between two types of rippled states on (110) surfaces. We discuss several intermediary interface states intervening, via consecutive transitions, between the two rippled states. One of them is the rhomboidal pyramid state, theoretically predicted by Golubovic [Phys. Rev. Lett. 89, 266104 (2002)] and subsequently seen, by de Mongeot and co-workers, in the epitaxial erosion of Cu(110) and Rh(110) surfaces [A. Molle , Phys. Rev. Lett. 93, 256103 (2004), and A. Molle , Phys. Rev. B 73, 155418 (2006)]. In addition, we find a number of interesting intermediary states having structural properties somewhere between those of rippled and pyramidal states. Prominent among them are the rectangular rippled states of long rooflike objects (huts) recently seen on Ag(110) surface. We also predict the existence of a striking interfacial structure that carries nonzero, persistent surface currents. Periodic surface currents vortex lattice formed in this so-called buckled rippled interface state is a far-from-equilibrium relative of the self-organized convective flow patterns in hydrodynamic systems. We discuss the coarsening growth of the multitude of the interfacial states on (110) crystal surfaces.

  17. Surface nematic order in iron pnictides

    DOE PAGES

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-09

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less

  18. Handy elementary algebraic properties of the geometry of entanglement

    NASA Astrophysics Data System (ADS)

    Blair, Howard A.; Alsing, Paul M.

    2013-05-01

    The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.

  19. Two-dimensional electron beam charging model for polymer films

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.

  20. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  1. Revealing topological Dirac fermions at the surface of strained HgTe thin films via quantum Hall transport spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Crauste, O.; Haas, B.; Jouneau, P.-H.; Bäuerle, C.; Lévy, L. P.; Orignac, E.; Carpentier, D.; Ballet, P.; Meunier, T.

    2017-12-01

    We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides insights in the quantum Hall effect of topological insulator (TI) slabs, in the crossover regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore circuit functionalities in spintronics and quantum nanoelectronics.

  2. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  3. Scars of the Wigner Function.

    PubMed

    Toscano; de Aguiar MA; Ozorio De Almeida AM

    2001-01-01

    We propose a picture of Wigner function scars as a sequence of concentric rings along a two-dimensional surface inside a periodic orbit. This is verified for a two-dimensional plane that contains a classical hyperbolic orbit of a Hamiltonian system with 2 degrees of freedom. The stationary wave functions are the familiar mixture of scarred and random waves, but the spectral average of the Wigner functions in part of the plane is nearly that of a harmonic oscillator and individual states are also remarkably regular. These results are interpreted in terms of the semiclassical picture of chords and centers.

  4. Topological defects in two-dimensional liquid crystals confined by a box

    NASA Astrophysics Data System (ADS)

    Yao, Xiaomei; Zhang, Hui; Chen, Jeff Z. Y.

    2018-05-01

    When a spatially uniform system that displays a liquid-crystal ordering on a two-dimensional surface is confined inside a rectangular box, the liquid crystal direction field develops inhomogeneous textures accompanied by topological defects because of the geometric frustrations. We show that the rich variety of nematic textures and defect patterns found in recent experimental and theoretical studies can be classified by the solutions of the rather fundamental, extended Onsager model. This is critically examined based on the determined free energies of different defect states, as functions of a few relevant, dimensionless geometric parameters.

  5. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  6. Manipulating the one-dimensional topological edge state of Bi bilayer nanoribbons via magnetic orientation and electric field

    NASA Astrophysics Data System (ADS)

    Kim, Jeongwoo; Wu, Ruqian

    2018-03-01

    Despite the superiority of two-dimensional (2D) topological insulators (TIs) over their three-dimensional (3D) counterparts in various aspects and the essential distinction between them in structural symmetry, the variation of the topological one-dimensional (1D) edge states upon magnetic interaction and their application for spintronic devices have not been sufficiently illuminated. Here, we reveal that 1D edge states of 2D TIs have a unique magnetic response never observed in 2D surface states of 3D TIs, and using this exotic nature we propose a way to utilize the spin-polarized channel for spintronic applications. We investigate the effects of width and magnetic decoration on the 1D topological edge state of Bi bilayer nanoribbons (BNRs). Through the Zak phase, we find that the zero-energy states are enforced at the magnetic domain boundaries in the Cr-decorated BNR and directly examine their robustness using short-range magnetic domain structures. We also demonstrate that 1D edge states of BNRs can be selectively and reversibly controlled by the combination of magnetic reorientation and electric field without compromising their structural integrity. Our work provides a fundamental understanding of 1D topological edge states and shows the opportunity of using these features in spintronic devices.

  7. Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Scheurer, Mathias S.; Chatterjee, Shubhayu; Sachdev, Subir; Georges, Antoine; Ferrero, Michel

    2018-04-01

    One of the distinctive features of hole-doped cuprate superconductors is the onset of a "pseudogap" below a temperature T* . Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant with a Fermi-surface topology change from electronlike to holelike. We identify a common link between these observations: The polelike feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this polelike feature and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.

  8. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism.

    PubMed

    Lugo, Miguel R; Ho, Derek; Merrill, A Rod

    2016-10-15

    Current evidence suggests that the closed-state membrane model for the channel-forming domain of colicin E1 involves eight amphipathic α-helices (helices I-VII and X) that adopt a two-dimensional arrangement on the membrane surface. Two central hydrophobic α-helices in colicin E1 (VIII and IX) adopt a transmembrane location-the umbrella model. Helices I and II have been shown to participate in the channel by forming a transmembrane segment (TM1) in the voltage-induced open channel state. Consequently, it is paramount to determine the relative location and orientation of helix I in the two-dimensional arrangement of the membrane. A new, low-resolution, three-dimensional model of the closed state of the colicin E1 channel was constructed based on FRET measurements between three naturally occurring Trp residues and three sites in helix I, in addition to previously reported FRET distances for the channel domain. Furthermore, a new mechanism for the channel integration process involving the transition of the soluble to membrane-bound form is presented based on a plethora of kinetic data for this process. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  9. Numerical simulation of three-dimensional transonic turbulent projectile aerodynamics by TVD schemes

    NASA Technical Reports Server (NTRS)

    Shiau, Nae-Haur; Hsu, Chen-Chi; Chyu, Wei-Jao

    1989-01-01

    The two-dimensional symmetric TVD scheme proposed by Yee has been extended to and investigated for three-dimensional thin-layer Navier-Stokes simulation of complex aerodynamic problems. An existing three-dimensional Navier-stokes code based on the beam and warming algorithm is modified to provide an option of using the TVD algorithm and the flow problem considered is a transonic turbulent flow past a projectile with sting at ten-degree angle of attack. Numerical experiments conducted for three flow cases, free-stream Mach numbers of 0.91, 0.96 and 1.20 show that the symmetric TVD algorithm can provide surface pressure distribution in excellent agreement with measured data; moreover, the rate of convergence to attain a steady state solution is about two times faster than the original beam and warming algorithm.

  10. Predictions for the Effects of Free Stream Turbulence on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.

    2004-01-01

    An approach to predicting the effects of free stream turbulence on turbine vane and blade heat transfer is described. Four models for predicting the effects of free stream turbulence were in incorporated into a Navier-Stokes CFD analysis. Predictions were compared with experimental data in order to identify an appropriate model for use across a wide range of flow conditions. The analyses were compared with data from five vane geometries and from four rotor geometries. Each of these nine geometries had data for different Reynolds numbers. Comparisons were made for twenty four cases. Steady state calculations were done because all experimental data were obtained in steady state tests. High turbulence levels often result in suction surface transition upstream of the throat, while at low to moderate Reynolds numbers the pressure surface remains laminar. A two-dimensional analysis was used because the flow is predominately two-dimensional in the regions where free stream turbulence significantly augments surface heat transfer. Because the evaluation of models for predicting turbulence effects can be affected by other factors, the paper discusses modeling for transition, relaminarization, and near wall damping. Quantitative comparisons are given between the predictions and data.

  11. Bistatic radar sea state monitoring system design

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.

    1975-01-01

    Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.

  12. Development of a two-dimensional binning model for N{sub 2}–N relaxation in hypersonic shock conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tong, E-mail: tongzhu2@illinois.edu; Levin, Deborah A., E-mail: deblevin@illinois.edu; Li, Zheng, E-mail: zul107@psu.edu

    2016-08-14

    A high fidelity internal energy relaxation model for N{sub 2}–N suitable for use in direct simulation Monte Carlo (DSMC) modeling of chemically reacting flows is proposed. A novel two-dimensional binning approach with variable bin energy resolutions in the rotational and vibrational modes is developed for treating the internal mode of N{sub 2}. Both bin-to-bin and state-specific relaxation cross sections are obtained using the molecular dynamics/quasi-classical trajectory (MD/QCT) method with two potential energy surfaces as well as the state-specific database of Jaffe et al. The MD/QCT simulations of inelastic energy exchange between N{sub 2} and N show that there is amore » strong forward-preferential scattering behavior at high collision velocities. The 99 bin model is used in homogeneous DSMC relaxation simulations and is found to be able to recover the state-specific master equation results of Panesi et al. when the Jaffe state-specific cross sections are used. Rotational relaxation energy profiles and relaxation times obtained using the ReaxFF and Jaffe potential energy surfaces (PESs) are in general agreement but there are larger differences between the vibrational relaxation times. These differences become smaller as the translational temperature increases because the difference in the PES energy barrier becomes less important.« less

  13. Quantum phase transitions in a two-dimensional quantum XYX model: ground-state fidelity and entanglement.

    PubMed

    Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang

    2009-06-01

    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Z.; Lawson, B.; Asaba, T.

    The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less

  15. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  16. Bulk Rotational Symmetry Breaking in Kondo Insulator SmB 6

    DOE PAGES

    Xiang, Z.; Lawson, B.; Asaba, T.; ...

    2017-09-25

    The Kondo insulator samarium hexaboride (SmB 6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB 6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 Tmore » and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a fourfold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this fourfold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB 6, with their mobility significantly depending on the surface disorder level.« less

  17. Application of High-resolution Aerial LiDAR Data in Calibration of a Two-dimensional Urban Flood Simulation

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.

    2009-12-01

    In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of the Iowa River corridor was developed using the United States Bureau of Reclamation SRH-2D hydraulic modeling software. The numerical model uses an unstructured numerical mesh and variable surface roughness, assigned according to observed land use and cover. The numerical model was calibrated using inundation extents and water surface elevations derived from the LiDAR data. It was also calibrated using high water marks and land survey data collected daily during the 2008 flood. The investigators compared the two calibrations to evaluate the benefit of high-resolution LiDAR data in improving the accuracy of a two-dimensional urban flood simulation.

  18. New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation

    NASA Astrophysics Data System (ADS)

    Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude

    1992-04-01

    New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.

  19. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Yuzuru, E-mail: kurosaki.yuzuru@jaea.go.jp; Ho, Tak-San, E-mail: tsho@Princeton.EDU; Rabitz, Herschel, E-mail: hrabitz@Princeton.EDU

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O{sub 2} + O asymptote on the ground-state {sup 1}A{sup ′} potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excitedmore » electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization.« less

  20. Polarization-mediated Debye-screening of surface potential fluctuations in dual-channel AlN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Miller, Ross A.; Osinsky, Andrei V.; Downey, Brian P.; Storm, David F.; Meyer, David J.; Scott Katzer, D.; Nepal, Neeraj

    2016-12-01

    A dual-channel AlN/GaN/AlN/GaN high electron mobility transistor (HEMT) architecture is proposed, simulated, and demonstrated that suppresses gate lag due to surface-originated trapped charge. Dual two-dimensional electron gas (2DEG) channels are utilized such that the top 2DEG serves as an equipotential that screens potential fluctuations resulting from surface trapped charge. The bottom channel serves as the transistor's modulated channel. Two device modeling approaches have been performed as a means to guide the device design and to elucidate the relationship between the design and performance metrics. The modeling efforts include a self-consistent Poisson-Schrodinger solution for electrostatic simulation as well as hydrodynamic three-dimensional device modeling for three-dimensional electrostatics, steady-state, and transient simulations. Experimental results validated the HEMT design whereby homo-epitaxial growth on free-standing GaN substrates and fabrication of the same-wafer dual-channel and recessed-gate AlN/GaN HEMTs have been demonstrated. Notable pulsed-gate performance has been achieved by the fabricated HEMTs through a gate lag ratio of 0.86 with minimal drain current collapse while maintaining high levels of dc and rf performance.

  1. Band structure of the quasi two-dimensional purple molybdenum bronze

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.

    2006-09-01

    The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.

  2. Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy

    DOE PAGES

    Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; ...

    2017-01-03

    Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. We show that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distributionmore » determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. Lastly, the absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.« less

  3. Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal

    PubMed Central

    Lysak, Tatiana M.; Trykin, Evgenii M.

    2018-01-01

    We discuss a novel type of surface soliton—aberrated surface soliton—appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation. PMID:29558497

  4. Topological Electride Y2C.

    PubMed

    Huang, Huaqing; Jin, Kyung-Hwan; Zhang, Shunhong; Liu, Feng

    2018-03-14

    Two-dimensional (2D) electrides are layered ionic crystals in which anionic electrons are confined in the interlayer space. Here, we report a discovery of nontrivial [Formula: see text] topology in the electronic structures of 2D electride Y 2 C. Based on first-principles calculations, we found a topological [Formula: see text] invariant of (1; 111) for the bulk band and topologically protected surface states in the surfaces of Y 2 C, signifying its nontrivial electronic topology. We suggest a spin-resolved angle-resolved photoemission spectroscopy (ARPES) measurement to detect the unique helical spin texture of the spin-polarized topological surface state, which will provide characteristic evidence for the nontrivial electronic topology of Y 2 C. Furthermore, the coexistence of 2D surface electride states and topological surface state enables us to explain the outstanding discrepancy between the recent ARPES experiments and theoretical calculations. Our findings establish a preliminary link between the electride in chemistry and the band topology in condensed-matter physics, which are expected to inspire further interdisciplinary research between these fields.

  5. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6.

    PubMed

    Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z

    2013-01-01

    The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.

  6. Wire constructions of Abelian topological phases in three or more dimensions

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    2016-05-01

    Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian topological states of matter in two spatial dimensions. In many cases, their success has been complemented by the vast arsenal of other theoretical tools available to study such systems. In three dimensions, however, much less is known about topological phases. Since the theoretical arsenal in this case is smaller, it stands to reason that wire constructions, which are based on one-dimensional physics, could play a useful role in developing a greater microscopic understanding of three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on the geometric arrangement of commuting projectors in the toric code, to generate and characterize coupled-wire realizations of strongly interacting three-dimensional topological phases. We show how this method can be used to construct pointlike and linelike excitations, and to determine the topological degeneracy. We also point out how, with minor modifications, the machinery already developed in two dimensions can be naturally applied to study the surface states of these systems, a fact that has implications for the study of surface topological order. Finally, we show that the strategy developed for the construction of three-dimensional topological phases generalizes readily to arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout the paper, we discuss Zm topological order in three and four dimensions as a concrete example of this approach, but the approach itself is not limited to this type of topological order.

  7. Strongly enhanced Rashba splittings in an oxide heterostructure: A tantalate monolayer on BaHfO 3

    DOE PAGES

    Kim, Minsung; Ihm, Jisoon; Chung, Suk Bum

    2016-09-22

    In the two-dimensional electron gas emerging at the transition metal oxide surface and interface, various exotic electronic ordering and topological phases can become experimentally more accessible with the stronger Rashba spin-orbit interaction. Here, we present a promising route to realize significant Rashba-type band splitting using a thin film heterostructure. Based on first-principles methods and analytic model analyses, a tantalate monolayer on BaHfO 3 is shown to host two-dimensional bands originating from Ta t 2g states with strong Rashba spin splittings, nearly 10% of the bandwidth, at both the band minima and saddle points. An important factor in this enhanced splittingmore » is the significant t 2g–e g interband coupling, which can generically arise when the inversion symmetry is maximally broken due to the strong confinement of the 2DEG on a transition metal oxide surface. Here, our results could be useful in realizing topological superconductivity at oxide surfaces.« less

  8. Simple anisotropic three-dimensional quantum spin liquid with fractonlike topological order

    NASA Astrophysics Data System (ADS)

    Petrova, O.; Regnault, N.

    2017-12-01

    We present a three-dimensional cubic lattice spin model, anisotropic in the z ̂ direction, that exhibits fractonlike order. This order can be thought of as the result of interplay between two-dimensional Z2 topological order and spontaneous symmetry breaking along the z ̂ direction. Fracton order is a novel type of topological order characterized by the presence of immobile pointlike excitations, named fractons, residing at the corners of an operator with two-dimensional support. As other recent fracton models, ours exhibits a subextensive ground-state degeneracy: On an Lx×Ly×Lz three-torus, it has a 22 Lz topological degeneracy and an additional symmetry-breaking nontopological degeneracy equal to 2LxLy-2. The fractons can be combined into composite excitations that move either in a straight line along the z ̂ direction or freely in the x y plane at a given height z . While our model draws inspiration from the toric code, we demonstrate that it cannot be adiabatically connected to a layered toric code construction. Additionally, we investigate the effects of imposing open boundary conditions on our system. We find zero energy modes on the surfaces perpendicular to either the x ̂ or y ̂ directions and their absence on the surfaces normal to z ̂. This result can be explained using the properties of the two kinds of composite two-fracton mobile excitations.

  9. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications

    PubMed Central

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-01-01

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al2O3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and VB. PMID:28218234

  10. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications.

    PubMed

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-02-20

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al 2 O 3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and V B .

  11. Kinetics and dynamics of the C(3P) + H2O reaction on a full-dimensional accurate triplet state potential energy surface.

    PubMed

    Li, Jun; Xie, Changjian; Guo, Hua

    2017-08-30

    A full dimensional accurate potential energy surface (PES) for the C( 3 P) and H 2 O reaction is developed based on ∼34 000 data points calculated at the level of the explicitly correlated unrestricted coupled cluster method with single, double, and perturbative triple excitations with the augmented correlation-consistent polarized triple zeta basis set (CCSD(T)-F12a/AVTZ). The PES is invariant with respect to the permutation of the two hydrogen atoms and the total root mean square error (RMSE) of the fit is only 0.31 kcal mol -1 . The PES features two barriers in the entrance channel and several potential minima, as well as multiple product channels. The rate coefficients of this reaction calculated using a transition-state theory and quasi-classical trajectory (QCT) method are small near room temperature, consistent with experiments. The reaction dynamics is also investigated with QCT on the new PES, which found that the reactivity is constrained by the entrance barriers and the final product branching is not statistical.

  12. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  13. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  14. Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens

    2018-05-01

    We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.

  15. Vortex properties of two-dimensional superconducting Pb films.

    PubMed

    Ning, Y X; Song, C L; Wang, Y L; Chen, Xi; Jia, J F; Xue, Q K; Ma, X C

    2010-02-17

    Using low temperature scanning tunnelling microscopy/spectroscopy (STM/STS) we have investigated the vortex behaviours of two-dimensional superconducting Pb films at different thicknesses. STS at the vortex core shows an evolution of electronic states with film thickness. Transition from the clean limit to the dirty limit of superconductivity is identified, which can be ascribed to the decreased electronic mean free path induced by stronger scattering from the disordered interface at smaller thicknesses. A magnetic field dependent vortex core size is observed even for such a low- κ superconductor. The weak pinning induced by surface defects leads to the formation of a distorted hexagonal vortex lattice.

  16. Investigations of surface related electronic properties in SmB6 and LaAlO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Adhikari, Sanjay

    This dissertation reports research performed on two types of two-dimensional. systems: SmB6 and LaAlO3/SrTiO3 (LAO/STO). SmB6 has been proposed to be. a topological Kondo insulator at low temperature. In order to understand carriers/. lattice dynamics and their interactions, femtosecond pump-probe spectroscopy. is performed in SmB6 single crystals and thin lms at variable temperatures. The. collective oscillation modes in GHz - THz and the change of carrier relaxations is. observed as a function of temperature. From the temperature dependent results. f 􀀀?d hybridization, opening of the hybridization gap, phonon bottleneck", and th. possible topological surface state formation is revealed. The topological surface state. should support helical Dirac dispersion with momentum-spin lockage. This dissertation. reports on current injection in SmB6 thin lm with circularly polarized light. at oblique incidence. This spin polarized photocurrent is concluded to be a direct. result of spin momentum lockage in SmB6. LAO/STO interface shows 2-dimensional electron gas (2DEG) at the interface. when the thickness of LAO is more than 3 unit cell. Carrier properties at the. LAO/STO interfaces are highly sensitive to the top surface termination of LAO. The spontaneous dissociation of water on LAO surface is systematically studied by. density functional theory and experimental surface characterizations. Extrinsic effects. from surface adsorbates were often ignored in the previous studies of the 2DEG. From the experiments, it is found that the dissociated water molecules, especially the. surface protons, strongly aect the interface density of states, electron distributions. and lattice distortions. The investigations also reveal the importance of additional. molecular water layers. These additional water layers, through hydrogen bonds, provide. an energetically feasible pathway for manipulating the surface-bonded protons. and thus, the interface electrical characteristics.

  17. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  18. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  19. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  20. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  1. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... generation on any two-dimensional square grid. 761.308 Section 761.308 Protection of Environment... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square grid. (a) Divide the surface area of the non-porous surface into rectangular or square areas having a...

  2. Magnetic-Field Dependences of Thermodynamic Quantities in the Vortex State of Type-Ii Superconductors

    NASA Astrophysics Data System (ADS)

    Watanabe, Koichi; Kita, Takafumi; Arai, Masao

    2006-08-01

    We develop an alternative method to solve the Eilenberger equations numerically for the vortex-lattice states of type-II superconductors. Using it, we clarify the magnetic-field and impurity-concentration dependences of the magnetization, the entropy, the Pauli paramagnetism, and the mixing of higher Landau levels in the pair potential for two-dimensional s- and dx2-y2-wave superconductors with a cylindrical Fermi surface.

  3. Joint Remote State Preparation Schemes for Two Different Quantum States Selectively

    NASA Astrophysics Data System (ADS)

    Shi, Jin

    2018-05-01

    The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.

  4. Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Huang, Beibing

    2018-01-01

    In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.

  5. Two-dimensional bismuth-rich nanosheets through the evaporative thinning of Se-doped Bi2Te3

    NASA Astrophysics Data System (ADS)

    Hanson, Eve D.; Shi, Fengyuan; Chasapis, Thomas C.; Kanatzidis, Mercouri G.; Dravid, Vinayak P.

    2016-02-01

    High bulk conductance obscures the behavior of surface states in the prototypical topological insulators Bi2Te3 and Bi2Se3. However, ternary phases of Bi2Te3-ySey with balanced donor and acceptor levels may lead to large bulk resistivity, allowing for the observation of the surface states. Additionally, the contribution of the bulk conductance may be further suppressed by nanostructuring, increasing the surface-to-volume ratio. Herein we report the synthesis of a ternary tetradymite newly confined to two dimensions. Ultra-thin large-area stable nanosheets were fabricated via evaporative thinning of a Bi2Te2.9Se0.1 original phase. Owing to vapor pressure differences, a compositional shift to a final Bi-rich phase is observed. The Se/Te ratio of the nanosheet increases tenfold, due to the higher stability of the Bi-Se bonds. Hexagonal crystal symmetry is maintained despite dramatic changes in thickness and stoichiometry. Given that small variations in stoichiometry of this ternary system can incur large changes in carrier concentration and switch majority carrier type, the large compositional shifts found in this case imply that compositional analysis of similar CVD and PVD grown materials is critical to correctly interpret topological insulator performance. Further, the characterization techniques deployed, including STEM-EDS and ToF-SIMS, serve as a case study in determining such compositional shifts in two-dimensional form.

  6. Topological phases protected by point group symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hao; Huang, Sheng -Jie; Fu, Liang

    We consider symmetry-protected topological (SPT) phases with crystalline point group symmetry, dubbed point group SPT (pgSPT) phases. We show that such phases can be understood in terms of lower-dimensional topological phases with on-site symmetry and that they can be constructed as stacks and arrays of these lower-dimensional states. This provides the basis for a general framework to classify and characterize bosonic and fermionic pgSPT phases, which can be applied for arbitrary crystalline point group symmetry and in arbitrary spatial dimensions. We develop and illustrate this framework by means of a few examples, focusing on three-dimensional states. We classify bosonic pgSPTmore » phases and fermionic topological crystalline superconductors with Z P 2 (reflection) symmetry, electronic topological crystalline insulators (TCIs) with U(1)×Z P 2 symmetry, and bosonic pgSPT phases with C 2v symmetry, which is generated by two perpendicular mirror reflections. We also study surface properties, with a focus on gapped, topologically ordered surface states. For electronic TCIs, we find a Z 8 × Z 2 classification, where the Z 8 corresponds to known states obtained from noninteracting electrons, and the Z 2 corresponds to a “strongly correlated” TCI that requires strong interactions in the bulk. Lastly, our approach may also point the way toward a general theory of symmetry-enriched topological phases with crystalline point group symmetry.« less

  7. Creating Two-Dimensional Electron Gas in Nonpolar/Nonpolar Oxide Interface via Polarization Discontinuity: First-Principles Analysis of CaZrO3/SrTiO3 Heterostructure.

    PubMed

    Nazir, Safdar; Cheng, Jianli; Yang, Kesong

    2016-01-13

    We studied strain-induced polarization and resulting conductivity in the nonpolar/nonpolar CaZrO3/SrTiO3 (CZO/STO) heterostructure (HS) system by means of first-principles electronic structure calculations. By modeling four types of CZO/STO HS-based slab systems, i.e., TiO2/CaO and SrO/ZrO2 interface models with CaO and ZrO2 surface terminations in each model separately, we found that the lattice-mismatch-induced compressive strain leads to a strong polarization in the CZO film and that as the CZO film thickness increases there exists an insulator-to-metal transition. The polarization direction and critical thickness of the CZO film for forming interfacial metallic states depend on the surface termination of CZO film in both types of interface models. In the TiO2/CaO and SrO/ZrO2 interface models with CaO surface termination, the strong polarization drives the charge transfer from the CZO film to the first few TiO2 layers in the STO substrate, leading to the formation of two-dimensional electron gas (2DEG) at the interface. In the HS models with ZrO2 surface termination, two polarization domains with opposite directions are in the CZO film, which results in the charge transfer from the middle CZO layer to the interface and surface, respectively, leading to the coexistence of the 2DEG on the interface and the two-dimensional hole gas (2DHG) at the middle CZO layer. These findings open a new avenue to achieve 2DEG (2DHG) in perovskite-based HS systems via polarization discontinuity.

  8. A two-dimensional Dirac fermion microscope

    NASA Astrophysics Data System (ADS)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  9. A two-dimensional Dirac fermion microscope

    PubMed Central

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-01-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots. PMID:28598421

  10. Excitation basis for (3+1)d topological phases

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement

    2017-12-01

    We consider an exactly solvable model in 3+1 dimensions, based on a finite group, which is a natural generalization of Kitaev's quantum double model. The corresponding lattice Hamiltonian yields excitations located at torus-boundaries. By cutting open the three-torus, we obtain a manifold bounded by two tori which supports states satisfying a higher-dimensional version of Ocneanu's tube algebra. This defines an algebraic structure extending the Drinfel'd double. Its irreducible representations, labeled by two fluxes and one charge, characterize the torus-excitations. The tensor product of such representations is introduced in order to construct a basis for (3+1)d gauge models which relies upon the fusion of the defect excitations. This basis is defined on manifolds of the form Σ × S_1 , with Σ a two-dimensional Riemann surface. As such, our construction is closely related to dimensional reduction from (3+1)d to (2+1)d topological orders.

  11. Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites.

    PubMed

    Hu, Te; Smith, Matthew D; Dohner, Emma R; Sher, Meng-Ju; Wu, Xiaoxi; Trinh, M Tuan; Fisher, Alan; Corbett, Jeff; Zhu, X-Y; Karunadasa, Hemamala I; Lindenberg, Aaron M

    2016-06-16

    The recently discovered phenomenon of broadband white-light emission at room temperature in the (110) two-dimensional organic-inorganic perovskite (N-MEDA)[PbBr4] (N-MEDA = N(1)-methylethane-1,2-diammonium) is promising for applications in solid-state lighting. However, the spectral broadening mechanism and, in particular, the processes and dynamics associated with the emissive species are still unclear. Herein, we apply a suite of ultrafast spectroscopic probes to measure the primary events directly following photoexcitation, which allows us to resolve the evolution of light-induced emissive states associated with white-light emission at femtosecond resolution. Terahertz spectra show fast free carrier trapping and transient absorption spectra show the formation of self-trapped excitons on femtosecond time-scales. Emission-wavelength-dependent dynamics of the self-trapped exciton luminescence are observed, indicative of an energy distribution of photogenerated emissive states in the perovskite. Our results are consistent with photogenerated carriers self-trapped in a deformable lattice due to strong electron-phonon coupling, where permanent lattice defects and correlated self-trapped states lend further inhomogeneity to the excited-state potential energy surface.

  12. Vibrational Mode-Specific Reaction of Methane with a Nickel Surface

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2004-03-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic scale description of this important gas-surface reaction. To elucidate its dynamics, we have performed quantum state resolved studies of vibrationally excited methane reacting on the Ni(100) surface using pulsed laser and molecular beam techniques. We observed up to a factor of 5 greater reaction probability for methane-d2 with two quanta of excitation in one C-H bond versus a nearly isoenergetic state with one quanta in each of two C-H bonds. The observed reactivities point to a transition state structure which has one of the C-H bonds significantly elongated. Our results also clearly exclude the possibility of statistical models correctly describing the mechanism of this process and emphasize the importance of full-dimensional calculations of the reaction dynamics.

  13. Wind-Tunnel Investigation of Control-Surface Characteristics XX : Plain and Balanced Flaps on an NACA 0009 Rectangular Semispan Tail Surface

    NASA Technical Reports Server (NTRS)

    Garner, Elizabeth I.

    1944-01-01

    Correlation is established between aerodynamic characteristics of control surfaces in two-dimensional and three-dimensional flow. Slope of lift curve was affected little by overhang and balance-nose shape, but increased by sealing flap-nose gap. Effectiveness of balancing tab was same for sealed plain flap and unsealed overhang flap. Changes in hinge-moment coefficient were diminished by sealing gap. Values measured by three-dimensional flow disagreed with two-dimensional flow values until aspect ratio corrections were made.

  14. Single-layer graphdiyne-covered Pt(111) surface: improved catalysis confined under two-dimensional overlayer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    In recent years, two-dimensional confined catalysis, i.e., the enhanced catalytic reactions in confined space between metal surface and two-dimensional overlayer, makes a hit and opens up a new way to enhance the performance of catalysts. In this work, graphdiyne overlayer was proposed as a more excellent material than graphene or hexagonal boron nitride for two-dimensional confined catalysis on Pt(111) surface. Density functional theory calculations revealed the superiority of graphdiyne overlayer originates from the steric hindrance effect which increases the catalytic ability and lowers the reaction barriers. Moreover, with the big triangle holes as natural gas tunnels, graphdiyne possesses higher efficiency for the transit of gaseous reactants and products than graphene or hexagonal boron nitride. The results in this work would benefit future development of two-dimensional confined catalysis. [Figure not available: see fulltext.

  15. On the modeling of the 2010 Gulf of Mexico Oil Spill

    NASA Astrophysics Data System (ADS)

    Mariano, A. J.; Kourafalou, V. H.; Srinivasan, A.; Kang, H.; Halliwell, G. R.; Ryan, E. H.; Roffer, M.

    2011-09-01

    Two oil particle trajectory forecasting systems were developed and applied to the 2010 Deepwater Horizon Oil Spill in the Gulf of Mexico. Both systems use ocean current fields from high-resolution numerical ocean circulation model simulations, Lagrangian stochastic models to represent unresolved sub-grid scale variability to advect oil particles, and Monte Carlo-based schemes for representing uncertain biochemical and physical processes. The first system assumes two-dimensional particle motion at the ocean surface, the oil is in one state, and the particle removal is modeled as a Monte Carlo process parameterized by a one number removal rate. Oil particles are seeded using both initial conditions based on observations and particles released at the location of the Maconda well. The initial conditions (ICs) of oil particle location for the two-dimensional surface oil trajectory forecasts are based on a fusing of all available information including satellite-based analyses. The resulting oil map is digitized into a shape file within which a polygon filling software generates longitude and latitude with variable particle density depending on the amount of oil present in the observations for the IC. The more complex system assumes three (light, medium, heavy) states for the oil, each state has a different removal rate in the Monte Carlo process, three-dimensional particle motion, and a particle size-dependent oil mixing model. Simulations from the two-dimensional forecast system produced results that qualitatively agreed with the uncertain "truth" fields. These simulations validated the use of our Monte Carlo scheme for representing oil removal by evaporation and other weathering processes. Eulerian velocity fields for predicting particle motion from data-assimilative models produced better particle trajectory distributions than a free running model with no data assimilation. Monte Carlo simulations of the three-dimensional oil particle trajectory, whose ensembles were generated by perturbing the size of the oil particles and the fraction in a given size range that are released at depth, the two largest unknowns in this problem. 36 realizations of the model were run with only subsurface oil releases. An average of these results yields that after three months, about 25% of the oil remains in the water column and that most of the oil is below 800 m.

  16. Understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates

    NASA Technical Reports Server (NTRS)

    Etters, R. D.

    1985-01-01

    Work directed toward understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates is reported. The motivation, apart from expanding our basic knowledge about these systems, was to understand and predict the properties of new materials synthesized at high pressure, including pressure induced metallic and superconducting states. As a consequence, information about the states of matter of the Jovian planets and their satellites, which are natural high pressure laboratories was also provided. The work on molecular surfaces and finite two and three dimensional clusters of atoms and molecules was connected with the composition and behavior of planetary atmospheres and on the processes involved in forming surface layers, which is vital to the development of composite materials and microcircuitry.

  17. Octupolar tensors for liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yannan; Qi, Liqun; Virga, Epifanio G.

    2018-01-01

    A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.

  18. Ripple-modulated electronic structure of a 3D topological insulator.

    PubMed

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  19. Quantum transition state dynamics of the cyclooctatetraene unimolecular reaction on ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki

    2016-05-01

    The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.

  20. Josephson supercurrent through a topological insulator surface state.

    PubMed

    Veldhorst, M; Snelder, M; Hoek, M; Gang, T; Guduru, V K; Wang, X L; Zeitler, U; van der Wiel, W G; Golubov, A A; Hilgenkamp, H; Brinkman, A

    2012-02-19

    The long-sought yet elusive Majorana fermion is predicted to arise from a combination of a superconductor and a topological insulator. An essential step in the hunt for this emergent particle is the unequivocal observation of supercurrent in a topological phase. Here, direct evidence for Josephson supercurrents in superconductor (Nb)-topological insulator (Bi(2)Te(3))-superconductor electron-beam fabricated junctions is provided by the observation of clear Shapiro steps under microwave irradiation, and a Fraunhofer-type dependence of the critical current on magnetic field. Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a topologically non-trivial two-dimensional surface state. This surface state is attributed to mediate the ballistic Josephson current despite the fact that the normal state transport is dominated by diffusive bulk conductivity. The lateral Nb-Bi(2)Te(3)-Nb junctions hence provide prospects for the realization of devices supporting Majorana fermions.

  1. Structure and electronic properties of Cu nanoclusters supported on Mo 2C(001) and MoC(001) surfaces

    DOE PAGES

    Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; ...

    2015-09-15

    In this study, the atomic structure and electronic properties of Cu n nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo 2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo 2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and themore » surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo 2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.« less

  2. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  3. AGT/ℤ2

    NASA Astrophysics Data System (ADS)

    Le Floch, Bruno; Turiaci, Gustavo J.

    2017-12-01

    We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N=2 gauge theories. Our construction naturally involves four-dimensional theories with fields defined on different ℤ2 quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a ℤ2 quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the ℝℙ4 partition function of four-dimensional N=2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known ℝℙ2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.

  4. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  5. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  6. Crossing the dividing surface of transition state theory. IV. Dynamical regularity and dimensionality reduction as key features of reactive trajectories

    NASA Astrophysics Data System (ADS)

    Lorquet, J. C.

    2017-04-01

    The atom-diatom interaction is studied by classical mechanics using Jacobi coordinates (R, r, θ). Reactivity criteria that go beyond the simple requirement of transition state theory (i.e., PR* > 0) are derived in terms of specific initial conditions. Trajectories that exactly fulfill these conditions cross the conventional dividing surface used in transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) only once. Furthermore, they are observed to be strikingly similar and to form a tightly packed bundle of perfectly collimated trajectories in the two-dimensional (R, r) configuration space, although their angular motion is highly specific for each one. Particular attention is paid to symmetrical transition states (i.e., either collinear or T-shaped with C2v symmetry) for which decoupling between angular and radial coordinates is observed, as a result of selection rules that reduce to zero Coriolis couplings between modes that belong to different irreducible representations. Liapunov exponents are equal to zero and Hamilton's characteristic function is planar in that part of configuration space that is visited by reactive trajectories. Detailed consideration is given to the concept of average reactive trajectory, which starts right from the saddle point and which is shown to be free of curvature-induced Coriolis coupling. The reaction path Hamiltonian model, together with a symmetry-based separation of the angular degree of freedom, provides an appropriate framework that leads to the formulation of an effective two-dimensional Hamiltonian. The success of the adiabatic approximation in this model is due to the symmetry of the transition state, not to a separation of time scales. Adjacent trajectories, i.e., those that do not exactly fulfill the reactivity conditions have similar characteristics, but the quality of the approximation is lower. At higher energies, these characteristics persist, but to a lesser degree. Recrossings of the dividing surface then become much more frequent and the phase space volumes of initial conditions that generate recrossing-free trajectories decrease. Altogether, one ends up with an additional illustration of the concept of reactive cylinder (or conduit) in phase space that reactive trajectories must follow. Reactivity is associated with dynamical regularity and dimensionality reduction, whatever the shape of the potential energy surface, no matter how strong its anharmonicity, and whatever the curvature of its reaction path. Both simplifying features persist during the entire reactive process, up to complete separation of fragments. The ergodicity assumption commonly assumed in statistical theories is inappropriate for reactive trajectories.

  7. Two-dimensional free-surface flow under gravity: A new benchmark case for SPH method

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Fang, L.

    2018-02-01

    Currently there are few free-surface benchmark cases with analytical results for the Smoothed Particle Hydrodynamics (SPH) simulation. In the present contribution we introduce a two-dimensional free-surface flow under gravity, and obtain an analytical expression on the surface height difference and a theoretical estimation on the surface fractal dimension. They are preliminarily validated and supported by SPH calculations.

  8. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  9. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Franz, M.

    2017-07-01

    A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti-de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  10. Reversibility and intermediate steps as key tools for the growth of extended ordered polymers via on-surface synthesis

    NASA Astrophysics Data System (ADS)

    Di Giovannantonio, Marco; Contini, Giorgio

    2018-03-01

    Surface-confined polymerization is a bottom-up strategy to create one- and two-dimensional covalent organic nanostructures with a π-conjugated backbone, which are suitable to be employed in real-life electronic devices, due to their high mechanical resistance and electronic charge transport efficiency. This strategy makes it possible to change the properties of the final nanostructures by a careful choice of the monomer architecture (i.e. of its constituent atoms and their spatial arrangement). Several chemical reactions have been proven to form low-dimensional polymers on surfaces, exploiting a variety of precursors in combination with metal (e.g. Cu, Ag, Au) and insulating (e.g. NaCl, CaCO3) surfaces. One of the main challenges of such an approach is to obtain nanostructures with long-range order, to boost the conductance performances of these materials. Most of the exploited chemical reactions use irreversible coupling between the monomers and, as a consequence, the resulting structures often suffer from poor order and high defect density. This review focuses on the state-of-the-art surface-confined polymerization reactions, with particular attention paid to reversible coupling pathways and irreversible processes including intermediate states, which are key aspects to control to increase the order of the final nanostructure.

  11. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  12. Surface field theories of point group symmetry protected topological phases

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Jie; Hermele, Michael

    2018-02-01

    We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.

  13. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  14. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  15. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  16. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  17. Two-Dimensional Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Barranger, John P.; Lant, Christian

    1992-01-01

    Extension of Yamaguchi's laser-speckle surface-strain-gauge method yields data on two-dimensional surface strains in times as short as fractions of second. Laser beams probe rough spot on surface of specimen before and after processing. Changes in speckle pattern of laser light reflected from spot indicative of changes in surface strains during processing. Used to monitor strains and changes in strains induced by hot-forming and subsequent cooling of steel.

  18. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    PubMed

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered (aggregated) phases is shown to exist when liquid vapor is confined in capillaries (condensation-liquefaction-evaporation and flux). This pheno-menon can be experimentally illustrated with suspended nano-sized particles (flocculation-coagulation-peptisation of colloidal sols) being confined in sample holders of varying size. The self-assembled aggregates represent critical self-similar equilibrium structures corres-ponding to rate determining complexes in kinetics. Overall, a self-consistent thermodynamic framework is established for the characterization of two- and three-dimensional phase separations in one-, two- and three-component systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces

    DOE PAGES

    Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...

    2016-07-26

    Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less

  20. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    NASA Astrophysics Data System (ADS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  1. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  2. Enhancement of superconductivity under pressure and the magnetic phase diagram of tantalum disulfide single crystals

    PubMed Central

    Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.

    2016-01-01

    In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature. PMID:27534898

  3. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  4. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    PubMed

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  5. Manipulating topological-insulator properties using quantum confinement

    NASA Astrophysics Data System (ADS)

    Kotulla, M.; Zülicke, U.

    2017-07-01

    Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.

  6. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.

    PubMed

    Lee, Jyh-Tsung; George, Matthew C; Moore, Jeffrey S; Braun, Paul V

    2009-08-19

    We demonstrate a facile method for fabricating novel 3D microfluidic channels by using two-photon-activated chemistry to locally switch the interior surface of a porous host from a hydrophobic state to a hydrophilic state. The 3D structures can be infilled selectively with water and/or hydrophobic oil with a minimum feature size of only a few micrometers. We envision that this approach may enable the fabrication of complex microfluidic structures that cannot be easily formed via current technologies.

  7. Mechanics of couple-stress fluid coatings

    NASA Technical Reports Server (NTRS)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  8. A frequency-based window width optimized two-dimensional S-Transform profilometry

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao

    2017-11-01

    A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.

  9. Friedel oscillation near a van Hove singularity in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Lu, Chi-Ken

    2016-02-01

    We consider Friedel oscillation in the two-dimensional Dirac materials when the Fermi level is near the van Hove singularity. Twisted graphene bilayer and the surface state of topological crystalline insulator are the representative materials which show low-energy saddle points that are feasible to probe by gating. We approximate the Fermi surface near saddle point with a hyperbola and calculate the static Lindhard response function. Employing a theorem of Lighthill, the induced charge density δ n due to an impurity is obtained and the algebraic decay of δ n is determined by the singularity of the static response function. Although a hyperbolic Fermi surface is rather different from a circular one, the static Lindhard response function in the present case shows a singularity similar with the response function associated with circular Fermi surface, which leads to the δ n\\propto {{R}-2} at large distance R. The dependences of charge density on the Fermi energy are different. Consequently, it is possible to observe in twisted graphene bilayer the evolution that δ n\\propto {{R}-3} near Dirac point changes to δ n\\propto {{R}-2} above the saddle point. Measurements using scanning tunnelling microscopy around the impurity sites could verify the prediction.

  10. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  11. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.

    2006-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  12. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.

    2007-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  13. Improvements In A Laser-Speckle Surface-Strain Gauge

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.

    1996-01-01

    Compact optical subsystem incorporates several improvements over optical subsystems of previous versions of laser-speckle surface-strain gauge: faster acquisition of data, faster response to transients, reduced size and weight, lower cost, and less complexity. Principle of operation described previously in "Laser System Measures Two-Dimensional Strain" (LEW-15046), and "Two-Dimensional Laser-Speckle Surface-Strain Gauge" (LEW-15337).

  14. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

    DOE PAGES

    Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...

    2017-07-10

    Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less

  15. Stationary Solutions of A One-dimensional Thermodynamic Radiative Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Taylor, P. D.; Feltham, D. L.

    A one-dimensional thermodynamic model of sea ice is coupled to a two-stream radi- ation model and the stationary (time-independent) solutions analysed. The stationary model represents the state of the sea ice subjected to persistent or slowly varying forc- ing. Two physically realisable stationary solutions (real and positive ice thickness) occur for a large range of positive oceanic heat flux ( 20,Wm-2). The two station- ary solutions are due to the two-stream radiation model, which allows radiation to be reflected at the ice-ocean interface. Thick ice ( 1,m) only absorbs radiation near its surface, whereas thin ice ( 0.1,m) absorbs radiation across its entire depth. The two stationary solutions are caused by these two different radiative regimes. The results of this analysis have relevance to the interpretation and implementation of thermody- namic models of sea ice and the interpretation of thickness data.

  16. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  17. The half-filled Landau level: The case for Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.

    2016-04-01

    In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.

  18. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  19. Two-dimensional Dirac fermions in thin films of C d3A s2

    NASA Astrophysics Data System (ADS)

    Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne

    2018-03-01

    Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.

  20. Hydraulic analysis of the Schoharie Creek bridge

    USGS Publications Warehouse

    Froehlich, David C.; Trent, Roy E.

    1989-01-01

    Ten people died on April 5, 1987 as a result of the collapse of two spans of a New York State Thruway bridge into the floodwaters of Schoharie Creek. The cause of the bridge failure was determined to be scour of bed material from under the foundations of piers supporting the bridge. To evaluate the hydraulic conditions that produced the scour, a two-dimensional finite element surface-water flow model was constructed. The model was used to obtain a detailed description of water-surface elevations and depth-averaged velocities within a reach that extends from about 4000 ft downstream of the bridge to about 6000 ft upstream of the bridge.

  1. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzell, Peter; Bryden, Kenneth M.

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  2. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE PAGES

    Finzell, Peter; Bryden, Kenneth M.

    2017-03-06

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  3. Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility.

    PubMed

    Shen, Jie; Xie, Yujun; Cha, Judy J

    2015-06-10

    Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.

  4. Induced superconductivity in the three-dimensional topological insulator HgTe.

    PubMed

    Maier, Luis; Oostinga, Jeroen B; Knott, Daniel; Brüne, Christoph; Virtanen, Pauli; Tkachov, Grigory; Hankiewicz, Ewelina M; Gould, Charles; Buhmann, Hartmut; Molenkamp, Laurens W

    2012-11-02

    A strained and undoped HgTe layer is a three-dimensional topological insulator, in which electronic transport occurs dominantly through its surface states. In this Letter, we present transport measurements on HgTe-based Josephson junctions with Nb as a superconductor. Although the Nb-HgTe interfaces have a low transparency, we observe a strong zero-bias anomaly in the differential resistance measurements. This anomaly originates from proximity-induced superconductivity in the HgTe surface states. In the most transparent junction, we observe periodic oscillations of the differential resistance as a function of an applied magnetic field, which correspond to a Fraunhofer-like pattern. This unambiguously shows that a precursor of the Josephson effect occurs in the topological surface states of HgTe.

  5. Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    NASA Astrophysics Data System (ADS)

    Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.

    2017-10-01

    We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.

  6. Classification of topological insulators and superconductors in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Schnyder, Andreas P.; Ryu, Shinsei; Furusaki, Akira; Ludwig, Andreas W. W.

    2008-11-01

    We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced Z2 topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral (px±ipy) -wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to “weak pairing”) and topologically trivial (analogous to “strong pairing”) 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.

  7. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    PubMed

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  8. Electronic structure reconstruction across the antiferromagnetic transition in TaFe₁̣₂₃Te₃ spin ladder

    DOE PAGES

    Xu, Min; Wang, Li -Min; Peng, Rui; ...

    2015-02-01

    With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that containsmore » similar ingredients as the parent compounds of iron-based superconductors.« less

  9. Three-dimensional polarization states of monochromatic light fields.

    PubMed

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  10. Quantum Transport Properties in Two-Dimensional and Low Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Fang, Hao

    1991-02-01

    The quantum transport properties in quasi two -dimensional and zero-dimensional systems have been studied at magnetic field of 0 - 8T and low temperatures down to 1.3K. In the (100) Si inversion layer, we investigated the effect of valley splitting on the value of the enhanced effective g factor by the tilted magnetic field measurement. The valley splitting is determined from the beat effect on samples with measurable valley splitting behavior due to misorientation effects. Experimental results illustrate that the effective g factor is enhanced by many body interactions and that the valley splitting has no obvious effect on the g-value. A simulation calculation with a Gaussian distribution of density of states has been carried out and the simulated results are in an excellent agreement with the experimental data. A new and very simple technique has been developed for fabricating two-dimensional periodic submicron structures with feature sizes down to about 300 A. The etching mask is made by coating the material surface with a monolayer of close-packed uniform latex particles. We have demonstrated the formation of a quasi zero-dimensional quantum dot array and performed capacitance measurements on GaAs/AlGaAs heterostructure samples with periodicities ranging from 3000 to 4000 A. A series of nearly equally spaced peaks in a curve of the derivative of capacitance with respect to gate voltage, which corresponds to the energy levels formed by the lateral electric confining potential, is observed. The energy spacings and effective dot widths estimated from a simple parabolic potential model are consistent with the experimental data. Novel magnetoresistance oscillations in a two -dimensional electron gas modulated by a two-dimensional triangular superlattice potential are observed in GaAs/AlGaAs heterostructures. The new oscillations appear at very low magnetic fields and the peak positions are directly determined by the magnetic field and the periodicity of the modulation structure. New oscillation results from the modulation-broadened Landau bandwidth and the induced density of states variation with magnetic field. Physical explanations and theoretical approaches for the commensurability problem in a two-dimensional triangular superlattice potential are presented. The differences in oscillation frequencies and phase factors for two kinds of samples correlate with structures differing in degree of depletion and the resulting geometry.

  11. Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.

    PubMed

    Ann, Ki Yong; Cho, Chang-Geun

    2013-09-10

    The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.

  12. Spontaneous supercurrent and φ0 phase shift parallel to magnetized topological insulator interfaces

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Hamzehpour, Hossein

    2017-10-01

    Employing a Keldysh-Eilenberger technique, we theoretically study the generation of a spontaneous supercurrent and the appearance of the φ0 phase shift parallel to uniformly in-plane magnetized superconducting interfaces made of the surface states of a three-dimensional topological insulator. We consider two weakly coupled uniformly magnetized superconducting surfaces where a macroscopic phase difference between the s -wave superconductors can be controlled externally. We find that, depending on the magnetization strength and orientation on each side, a spontaneous supercurrent due to the φ0 states flows parallel to the interface at the nanojunction location. Our calculations demonstrate that nonsinusoidal phase relations of current components with opposite directions result in maximal spontaneous supercurrent at phase differences close to π . We also study the Andreev subgap channels at the interface and show that the spin-momentum locking phenomenon in the surface states can be uncovered through density of states studies. We finally discuss realistic experimental implications of our findings.

  13. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.

  14. Very highly excited vibrational states of LiCN using a discrete variable representation

    NASA Astrophysics Data System (ADS)

    Henderson, James R.; Tennyson, Jonathan

    Calculations are presented for the lowest 900 vibrational (J = 0) states of the LiCN floppy system for a two dimensional potential energy surface (rCN frozen). Most of these states lie well above the barrier separating the two linear isomers of the molecule and the point where the classical dynamics of the system becomes chaotic. Analysis of the wavefunctions of individual states in the high energy region shows that while most have an irregular nodal structure, a significant number of states appear regular - corresponding to solutions of standard, 'mode localized' hamiltonians. Motions corresponding in zero-order to Li-CN and Li-NC normal modes as well as free rotor states are identified. The distribution of level spacings is also studied and yields results in good agreement with those obtained by analysing nodal structures.

  15. Simulating the moderating effect of a lake on downwind temperatures

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  16. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  17. Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.

    PubMed

    Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner

    2013-01-01

    Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.

  18. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    USGS Publications Warehouse

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.

  19. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    PubMed

    Li, Mingze; Wang, Zhenhua; Yang, Liang; Pan, Desheng; Li, Da; Gao, Xuan P A; Zhang, Zhidong

    2018-08-03

    Controlling the growth direction (planar versus vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional layered materials. We report a simple method to fabricate continuous films of vertical Bi 2 Se 3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi 2 Se 3 nanoplate film, vertical Bi 2 Se 3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi 2 Se 3 nanoplates, we realized an effective tuning of the weak antilocalization effect from topological surface states in Bi 2 Se 3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film.

  20. Engineering two-photon high-dimensional states through quantum interference

    PubMed Central

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  1. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.

    PubMed

    Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan

    2014-04-08

    Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves.

  2. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents

    PubMed Central

    Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan

    2014-01-01

    Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719

  3. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  4. Quantum computational universality of the Cai-Miyake-Duer-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert

    2011-10-15

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less

  5. Surface-Activated Coupling Reactions Confined on a Surface.

    PubMed

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density-functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.

  6. Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture

    NASA Astrophysics Data System (ADS)

    Soriano, David; Ortmann, Frank; Roche, Stephan

    2012-12-01

    We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.

  7. Optical Manipulation and Detection of Emergent Phenomena in Topological Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gedik, Nuh

    The three-dimensional topological insulator (TI) is a new quantum phase of matter that exhibits quantum-Hall-like properties, even in the absence of an external magnetic field. These materials are insulators in the bulk but have a topologically protected conducting state at the surface. Charge carriers on these surface states behave like a two-dimensional gas of massless helical Dirac fermions for which the spin is ideally locked perpendicular to the momentum. The purpose of this project is to probe the unique collective electronic behaviors of topological insulators by developing and using advanced time resolved spectroscopic techniques with state-of-the-art temporal and spatial resolutions.more » The nature of these materials requires development of specialized ultrafast techniques (such as time resolved ARPES that also has spin detection capability, ultrafast electron diffraction that has sub-100 fs time resolution and THz magneto-spectroscopy). The focus of this report is to detail our achievements in terms of establishing state of the art experimental facilities. Below, we will describe achievements under this award for the entire duration of five years. We will focus on detailing the development of ultrafast technqiues here. The details of the science that was done with these technqiues can be found in the publications referencing this grant.« less

  8. Quality Control of Laser-Beam-Melted Parts by a Correlation Between Their Mechanical Properties and a Three-Dimensional Surface Analysis

    NASA Astrophysics Data System (ADS)

    Grimm, T.; Wiora, G.; Witt, G.

    2017-03-01

    Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.

  9. Arrays of Molecular Rotors with Triptycene Stoppers: Surface Inclusion in Hexagonal Tris(o-phenylenedioxy)cyclotriphosphazene.

    PubMed

    Kaleta, Jiří; Dron, Paul I; Zhao, Ke; Shen, Yongqiang; Císařová, Ivana; Rogers, Charles T; Michl, Josef

    2015-06-19

    A new generation of rod-shaped dipolar molecular rotors designed for controlled insertion into channel arrays in the surface of hexagonal tris(o-phenylenedioxy)cyclotriphosphazene (TPP) has been designed and synthesized. Triptycene is used as a stopper intended to prevent complete insertion, forcing the formation of a surface inclusion. Two widely separated (13)C NMR markers are present in the shaft for monitoring the degree of insertion. The structure of the two-dimensional rotor arrays contained in these surface inclusions was examined by solid-state NMR and X-ray powder diffraction. The NMR markers and the triptycene stopper functioned as designed, but half of the guest molecules were not inserted as deeply into the TPP channels as the other half. As a result, the dipolar rotators were distributed equally in two planes parallel to the crystal surface instead of being located in a single plane as would be required for ferroelectricity. Dielectric spectroscopy revealed rotational barriers of ∼4 kcal/mol but no ferroelectric behavior.

  10. Enhanced thermopower in ZnO two-dimensional electron gas

    PubMed Central

    Shimizu, Sunao; Bahramy, Mohammad Saeed; Iizuka, Takahiko; Ono, Shimpei; Miwa, Kazumoto; Tokura, Yoshinori; Iwasa, Yoshihiro

    2016-01-01

    Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to ∼ 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities. PMID:27222585

  11. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  12. Optically detecting the edge-state of a three-dimensional topological insulator under ambient conditions by ultrafast infrared photoluminescence spectroscopy

    PubMed Central

    Maezawa, Shun-ya; Watanabe, Hiroshi; Takeda, Masahiro; Kuroda, Kenta; Someya, Takashi; Matsuda, Iwao; Suemoto, Tohru

    2015-01-01

    Ultrafast infrared photoluminescence spectroscopy was applied to a three-dimensional topological insulator TlBiSe2 under ambient conditions. The dynamics of the luminescence exhibited bulk-insulating and gapless characteristics bounded by the bulk band gap energy. The existence of the topologically protected surface state and the picosecond-order relaxation time of the surface carriers, which was distinguishable from the bulk response, were observed. Our results provide a practical method applicable to topological insulators under ambient conditions for device applications. PMID:26552784

  13. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-04-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  14. Optical Tamm states in one-dimensional magnetophotonic structures.

    PubMed

    Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B

    2008-09-12

    We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.

  15. Verification and transfer of thermal pollution model. Volume 4: User's manual for three-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Nwadike, E. V.; Sinha, S. E.

    1982-01-01

    The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.

  16. Using gapped topological surface states of Bi 2Se 3 films in a field effect transistor

    DOE PAGES

    Sun, Jifeng; Singh, David J.

    2017-02-08

    Three dimensional topological insulators are insulators with topologically protected surface states that can have a high band velocity and high mobility at room temperature. This then suggests electronic applications that exploit these surface states, but the lack of a band gap poses a fundamental difficulty. We report a first principles study based on density functional theory for thin Bi 2Se 3 films in the context of a field effect transistor. It is known that a gap is induced in thin layers due to hybridization between the top and bottom surfaces, but it is not known whether it is possible tomore » use the topological states in this type of configuration. In particular, it is unclear whether the benefits of topological protection can be retained to a sufficient degree. We also show that there is a thickness regime in which the small gap induced by hybridization between the two surfaces is sufficient to obtain transistor operation at room temperature, and furthermore, that the band velocity and spin texture that are important for the mobility are preserved for Fermi levels of relevance to device application.« less

  17. Water dissociating on rigid Ni(100): A quantum dynamics study on a full-dimensional potential energy surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Chen, Jun; Zhang, Zhaojun; Shen, Xiangjian; Fu, Bina; Zhang, Dong H.

    2018-04-01

    We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.

  18. 4D and 2D superconformal index with surface operator

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2011-08-01

    We study the superconformal index of the mathcal{N} = 4 super-Yang-Milles theory on S 3 × S 1 with the half BPS superconformal surface operator (defect) inserted at the great circle of S 3. The half BPS superconformal surface operators preserve the same supersymmetry as well as the symmetry of the chemical potential used in the definition of the superconformal index, so the structure and the parameterization of the superconformal index remain unaffected by the presence of the surface operator. On the surface defect, a two-dimensional (4, 4) superconformal field theory resides, and the four-dimensional super-conformal index may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal field theory coupled with the four-dimensional bulk system. We construct the matrix model that computes the superconformal index with the surface operator when it couples with the bulk mathcal{N} = 4 super-Yang-Milles theory through the defect hypermultiplets on it.

  19. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  20. Ab initio quantum mechanical calculation of the reaction probability for the Cl-+PH2Cl→ClPH2+Cl- reaction

    NASA Astrophysics Data System (ADS)

    Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.

    2013-11-01

    The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.

  1. Two-dimensional random surface model for asperity-contact in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Sidik, S. M.

    1979-01-01

    Relations for the asperity-contact time function during elastohydrodynamic lubrication of a ball bearing are presented. The analysis is based on a two-dimensional random surface model, and actual profile traces of the bearing surfaces are used as statistical sample records. The results of the analysis show that transition from 90 percent contact to 1 percent contact occurs within a dimensionless film thickness range of approximately four to five. This thickness ratio is several times large than reported in the literature where one-dimensional random surface models were used. It is shown that low pass filtering of the statistical records will bring agreement between the present results and those in the literature.

  2. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE PAGES

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe 2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at themore » double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  3. Device-level and module-level three-dimensional integrated circuits created using oblique processing

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce

    2016-07-01

    This paper demonstrates that another class of three-dimensional integrated circuits (3-D-ICs) exists, distinct from through-silicon-via-centric and monolithic 3-D-ICs. Furthermore, it is possible to create devices that are 3-D "at the device level" (i.e., with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of two-dimensional planar device architecture enables a wide range of interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.

  4. Converting topological insulators into topological metals within the tetradymite family

    NASA Astrophysics Data System (ADS)

    Chen, K.-W.; Aryal, N.; Dai, J.; Graf, D.; Zhang, S.; Das, S.; Le Fèvre, P.; Bertran, F.; Yukawa, R.; Horiba, K.; Kumigashira, H.; Frantzeskakis, E.; Fortuna, F.; Balicas, L.; Santander-Syro, A. F.; Manousakis, E.; Baumbach, R. E.

    2018-04-01

    We report the electronic band structures and concomitant Fermi surfaces for a family of exfoliable tetradymite compounds with the formula T2C h2P n , obtained as a modification to the well-known topological insulator binaries Bi2(Se,Te ) 3 by replacing one chalcogen (C h ) with a pnictogen (P n ) and Bi with the tetravalent transition metals T = Ti, Zr, or Hf. This imbalances the electron count and results in layered metals characterized by relatively high carrier mobilities and bulk two-dimensional Fermi surfaces whose topography is well-described by first-principles calculations. Intriguingly, slab electronic structure calculations predict Dirac-like surface states. In contrast to Bi2Se3 , where the surface Dirac bands are at the Γ point, for (Zr,Hf ) 2Te2 (P,As) there are Dirac cones of strong topological character around both the Γ ¯ and M ¯ points, which are above and below the Fermi energy, respectively. For Ti2Te2P , the surface state is predicted to exist only around the M ¯ point. In agreement with these predictions, the surface states that are located below the Fermi energy are observed by angle-resolved photoemission spectroscopy measurements, revealing that they coexist with the bulk metallic state. Thus this family of materials provides a foundation upon which to develop novel phenomena that exploit both the bulk and surface states (e.g., topological superconductivity).

  5. Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2

    DOE PAGES

    Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...

    2016-02-29

    The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less

  6. Atmostpheric simulations of extreme surface heating episodes on simple hills

    Treesearch

    W.E. Heilman

    1992-01-01

    A two-dimensional nonhydrostatic atmospheric model was used to simulate the circulation patterns (wind and vorticity) and turbulence energy fields associated with lines of extreme surface heating on simple two-dimensional hills. Heating-line locations and ambient crossflow conditions were varied to qualitatively determine the impact of terrain geometry on the...

  7. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.

    PubMed

    Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo

    2017-06-01

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  8. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  9. Unconventional superconductivity in magic-angle graphene superlattices.

    PubMed

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-05

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  10. Unconventional superconductivity in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  11. Observation of the Quantum Hall Effect in Confined Films of the Three-Dimensional Dirac Semimetal Cd3 As2

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Galletti, Luca; Kealhofer, David A.; Kim, Honggyu; Goyal, Manik; Stemmer, Susanne

    2018-01-01

    The magnetotransport properties of epitaxial films of Cd3 As2 , a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.

  12. Simulation of two-dimensional gratings for SERS-active substrate

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Wu, Jianhong

    2016-11-01

    Raman spectroscopy provides intrinsic vibrational and rotational mode of molecules in materials, which is widely used in chemical, medical and environmental domains. As known, the magnitude of surface enhanced Raman scattering can be amplified several orders. Nowadays, common Raman scattering has been gradually replaced by surface enhanced Raman scattering in low concentration detection domain. Generally speaking, the signal of surface enhanced Raman scattering on periodic nanostructures is more reliable and reproducible than on irregular nanostructures. In this paper, two-dimensional gratings coated by noble metal are used as SERS-active substrate. The surface plasmon resonance can be obtained by tuning the period of two-dimensional grating when the excitation laser interacts on the grating. The local electric field distribution is simulated by finite-difference-time-domain (FDTD). The wavelength of 632.8nm and 785nm are usually assembled on commercial Raman spectrometer. The optimization procedure of two-dimensional grating period is simulated by FDTD for above two wavelengths. The relation between the grating period and surface plasmon resonance is obtained in theory. The parameters such as depth of photoresist and thickness of coated metal are systematic discussed. The simulation results will greatly guide our post manufacture, which can be served for the commercial Raman spectrometer in SERS detection.

  13. United States Air Force Summer Faculty Research Program. Management Report. Volume 4

    DTIC Science & Technology

    1988-12-01

    Anderson, N.L. et al (1986). Effects of Aroclor 1254 on proteins of mouse liver: Aplication of two-dimensional electrophoretic protein mapping...transferability of job skill, has surfaced in the context of civilian occupational mobility (Byrne, 1975; Fine, 1957a, 1957b) transitions from military to...considerations from concept through deployment. Defense Management Journal, 16(2), 12-19. Byrne, J. J. (1975). Occupational mobility of workers. Monthly

  14. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  15. Positron-annihilation study of the electronic structure of URu2Si2

    NASA Astrophysics Data System (ADS)

    Rozing, G. J.; Mijnarends, P. E.; Menovsky, A. A.; de Chtel, P. F.

    1991-04-01

    Measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed on oriented single crystals of URu2Si2. The spectra, obtained with integration along four different symmetry directions, display anisotropic structure in fair agreement with a previous calculation of the two-photon momentum distribution. In particular, the contribution of the f-ligand hybridized electron states is clearly observed and reasonably well described by the band calculation. The 2D-ACAR distribution remains unchanged as the temperature is increased from 6 K in the Fermi-liquid state to 72 K, which is just above the coherence temperature. The inhomogeneity of the positron density in the unit cell complicates the Lock-Crisp-West (LCW) analysis of the experiments in terms of Fermi-surface features. Nevertheless, the disagreement between theory and experiment after LCW folding indicates that the Fermi surface as predicted by local-density-approximation band theory does not apply.

  16. Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm.

    PubMed

    Ghaemi, Pouyan; Nair, V P

    2016-01-22

    In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due to fluctuations of impurities in the junctions. Our results, which are a condensed matter realization of a part of the Mikheyev-Smirnov-Wolfenstein effect for neutrinos, show that the relationship between normal state conductance and the critical current of Josephson junctions is significantly modified for Josephson junctions on the surface of topological insulators. We also study the temperature dependence of the supercurrent and present a two fluid model which can explain some of the recent experimental results in Josephson junctions on the edge of topological insulators.

  17. Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm

    NASA Astrophysics Data System (ADS)

    Ghaemi, Pouyan; Nair, V. P.

    2016-01-01

    In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due to fluctuations of impurities in the junctions. Our results, which are a condensed matter realization of a part of the Mikheyev-Smirnov-Wolfenstein effect for neutrinos, show that the relationship between normal state conductance and the critical current of Josephson junctions is significantly modified for Josephson junctions on the surface of topological insulators. We also study the temperature dependence of the supercurrent and present a two fluid model which can explain some of the recent experimental results in Josephson junctions on the edge of topological insulators.

  18. Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces

    NASA Astrophysics Data System (ADS)

    Winkelmann, Aimo; Akin Ünal, A.; Tusche, Christian; Ellguth, Martin; Chiang, Cheng-Tien; Kirschner, Jürgen

    2012-08-01

    Using a specifically tailored experimental approach, we revisit the exemplary effect of photoemission from quasi-free electronic states in crystals. Applying a momentum microscope, we measure photoelectron momentum patterns emitted into the complete half-space above the sample after excitation from a linearly polarized laser light source. By the application of a fully three-dimensional (3D) geometrical model of direct optical transitions, we explain the characteristic intensity distributions that are formed by the photoelectrons in k-space under the combination of energy conservation and crystal momentum conservation in the 3D bulk as well as at the two-dimensional (2D) surface. For bismuth surface alloys on Cu(111), the energy-resolved photoelectron momentum patterns allow us to identify specific emission processes in which bulk excited electrons are subsequently diffracted by an atomic 2D surface grating. The polarization dependence of the observed intensity features in momentum space is explained based on the different relative orientations of characteristic reciprocal space directions with respect to the electric field vector of the incident light.

  19. Unusual Ferroelectricity in Two-Dimensional Perovskite Oxide Thin Films.

    PubMed

    Lu, Jinlian; Luo, Wei; Feng, Junsheng; Xiang, Hongjun

    2018-01-10

    Two-dimensional (2D) ferroelectricity have attracted much attention due to their applications in novel miniaturized devices such as nonvolatile memories, field effect transistors, and sensors. Since most of the commercial ferroelectric (FE) devices are based on ABO 3 perovskite oxides, it is important to investigate the properties of 2D ferroelectricity in perovskite oxide thin films. Here, based on density functional theory (DFT) calculations, we find that there exist three kinds of in-plane FE states that originate from different microscopic mechanisms: (i) a proper FE state with the polarization along [110] due to the second-order Jahn-Teller effect related to the B ion with empty d-orbitals; (ii) a robust FE state with the polarization along [100] induced by the surface effect; (iii) a hybrid improper FE state with the polarization along [110] that is induced by the trilinear coupling between two rotational modes and the A-site displacement. Interestingly, the ferroelectricity in the latter two cases becomes stronger along with decreasing the thin film thickness, in contrast to the usual behavior. Moreover, the latter two FE states are compatible with magnetism since their stability does not depend on the occupation of the d-orbitals of the B-ion. These two novel 2D FE mechanisms provide new avenues to design 2D multiferroics, as we demonstrated in SrVO and CaFeO thin film cases. Our work not only reveals new physical mechanisms of 2D ferroelectricity in perovskite oxide thin films but also provides a new route to design the high-performance 2D FE and multiferroics.

  20. Quantum states and optical responses of low-dimensional electron hole systems

    NASA Astrophysics Data System (ADS)

    Ogawa, Tetsuo

    2004-09-01

    Quantum states and their optical responses of low-dimensional electron-hole systems in photoexcited semiconductors and/or metals are reviewed from a theoretical viewpoint, stressing the electron-hole Coulomb interaction, the excitonic effects, the Fermi-surface effects and the dimensionality. Recent progress of theoretical studies is stressed and important problems to be solved are introduced. We cover not only single-exciton problems but also few-exciton and many-exciton problems, including electron-hole plasma situations. Dimensionality of the Wannier exciton is clarified in terms of its linear and nonlinear responses. We also discuss a biexciton system, exciton bosonization technique, high-density degenerate electron-hole systems, gas-liquid phase separation in an excited state and the Fermi-edge singularity due to a Mahan exciton in a low-dimensional metal.

  1. Ordering of two-dimensional crystals confined in strips of finite width

    NASA Astrophysics Data System (ADS)

    Ricci, A.; Nielaba, P.; Sengupta, S.; Binder, K.

    2007-01-01

    Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential ∝r-12 in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D ) depends very sensitively on the precise boundary conditions at the two “walls” providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-)long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y direction along the walls then crosses over from the logarithmic increase (characteristic for d=2 ) to a linear increase with n (characteristic for d=1 ). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising and XY models is made.

  2. Formation of Ideal Rashba States on Layered Semiconductor Surfaces Steered by Strain Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Wenmei; Wang, Z. F.; Zhou, Miao

    2015-12-10

    Spin splitting of Rashba states in two-dimensional electron system provides a mechanism of spin manipulation for spintronics applications. However, Rashba states realized experimentally to date are often outnumbered by spin-degenerated substrate states at the same energy range, hindering their practical applications. Here, by density functional theory calculation, we show that Au one monolayer film deposition on a layered semiconductor surface β-InSe(0001) can possess “ideal” Rashba states with large spin splitting, which are completely situated inside the large band gap of the substrate. The position of the Rashba bands can be tuned over a wide range with respect to the substratemore » band edges by experimentally accessible strain. Furthermore, our nonequilibrium Green’s function transport calculation shows that this system may give rise to the long-sought strong current modulation when made into a device of Datta-Das transistor. Similar systems may be identified with other metal ultrathin films and layered semiconductor substrates to realize ideal Rashba states.« less

  3. Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members

    PubMed Central

    Ann, Ki Yong; Cho, Chang-Geun

    2013-01-01

    The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test. PMID:28788312

  4. Mechanisms of Surface-Mediated DNA Hybridization

    PubMed Central

    2015-01-01

    Single-molecule total internal reflection fluorescence microscopy was employed in conjunction with resonance energy transfer (RET) to observe the dynamic behavior of donor-labeled ssDNA at the interface between aqueous solution and a solid surface decorated with complementary acceptor-labeled ssDNA. At least 100 000 molecular trajectories were determined for both complementary strands and negative control ssDNA. RET was used to identify trajectory segments corresponding to the hybridized state. The vast majority of molecules from solution adsorbed nonspecifically to the surface, where a brief two-dimensional search was performed with a 7% chance of hybridization. Successful hybridization events occurred with a characteristic search time of ∼0.1 s, and unsuccessful searches resulted in desorption from the surface, ultimately repeating the adsorption and search process. Hybridization was reversible, and two distinct modes of melting (i.e., dehybridization) were observed, corresponding to long-lived (∼15 s) and short-lived (∼1.4 s) hybridized time intervals. A strand that melted back onto the surface could rehybridize after a brief search or desorb from the interface. These mechanistic observations provide guidance for technologies that involve DNA interactions in the near-surface region, suggesting a need to design surfaces that both enhance the complex multidimensional search process and stabilize the hybridized state. PMID:24708278

  5. Trajectory calculations of two-dimensional Penning ionization electron spectra of N 2 in collision with metastable He* 2 3S atoms

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Yamazaki, Masakazu; Kishimoto, Naoki; Ogawa, Tetsuji; Takeshita, Kouichi

    2000-12-01

    Ionization cross-sections of N 2 in collision with He* 2 3S as functions of the collision energy and the ejected electron kinetic energy (two-dimensional Penning ionization electron spectra, 2D-PIES) have been evaluated by trajectory calculations based on quantum chemical potential surfaces of both entrance and exit channels as well as on the transition widths for producing X, A, and B states of N 2+. The present approach using a Li atom for He * and an overlap approximation for Γ has given theoretical 2D-PIES in good agreement with the observation and a promise for its application to the study of dynamics in collisional ionization involving highly anisotropic target systems.

  6. Surface segregation on Fe3%Si0.04%VC(100) single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Uebing, C.; Viefhaus, H.

    1990-10-01

    Surface segregation phenomena on (100) oriented single crystal surfaces of the ferritic Fe-3%Si-0.04%V-C alloy were investigated by AES and LEED. At temperatures below 635 °C vanadium and carbon cosegregation is observed after prolonged heating. At thermodynamic equilibrium the substrate surface is saturated with the binary surface compound VC. The two-dimensional VC is epitaxially arranged on the substrate surface as indicated by LEED investigations. Its structure corresponds to the (100) plane of the three-dimensional VC with rocksalt structure. Sharp above 635 °C the surface compound VC is dissolved into the bulk. At higher temperatures the substrate surface is covered with segregated silicon forming a c(2 × 2) structure. This surface phase transition is reversible. Because of the low concentration and slow diffusion of vanadium, non-equilibrium surface states are formed as intermediates upon segregation of silicon and carbon. Below 500 °C a disordered graphite layer with a characteristical asymmetrical C Auger peak is observed on the substrate surface. Above 500 °C carbon segregation leads to the formation of an ordered c(2 × 2) structure with a symmetrical C Auger peak being characteristic for carbidic or atomically adsorbed species. At increasing temperatures silicon segregation takes place leading to a c(2 × 2) structure. Between silicon and carbon site competition is effective.

  7. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today. PMID:27362493

  8. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

    PubMed

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.

  9. Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2011-10-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.

  10. Lensless Tomographic Imaging of Near Surface Structures of Frozen Hydrated Malaria-Infected Human Erythrocytes by Coherent X-Ray Diffraction Microscopy.

    PubMed

    Frank, Viktoria; Chushkin, Yuriy; Fröhlich, Benjamin; Abuillan, Wasim; Rieger, Harden; Becker, Alexandra S; Yamamoto, Akihisa; Rossetti, Fernanda F; Kaufmann, Stefan; Lanzer, Michael; Zontone, Federico; Tanaka, Motomu

    2017-10-26

    Lensless, coherent X-ray diffraction microscopy has been drawing considerable attentions for tomographic imaging of whole human cells. In this study, we performed cryogenic coherent X-ray diffraction imaging of human erythrocytes with and without malaria infection. To shed light on structural features near the surface, "ghost cells" were prepared by the removal of cytoplasm. From two-dimensional images, we found that the surface of erythrocytes after 32 h of infection became much rougher compared to that of healthy, uninfected erythrocytes. The Gaussian roughness of an infected erythrocyte surface (69 nm) is about two times larger than that of an uninfected one (31 nm), reflecting the formation of protein knobs on infected erythrocyte surfaces. Three-dimensional tomography further enables to obtain images of the whole cells with no remarkable radiation damage, whose accuracy was estimated using phase retrieval transfer functions to be as good as 64 nm for uninfected and 80 nm for infected erythrocytes, respectively. Future improvements in phase retrieval algorithm, increase in degree of coherence, and higher flux in combination with complementary X-ray fluorescence are necessary to gain both structural and chemical details of mesoscopic architectures, such as cytoskeletons, membraneous structures, and protein complexes, in frozen hydrated human cells, especially under diseased states.

  11. Heat Transfer Measurements during DC Casting of Aluminium Part I: Measurement Technique

    NASA Astrophysics Data System (ADS)

    Bakken, J. A.; Bergström, T.

    A method for determination of surface heat transfer to the cooling water and mould based on in-situ temperature measurements in the DC cast ingot has been developed. Three or more steel mantled coaxial thermocouples (0.5 mm diam.) are mounted on a wire frame called a "harp". Allowing the "harp" to freeze into the solid ingots during the casting time-temperature plots T1 (t), T2(t), T3 (t) are obtained for three moving points positioned typically 3, 7 and 11 mm from the ingot surface. From these measurements surface temperature, heat flux and heat transfer coefficients are computed as functions of vertical distance. The computer program is based on steady-state two-dimensional heat balances with convective terms for two fixed volume elements: one around thermocouple T1 and one surface element. A special numerical smoothing procedure is incorporated. The heat of solidification is taken into account.

  12. A computer program for fitting smooth surfaces to three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.; Smith, R. E., Jr.

    1975-01-01

    A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.

  13. Metallic rare-earth silicide nanowires on silicon surfaces.

    PubMed

    Dähne, Mario; Wanke, Martina

    2013-01-09

    The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).

  14. Chimera states in two-dimensional networks of locally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  15. Chimera states in two-dimensional networks of locally coupled oscillators.

    PubMed

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.

  16. Momentum microscopy of ? single crystals with detailed surface characterisation

    NASA Astrophysics Data System (ADS)

    Ellguth, M.; Tusche, C.; Iga, F.; Suga, S.

    2016-11-01

    We report the in situ preparation of surfaces of the proposed topological Kondo insulator SmB? by controlled cycles of Ar ion sputtering and annealing. The procedure provides a reproducible way for the preparation of Sm- or B-rich surface terminations by low (?1080 ?C) or high (?1200 ?C) temperature annealing. The surface quality and termination were checked by low energy electron diffraction and Auger electron spectroscopy. Photoemission studies were carried out using momentum microscopy and two laboratory light sources providing polarised radiation with an energy of 6 eV (fourth harmonic of a pulsed Ti:Sapphire laser) and unpolarised radiation with an energy of 21.2 eV (He-I line of a gas discharge lamp). Full dispersions of electronic states in a wide two-dimensional momentum space were obtained by momentum microscopy from the in situ prepared Sm-terminated surface. The shape of the Fermi surface is discussed based on the sections through the bulk Brillouin zone sampled by the different photon energies.

  17. Effects of Two and Three-Dimensional Visual Objects on the Acquisition of Drawing Skills among JSS1 Students in Osun State, Nigeria

    ERIC Educational Resources Information Center

    Abass, Bada Tayo; Isyakka, Bello; Olaolu, Ijisakin Yemi; Olusegun, Fajuyigbe Michael

    2014-01-01

    The study examined the effects of two and three dimensional visual objects on learners' drawing skills in junior secondary schools in OsunState, Nigeria. It also determined students' ability to identify visual objects. Furthermore, it investigated the comparative effectiveness of two and three dimensional visual objects on drawing skills of junior…

  18. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  19. Verification and transfer of thermal pollution model. Volume 6: User's manual for 1-dimensional numerical model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter.

  20. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  1. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  2. A three-dimensional application with the numerical grid generation code: EAGLE (utilizing an externally generated surface)

    NASA Technical Reports Server (NTRS)

    Houston, Johnny L.

    1990-01-01

    Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.

  3. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    PubMed

    Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-01-01

    Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  4. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  5. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  6. Quantum phases of disordered three-dimensional Majorana-Weyl fermions

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Pixley, J. H.; Goswami, Pallab; Das Sarma, S.

    2017-04-01

    The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three-dimensional spinless px+i py superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions; such a phase can support a large anomalous thermal Hall conductivity and protected surface Majorana-Fermi arcs at zero energy. We study the effects of quenched disorder on such a gapless topological phase by carrying out extensive numerical and analytical calculations on a lattice model for a disordered, spinless px+i py superconductor. Using the kernel polynomial method, we compute both average and typical density of states for the BdG quasiparticles, from which we construct the phase diagram of three-dimensional dirty px+i py superconductors as a function of disorder strength and chemical potential of the underlying normal state. We establish that the power law quasilocalized states induced by rare statistical fluctuations of the disorder potential give rise to an exponentially small density of states at zero energy, and even infinitesimally weak disorder converts the ThSM into a thermal diffusive Hall metal (ThDM). Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. We show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI) [or BEC phase] with a smeared gap that can occur for suitable band parameters and all strengths of disorder, supporting only exponentially localized Lifshitz states (at low energy) and (ii) a thermal Anderson insulator that only exists for large disorder strengths compared to all band parameters. We determine the nature of the two distinct localization-delocalization transitions between these two types of insulators and ThDM. Additionally, we establish the scaling properties of an avoided (or hidden) quantum critical point for moderate disorder strengths, which govern the crossover between ThSM and ThDM phases over a wide range of energy scales. We also discuss the experimental relevance of our findings for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  7. Full-field inspection of three-dimensional structures using steady-state acoustic wavenumber spectroscopy

    NASA Astrophysics Data System (ADS)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-02-01

    Inspection of and around joints, beams, and other three-dimensional structures is integral to practical nondestructive evaluation of large structures. Non-contact, scanning laser ultrasound techniques offer an automated means of physically accessing these regions. However, to realize the benefits of laser-scanning techniques, simultaneous inspection of multiple surfaces at different orientations to the scanner must not significantly degrade the signal level nor diminish the ability to distinguish defects from healthy geometric features. In this study, we evaluated the implementation of acoustic wavenumber spectroscopy for inspecting metal joints and crossbeams from interior angles. With this technique, we used a single-tone, steady-state, ultrasonic excitation to excite the joints via a single transducer attached to one surface. We then measured the full-field velocity responses using a scanning Laser Doppler vibrometer and produced maps of local wavenumber estimates. With the high signal level associated with steady-state excitation, scans could be performed at surface orientations of up to 45 degrees. We applied camera perspective projection transformations to remove the distortion in the scans due to a known projection angle, leading to a significant improvement in the local estimates of wavenumber. Projection leads to asymmetrical distortion in the wavenumber in one direction, making it possible to estimate view angle even when neither it nor the nominal wavenumber is known. Since plate thinning produces a purely symmetric increase in wavenumber, it also possible to independently estimate the degree of hidden corrosion. With a two-surface joint, using the wavenumber estimate maps, we were able to automatically calculate the orthographic projection component of each angled surface in the scan area.

  8. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.

    PubMed

    Camargo, Manuel; Téllez, Gabriel

    2008-04-07

    The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.

  9. Creep crack-growth: A new path-independent T sub o and computational studies

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1981-01-01

    Two path independent integral parameters which show some degree of promise as fracture criteria are the C* and delta T sub c integrals. The mathematical aspects of these parameters are reviewed. This is accomplished by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects and large deformations. Two principal conclusions are that delta T sub c is a valid crack tip parameter during nonsteady as well as steady state creep and that delta T sub c has an energy rate interpretation whereas C* does not. An efficient, small displacement, infinitestimal strain, displacement based finite element model is developed for general elastic/plastic material behavior. For the numerical studies, this model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations.

  10. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, M.; Samolov, A.; Popovic, S.

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowingmore » microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.« less

  11. The NATA code: Theory and analysis, volume 1. [user manuals (computer programming) - gas dynamics, wind tunnels

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.

  12. Effect of inversion layer at iron pyrite surface on photovoltaic device

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  13. Verification and transfer of thermal pollution model. Volume 3: Verification of 3-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.

  14. A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers

    DTIC Science & Technology

    2016-08-24

    property for materials used in third- generation solar cells and photodetectors, among other optoelectronic devices.1−3 Unfortunately, techno- logical...detailed mechanism of iSF and to establish its relationship to chemical structure. Current literature on the mechanism of xSF is in general agreement...not been identified. We use this ring-breathing mode to generate a two- dimensional potential energy surface (PES) for the excited states along the

  15. On the theory of oscillating airfoils of finite span in subsonic compressible flow

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    The problem of oscillating lifting surface of finite span in subsonic compressible flow is reduced to an integral equation. The kernel of the integral equation is approximated by a simpler expression, on the basis of the assumption of sufficiently large aspect ratio. With this approximation the double integral occurring in the formulation of the problem is reduced to two single integrals, one of which is taken over the chord and the other over the span of the lifting surface. On the basis of this reduction the three-dimensional problem appears separated into two two-dimensional problems, one of them being effectively the problem of two-dimensional flow and the other being the problem of spanwise circulation distribution. Earlier results concerning the oscillating lifting surface of finite span in incompressible flow are contained in the present more general results.

  16. Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing.

    PubMed

    Kizling, Michal; Dzwonek, Maciej; Olszewski, Bartłomiej; Bącal, Paweł; Tymecki, Łukasz; Więckowska, Agnieszka; Stolarczyk, Krzysztof; Bilewicz, Renata

    2017-09-15

    Three - dimensional (3D) electrodes are successfully used to overcome the limitations of the low space - time yield and low normalized space velocity obtained in electrochemical processes with two - dimensional electrodes. In this study, we developed a three - dimensional reticulated vitreous carbon - gold (RVC-Au) sponge as a scaffold for enzymatic fuel cells (EFC). The structure of gold and the real electrode surface area can be controlled by the parameters of metal electrodeposition. In particular, a 3D RVC-Au sponge provides a large accessible surface area for immobilization of enzyme and electron mediators, moreover, effective mass diffusion can also take place through the uniform macro - porous scaffold. To efficiently bind the enzyme to the electrode and enhance electron transfer parameters the gold surface was modified with ultrasmall gold nanoparticles stabilized with glutathione. These quantum sized nanoparticles exhibit specific electronic properties and also expand the working surface of the electrode. Significantly, at the steady state of power generation, the EFC device with RVC-Au electrodes provided high volumetric power density of 1.18±0.14mWcm -3 (41.3±3.8µWcm -2 ) calculated based on the volume of electrode material with OCV 0.741±0.021V. These new 3D RVC-Au electrodes showed great promise for improving the power generation of EFC devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-09-01

    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  18. Folding mechanism of β-hairpin trpzip2: heterogeneity, transition state and folding pathways.

    PubMed

    Xiao, Yi; Chen, Changjun; He, Yi

    2009-06-22

    We review the studies on the folding mechanism of the beta-hairpin tryptophan zipper 2 (trpzip2) and present some additional computational results to refine the picture of folding heterogeneity and pathways. We show that trpzip2 can have a two-state or a multi-state folding pattern, depending on whether it folds within the native basin or through local state basins on the high-dimensional free energy surface; Trpzip2 can fold along different pathways according to the packing order of tryptophan pairs. We also point out some important problems related to the folding mechanism of trpzip2 that still need clarification, e.g., a wide distribution of the computed conformations for the transition state ensemble.

  19. Vibrational Mode-Specific Reaction of Methane on a Nickel Surface

    NASA Astrophysics Data System (ADS)

    Beck, Rainer D.; Maroni, Plinio; Papageorgopoulos, Dimitrios C.; Dang, Tung T.; Schmid, Mathieu P.; Rizzo, Thomas R.

    2003-10-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  20. Vibrational mode-specific reaction of methane on a nickel surface.

    PubMed

    Beck, Rainer D; Maroni, Plinio; Papageorgopoulos, Dimitrios C; Dang, Tung T; Schmid, Mathieu P; Rizzo, Thomas R

    2003-10-03

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  1. Growth of two-dimensional Ge crystal by annealing of heteroepitaxial Ag/Ge(111) under N2 ambient

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Ohta, Akio; Kurosawa, Masashi; Araidai, Masaaki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The growth of a two-dimensional crystal of Ge atoms on an atomically flat Ag(111) surface has been demonstrated by the thermal annealing of a heteroepitaxial Ag/Ge structure in N2 ambient at atmospheric pressure. The surface morphology and chemical bonding features of heteroepitaxial Ag(111) grown on wet-cleaned Ge(111) after annealing at different temperatures and for various times have been systematically investigated to control the surface segregation of Ge atoms and the planarization of the heteroepitaxial Ag(111) surface.

  2. Separation of Arylenevinylene Macrocycles with a Surface-Confined Two-Dimensional Covalent Organic Framework.

    PubMed

    Liu, Chunhua; Park, Eunsol; Jin, Yinghua; Liu, Jie; Yu, Yanxia; Zhang, Wei; Lei, Shengbin; Hu, Wenping

    2018-05-31

    A two-dimensional surface covalent organic framework, prepared by a surface-confined synthesis using 4,4'-azodianiline and benzene-1,3,5-tricarbaldehyde as the precursors, was used as a host network to effectively immobilize arylenevinylene macrocycles (AVMs). Thus AVMs could be separated from their linear polymer analogues, which are the common side-products in the cyclooligomerization process. Scanning tunneling microscopy investigations revealed efficient removal of linear polymers by a simple surface binding and solvent washing process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Vapor-liquid equilibrium and equation of state of two-dimensional fluids from a discrete perturbation theory

    NASA Astrophysics Data System (ADS)

    Trejos, Víctor M.; Santos, Andrés; Gámez, Francisco

    2018-05-01

    The interest in the description of the properties of fluids of restricted dimensionality is growing for theoretical and practical reasons. In this work, we have firstly developed an analytical expression for the Helmholtz free energy of the two-dimensional square-well fluid in the Barker-Henderson framework. This equation of state is based on an approximate analytical radial distribution function for d-dimensional hard-sphere fluids (1 ≤ d ≤ 3) and is validated against existing and new simulation results. The so-obtained equation of state is implemented in a discrete perturbation theory able to account for general potential shapes. The prototypical Lennard-Jones and Yukawa fluids are tested in its two-dimensional version against available and new simulation data with semiquantitative agreement.

  4. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole

    NASA Astrophysics Data System (ADS)

    Li, Shaohong L.; Truhlar, Donald G.

    2017-02-01

    Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet excited states of thioanisole (C6H5SCH3) are constructed in a diabatic representation based on electronic structure calculations including dynamic correlation. They cover all 42 internal degrees of freedom and a wide range of geometries including the Franck-Condon region and the reaction valley along the breaking S-CH3 bond with the full ranges of the torsion angles. The parameters in the PESs and couplings are fitted to the results of smooth diabatic electronic structure calculations including dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation theory method for the adiabatic state energies followed by diabatization by the fourfold way. The fit is accomplished by the anchor points reactive potential method with two reactive coordinates and 40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally modified version of the QuickFF package. The PESs and couplings are suitable for study of the topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular dynamics simulations of the photodissociation of the S-CH3 bond.

  5. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    PubMed

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  6. Two-dimensional wetting: the role of atomic steps on the nucleation of thin water films on BaF2(111) at ambient conditions.

    PubMed

    Cardellach, M; Verdaguer, A; Santiso, J; Fraxedas, J

    2010-06-21

    The interaction of water with freshly cleaved BaF(2)(111) surfaces at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes. The images strongly suggest a high surface diffusion of water molecules on the surface indicated by the accumulation of water at step edges forming two-dimensional bilayered structures. Steps running along the 110 crystallographic directions show a high degree of hydrophilicity, as evidenced by small step-film contact angles, while steps running along other directions exhibiting a higher degree of kinks surprisingly behave in a quite opposite way. Our results prove that morphological defects such as steps can be crucial in improving two-dimensional monolayer wetting and stabilization of multilayer grown on surfaces that show good lattice mismatch with hexagonal ice.

  7. Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice

    PubMed Central

    Leder, Martin; Grossert, Christopher; Sitta, Lukas; Genske, Maximilian; Rosch, Achim; Weitz, Martin

    2016-01-01

    To describe a mobile defect in polyacetylene chains, Su, Schrieffer and Heeger formulated a model assuming two degenerate energy configurations that are characterized by two different topological phases. An immediate consequence was the emergence of a soliton-type edge state located at the boundary between two regions of different configurations. Besides giving first insights in the electrical properties of polyacetylene materials, interest in this effect also stems from its close connection to states with fractional charge from relativistic field theory. Here, using a one-dimensional optical lattice for cold rubidium atoms with a spatially chirped amplitude, we experimentally realize an interface between two spatial regions of different topological order in an atomic physics system. We directly observe atoms confined in the edge state at the intersection by optical real-space imaging and characterize the state as well as the size of the associated energy gap. Our findings hold prospects for the spectroscopy of surface states in topological matter and for the quantum simulation of interacting Dirac systems. PMID:27767054

  8. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  9. Experimentally demonstrate the surface state and optical topological phase transition of one dimensional hyperbolic metamaterials in Otto and KR configuration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Chih Chung; Un, Leng-Wai; Yen, Ta-Jen

    2017-05-01

    One-dimension hyperbolic metamaterials (1DHMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and fixed incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, our results show that the surface states of 1DHMMs exist only when the thickness ratio is larger than 0.15. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.

  10. Interdimensional effects in systems with quasirelativistic fermions

    NASA Astrophysics Data System (ADS)

    Zulkoskey, A. C.; Dick, R.; Tanaka, K.

    2017-07-01

    We examine the Green function and the density of states for fermions moving in three-dimensional Dirac materials with interfaces which affect the propagation properties of particles. Motivation for our research comes from interest in materials that exhibit quasirelativistic dispersion relations. By modifying Dirac-type contributions to the Hamiltonian in an interface we are able to calculate the Green function and the density of states. The density of states inside the interface exhibits interpolating behavior between two and three dimensions, with two-dimensional behavior at high energies and three-dimensional behavior at low energies, provided that the shift in the mass parameter in the interface is small. We also discuss the impact of the interpolating density of states on optical absorption in Dirac materials with a two-dimensional substructure.

  11. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  12. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  13. High resolution approach to the native state ensemble kinetics and thermodynamics.

    PubMed

    Wu, Sangwook; Zhuravlev, Pavel I; Papoian, Garegin A

    2008-12-15

    Many biologically interesting functions such as allosteric switching or protein-ligand binding are determined by the kinetics and mechanisms of transitions between various conformational substates of the native basin of globular proteins. To advance our understanding of these processes, we constructed a two-dimensional free energy surface (FES) of the native basin of a small globular protein, Trp-cage. The corresponding order parameters were defined using two native substructures of Trp-cage. These calculations were based on extensive explicit water all-atom molecular dynamics simulations. Using the obtained two-dimensional FES, we studied the transition kinetics between two Trp-cage conformations, finding that switching process shows a borderline behavior between diffusive and weakly-activated dynamics. The transition is well-characterized kinetically as a biexponential process. We also introduced a new one-dimensional reaction coordinate for the conformational transition, finding reasonable qualitative agreement with the two-dimensional kinetics results. We investigated the distribution of all the 38 native nuclear magnetic resonance structures on the obtained FES, analyzing interactions that stabilize specific low-energy conformations. Finally, we constructed a FES for the same system but with simple dielectric model of water instead of explicit water, finding that the results were surprisingly similar in a small region centered on the native conformations. The dissimilarities between the explicit and implicit model on the larger-scale point to the important role of water in mediating interactions between amino acid residues.

  14. A unified theory for laminated plates

    NASA Astrophysics Data System (ADS)

    Guiamatsia Tafeuvoukeng, Irene

    A literature survey on plate and beam theories show how the advent of the finite element method and the variational method circa 1940 have been a great stimulant for the research in this field. The initial thin plate formulation has been incrementally expanded to treat the isotropic thick plate, the anisotropic single layer, and then laminated plates. It appears however that current formulations still fall into one of two categories: (1) The formulation is tailored for a specific laminate and/or loading case; (2) or the formulation is too complicated to be of practical relevance. In this work a new unifying approach to laminated plate formulation is presented. All laminated plates, including sandwich panels, subjected to any surface load and with any boundary conditions are treated within a single model. In addition, the fundamental behavior of the plate as a two-dimensional structural element is explained. The novel idea is the introduction of fundamental state solutions, which are analytical far field stress and strain solutions of the laminated plate subjected to a set of hierarchical primary loads, the fundamental loads. These loads are carefully selected to form a basis of the load space, and corresponding solutions are superposed to obtain extremely accurate predictions of the three dimensional solution. six,y,z =aklx,y sikl z where i = 1,..., 6; 1=1,...,l max is a substate of the kth fundamental state k=1,2,3,... Typically, a fundamental state solution is expressed as a through-thickness function (z), while the amplitudes of each fundamental load are found from two dimensional finite element solution as a function of in-plane coordinates (x,y). Three major contributions are produced in this work: (1) A complete calibration of the plate as a two-dimensional structure is performed with pure bending and constant shear fundamental states. (2) There are four independent ways to apply a constant shear resultant on a plate, as opposed to one for a beam. This makes it impossible to define a unique 2 x 2 transverse shear stiffness matrix. Therefore the traditional problem of the shear correction factor loses all relevance. It is however shown that an explicit transverse constitutive relation can be obtained for isotropic-layered laminates or single-layers. (3) Higher accuracy, three-dimensional solutions are obtained using a two-dimensional finite element model with a complexity level (degrees of freedom) similar to the Reissner-Mindlin plate. The proof of concept is realized using Pagano solution for rectangular plates under sinusoidal load, for a sandwich panel. Additional comparisons are also performed for four and six-layer symmetric and antisymmetric laminates, between the new plate theory results and full three-dimensional finite element solutions.

  15. Surface defects and chiral algebras

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng

    2017-05-01

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  16. Surface-state-dominated transport in crystals of the topological crystalline insulator In-doped Pb 1-xSn xTe

    DOE PAGES

    Zhong, Ruidan; He, Xugang; Schneeloch, J. A.; ...

    2015-05-29

    Three-dimensional topological insulators and topological crystalline insulators represent new quantum states of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states. Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to dominate the transport properties over a substantial temperature range. Here we report a series of indium-doped Pb 1-xSn xTe compounds that manifest huge bulk resistivities together with evidence consistent with the topological character of the surface states for x ≳ 0.35, based on thickness-dependent transport studies and magnetoresistance measurements. For these bulk-insulating materials, the surface states determinemore » the resistivity for temperatures beyond 20 K.« less

  17. Directional ocean wave measurements in a coastal setting using a focused array imaging radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frasier, S.J.; Liu, Y.; Moller, D.

    1995-03-01

    A unique focused array imaging Doppler radar was used to measure directional spectra of ocean surface waves in a nearshore experiment performed on the North Carolina Outer Banks. Radar images of the ocean surface`s Doppler velocity were used to generate two dimensional spectra of the radial component of the ocean surface velocity field. These are compared to simultaneous in-situ measurements made by a nearby array of submerged pressure sensors. Analysis of the resulting two-dimensional spectra include comparisons of dominant wave lengths, wave directions, and wave energy accounting for relative differences in water depth at the measurement locations. Limited estimates ofmore » the two-dimensional surface displacement spectrum are derived from the radar data. The radar measurements are analogous to those of interferometric synthetic aperture radars (INSAR), and the equivalent INSAR parameters are shown. The agreement between the remote and in-situ measurements suggests that an imaging Doppler radar is effective for these wave measurements at near grazing incidence angles.« less

  18. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  19. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.

    PubMed

    Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E

    2013-11-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.

  20. Effects of Roughness and Inertia on Precursors to Frictional Sliding

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Salerno, K. Michael

    2012-02-01

    Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)

  1. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  2. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE PAGES

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...

    2016-12-16

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  3. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope.

    PubMed

    Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2015-05-01

    Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.

  4. Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: A study by conventional and DNP-enhanced 29Si solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran; ...

    2016-12-23

    Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less

  5. Concentration and saturation effects of tethered polymer chains on adsorbing surfaces

    NASA Astrophysics Data System (ADS)

    Descas, Radu; Sommer, Jens-Uwe; Blumen, Alexander

    2006-12-01

    We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.

  6. Three-dimensional spatially curved local Bessel beams generated by metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Wu, Jiawen; Cheng, Bo; Li, Hongliang

    2018-03-01

    We propose a reflective metasurface based on an artificial admittance modulation surface to generate three-dimensional spatially curved beams. The phase acquisition utilized to modulate this sinusoidally varying surface admittance combines the enveloping theory of differential geometry and the method for producing two-dimensional Bessel beams. The metasurface is fabricated, and the comparison between the full-wave simulations and experimental results demonstrates good performance of three-dimensional spatially curved beams generated by the metasurface.

  7. Effects of reactant rotation on the dynamics of the OH + CH4 → H2O + CH3 reaction: a six-dimensional study.

    PubMed

    Song, Hongwei; Li, Jun; Jiang, Bin; Yang, Minghui; Lu, Yunpeng; Guo, Hua

    2014-02-28

    The dynamics of the hydrogen abstraction reaction between methane and hydroxyl radical is investigated using an initial state selected time-dependent wave packet method within a six-dimensional model. The ab initio calibrated global potential energy surface of Espinosa-García and Corchado was used. Integral cross sections from several low-lying rotational states of both reactants have been obtained using the centrifugal sudden and J-shifting approximations. On the empirical potential energy surface, the rotational excitation of methane has little effect on the reaction cross section, but excited rotational states of OH inhibit the reactivity slightly. These results are rationalized with the newly proposed sudden vector projection model.

  8. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3.

    PubMed

    Kim, Dohun; Syers, Paul; Butch, Nicholas P; Paglione, Johnpierre; Fuhrer, Michael S

    2014-01-01

    We measure gate-tuned thermoelectric power of mechanically exfoliated Bi2Se3 thin films in the topological insulator regime. The sign of the thermoelectric power changes across the charge neutrality point as the majority carrier type switches from electron to hole, consistent with the ambipolar electric field effect observed in conductivity and Hall effect measurements. Near the charge neutrality point and at low temperatures, the gate-dependent thermoelectric power follows the semiclassical Mott relation using the expected surface state density of states but is larger than expected at high electron doping, possibly reflecting a large density of states in the bulk gap. The thermoelectric power factor shows significant enhancement near the electron-hole puddle carrier density ∼0.5 × 10(12) cm(-2) per surface at all temperatures. Together with the expected reduction of lattice thermal conductivity in low-dimensional structures, the results demonstrate that nanostructuring and Fermi level tuning of three-dimensional topological insulators can be promising routes to realize efficient thermoelectric devices.

  9. Model of a Negatively Curved Two-Dimensional Space.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1995-01-01

    Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)

  10. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control.

    PubMed

    Jiang, Tao; Vail, Owen A; Jiang, Zhigang; Zuo, Xiaobing; Conticello, Vincent P

    2015-06-24

    Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.

  11. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  12. A ray tracing model for leaf bidirectional scattering studies

    NASA Technical Reports Server (NTRS)

    Brakke, T. W.; Smith, J. A.

    1987-01-01

    A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.

  13. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  14. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3.

    PubMed

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-14

    We report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2 H 3 . The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2 H 3 . All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from that of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2 H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. In addition, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2 H 3 without the requirement of explicit wavefunctions.

  15. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE PAGES

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-12

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less

  17. Highly excited electronic image states of metallic nanorings

    PubMed Central

    Fey, Christian; Jabusch, Henrik; Knörzer, Johannes; Schmelcher, Peter

    2017-01-01

    We study electronic image states around a metallic nanoring and show that the interplay between the attractive polarization force and a repulsive centrifugal force gives rise to Rydberg-like image states trapped several nanometers away from the surface. The nanoring is modeled as a perfectly conducting isolated torus whose classical electrostatic image potential is derived analytically. The image states are computed via a two-dimensional finite-difference scheme as solutions of the effective Schrödinger equation describing the outer electron subject to this image potential. These findings demonstrate not only the existence of detached image states around nanorings but allow us also to provide general criteria on the ring geometry, i.e., the aspect ratio of the torus, that need to be fulfilled in order to support such states. PMID:28527466

  18. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  19. Effect of a skin-deep surface zone on the formation of a two-dimensional electron gas at a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Olszowska, Natalia; Lis, Jakub; Ciochon, Piotr; Walczak, Łukasz; Michel, Enrique G.; Kolodziej, Jacek J.

    2016-09-01

    Two-dimensional electron gases (2DEGs) at surfaces and interfaces of semiconductors are described straightforwardly with a one-dimensional (1D) self-consistent Poisson-Schrödinger scheme. However, their band energies have not been modeled correctly in this way. Using angle-resolved photoelectron spectroscopy we study the band structures of 2DEGs formed at sulfur-passivated surfaces of InAs(001) as a model system. Electronic properties of these surfaces are tuned by changing the S coverage, while keeping a high-quality interface, free of defects and with a constant doping density. In contrast to earlier studies we show that the Poisson-Schrödinger scheme predicts the 2DEG band energies correctly but it is indispensable to take into account the existence of the physical surface. The surface substantially influences the band energies beyond simple electrostatics, by setting nontrivial boundary conditions for 2DEG wave functions.

  20. Failure prediction of thin beryllium sheets used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.

    1991-01-01

    The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure criterion, the load is increased and the process is repeated. Failure results for the plate-plug and clamped plate tests are accurate to within 2 percent.

  1. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  2. A surface code quantum computer in silicon

    PubMed Central

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  3. A surface code quantum computer in silicon.

    PubMed

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  4. Two-dimensional heat flow analysis applied to heat sterilization of ponderosa pine and Douglas-fir square timbers

    Treesearch

    William T. Simpson

    2004-01-01

    Equations for a two-dimensional finite difference heat flow analysis were developed and applied to ponderosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating air, and thus surface temperatures failed to attain...

  5. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska

    USGS Publications Warehouse

    Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.

    2007-01-01

    Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.

  6. Performance evaluation of a conformal thermal monitoring sheet (TMS) sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments

    PubMed Central

    Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.

    2009-01-01

    Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416

  7. Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations

    NASA Astrophysics Data System (ADS)

    Durán Moro, Marina; Brankart, Jean-Michel; Brasseur, Pierre; Verron, Jacques

    2017-07-01

    Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below the surface.

  8. The Silent Canyon caldera complex: a three-dimensional model based on drill-hole stratigraphy and gravity inversion

    USGS Publications Warehouse

    McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.

    1999-01-01

    The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.

  9. Quantum anomalous Hall Majorana platform

    NASA Astrophysics Data System (ADS)

    Zeng, Yongxin; Lei, Chao; Chaudhary, Gaurav; MacDonald, Allan H.

    2018-02-01

    We show that quasi-one-dimensional quantum wires can be written onto the surface of magnetic topological insulator (MTI) thin films by gate arrays. When the MTI is in a quantum anomalous Hall state, MTI/superconductor quantum wires have especially broad stability regions for both topological and nontopological states, facilitating creation and manipulation of Majorana particles on the MTI surface.

  10. Current distribution in a three-dimensional IC analyzed by a perturbation method. Part 1: A simple steady state theory

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1987-01-01

    The steady state current distribution in a three dimensional integrated circuit is presented. A device physics approach, based on a perturbation method rather than an equivalent lumped circuit approach, is used. The perturbation method allows the various currents to be expressed in terms of elementary solutions which are solutions to very simple boundary value problems. A Simple Steady State Theory is the subtitle because the most obvious limitation of the present version of the analysis is that all depletion region boundary surfaces are treated as equipotential surfaces. This may be an adequate approximation in some applications but it is an obvious weakness in the theory when applied to latched states. Examples that illustrate the use of these analytical methods are not given because they will be presented in detail in the future.

  11. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  12. Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan Federick; Chelliah, Harsha Kumar

    2017-01-01

    For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.

  13. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.

    PubMed

    Guo, L-X; Li, J; Zeng, H

    2009-11-01

    We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.

  14. A Method for Partitioning Surface and Subsurface Flow Using Rainfall Simulaton and Two-Dimensional Surface Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Paige, G. B.; Miller, S. N.; Carr, B. J.; Holbrook, W. S.

    2014-12-01

    In semi-arid rangeland environments understanding how surface and subsurface flow processes and their interactions are influenced by watershed and rainfall characteristics is critical. However, it is difficult to resolve the temporal variations between mechanisms controlling these processes and challenging to obtain field measurements that document their interactions. Better insight into how these complex systems respond hydrologically is necessary in order to refine hydrologic models and decision support tools. We are conducting field studies integrating high resolution, two-dimensional surface electrical resistivity imaging (ERI) with variable intensity rainfall simulation, to quantify real-time partitioning of rainfall into surface and subsurface response. These studies are being conducted at the hillslope scale on long-term runoff plots on four different ecological sites in the Upper Crow Creek Watershed in southeastern Wyoming. Variable intensity rainfall rates were applied using the Walnut Gulch Rainfall Simulator in which intensities were increased incrementally from 49 to 180 mm hr-1 and steady-state runoff rates for each intensity were measured. Two 13.5 m electrode arrays at 0.5 m spacing were positioned on the surface perpendicular to each plot and potentials were measured at given time intervals prior to, during and following simulations using a dipole-dipole array configuration. The configuration allows for a 2.47 m depth of investigation in which magnitude and direction of subsurface flux can be determined. We used the calculated steady state infiltration rates to quantify the variability in the partial area runoff response on the ecological sites. Coupling this information with time-lapse difference inversions of ERI data, we are able to track areas of increasing and decreasing resistivity in the subsurface related to localized areas of infiltration during and following rainfall events. We anticipate implementing this method across a variety of ecological sites in the Upper Crow Creek in order to characterize the variable hydrologic response of this complex rangeland watershed. This information is being used to refine current physically based hydrologic models and watershed assessment tools.

  15. Quarter-BPS states in orbifold sigma models with ADE singularities

    NASA Astrophysics Data System (ADS)

    Wong, Kenny

    2017-06-01

    We study the elliptic genera of two-dimensional orbifold CFTs, where the orbifolding procedure introduces du Val surface singularities on the target space. The N=4 characterdecompositionsoftheellipticgenuscontributionsfromthetwistedsectors at the singularities obey a consistent scaling property, and contain information about the arrangement of exceptional rational curves in the resolution. We also discuss how these twisted sector elliptic genera are related to twining genera and Hodge elliptic genera for sigma models with K3 target space.

  16. Surface Acoustic Wave Study of Exciton Condensation in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Pollanen, J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    In bilayer two-dimensional electron systems (2DES) in GaAs a strongly correlated many-electron state forms at low temperature and high magnetic field when the total electron density nT becomes equal to the degeneracy of a single spin split Landau level. This state corresponds to a total filling factor νT = 1 and can be described in terms of pseudospin ferromagnetism, or equivalently, Bose condensation of bilayer excitons. We have simultaneously measured magneto-transport and the propagation of pulsed surface acoustic waves (SAWs) at a frequency of 747 MHz to explore the phase transition between two independent layers at νT = 1 / 2 + 1 / 2 and the correlated state at νT = 1 in a high quality double quantum well device. We tune through this transition by varying the total electron density in our device with front and backside electrostatic gates. We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028).

  17. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    NASA Astrophysics Data System (ADS)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  18. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  19. Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2012-02-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.

  20. Interactive Mechanisms of Sliding-Surface Bearings.

    DTIC Science & Technology

    1983-08-01

    lower, upper) bearing surface V Three-dimensional gradient operator ix Two-dimensional surface gradient operator ( ),. Pertaining to the bearing surface...thermal gradients . The tilt-pad feature required the pad inclination to be determined by the condition of moment equilibrium about the pivot point. This...into the computation of pressure and shear in a fluid film. Incipience Point of Film Rupture On page 93 of Appendix A, pressure gradient and pressure of

  1. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1993-01-01

    The problem of recognizing and positioning of objects in three-dimensional space is important for robotics and navigation applications. In recent years, digital range data, also referred to as range images or depth maps, have been available for the analysis of three-dimensional objects owing to the development of several active range finding techniques. The distinct advantage of range images is the explicitness of the surface information available. Many industrial and navigational robotics tasks will be more easily accomplished if such explicit information can be efficiently interpreted. In this research, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely characterized by a set of these two-dimensional curves, thus allowing discrimination from the others. Before the recognition process can be implemented, the range data have to undergo a set of pre-processing operations, thereby making it more presentable to classification algorithms. One such pre-processing step is to study the effect of median filtering on raw range images. Utilizing a variety of surface curvature techniques, reliable sets of image data that approximate the shape of a quadric surface are determined. Since the initial orientation of the surfaces is unknown, a new technique is developed wherein all the rotation parameters are determined and subsequently eliminated. This approach enables us to position the quadric surfaces in a desired coordinate system. Experiments were conducted on raw range images of spheres, cylinders, and cones. Experiments were also performed on simulated data for surfaces such as hyperboloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated data yielded excellent results. Our approach is found to be more accurate and computationally inexpensive as compared to traditional approaches, such as the three-dimensional discriminant approach which involves evaluation of the rank of a matrix. Finally, we have proposed one other new approach, which involves the formulation of a mapping between the explicit and implicit forms of representing quadric surfaces. This approach, when fully realized, will yield a three-dimensional discriminant, which will recognize quadric surfaces based upon their component surfaces patches. This approach is faster than prior approaches and at the same time is invariant to pose and orientation of the surfaces in three-dimensional space.

  2. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Astrophysics Data System (ADS)

    Alvertos, Nicolas; Dcunha, Ivan

    1993-03-01

    The problem of recognizing and positioning of objects in three-dimensional space is important for robotics and navigation applications. In recent years, digital range data, also referred to as range images or depth maps, have been available for the analysis of three-dimensional objects owing to the development of several active range finding techniques. The distinct advantage of range images is the explicitness of the surface information available. Many industrial and navigational robotics tasks will be more easily accomplished if such explicit information can be efficiently interpreted. In this research, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely characterized by a set of these two-dimensional curves, thus allowing discrimination from the others. Before the recognition process can be implemented, the range data have to undergo a set of pre-processing operations, thereby making it more presentable to classification algorithms. One such pre-processing step is to study the effect of median filtering on raw range images. Utilizing a variety of surface curvature techniques, reliable sets of image data that approximate the shape of a quadric surface are determined. Since the initial orientation of the surfaces is unknown, a new technique is developed wherein all the rotation parameters are determined and subsequently eliminated. This approach enables us to position the quadric surfaces in a desired coordinate system. Experiments were conducted on raw range images of spheres, cylinders, and cones. Experiments were also performed on simulated data for surfaces such as hyperboloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated data yielded excellent results. Our approach is found to be more accurate and computationally inexpensive as compared to traditional approaches, such as the three-dimensional discriminant approach which involves evaluation of the rank of a matrix.

  3. Unveiling the mechanisms of dressed-photon-phonon etching based on hierarchical surface roughness measure

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Yatsui, Takashi; Nomura, Wataru; Kawazoe, Tadashi; Aida, Masaki; Ohtsu, Motoichi

    2013-02-01

    Dressed-photon-phonon (DPP) etching is a disruptive technology in planarizing material surfaces because it completely eliminates mechanical contact processes. However, adequate metrics for evaluating the surface roughness and the underlying physical mechanisms are still not well understood. Here, we propose a two-dimensional hierarchical surface roughness measure, inspired by the Allan variance, that represents the effectiveness of DPP etching while conserving the original two-dimensional surface topology. Also, we build a simple physical model of DPP etching that agrees well with the experimental observations, which clearly shows the involvement of the intrinsic hierarchical properties of dressed photons, or optical near-fields, in the surface processing.

  4. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  5. Color postprocessing for 3-dimensional finite element mesh quality evaluation and evolving graphical workstation

    NASA Technical Reports Server (NTRS)

    Panthaki, Malcolm J.

    1987-01-01

    Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.

  6. Internal phase transition induced by external forces in Finsler geometric model for membranes

    NASA Astrophysics Data System (ADS)

    Koibuchi, Hiroshi; Shobukhov, Andrey

    2016-10-01

    In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.

  7. Electronic characteristics of Tl 2Ba 2CuO 6. Fermi surface, positron wavefunction, electric field gradients, and transport parameters

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Pickett, Warren E.

    1992-12-01

    A number of properties identifiable from the electronic bands and one-electron wavefunctions have been obtained from a well converged self-consistent calculation of the electronic structure of Tl 2Ba 2CuO 6. The Fermi surface is found to consist of two sheets: a two-dimensional barrel surface arising from the CuO 2 layer, and a three-dimensional spheroid arising from states with strong TlO character but actually extending throughout all layers of the structure. This feature has important implications for the transport properties, and especially for the degree of anisotropy. We compare with transport data on single crystals of Tl 2Ba 2CuO 6. The calculated Fermi surface of the spheroid is found to be in substantial agreement with the measured period of magnetization oscillations in the de Haas-van Alphen effect by Kido et al. The positron wavefunction engulfs the CuO 2 layers, making this material a promising case for mapping out with positron 2D-ACAR the layer-derived Fermi surface that is believed to be central to high-temperature superconductivity. The electric field gradients are predicted and compared with calculations for other cuprates. The Hall coefficient RHxyz (carrier motion on the a-b plane) is found to be positive and within a factor of 1.5 of that measured on ceramic samples, while the other non-vanishing component of the Hall tensor is predicted to be negative.

  8. Ocean-driven heating of Europa's icy shell at low latitudes

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.

    2014-01-01

    The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.

  9. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  10. Effects of electric field on the properties of 2D topological insulators

    NASA Astrophysics Data System (ADS)

    Salmankurt, Bahadır; Gürel, Hikmet Hakan

    2018-02-01

    Two-Dimensional (2D) topological insulators (TIs), are new and promising materials for the applications such as spintronics and optoelectronics due to their unique surface states that are topologically protected and thus robust against nonmagnetic impurities and disorders. The existence of these remarkable electronic states in TIs can be attributed to the large spin-orbit (SO) coupling. The researchers have paid attention to Bi based two-dimensional materials due to high SO coupling effect. Among them, GaBi, InBi, GaBi3 and InBi3 are good candidates for 2D Tls materials. Although there are a lot of studies in these 2D Tls, a detailed understanding of the effect of E-Field is lacking. Applying external E-field can change the electronic properties, which may enable to realize the change on the properties of the materials. We have performed theoretical study of GaBi, InBi, GaBi3 and InBi3 to investigate the effect of E-field to explore band structure, charge distribution and geometries.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran

    Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less

  12. Investigation of two-dimensional wedge exhaust nozzles for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.; Petit, J. E.

    1975-01-01

    Two-dimensional wedge nozzle performance characteristics were investigated in a series of wind-tunnel tests. An isolated single-engine/nozzle model was used to study the effects of internal expansion area ratio, aftbody cowl boattail angle, and wedge length. An integrated twin-engine/nozzle model, tested with and without empenage surfaces, included cruise, acceleration, thrust vectoring and thrust reversing nozzle operating modes. Results indicate that the thrust-minus-aftbody drag performance of the twin two-dimensional nozzle integration is significantly higher, for speeds greater than Mach 0.8, than the performance achieved with twin axisymmetric nozzle installations. Significant jet-induced lift was obtained on an aft-mounted lifting surface using a cambered wedge center body to vector thrust. The thrust reversing capabilities of reverser panels installed on the two-dimensional wedge center body were very effective for static or in-flight operation.

  13. Nonplanar wing load-line and slender wing theory

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1977-01-01

    Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.

  14. A three-dimensional kinematic model for the dissolution of crystals

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1989-06-01

    The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.

  15. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.

    PubMed

    Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V

    2012-01-01

    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.

  16. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp

    PubMed Central

    Bouillard, J.-S; Vilain, S.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.

    2012-01-01

    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. PMID:23170197

  17. Analysis of the morphology, stability, and folding pathways of ring polymers with supramolecular topological constraints using molecular simulation and nonlinear manifold learning

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Ferguson, Andrew

    Ring polymers offer a wide range of natural and engineered functions and applications, including as circular bacterial DNA, crown ethers for cation chelation, and ``molecular machines'' such as mechanical nanoswitches. The morphology and dynamics of ring polymers are governed by the chemistry and degree of polymerization of the ring, and intramolecular and supramolecular topological constraints such as knots or mechanically-interlocked rings. We perform molecular dynamics simulations of polyethylene ring polymers as a function of degree of polymerization and in different topological states, including a knotted state, catenane state (two interlocked rings), and borromean state (three interlocked rings). Applying nonlinear manifold learning to our all-atom simulation trajectories, we extract low-dimensional free energy surfaces governing the accessible conformational states and their relative thermodynamic stability. The free energy surfaces reveal how degree of polymerization and topological constraints affect the thermally accessible conformations, chiral symmetry breaking, and folding and collapse pathways of the rings, and present a means to rationally engineer ring size and topology to preferentially stabilize particular conformational states.

  18. Spin Bose-metal phase in a spin- (1)/(2) model with ring exchange on a two-leg triangular strip

    NASA Astrophysics Data System (ADS)

    Sheng, D. N.; Motrunich, Olexei I.; Fisher, Matthew P. A.

    2009-05-01

    Recent experiments on triangular lattice organic Mott insulators have found evidence for a two-dimensional (2D) spin liquid in close proximity to the metal-insulator transition. A Gutzwiller wave function study of the triangular lattice Heisenberg model with a four-spin ring exchange term appropriate in this regime has found that the projected spinon Fermi sea state has a low variational energy. This wave function, together with a slave particle-gauge theory analysis, suggests that this putative spin liquid possesses spin correlations that are singular along surfaces in momentum space, i.e., “Bose surfaces.” Signatures of this state, which we will refer to as a “spin Bose metal” (SBM), are expected to manifest in quasi-one-dimensional (quasi-1D) ladder systems: the discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D gapless modes. Here, we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the Heisenberg plus ring model on a two-leg triangular strip (zigzag chain). Using density matrix renormalization group (DMRG) supplemented by variational wave functions and a bosonization analysis, we map out the full phase diagram. In the absence of ring exchange the model is equivalent to the J1-J2 Heisenberg chain, and we find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess singular wave vectors at particular “Bose points” (remnants of the 2D Bose surface) and allow us to identify this phase as the hoped for quasi-1D descendant of the triangular lattice SBM state. We use bosonization to derive a low-energy effective theory for the zigzag spin Bose metal and find three gapless modes and one Luttinger parameter controlling all power law correlations. Potential instabilities out of the zigzag SBM give rise to other interesting phases such as a period-3 valence bond solid or a period-4 chirality order, which we discover in the DMRG. Another interesting instability is into a spin Bose-metal phase with partial ferromagnetism (spin polarization of one spinon band), which we also find numerically using the DMRG.

  19. Duct flow nonuniformities: Effect of struts in SSME HGM II(+)

    NASA Technical Reports Server (NTRS)

    Burke, Roger

    1988-01-01

    A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.

  20. M2-brane surface operators and gauge theory dualities in Toda

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno

    2016-04-01

    We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  1. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2014-04-01

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  2. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitationmore » and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.« less

  3. Surface defects and chiral algebras

    DOE PAGES

    Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng

    2017-05-26

    Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less

  4. Surface defects and chiral algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng

    Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less

  5. Magneto-photoconductivity of three dimensional topological insulator bismuth telluride

    NASA Astrophysics Data System (ADS)

    Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2018-03-01

    Magnetic field dependence of the photocurrent in a 3D topological insulator is studied. Among the 3D topological insulators bismuth telluride has unique hexagonal warping and spin texture which has been studied by photoemission, scanning tunnelling microscopy and transport. Here, we report on low temperature magneto-photoconductivity, up to 7 T, of two metallic bismuth telluride topological insulator samples with 68 and 110 nm thicknesses excited by 2.33 eV photon energy along the magnetic field perpendicular to the sample plane. At 4 K, both samples exhibit negative magneto-photoconductance below 4 T, which is as a result of weak-antilocalization of Dirac fermions similar to the previous observations in electrical transport. However the thinner sample shows positive magneto-photoconductance above 4 T. This can be attributed to the coupling of surface states. On the other hand, the thicker sample shows no positive magneto-photoconductance up to 7 T since there is only one surface state at play. By fitting the magneto-photoconductivity data of the thicker sample to the localization formula, we obtain weak antilocalization behaviour at 4, 10, and 20 K, as expected; however, weak localization behaviour at 30 K, which is a sign of surface states masked by bulk states. Also, from the temperature dependence of phase coherence length bulk carrier-carrier interaction is identified separately from the surface states. Therefore, it is possible to distinguish surface states by magneto-photoconductivity at low temperature, even in metallic samples.

  6. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  7. Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3

    NASA Astrophysics Data System (ADS)

    Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.

    2016-12-01

    A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ~0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.

  8. Spin texture induced by oxygen vacancies in strontium perovskite (001) surfaces: A theoretical comparison between SrTiO3 and SrHfO3

    NASA Astrophysics Data System (ADS)

    Garcia-Castro, A. C.; Vergniory, M. G.; Bousquet, E.; Romero, A. H.

    2016-01-01

    The electronic structure of SrTiO3 and SrHfO3 (001) surfaces with oxygen vacancies is studied by means of first-principles calculations. We reveal how oxygen vacancies within the first atomic layer of the SrTiO3 surface (i) induce a large antiferrodistortive motion of the oxygen octahedra at the surface, (ii) drive localized magnetic moments on the Ti 3 d orbitals close to the vacancies, and (iii) form a two-dimensional electron gas localized within the first layers. The analysis of the spin texture of this system exhibits a splitting of the energy bands according to the Zeeman interaction, lowering of the Ti 3 dx y level in comparison with dx z and dy z, and also an in-plane precession of the spins. No Rashba-like splitting for the ground state or for the ab initio molecular dynamics trajectory at 400 K is recognized as suggested recently by A. F. Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Instead, a sizable Rashba-like splitting is observed when the Ti atom is replaced by a heavier Hf atom with a much larger spin-orbit interaction. However, we observe the disappearance of the magnetism and the surface two-dimensional electron gas when full structural optimization of the SrHfO3 surface is performed. Our results uncover the sensitive interplay of spin-orbit coupling, atomic relaxations, and magnetism when tuning these Sr-based perovskites.

  9. Regional Detection of Decoupled Explosions, Yield Estimation from Surface Waves, Two-Dimensional Source Effects, Three-Dimensional Earthquake Modeling and Automated Magnitude Measures

    DTIC Science & Technology

    1980-07-01

    41 3.2 EXPERIMENTAL DETERMINATION OF THE DEPENDENCE OF RAYLEIGH WAVE AMPLITUDE ON PROPERTIES OF THE SOURCE MATERIAL ...Surface Wave Observations ...... ................ 48 3.3.3 Surface Wave Dependence on Source Material Properties ..... ................ .. 51 SYSTEMS...with various aspects of the problem of estimating yield from single station recordings of surface waves. The material in these four summaries has been

  10. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  11. Parity and cobordism of free knots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manturov, Vassily O

    2012-02-28

    A simple invariant is constructed which obstructs a free knot to be truncated. In particular, this invariant provides an obstruction to the truncatedness of curves immersed in two-dimensional surfaces. A curve on an oriented two-dimensional surface S{sub g} is referred to as truncated (null-cobordant) if there exists a three-dimensional manifold M with boundary S{sub g} and a smooth proper map of a two-disc to M such that the image of the boundary of the disc coincides with the curve. The problem of truncatedness for free knots is solved in this paper using the notion of parity recently introduced by themore » author. Bibliography: 12 titles.« less

  12. Random packing of regular polygons and star polygons on a flat two-dimensional surface.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2014-08-01

    Random packing of unoriented regular polygons and star polygons on a two-dimensional flat continuous surface is studied numerically using random sequential adsorption algorithm. Obtained results are analyzed to determine the saturated random packing ratio as well as its density autocorrelation function. Additionally, the kinetics of packing growth and available surface function are measured. In general, stars give lower packing ratios than polygons, but when the number of vertexes is large enough, both shapes approach disks and, therefore, properties of their packing reproduce already known results for disks.

  13. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  14. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    PubMed

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  15. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface

    PubMed Central

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states. PMID:26046669

  16. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V

    2017-07-26

    We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.

  17. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less

  18. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  19. Theoretical predictions of vibration-rotation-tunneling dynamics of the weakly bound trimer (H 2O) 2HCl

    NASA Astrophysics Data System (ADS)

    Struniewicz, Cezary; Korona, Tatiana; Moszynski, Robert; Milet, Anne

    2001-08-01

    In this Letter we report a theoretical study of the vibration-rotation-tunneling (VRT) states of the (H 2O) 2HCl trimer. Five degrees of freedom are considered: two angles corresponding to the torsional (flipping) motions of the free, non-hydrogen-bonded, hydrogen atoms in the complex, and three angles describing the overall rotation of the trimer in the space. A two-dimensional potential energy surface is generated ab initio by symmetry-adapted perturbation theory (SAPT). Tunneling splittings, frequencies of the intermolecular vibrations, and vibrational line strengths of spectroscopic transitions are predicted.

  20. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, William; Wong, Gabriel

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  2. DFS Dive-control Brakes for Gliders and Airplanes ; And, Analytical Study of the Drag of the DFS Dive-control Brake

    NASA Technical Reports Server (NTRS)

    Jacobs, Hans; Wanner, Adolf

    1940-01-01

    These two reports are surveys on the progress and present state of development of dive-control flaps for gliders and airplanes. The second article describes how on the basis of wind tunnel and free-flight tests, the drag increase on brake flaps of the type DFS, can be predicted. Pressure records confirm a two-dimensional load distribution along the brake-flap surface Aerodynamically, the location of the brake flaps along the span is of importance for reasons of avoidance of vibration and oscillation phenomena on control and tail surfaces; statically, because of the magnitude of the frontal drag in diving with respect to the bending moments, which may become decisive for the dimensions of the wing attachment and for the wing covering.

  3. Photodissociation of the CH3O and CH3S radical molecules: An ab initio electronic structure study

    PubMed Central

    Bouallagui, A.; Zanchet, A.; Yazidi, O.; Jaïdane, N.; Bañares, L.; Senent, M.L.; García-Vela, A.

    2018-01-01

    The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X(X = O, S), taking place after the Ā(2A1) ← X̄(2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role on the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in the light of the results obtained. PMID:29143005

  4. Thermal distributions of first, second and third quantization

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-05-01

    We treat first quantized string theory as two-dimensional gravity plus matter. This allows us to compute the two-dimensional density of one string states by the method of Darwin and Fowler. One can then use second quantized methods to form a grand microcanonical ensemble in which one can compute the density of multistring states of arbitrary momentum and mass. It is argued that modelling an elementary particle as a d-1-dimensional object whose internal degrees of freedom are described by a massless d-dimensional gas yields a density of internal states given by σ d(m)∼m -aexp((bm) {2(d-1)}/{d}) . This indicates that these objects cannot be in thermal equilibrium at any temperature unless d⩽2; that is for a string or a particle. Finally, we discuss the application of the above ideas to four-dimensional gravity and introduce an ensemble of multiuniverse states parameterized by second quantized canonical momenta and particle number.

  5. Finite volume model for two-dimensional shallow environmental flow

    USGS Publications Warehouse

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  6. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  7. Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation.

    PubMed

    Morales-Salvador, Raul; Morales-García, Ángel; Viñes, Francesc; Illas, Francesc

    2018-06-13

    The performance of novel two-dimensional nitrides in carbon capture and storage (CCS) is analyzed for a broad range of pressures and temperatures. Employing an integrated theoretical framework where CO2 adsorption/desorption rates on the M2N (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) surfaces are derived from transition state theory and density functional theory based calculations, the present theoretical simulations consistently predict that, depending on the particular composition, CO2 can be strongly adsorbed and even activated at temperatures above 1000 K. For practical purposes, Ti2N, Zr2N, Hf2N, V2N, Nb2N, and Ta2N are predicted as the best suited materials for CO2 activation. Moreover, the estimated CO2 uptake of 2.32-7.96 mol CO2 kg-1 reinforces the potential of these materials for CO2 abatement.

  8. Superstructures at Te/Au(111) interface evolving upon increasing Te coverage

    NASA Astrophysics Data System (ADS)

    Guan, Jiaqi; Huang, Xiaochun; Xu, Xiaofeng; Zhang, Shuyuan; Jia, Xun; Zhu, Xuetao; Wang, Weihua; Guo, Jiandong

    2018-03-01

    By in-situ low temperature scanning tunneling microscopy, we systematically investigated the superstructure evolution at Te/Au(111) interface upon increasing Te coverage. Te atoms form one-dimensional √{ 3} R30∘ chains at ∼0.10 monolayer (ML) coverage. Two two-dimensional chiral superstructures, (√{ 111} ×√{ 111}) R 4 .7∘ and (3√{ 21} × 3√{ 21}) R 10 .9∘ , are selectively formed with the Te coverage below and above 1/3 ML, respectively. The two chiral superstructures can be converted to each other reversibly by adding Te atoms or moderately annealing. A honeycomb-like superstructure, decorated with adatoms that are distributed in quasi-one-dimensional chains, is observed by further increasing the Te coverage to 4/9 ML. At the Te/Au(111) interface, an interfacial state at -0.65 eV to -0.55 eV below the Fermi level is also resolved by scanning tunneling spectroscopy. The formation of these Te-induced high-order superstructures is accompanied by relaxation of gold atoms in the surface layer, indicating a strong Te-Au interaction. Our work demonstrates a reliable method to fabricate Te nanostructures on noble metals in a controlled way.

  9. Rough Interface Effects on N-S Proximity-Contact Systems

    NASA Astrophysics Data System (ADS)

    Nagato, Yasushi; Nagai, Katsuhiko

    2003-03-01

    We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic dx2-y2 superconductor and calculate the self-consistent pair potential and the density of states at the interface.

  10. Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet

    DOE PAGES

    Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...

    2016-10-15

    We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.

  11. Exact results for quench dynamics and defect production in a two-dimensional model.

    PubMed

    Sengupta, K; Sen, Diptiman; Mondal, Shreyoshi

    2008-02-22

    We show that for a d-dimensional model in which a quench with a rate tau(-1) takes the system across a (d-m)-dimensional critical surface, the defect density scales as n approximately 1/tau(mnu/(znu+1)), where nu and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d = 2 and m = nu = z = 1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model that can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.

  12. Novel circuit design for high-impedance and non-local electrical measurements of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio

    2018-02-01

    Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.

  13. Multi-dimensional quantum state sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tso, Raylin; Dai, Yuewei

    2018-03-01

    A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.

  14. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    NASA Astrophysics Data System (ADS)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  15. Arrays of individually controlled ions suitable for two-dimensional quantum simulations

    PubMed Central

    Mielenz, Manuel; Kalis, Henning; Wittemer, Matthias; Hakelberg, Frederick; Warring, Ulrich; Schmied, Roman; Blain, Matthew; Maunz, Peter; Moehring, David L.; Leibfried, Dietrich; Schaetz, Tobias

    2016-01-01

    A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Our work paves the way towards a quantum simulator of two-dimensional systems designed at will. PMID:27291425

  16. Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers

    NASA Astrophysics Data System (ADS)

    Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.

    2018-05-01

    We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.

  17. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon andmore » oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.« less

  18. Computer aided photographic engineering

    NASA Technical Reports Server (NTRS)

    Hixson, Jeffrey A.; Rieckhoff, Tom

    1988-01-01

    High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.

  19. Excitonic instability in optically pumped three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Balatsky, Alexander V.

    2018-02-01

    Recently it was suggested that transient excitonic instability can be realized in optically pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a transient excitonic condensate in optically pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by nonequilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a rich phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission, and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.

  20. GIXSGUI : a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhang

    GIXSGUIis a MATLAB toolbox that offers both a graphical user interface and script-based access to visualize and process grazing-incidence X-ray scattering data from nanostructures on surfaces and in thin films. It provides routine surface scattering data reduction methods such as geometric correction, one-dimensional intensity linecut, two-dimensional intensity reshapingetc. Three-dimensional indexing is also implemented to determine the space group and lattice parameters of buried organized nanoscopic structures in supported thin films.

  1. Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C; Braunecker, Wade A; Hurst, Katherine E

    A two-dimensional imine-based covalent organic framework (COF) was designed and synthesized such that phenyl and perfluorophenyl structural units can seamlessly alternate between layers of the framework. X-ray diffraction of the COF powders reveals a striking increase in crystallinity for the COF with self-complementary phenyl/perfluorophenyl interactions (FASt-COF). Whereas measured values of the Brunauer-Emmet-Teller (BET) surface areas for the nonfluorinated Base-COF and the COF employing hydrogen bonding were ~37% and 59%, respectively, of their theoretical Connolly surface areas, the BET value for FASt-COF achieves >90% of its theoretical value (~1700 m2/g). Transmission electron microscopy images also revealed unique micron-sized rodlike features inmore » FASt-COF that were not present in the other materials. The results highlight a promising approach for improving surface areas and long-range order in two-dimensional COFs.« less

  2. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  3. NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Rubinaccio, G.

    1996-12-31

    The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA,more » which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.« less

  4. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  5. TH-CD-207A-07: Prediction of High Dimensional State Subject to Respiratory Motion: A Manifold Learning Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit moremore » descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction reliability in such low dimensional manifold. The fixed-point iterative approach turns out to work well practically for the pre-image recovery. Our approach is particularly suitable to facilitate managing respiratory motion in image-guide radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  6. Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.

    PubMed

    Muzikant, A L; Henriquez, C S

    1998-04-01

    A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.

  7. Introducing sampling entropy in repository based adaptive umbrella sampling

    NASA Astrophysics Data System (ADS)

    Zheng, Han; Zhang, Yingkai

    2009-12-01

    Determining free energy surfaces along chosen reaction coordinates is a common and important task in simulating complex systems. Due to the complexity of energy landscapes and the existence of high barriers, one widely pursued objective to develop efficient simulation methods is to achieve uniform sampling among thermodynamic states of interest. In this work, we have demonstrated sampling entropy (SE) as an excellent indicator for uniform sampling as well as for the convergence of free energy simulations. By introducing SE and the concentration theorem into the biasing-potential-updating scheme, we have further improved the adaptivity, robustness, and applicability of our recently developed repository based adaptive umbrella sampling (RBAUS) approach [H. Zheng and Y. Zhang, J. Chem. Phys. 128, 204106 (2008)]. Besides simulations of one dimensional free energy profiles for various systems, the generality and efficiency of this new RBAUS-SE approach have been further demonstrated by determining two dimensional free energy surfaces for the alanine dipeptide in gas phase as well as in water.

  8. Optimal eavesdropping in cryptography with three-dimensional quantum states.

    PubMed

    Bruss, D; Macchiavello, C

    2002-03-25

    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.

  9. Topological energy conversion through the bulk or the boundary of driven systems

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  10. Ubiquitin immobilized on mesoporous MCM41 silica surfaces - Analysis by solid-state NMR with biophysical and surface characterization.

    PubMed

    Adiram-Filiba, Nurit; Schremer, Avital; Ohaion, Eli; Nadav-Tsubery, Merav; Lublin-Tennenbaum, Tammi; Keinan-Adamsky, Keren; Goobes, Gil

    2017-05-31

    Deriving the conformation of adsorbed proteins is important in the assessment of their functional activity when immobilized. This has particularly important bearings on the design of contemporary and new encapsulated enzyme-based drugs, biosensors, and other bioanalytical devices. Solid-state nuclear magnetic resonance (NMR) measurements can expand our molecular view of proteins in this state and of the molecular interactions governing protein immobilization on popular biocompatible surfaces such as silica. Here, the authors study the immobilization of ubiquitin on the mesoporous silica MCM41 by NMR and other techniques. Protein molecules are shown to bind efficiently at pH 5 through electrostatic interactions to individual MCM41 particles, causing their agglutination. The strong attraction of ubiquitin to MCM41 surface is given molecular context through evidence of proximity of basic, carbonyl and polar groups on the protein to groups on the silica surface using NMR measurements. The immobilized protein exhibits broad peaks in two-dimensional 13 C dipolar-assisted rotational resonance spectra, an indication of structural multiplicity. At the same time, cross-peaks related to Tyr and Phe sidechains are missing due to motional averaging. Overall, the favorable adsorption of ubiquitin to MCM41 is accompanied by conformational heterogeneity and by a major loss of motional degrees of freedom as inferred from the marked entropy decrease. Nevertheless, local motions of the aromatic rings are retained in the immobilized state.

  11. Design of compact and ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry

    PubMed Central

    Wu, Rengmao; Hua, Hong; Benítez, Pablo; Miñano, Juan C.; Liang, Rongguang

    2016-01-01

    The energy efficiency and compactness of an illumination system are two main concerns in illumination design for extended sources. In this paper, we present two methods to design compact, ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry. The light rays are directed by using two aspherical surfaces in the first method and one aspherical surface along with an optimized parabola in the second method. The principles and procedures of each design method are introduced in detail. Three examples are presented to demonstrate the effectiveness of these two methods in terms of performance and capacity in designing compact, ultra efficient aspherical lenses. The comparisons made between the two proposed methods indicate that the second method is much simpler and easier to be implemented, and has an excellent extensibility to three-dimensional designs. PMID:29092336

  12. Three-dimensional instability of standing waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.

  13. The dimensionality reduction at surfaces as a playground for many-body and correlation effects

    NASA Astrophysics Data System (ADS)

    Tejeda, A.; Michel, E. G.; Mascaraque, A.

    2013-03-01

    Low-dimensional systems have always deserved attention due to the peculiarity of their physics, which is different from or even at odds with three-dimensional expectations. This is precisely the case for many-body effects, as electron-electron correlation or electron-phonon coupling are behind many intriguing problems in condensed matter physics. These interesting phenomena at low dimensions can be studied in one of the paradigms of two dimensionality—the surface of crystals. The maturity of today's surface science techniques allows us to perform thorough experimental studies that can be complemented by the current strength of state-of-the-art calculations. Surfaces are thus a natural two-dimensional playground for studying correlation and many-body effects, which is precisely the object of this special section. This special section presents a collection of eight invited articles, giving an overview of the current status of selected systems, promising techniques and theoretical approaches for studying many-body effects at surfaces and low-dimensional systems. The first article by Hofmann investigates electron-phonon coupling in quasi-free-standing graphene by decoupling graphene from two different substrates with different intercalating materials. The following article by Kirschner deals with the study of NiO films by electron pair emission, a technique particularly well-adapted for studying high electron correlation. Bovensiepen investigates electron-phonon coupling via the femtosecond time- and angle-resolved photoemission spectroscopy technique. The next article by Malterre analyses the phase diagram of alkalis on Si(111):B and studies the role of many-body physics. Biermann proposes an extended Hubbard model for the series of C, Si, Sn and Pb adatoms on Si(111) and obtains the inter-electronic interaction parameters by first principles. Continuing with the theoretical studies, Bechstedt analyses the influence of on-site electron correlation in insulating antiferromagnetic surfaces. Ortega reports on the gap of molecular layers on metal systems, where the metal-organic interaction affects the organic gap through correlation effects. Finally, Cazalilla presents a study of the phase diagram of one-dimensional atoms or molecules displaying a Kondo-exchange interaction with the substrate. Acknowledgments The editors are grateful to all the invited contributors to this special section of Journal of Physics: Condensed Matter. We also thank the IOP Publishing staff for handling the administrative matters and the refereeing process. Correlation and many-body effects at surfaces contents The dimensionality reduction at surfaces as a playground for many-body and correlation effectsA Tejeda, E G Michel and A Mascaraque Electron-phonon coupling in quasi-free-standing grapheneJens Christian Johannsen, Søren Ulstrup, Marco Bianchi, Richard Hatch, Dandan Guan, Federico Mazzola, Liv Hornekær, Felix Fromm, Christian Raidel, Thomas Seyller and Philip Hofmann Exploring highly correlated materials via electron pair emission: the case of NiO/Ag(100)F O Schumann, L Behnke, C H Li and J Kirschner Coherent excitations and electron-phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopyI Avigo, R Cortés, L Rettig, S Thirupathaiah, H S Jeevan, P Gegenwart, T Wolf, M Ligges, M Wolf, J Fink and U Bovensiepen Understanding the insulating nature of alkali-metal/Si(111):B interfacesY Fagot-Revurat, C Tournier-Colletta, L Chaput, A Tejeda, L Cardenas, B Kierren, D Malterre, P Le Fèvre, F Bertran and A Taleb-Ibrahimi What about U on surfaces? Extended Hubbard models for adatom systems from first principlesPhilipp Hansmann, Loïg Vaugier, Hong Jiang and Silke Biermann Influence of on-site Coulomb interaction U on properties of MnO(001)2 × 1 and NiO(001)2 × 1 surfacesA Schrön, M Granovskij and F Bechstedt On the organic energy gap problemF Flores, E Abad, J I Martínez, B Pieczyrak and J Ortega Easy-axis ferromagnetic chain on a metallic surfaceMiguel A Cazalilla

  14. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    NASA Astrophysics Data System (ADS)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  15. Verification and transfer of thermal pollution model. Volume 5: Verification of 2-dimensional numerical model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  16. Two-dimensional and three-dimensional evaluation of the deformation relief

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.

    2017-12-01

    This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.

  17. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states

    NASA Astrophysics Data System (ADS)

    He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo

    2018-05-01

    Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.

  18. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  19. Low-resistance gateless high electron mobility transistors using three-dimensional inverted pyramidal AlGaN/GaN surfaces

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-01-01

    In this letter, three-dimensional gateless AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated with 54% reduction in electrical resistance and 73% increase in surface area compared with conventional gateless HEMTs on planar substrates. Inverted pyramidal AlGaN/GaN surfaces were microfabricated using potassium hydroxide etched silicon with exposed (111) surfaces and metal-organic chemical vapor deposition of coherent AlGaN/GaN thin films. In addition, electrical characterization of the devices showed that a combination of series and parallel connections of the highly conductive two-dimensional electron gas along the pyramidal geometry resulted in a significant reduction in electrical resistance at both room and high temperatures (up to 300 °C). This three-dimensional HEMT architecture can be leveraged to realize low-power and reliable power electronics, as well as harsh environment sensors with increased surface area.

  20. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  1. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  2. Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin S.; Moses, Gregory; Young, Todd

    2016-05-01

    We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, O k , k=1,\\ldots,p , have two-dimensional unstable manifolds that contain orbits connecting each O k to the next two equilibrium points O k+1 and O k+2 in the chain ({{O}p+1}={{O}1} ). We show that the union of these equilibria and their unstable manifolds form a two-dimensional surface with a boundary that is homeomorphic to a cylinder if p is even and a Möbius strip if p is odd. If, further, each equilibrium in the chain satisfies a condition called ‘dissipativity’, then this surface is asymptotically stable.

  3. Mesoscopic structure formation in condensed matter due to vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Gupta, Kumar S.; Coey, J. M. D.

    2015-10-01

    An observable influence of zero-point fluctuations of the vacuum electromagnetic field on bound electrons is well known in the hydrogen atom, where it produces the Lamb shift. Here, we adapt an approach used to explain the Lamb shift in terms of a slight expansion of the orbits due to interaction with the zero-point field and apply it to assemblies of N electrons that are modeled as independent atomically bound two-level systems. The effect is to stabilize a collective ground-state energy, which leads to a prediction of novel effects at room temperature for quasi-two-dimensional systems over a range of parameters in the model, namely, N , the two-level excitation energy ℏ ω and the ionization energy ℏ ω +ɛ . Some mesoscopic systems where these effects may be observable include water sheaths on protein or DNA, surfaces of gaseous nanobubbles, and the magnetic response of inhomogeneous, electronically dilute oxides. No such effects are envisaged for uniform three-dimensional systems.

  4. Electronic transport in NbSe₂ two-dimensional nanostructures: semiconducting characteristics and photoconductivity.

    PubMed

    Huang, Y H; Chen, R S; Zhang, J R; Huang, Y S

    2015-12-07

    The electronic transport properties of two-dimensional (2D) niobium diselenide (NbSe2) layer materials with two-hexagonal single-crystalline structures grown by chemical vapor transport were investigated. Those NbSe2 nanostructures isolated simply using mechanical exfoliation were found to exhibit lower conductivity and semiconducting properties, compared with their bulk metallic counterparts. Benefiting from lower dark conductivity, NbSe2 nanoflakes exhibit a remarkable photoresponse under different wavelengths and intensity excitations. The photocurrent responsivity and photoconductive gain can reach 3.8 A W(-1) and 300, respectively; these values are higher than those of graphene and MoS2 monolayers and are comparable with those of GaS and GaSe nanosheets. The presence of electron trap states at the surface was proposed as an explanation for the reduced dark conductivity and enhanced photoconductivity in the 2D NbSe2 nanostructures. This work identifies another possibility for the application of a metallic layer material as an optoelectronic component in addition to an ultrathin transparent conducting material.

  5. High-density two-dimensional electron system induced by oxygen vacancies in ZnO

    NASA Astrophysics Data System (ADS)

    Rödel, T. C.; Dai, J.; Fortuna, F.; Frantzeskakis, E.; Le Fèvre, P.; Bertran, F.; Kobayashi, M.; Yukawa, R.; Mitsuhashi, T.; Kitamura, M.; Horiba, K.; Kumigashira, H.; Santander-Syro, A. F.

    2018-05-01

    We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultrahigh vacuum and characterize its electronic structure by using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two s -type subbands, that we compare with the d -like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a two-dimensional Fermi liquid with a Debye distribution of phonons.

  6. The physics and chemistry of graphene-on-surfaces.

    PubMed

    Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei

    2017-07-31

    Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

  7. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    PubMed

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dimensionality of nanoscale TiO 2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE PAGES

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO 2 depends on TiO 2 dimensionality. The injection into a TiO 2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO 2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbantmore » breaks symmetry of delocalized TiO 2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  9. Dimensionality of nanoscale TiO 2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO 2 depends on TiO 2 dimensionality. The injection into a TiO 2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO 2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbantmore » breaks symmetry of delocalized TiO 2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  10. Bulk and surface states carried supercurrent in ballistic Nb-Dirac semimetal Cd3As2 nanowire-Nb junctions

    NASA Astrophysics Data System (ADS)

    Li, Cai-Zhen; Li, Chuan; Wang, Li-Xian; Wang, Shuo; Liao, Zhi-Min; Brinkman, Alexander; Yu, Da-Peng

    2018-03-01

    A three-dimensional Dirac semimetal has bulk Dirac cones in all three momentum directions and Fermi arc like surface states, and can be converted into a Weyl semimetal by breaking time-reversal symmetry. However, the highly conductive bulk state usually hides the electronic transport from the surface state in Dirac semimetal. Here, we demonstrate the supercurrent carried by bulk and surface states in Nb -Cd3As2 nanowire-Nb short and long junctions, respectively. For the ˜1 -μ m -long junction, the Fabry-Pérot interferences-induced oscillations of the critical supercurrent are observed, suggesting the ballistic transport of the surface states carried supercurrent, where the bulk states are decoherent and the topologically protected surface states still stay coherent. Moreover, a superconducting dome is observed in the long junction, which is attributed to the enhanced dephasing from the interaction between surface and bulk states as tuning gate voltage to increase the carrier density. The superconductivity of topological semimetal nanowire is promising for braiding of Majorana fermions toward topological quantum computing.

  11. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  12. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  13. Snapshots of crystal growth: Nanoclusters of organic conductors on Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Schott, J. H.; Ward, M. D.

    1994-06-01

    Mono- and multilayer crystalline nanoclusters of tetra-hiafulvalene-tetracyanoquinodimethane ((TTF) (TCNO)), a low-dimensional organic conductor in the bulk form, can be formed readily on Au(111) surfaces by vapor phase sublimation under ambient conditions. Scanning tunneling microscopy of monolayer (TTF)(TCNQ) films reveals a two-dimensional density of states (DOS) that is consistent with the arrangement of TTF and TCNO molecules in the ac face of bulk (TTF)(TCNO), in which the molecular planes are nearly parallel to the Au(111) substrate. In contrast, clusters with thicknesses corresponding to two or three molecular layers exhibit a transformation to a highly anisotropic DOS that can be attributed to interlayer molecular overlap in segregated TTF and TCNQ molecular chains along the c-axis, which can be described as 'molecular wires'. The orientation of the crystalline (TTF)(TCNO) clusters is preserved throughout the crystal growth sequence, leading to meso- and macroscopic (TTF)(TCNO) needles that are oriented perpendicular to the Au(111) substrate. These studies provide visualization of crystal growth from the initial stages of nucleation to macroscopic crystals, and a revealing example of the changes in electronic structure that occur during the evolution of molecular (TTF)(TCNQ) nuclei into a bulk crystalline phase.

  14. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  15. Anomalous Quasiparticle Reflection from the Surface of a ^{3}He-^{4}He Dilute Solution.

    PubMed

    Ikegami, Hiroki; Kim, Kitak; Sato, Daisuke; Kono, Kimitoshi; Choi, Hyoungsoon; Monarkha, Yuriy P

    2017-11-10

    A free surface of a dilute ^{3}He-^{4}He liquid mixture is a unique system where two Fermi liquids with distinct dimensions coexist: a three-dimensional (3D) ^{3}He Fermi liquid in the bulk and a two-dimensional (2D) ^{3}He Fermi liquid at the surface. To investigate a novel effect generated by the interaction between the two Fermi liquids, the mobility of a Wigner crystal of electrons formed on the free surface of the mixture is studied. An anomalous enhancement of the mobility, compared with the case where the 3D and 2D systems do not interact with each other, is observed. The enhancement is explained by the nontrivial reflection of 3D quasiparticles from the surface covered with the 2D ^{3}He system.

  16. High-Dimensional Multi-particle Cat-Like State Teleportation

    NASA Astrophysics Data System (ADS)

    Zeng, Bei; Liu, Xiao-Shu; Li, Yan-Song; Long, Gui-Lu

    2002-11-01

    Two kinds of M-particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by d-dimensional Bell-basis measurements, while in the second protocol it is realized by d-dimensional GHZ-basis measurement. The project supported by the Major State Basic Research Development Program under Grant No. G200077400, National Natural Science Foundation of China under Grant No. 60073009, the Fok Ying Tung Education Foundation, and the Excellent Young University Teachers' Fund of Education Ministry of China

  17. Stereo imaging with spaceborne radars

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Kobrick, M.

    1983-01-01

    Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.

  18. New generation of two-dimensional spintronic systems realized by coupling of Rashba and Dirac fermions

    PubMed Central

    Eremeev, Sergey V.; Tsirkin, Stepan S.; Nechaev, Ilya A.; Echenique, Pedro M.; Chulkov, Evgueni V.

    2015-01-01

    Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within ~100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems. PMID:26239268

  19. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  20. Modulation of electromagnetic local density of states by coupling of surface phonon-polariton

    NASA Astrophysics Data System (ADS)

    Li, Yao; Zhang, Chao-Jie; Wang, Tong-Biao; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua

    2017-02-01

    We studied the electromagnetic local density of state (EM-LDOS) near the surface of a one-dimensional multilayer structure (1DMS) alternately stacked by SiC and Si. EM-LDOS of a semi-infinite bulk appears two intrinsic peaks due to the resonance of surface phonon-polariton (SPhP) in SiC. In contrast with that of SiC bulk, SPhP can exist at the interface of SiC and Si for the 1DMS. The SPhPs from different interfaces can couple together, which can lead to a significant modulation of EM-LDOS. When the component widths of 1DMS are large, the spectrum of EM-LDOS exhibits oscillation behavior in the frequency regime larger than the resonance frequency of SPhP. While the component widths are small, due to the strong coupling of SPhPs, another peak appears in the EM-LDOS spectrum besides the two intrinsic ones. And the position of the new peak move toward high frequency when the width ratio of SiC and Si increases. The influences of distance from the surfaces and period of 1DMS on EM-LDOS have also been studied in detail. The results are helpful in studying the near-field radiative heat transfer and spontaneous emission.

  1. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  2. Engineering topological edge states in two dimensional magnetic photonic crystal

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  3. Coding/decoding two-dimensional images with orbital angular momentum of light.

    PubMed

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  4. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  5. Controlling the dual mechanisms of oxide interface doping

    NASA Astrophysics Data System (ADS)

    Dai, Weitao; Cen, Cheng

    The formation of two dimensional electron gas (2DEG) at LaAlO3/SrTiO3 interfaces involves multiple electronic and structural causes. The interplay between them makes the investigation of individual mechanism very challenging. Here we demonstrate the nanoscale selective control of two interface doping pathways: charge transfers from surface adsorbed protons and oxygen vacancies created in LaAlO3 layers. The selective control is achieved by combining intensive electric field generated by conducting AFM probe which controls both the creation/migration of oxygen vacancies and the surface proton density, with plasma assisted surface hydroxylation and solvent based proton solvation that act mainly on surface adsorbates. Robust nanoscale reversible metal-insulator transition was achieved at the interfaces with the LaAlO3 layer thicker than the critic thickness. Different combinations of the experimental methods and doping mechanisms enable highly flexible tuning of the 2DEG's carrier density, mobility and sensitivity to ambient environments. The reversible and independent controls of surface states and vacancies add to the fundamental material research capabilities and can benefit future exploration of designed 2DEG nanoelectronics.

  6. Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.

    PubMed

    Duan, Lian; Cao, Zhen; Yobas, Levent

    2017-09-19

    Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.

  7. On the importance of full-dimensionality in low-energy molecular scattering calculations

    PubMed Central

    Faure, Alexandre; Jankowski, Piotr; Stoecklin, Thierry; Szalewicz, Krzysztof

    2016-01-01

    Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm−1 in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible. PMID:27333870

  8. Exploring the science of thinking independently together: Faraday Discussion Volume 204 - Complex Molecular Surfaces and Interfaces, Sheffield, UK, July 2017.

    PubMed

    Samperi, M; Hirsch, B E; Diaz Fernandez, Y A

    2017-11-23

    The 2017 Faraday Discussion on Complex Molecular Surfaces and Interfaces brought together theoreticians and experimentalists from both physical and chemical backgrounds to discuss the relevant applied and fundamental research topics within the broader field of chemical surface analysis and characterization. Main discussion topics from the meeting included the importance of "disordered" two-dimensional (2D) molecular structures and the utility of kinetically trapped states. An emerging need for new experimental tools to address dynamics and kinetic pathways involved in self-assembled systems, as well as the future prospects and current limitations of in silico studies were also discussed. The following article provides a brief overview of the work presented and the challenges discussed during the meeting.

  9. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  10. An adaptive front tracking technique for three-dimensional transient flows

    NASA Astrophysics Data System (ADS)

    Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.

    2000-01-01

    An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright

  11. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  12. Coherent and radiative couplings through two-dimensional structured environments

    NASA Astrophysics Data System (ADS)

    Galve, F.; Zambrini, R.

    2018-03-01

    We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.

  13. Three-dimensional lattice Boltzmann simulations of microdroplets including contact angle hysteresis on topologically structured surfaces

    DOE PAGES

    Ba, Yan; Kang, Qinjun; Liu, Haihu; ...

    2016-04-14

    In this study, the dynamical behavior of a droplet on topologically structured surface is investigated by using a three-dimensional color-gradient lattice Boltzmann model. A wetting boundary condition is proposed to model fluid-surface interactions, which is advantageous to improve the accuracy of the simulation and suppress spurious velocities at the contact line. The model is validated by the droplet partial wetting test and reproduction of the Cassie and Wenzel states. A series of simulations are conducted to investigate the behavior of a droplet when subjected to a shear flow. It is found that in Cassie state, the droplet undergoes a transitionmore » from stationary, to slipping and finally to detachment states as the capillary number increases, while in Wenzel state, the last state changes to the breakup state. The critical capillary number, above which the droplet slipping occurs, is small for the Cassie droplet, but is significantly enhanced for the Wenzel droplet due to the increased contact angle hysteresis. In Cassie state, the receding contact angle nearly equals the prediction by the Cassie relation, and the advancing contact angle is close to 180°, leading to a small contact angle hysteresis. In Wenzel state, however, the contact angle hysteresis is extremely large (around 100°). Finally, high droplet mobility can be easily achieved for Cassie droplets, whereas in Wenzel state, extremely low droplet mobility is identified.« less

  14. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  15. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments.

    PubMed

    Ferreira, Fabiano Guerra; Barbosa, Igor Bastos; Scelza, Pantaleo; Montagnana, Marcello Bulhões; Russano, Daniel; Neff, John; Scelza, Miriam Zaccaro

    2017-09-28

    The aim of this study was to undertake a qualitative and quantitative assessment of nanoscale alterations and wear on the surfaces of nickel-titanium (NiTi) endodontic instruments, before and after use, through a high-resolution, noncontact, three-dimensional optical profiler, and to verify the accuracy of the evaluation method. Cutting blade surfaces of two different brands of NiTi endodontic instruments, Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were examined and compared before and after two uses in simulated root canals made in clear resin blocks. The analyses were performed on three-dimensional images which were obtained from surface areas measuring 211 × 211 µm, located 3 mm from their tips. The quantitative evaluation of the samples was conducted before and after the first and second usage, by the recordings of three amplitude parameters. The data were subjected to statistical analysis at a 5% level of significance. The results revealed statistically significant increases in the surface wear of both instruments groups after the second use. The presence of irregularities was found on the surface topography of all the instruments, before and after use. Regardless of the evaluation stage, most of the defects were observed in the WaveOne instruments. The three-dimensional technique was suitable and effective for the accurate investigation of the same surfaces of the instruments in different periods of time.

  16. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Huihui; Gao, Feng; Dai, Mingjin; Jia, Dechang; Zhou, Yu; Hu, Pingan

    2017-03-01

    Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS{}2 ), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN. Project supported by the National Natural Science Foundation of China (Nos. 61390502, 21373068), the National Basic Research Program of China (No. 2013CB632900), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51521003), and the Self-Planned Task of State Key Laboratory of Robotics and System (No. SKLRS201607B).

  17. Nonadiabatic couplings in the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2).

    PubMed

    Dayou, F; Hernández, M I; Campos-Martínez, J; Hernández-Lamoneda, R

    2010-01-28

    The effect of nonadiabatic couplings on the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2)(X (3)Sigma(g) (-), v=0) is investigated. Two-dimensional adiabatic and quasidiabatic potential energy surfaces for the excited dimer states and the corresponding nonadiabatic radial couplings have been computed by means of ab initio calculations. Alternately, a two-state theoretical model, based on the Landau-Zener and Rosen-Zener-Demkov assumptions, has been employed to derive analytical forms for the nonadiabatic couplings and an adiabatic-to-diabatic transformation only depending on a reduced set of adiabatic energy terms. Compared to the ab initio results, the predictions of the model are found to be highly accurate. Quantum dynamics calculations for the removal of the first ten vibrational states of O(2)(b (1)Sigma(g) (+),v) indicate a clear dominant contribution of the vibration-electronic relaxation mechanism relative to the vibration-translation energy transfer. Although the present reduced-dimensionality model precludes any quantitative comparison with experiments, it is found that the removal probabilities for v=1-3 are qualitatively consistent with the experimental observations, once the vibrational structure of the fragments is corrected with spectroscopical terms. Besides, the model served to show how the computation of the adiabatic PESs just at the crossing seam was sufficient to describe the nonadiabatic dynamics related to a given geometrical arrangement. This implies considerable savings in the calculations which will eventually allow for larger accuracy in the ab initio calculations as well as higher dimensional treatments.

  18. Sampling saddle points on a free energy surface

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Chen, Ming; Yu, Tang-Qing; Tuckerman, Mark; E, Weinan

    2014-04-01

    Many problems in biology, chemistry, and materials science require knowledge of saddle points on free energy surfaces. These saddle points act as transition states and are the bottlenecks for transitions of the system between different metastable states. For simple systems in which the free energy depends on a few variables, the free energy surface can be precomputed, and saddle points can then be found using existing techniques. For complex systems, where the free energy depends on many degrees of freedom, this is not feasible. In this paper, we develop an algorithm for finding the saddle points on a high-dimensional free energy surface "on-the-fly" without requiring a priori knowledge the free energy function itself. This is done by using the general strategy of the heterogeneous multi-scale method by applying a macro-scale solver, here the gentlest ascent dynamics algorithm, with the needed force and Hessian values computed on-the-fly using a micro-scale model such as molecular dynamics. The algorithm is capable of dealing with problems involving many coarse-grained variables. The utility of the algorithm is illustrated by studying the saddle points associated with (a) the isomerization transition of the alanine dipeptide using two coarse-grained variables, specifically the Ramachandran dihedral angles, and (b) the beta-hairpin structure of the alanine decamer using 20 coarse-grained variables, specifically the full set of Ramachandran angle pairs associated with each residue. For the alanine decamer, we obtain a detailed network showing the connectivity of the minima obtained and the saddle-point structures that connect them, which provides a way to visualize the gross features of the high-dimensional surface.

  19. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  20. Electron-phonon heat exchange in quasi-two-dimensional nanolayers

    NASA Astrophysics Data System (ADS)

    Anghel, Dragos-Victor; Cojocaru, Sergiu

    2017-12-01

    We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.

Top